Contents VNQ7040AY

Contents

Block	diagram ar	nd pin description	
		cation	
2.1	Absolute	maximum ratings	6
2.2	Thermal	data	7
2.3	Electrica	characteristics	7
	2.3.1	General electrical specification	7
	2.3.2	Bulb mode (default)	16
	2.3.3	Electrical characteristics curves - Bulb Mode	20
	2.3.4	LED Mode (Channel 0 and 1)	24
	2.3.5	Electrical characteristics curves - LED mode	
	2.3.6	Truth tables	28
Prote	ctions		30
3.1	Power lin	nitation	30
3.2	Thermal	shutdown	30
3.3	Current I	imitation	30
3.4	Negative	voltage clamp	30
ilaaA		mation	
4.1		tection network against reverse battery	
4.2		against transient electrical disturbances	
4.3		s protection	
4.4		se - analog current sense	
	4.4.1	Principle of Multisense signal generation	
	4.4.2	TCASE and VCC monitor	
	4.4.3	Short to VCC and OFF-state open-load detection	37
Maxin	num demag	netization energy (VCC = 16 V)	38
	_	B thermal data	
6.1	_	SO-36 thermal data	
-		tion	
7.1		SO-36 package information	
7.2		SO-36 packing information	
7.3		SO-36 marking information	
		0-30 marking information	
Order	codes		40

VNQ	7040AY	Contents
a	Revision history	40

GAPGCFT00528

LED, C

GND [

1 Block diagram and pin description

Fault

Figure 1: Block diagram

Table 1: Pin functions

Name	Function			
Vcc	Battery connection.			
OUTPUT _{0,1,2,3}	Power output.			
GND	Ground connection.			
INPUT _{0,1,2,3}	Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS outputs. They control output switch state.			
MultiSense	Multiplexed analog sense output pin; it delivers a current proportional to the selected diagnostic: load current, supply voltage or chip temperature.			
SEn	Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the MultiSense diagnostic pin			
LED _{0,1}	Active high compatible with 3 V and 5 V CMOS outputs pin; they enable the LED mode on logic high level (see <i>Table 15: "Truth table"</i>).			
SEL _{0,1,2}	Active high compatible with 3 V and 5 V CMOS outputs pin; they address the MultiSense multiplexer (see <i>Table 15: "Truth table"</i>).			
FaultRST	Active low compatible with 3 V and 5 V CMOS outputs pin; it unlatches the output in case of fault; If kept low, sets the outputs in auto-restart mode.			

577

4/50 DocID027406 Rev 4

Figure 2: Configuration diagram (top view)

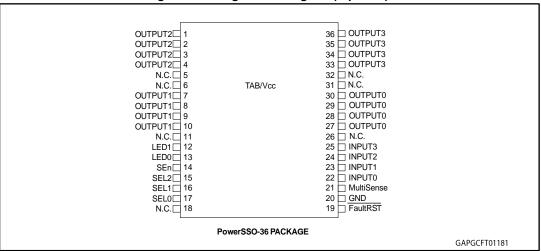
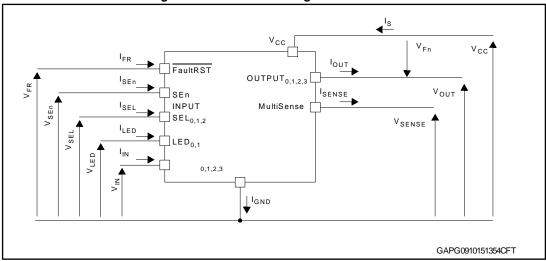


Table 2: Suggested connections for unused and not connected pins

Connection / pin	MultiSense	N.C.	Output	Input	SEn, SELx, LEDx, FaultRST
Floating	Not allowed	X (1)	Χ	X	X
To ground	Through 1 kΩ resistor	X	Not allowed	Through 15 kΩ resistor	Through 15 kΩ resistor


⁽¹⁾X: do not care.

577

DocID027406 Rev 4

2 Electrical specification

Figure 3: Current and voltage conventions

 $V_{Fn} = V_{OUTn} - V_{CC}$

2.1 Absolute maximum ratings

Stressing the device above the rating listed in *Table 3: "Absolute maximum ratings"* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in the table below for extended periods may affect device reliability.

Table 3: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vcc	DC supply voltage	38	
-Vcc	Reverse DC supply voltage	16	
Vссрк	Maximum transient supply voltage (ISO7637-2:2004 Pulse 5b level IV clamped to 40 V; RL = 4 Ω)	40	V
VccJs	Maximum jump start voltage for single pulse short circuit protection	28	
-I _{GND}	DC reverse ground pin current	200	mA
Іоит	OUTPUT _{0,1,2,3} DC output current	Internally limited	
-lout_0,1	OUTPUT _{0,1} Reverse DC output current	10	Α
-lout_2,3	OUTPUT _{2,3} Reverse DC output current	10	
lin	INPUT _{0,1,2,3} DC input current		
I _{LED}	LED _{0,1} DC input current	1 to 10	A
I _{SEn}	SEn DC input current	-1 to 10	mA
ISEL	SEL _{0,1,2} DC input current		

6/50 DocID027406 Rev 4

Symbol	Parameter	Value	Unit
I _{FR}	FaultRST DC input current	-1 to 10	mA
V _{FR}	FaultRST DC input voltage	7.5	V
1	MultiSense pin DC output current ($V_{GND} = V_{CC}$ and $V_{SENSE} < 0 V$)	-10	mA
ISENSE	MultiSense pin DC output current in reverse (Vcc < 0 V)	20	mA
E _{MAX}	Maximum switching energy (single pulse) (T _{DEMAG} = 0.4 ms; T _{jstart} = 150 °C)	36	mJ
V _{ESD}	 Electrostatic discharge (JEDEC 22A-114F) INPUT_{0,1,2,3} MultiSense LED_{0,1}, SEn, SEL_{0,1,2}, FaultRST OUTPUT_{0,1,2,3} Vcc 	4000 2000 4000 4000 4000	V V V V
V _{ESD}	Charge device model (CDM-AEC-Q100-011)	750	V
Tj	Junction operating temperature	-40 to 150	°C
T _{stg}	Storage temperature	-55 to 150	

2.2 Thermal data

Table 4: Thermal data

Symbol	Parameter	Typ. value	Unit
R _{thj-board}	Thermal resistance junction-board (JEDEC JESD 51-8) (1)(2)	4.9	
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-2) (1)(3)	53	°C/W
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-2) (1)(2)	18.5	

Notes:

2.3 Electrical characteristics

7 V < V_{CC} < 28 V; -40 °C < T_j < 150 °C, unless otherwise specified.

All typical values refer to V_{CC} = 13 V; T_j = 25 °C, unless otherwise specified.

2.3.1 General electrical specification

Table 5: Power section

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vcc	Operating supply voltage		4	13	28	
Vusb	Undervoltage shutdown				4	٧
VusnReset	Undervoltage shutdown reset				5	

DocID027406 Rev 4

⁽¹⁾One channel ON.

⁽²⁾Device mounted on four-layers 2s2p PCB

 $^{^{(3)}}$ Device mounted on two-layers 2s0p PCB with 2 cm 2 heatsink copper trace

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
VUSDhyst	Undervoltage shutdown hysteresis			0.3		
. V .	Clamp voltage	Is = 20 mA; 25 °C < T _j < 150 °C	41	46	52	V
V _{clamp}	Clamp voltage	$I_S = 20 \text{ mA}; T_j = -40 \text{ °C}$	38			>
		$\begin{split} &V_{CC} = 13 \ V; \\ &V_{INx} = V_{OUTx} = V_{FR} = V_{SEn} = 0 \ V; \\ &V_{SEL0,1,2} = 0 \ V; \ V_{LED0,1} = 0 \ V; \\ &T_j = 25 \ ^{\circ}C \end{split}$			0.5	μΑ
Іѕтву	Supply current in standby at Vcc = 13 V (1)	$\begin{split} &V_{CC} = 13 \ V; \\ &V_{INx} = V_{OUTx} = V_{FR} = V_{SEn} = 0 \ V; \\ &V_{SEL0,1,2} = 0 \ V; \ V_{LED0,1} = 0 \ V; \\ &T_j = 85 \ ^{\circ}C \ ^{(2)} \end{split}$			0.5	μΑ
		$\begin{aligned} &V_{CC} = 13 \ V; \\ &V_{INx} = V_{OUTx} = V_{FR} = V_{SEn} = 0 \ V; \\ &V_{SEL0,1,2} = 0 \ V; \ V_{LED0,1} = 0 \ V; \\ &T_j = 125 \ ^{\circ}C \end{aligned}$			3	μΑ
t _{D_} stby	Standby mode blanking time	$V_{CC} = 13 \text{ V; } V_{INx} = V_{OUTx} = V_{FR} = 0 \text{ V; } \\ V_{SEL0,1,2} = 0 \text{ V; } V_{LED0,1} = 0 \text{ V; } \\ V_{SEn} = 5 \text{ V to 0 V} $	60	300	550	μs
Is(ON)	Supply current	Vcc = 13 V; Vsen = VFR = Vselo,1 = 0 V; VINx = 5 V; Iouto,1,2,3 = 0 A		10	16	mA
Ignd(on)	Control stage current consumption in ON state. All channels active.	Vcc = 13 V; Vsen = 5 V; Vfr = Vselo,1 = 0 V; Vlnx = 5 V; Iouto,1,2,3 = 2.5 A			18.5	mA
1,7,40	Off-state output	$V_{INx} = V_{OUTx} = 0 \text{ V}; V_{CC} = 13 \text{ V};$ $T_j = 25 \text{ °C}$	0	0.01	0.5	μA
I _{L(off)}	Vcc = $13 V^{(1)}$	$V_{INx} = V_{OUTx} = 0 \text{ V; } V_{CC} = 13 \text{ V;}$ $T_j = 125 \text{ °C}$	0		3	μΑ
V _F	Output - V _{CC} diode voltage ⁽³⁾	I _{OUT} = -2.5 A; T _j = 150 °C			0.7	V

⁽¹⁾PowerMOS leakage included.

 $[\]ensuremath{^{(2)}}\mbox{Parameter specified by design; not subject to production test.}$

⁽³⁾For each channel.

Table 6: Logic Inputs

Table 6: Logic Inputs 7 V < V _{CC} < 28 V; -40 °C < T _i < 150 °C							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
INPUT _{0,1,2,3}	characteristics						
VIL	Input low level voltage				0.9	V	
I _{IL}	Low level input current	V _{IN} = 0.9 V	1			μA	
VIH	Input high level voltage		2.1			V	
Iн	High level input current	V _{IN} = 2.1 V			10	μA	
V _{I(hyst)}	Input hysteresis voltage		0.2			V	
V_{ICL}	Input clamp voltage	I _{IN} = 1 mA	5.3	0.7	7.2	V	
FaultRST o	 characteristics	I _{IN} = -1 mA		-0.7			
V _{FRL}	Input low level voltage		Τ		0.9	V	
IFRL	Low level input current	V _{IN} = 0.9 V	1		0.0	μA	
VFRH	Input high level voltage	V IIV — 0.5 V	2.1			V	
IFRH	High level input current	V _{IN} = 2.1 V	2.1		10	μA	
V _{FR(hyst)}	Input hysteresis voltage	V IIV — Z. I V	0.2		10	V	
V FK(HySt)	Input Hydiorodio voltago	I _{IN} = 1 mA	5.3		7.5	, v	
VFRCL	Input clamp voltage	$I_{IN} = -1 \text{ mA}$	0.0	-0.7	7.5	V	
SEL _{0,1,2} ch	aracteristics (7 V < Vcc < 18	V)					
V _{SELL}	Input low level voltage				0.9	V	
ISELL	Low level input current	V _{IN} = 0.9 V	1			μA	
Vselh	Input high level voltage		2.1			V	
I _{SELH}	High level input current	V _{IN} = 2.1 V			10	μΑ	
V _{SEL(hyst)}	Input hysteresis voltage		0.2			V	
\/	Input alama valtaga	I _{IN} = 1 mA	5.3		7.2	V	
Vselcl	Input clamp voltage	$I_{IN} = -1 \text{ mA}$		-0.7		V	
LED _{0,1} cha	racteristics (7 V < Vcc < 18 V	"				•	
V_{LEDL}	Input low level voltage				0.9	V	
I _{LEDL}	Low level input current	V _{IN} = 0.9 V	1			μΑ	
VLEDH	Input high level voltage		2.1			V	
I _{LEDH}	High level input current	V _{IN} = 2.1 V			10	μΑ	
$V_{\text{LED(hyst)}}$	Input hysteresis voltage		0.2			V	
VLEDCL	Input clamp voltage	I _{IN} = 1 mA	5.3		7.2	V	
VLEDCL	Imput ciamp voltage	I _{IN} = -1 mA		-0.7		V	
SEn chara	cteristics (7 V < V _{CC} < 18 V)		1	1	1		
V_{SEnL}	Input low level voltage				0.9	V	
I _{SEnL}	Low level input current	V _{IN} = 0.9 V	1			μΑ	
V_{SEnH}	Input high level voltage		2.1			V	
ISEnH	High level input current	$V_{IN} = 2.1 \ V$			10	μΑ	

DocID027406 Rev 4

$7 \text{ V} < \text{V}_{CC} < 28 \text{ V}; -40 ^{\circ}\text{C} < \text{T}_{j} < 150 ^{\circ}\text{C}$						
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{SEn(hyst)}	Input hysteresis voltage		0.2			V
\/	V leave describer	I _{IN} = 1 mA	5.3		7.2	\/
VSEnCL	Input clamp voltage	I _{IN} = -1 mA		-0.7		V

Table 7: Protections

7 V < V _{CC} < 18 V; -40 °C < T _j < 150 °C							
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
T _{TSD}	Shutdown temperature		150	175	200		
T _R	Reset temperature		T _{RS} + 1	T _{RS} + 5			
T _{RS}	Thermal reset of fault diagnostic indication	V _{FR} = 0 V; V _{SEn} =5 V	135			°C	
Тнүзт	Thermal hysteresis (T _{TSD} -T _R) ⁽¹⁾			5			
ΔT _{J_SD}	Dynamic temperature			60		К	
tLATCH_RST	Fault reset time for output unlatch ⁽¹⁾	$V_{FR} = 5 \text{ V to } 0 \text{ V; } V_{SEn} = 5 \text{ V;}$ $V_{INX} = 5 \text{ V; } V_{SEL0,1,2} = 0 \text{ V}$	3	10	20	μs	
\/	Turn-off output	I _{OUT} = 2 A; L = 6 mH; T _j = -40 °C	V _{CC} - 38			>	
VDEMAG	voltage clamp	I_{OUT} = 2 A; L = 6 mH; T_j = 25 °C to 150 °C	V _{CC} - 41	V _{CC} - 46	V _{cc} - 52	٧	
Von	Output voltage drop limitation	Іоит= 0.25 А		20		mV	

 $^{^{(1)}}$ Parameter guaranteed by design and characterization; not subject to production test.

Table 8: MultiSense

Table 8: MultiSense 7 V < V _{CC} < 18 V; -40 °C < T _j < 150 °C								
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
\/	MultiSense clamp	V _{SEn} = 0 V; I _{SENSE} = 1 mA	-17		-12	V		
Vsense_cl	voltage	V _{SEn} = 0 V; I _{SENSE} = -1 mA		7		V		
Current Sense	characteristics							
	MultiSense leakage current	MultiSense disabled: V _{SEn} = 0 V;	0		0.5			
		MultiSense disabled: (1) -1 V < V _{SENSE} < 5 V	-0.5		0.5			
Isenseo		MultiSense enabled: V _{SEn} = 5 V All channels ON; I _{OUTX} = 0 A; Ch _X diagnostic selected; • E.g. Ch ₀ : V _{IN0} = 5 V; V _{IN1,2,3} = 5 V; V _{SEL0,1,2} = 0 V; I _{OUT0} = 0 A; I _{OUT1,2,3} = 2.5 A	0		2	μА		
		MultiSense enabled: V _{SEn} = 5 V Chx OFF; Chx diagnostic selected: • E.g. Ch ₀ : V _{IN0} = 0 V; V _{IN1,2,3} = 5 V; V _{SEL0,1,2} = 0 V; I _{OUT0} = 0 A; I _{OUT1,2,3} = 2.5 A	0		2			
Vout_msd ⁽¹⁾	Output Voltage for MultiSense shutdown	$V_{SEn} = 5 \text{ V; } R_{SENSE} = 2.7 \text{ k}\Omega$ • E.g. Ch ₀ : $V_{IN0} = 5 \text{ V; } V_{SEL0,1,2} = 0 \text{ V;}$ $I_{OUT0} = 2.5 \text{ A}$		5		V		
Vsense_sat	Multisense saturation voltage	$\begin{split} &V_{\text{CC}} = 7 \text{ V}; \text{ Rsense} = 2.7 \text{ K}; \\ &V_{\text{SEn}} = 5 \text{ V}; V_{\text{INO}} = 5 \text{ V}; \\ &V_{\text{SEL}0,1,2} = 0 \text{ V}; I_{\text{OUTO}} = 4.5 \text{ A}; \\ &T_{j} = 150^{\circ}\text{C} \end{split}$	5			V		
ISENSE_SAT ⁽¹⁾	CS saturation current	Vcc = 7 V; Vsense = 4 V; V _{IN0} = 5 V; V _{SEn} = 5 V; V _{SEL0,1,2} = 0 V; T _j = 150°C	4			mA		
IOUT_SAT_BULB ⁽¹⁾	Output saturation current in BULB mode	Vcc = 7 V; Vsense = 4 V; V _{IN0} = 5 V; V _{SEn} = 5 V; Vsel _{0,1,2} = 0 V; T _j = 150°C	8			А		
lout_sat_led ⁽¹⁾	Output saturation current in LED mode	V _{CC} = 7 V; V _{SENSE} = 4 V; V _{IN0} = 5 V; V _{SEn} = 5 V; V _{SEL0,1,2} = 0 V; T _j = 150°C	2.3			А		
OFF-state diag	jnostic							
VoL	OFF state open load voltage detection threshold	V _{SEn} = 5V; Ch _X OFF; Ch _X diagnostic selected • E.g. Ch ₀ : V _{IN0} = 0 V; V _{SEL0,1,2} = 0 V	2	3	4	V		

DocID027406 Rev 4

$7 \text{ V} < \text{V}_{CC} < 18 \text{ V}; -40 ^{\circ}\text{C} < \text{T}_{j} < 150 ^{\circ}\text{C}$									
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit			
I _{L(off2)}	OFF state output sink current	$V_{IN} = 0$ V; $V_{OUT} = V_{OL}$; $T_j = -40$ °C to 125°C	-100		-15	μΑ			
tdstkon	OFF state diagnostic delay time from falling edge of INPUT (see Figure 4: "Switching times and Pulse skew")	V _{SEn} = 5 V; Chx ON to OFF transition; Chx diagnostic selected ■ E.g. Ch ₀ : V _{IN0} = 5 V to 0 V; V _{SEL0,1,2} = 0 V; V _{OUT0} > 4 V	100	350	700	μs			
t _{D_OL_} v	Settling time for valid OFF-state open load diagnostic indication from rising edge of SEn	$V_{INx} = 0 \text{ V}; V_{FR} = 0 \text{ V};$ $V_{SEL0,1,2} = 0 \text{ V}; V_{OUT0} = 4 \text{ V};$ $V_{SEn} = 0 \text{ V to 5 V}$			60	μs			
t _{D_} vol	OFF state diagnostic delay time from rising edge of Vout	V _{SEn} = 5V; Ch _X OFF; Ch _X diagnostic selected • E.g. Ch ₀ : V _{IN0} = 0 V; V _{SEL0,1,2} = 0 V; V _{OUT0} = 0 V to 4 V		5	30	μs			
Chip temperature analog feedback									
		$\begin{array}{c} V_{SEn} = 5 \ V; \ V_{SEL0} = 0 \ V; \\ V_{SEL1} = 0 \ V; \ V_{SEL2} = 5 \ V; \\ R_{SENSE} = 1 \ k\Omega; \ V_{INx} = 0 \ V; \ T_j = -40 ^{\circ}C \end{array}$	2.325	2.41	2.495	V			
Vsense_tc	MultiSense output voltage proportional to chip temperature	$\begin{split} &V_{\text{SEn}} = 5 \text{ V; } V_{\text{SEL0}} = 0 \text{ V;} \\ &V_{\text{SEL1}} = 0 \text{ V; } V_{\text{SEL2}} = 5 \text{ V;} \\ &R_{\text{SENSE}} = 1 k\Omega; V_{\text{INx}} = 0 \text{ V;} \\ &T_{j} = 25^{\circ}\text{C} \end{split}$	1.985	2.07	2.155	V			
		$\begin{split} &V_{\text{SEn}} = 5 \text{ V; } V_{\text{SEL0}} = 0 \text{ V;} \\ &V_{\text{SEL1}} = 0 \text{ V; } V_{\text{SEL2}} = 5 \text{ V;} \\ &R_{\text{SENSE}} = 1 k\Omega; V_{\text{INx}} = 0 \text{ V;} \\ &T_{j} = 125^{\circ}C \end{split}$	1.435	1.52	1.605	V			
dV _{SENSE_TC} /dT	Temperature coefficient	T _j = -40°C to 150°C		-5.5		mV/K			
Transfer function	on	$V_{SENSE_TC}(T) = V_{SENSE_TC}(T_0) + C$	VSENSE_	rc/dT *	(T-T ₀)				
V _{CC} supply vol	tage analog feedba	ck							
Vsense_vcc	MultiSense output voltage proportional to Vcc supply voltage	$\begin{aligned} &V_{\text{CC}} = 13 \text{ V; } V_{\text{SEn}} = 5 \text{ V;} \\ &V_{\text{SEL0,1,2}} = 5 \text{ V; } V_{\text{INx}} = 0 \text{ V;} \\ &R_{\text{SENSE}} = 1 k\Omega \end{aligned}$	3.16	3.23	3.3	V			
Transfer function ⁽²⁾ V _{SENSE_VCC} = V _{CC} / 4									
Fault diagnost	ic feedback (see Ta	ble 15: "Truth table")							
V _{SENSEH}	MultiSense output voltage in fault condition	V _{CC} = 13 V; R _{SENSE} = 1 kΩ	5		6.6	V			

12/50 DocID027406 Rev 4

7 V < V _{CC} < 18 V; -40 °C < T _j < 150 °C								
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
I _{SENSEH}	MultiSense output current in fault condition	V _{CC} = 13 V; V _{SENSE} = 5 V	7	20	30	mA		
	nings (Chip Temperand VCC sense mode	ature Sense mode - see Figure 6	: "Multi:	sense t	imings (chip		
t _{DSENSE3H}	Vsense_tc settling time from rising edge of SEn	$\begin{aligned} &V_{\text{SEn}} = 0 \text{ V to 5 V;} \\ &V_{\text{SEL0}} = V_{\text{SEL1}} = 0 \text{ V;} \\ &V_{\text{SEL2}} = 5 \text{ V; Rsense} = 1 \text{ k}\Omega \end{aligned}$			60	μs		
tdsense3L	V _{SENSE_TC} disable delay time from falling edge of SEn	$V_{SEn} = 5 \text{ V to 0 V;}$ $V_{SEL0} = V_{SEL1} = 0 \text{ V;}$ $V_{SEL2} = 5 \text{ V; Rsense} = 1 \text{ k}\Omega$			20	μs		
	nings (V _{CC} Voltage S and VCC sense mode	Sense mode - see <i>Figure 6: "Mul</i> i e)")	tisense	timings	(chip			
tdsense4h	V _{SENSE_VCC} settling time from rising edge of SEn	$V_{SEn} = 0 \text{ V to 5 V;}$ $V_{SEL0} = V_{SEL1} = V_{SEL2} = 5 \text{ V;}$ $R_{SENSE} = 1 \text{ k}\Omega$			60	μs		
tdsense4L	Vsense_vcc disable delay time from falling edge of SEn	$V_{SEn} = 5 \text{ V to 0 V};$ $V_{SEL0} = V_{SEL1} = V_{SEL2} = 5 \text{ V};$ $R_{SENSE} = 1 \text{ k}\Omega$			20	μs		
MultiSense Ti	mings (Multiplexer t	ransition times) ⁽³⁾						
t _{D_XtoY}	MultiSense transition delay from Ch _X to Ch _Y	$\begin{array}{c} V_{\text{IN2}} = 5 \; \text{V;} \; \text{V}_{\text{IN3}} = 5 \; \text{V;} \\ V_{\text{SEn}} = 5 \; \text{V;} \; \text{V}_{\text{SEL0}} = 0 \; \text{V to 5 V;} \\ V_{\text{SEL1}} = 5 \; \text{V;} \; \text{V}_{\text{SEL2}} = 0 \; \text{V;} \\ I_{\text{OUT2}} = 0 \; \text{A;} \; I_{\text{OUT3}} = 2.5 \; \text{A;} \\ R_{\text{SENSE}} = 1 \; k\Omega \end{array}$			20	μs		
td_cstoTc	MultiSense transition delay from current sense to T _C sense	$V_{IN0} = 5 \text{ V}; V_{SEn} = 5 \text{ V};$ $V_{SEL0} = 0 \text{ V}; V_{SEL1} = V_{SEL2} = 0 \text{ V}$ to 5 V; $I_{OUT0} = 1.25 \text{ A}; R_{SENSE} = 1 \text{ k}\Omega$			60	μs		
t _{D_TCto} cs	MultiSense transition delay fromT _C sense to current sense	$\begin{aligned} &V_{IN0} = 5 \text{ V; } V_{SEn} = 5 \text{ V;} \\ &V_{SEL0} = 0 \text{ V;} \\ &V_{SEL1} = V_{SEL2} = 5 \text{ V to 0 V;} \\ &I_{OUT0} = 1.25 \text{ A; } R_{SENSE} = 1 \text{ k}\Omega \end{aligned}$			20	μs		
t _{D_} cs _{to} vcc	MultiSense transition delay from current sense to Vcc sense	$V_{IN2} = 5 \text{ V}; V_{SEn} = 5 \text{ V};$ $V_{SEL0} = 5 \text{ V};$ $V_{SEL1} = 5 \text{ V}; V_{SEL2} = 0 \text{ V} \text{ to } 5 \text{ V};$ $I_{OUT2} = 1.25 \text{ A}; R_{SENSE} = 1 \text{ k}\Omega$			60	μs		
to_vcctocs	MultiSense transition delay from V _{CC} sense to current sense	$\begin{split} &V_{IN2} = 5 \text{ V; } V_{SEn} = 5 \text{ V;} \\ &V_{SEL1} = 5 \text{ V;} \\ &V_{SEL0} = V_{SEL2} = 5 \text{ V to 0 V;} \\ &I_{OUT2} = 1.25 \text{ A; } R_{SENSE} = 1 \text{ k}\Omega \end{split}$			20	μs		

DocID027406 Rev 4

7 V < V _{CC} < 18 V; -40 °C < T _j < 150 °C								
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
t _{D_TCto} vcc	MultiSense transition delay from T _C sense to V _{CC} sense	$V_{SEn} = 5 \text{ V; } V_{SEL1,2} = 5 \text{ V;}$ $V_{SEL0} = 0 \text{ V to 5 V;}$ $R_{SENSE} = 1 \text{ k}\Omega$			20	μs		
t _{D_} vcc _{to} тc	MultiSense transition delay from V _{CC} sense to T _C sense	V_{SEn} = 5 V; $V_{SEL1,2}$ = 5 V; V_{SEL0} = 5 V to 0 V; R_{SENSE} = 1 k Ω			20	μs		
td_cstovsenseh	MultiSense transition delay from stable current sense on Chx to Vsenseh on Chy	$\begin{split} &V_{\text{IN0}} = 5 \text{ V; } V_{\text{IN1}} = 0 \text{ V;} \\ &V_{\text{OUT1}} > 4 \text{ V; } V_{\text{SEn}} = 5 \text{ V;} \\ &V_{\text{SEL2}} = 0 \text{ V; } V_{\text{SEL1}} = 0 \text{ V;} \\ &V_{\text{SEL0}} = 0 \text{ V to 5 V;} \\ &I_{\text{OUT0}} = 2.5 \text{ A;} \\ &R_{\text{SENSE}} = 1 k\Omega \end{split}$			60	μs		

 $[\]ensuremath{^{(3)}}\textsc{Transition}$ delay is measured up to +/- 10% of final conditions.

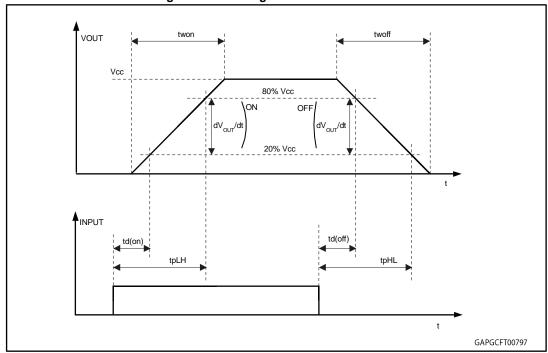
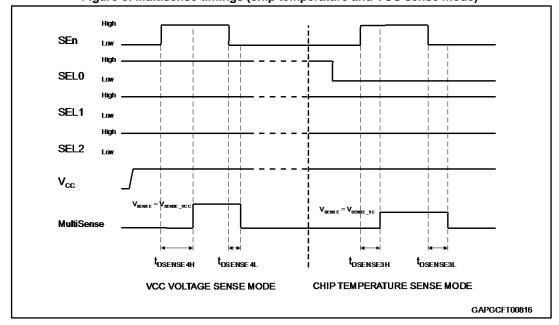


Figure 4: Switching times and Pulse skew


 $[\]ensuremath{^{(1)}}\xspace$ Parameter guaranteed by design and characterization; not subject to production test.

 $^{^{(2)}\}text{V}_{\text{CC}}$ sensing and T_{C} sensing are referred to GND potential.

IN1 High SEn Low High SEL0 Low SEL1 SEL2 I_{OUT1} **Current Sense** t_{DSENSE2H} t_{DSENSE1 L} t_{DSENSE1H} $t_{\text{DSENSE2}\,L}$ GAPGCFT00432

Figure 5: MultiSense timings (current sense mode)

 $V_{OUT} > V_{OL}$ MultiSense T_{DSTKON} GAPG2609141140CFT

Figure 7: TDSKON

Bulb mode (default) 2.3.2

Table 9: Power section in Bulb Mode

7 V < V_{CC} < 28 V; -40 °C < T_j < 150 °C, unless otherwise specified								
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
	On-state resistance in Bulb Mode Ch0, Ch1, Ch2 and Ch3	I _{OUT} = 2.5 A; T _j = 25°C		40				
RON_0,1,2,3_BULB		I _{OUT} = 2.5 A; T _j = 150°C			80	mΩ		
		I _{OUT} = 2.5 A; V _{CC} = 4 V; T _j = 25°C			60			
Ron_rev_0,1,2,3	On-state resistance in Reverse Battery Ch0, Ch1, Ch2 and Ch3	$V_{CC} = -13V;$ $I_{OUT} = -2.5A;$ $T_j = 25^{\circ}C$		40		mΩ		
	DC short circuit current in	Vcc = 13 V	24	34	48			
ILIMH_0,1,2,3_BULB ⁽¹⁾	Bulb Mode Ch0, Ch1, Ch2 and Ch3	4 V < V _{CC} < 18 V ⁽²⁾			48			
ILIML_0,1,2,3_BULB	Short circuit current during thermal cycling in Bulb Mode Ch0, Ch1, Ch2 and Ch3	$V_{CC} = 13 \text{ V};$ $T_R < T_j < T_{TSD}$		9		Α		
Von_0,1,2,3_BULB	Output voltage drop limitation in Bulb Mode Ch0, Ch1, Ch2 and Ch3	Іоит = 0.25 А		20		mV		

⁽¹⁾Parameter guaranteed by an indirect test sequence.

 $^{^{(2)}}$ Parameter guaranteed by design and characterization; not subject to production test.

Table 10: Switching in Bulb Mode

V_{CC} = 13 V; -40 °C < T _j < 150 °C, unless otherwise specified									
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit			
Channel 0, 1, 2 and	Channel 0, 1, 2 and 3								
t _{d(on)_0,1,2,3} ⁽¹⁾	Turn-on delay time at $T_j = 25 ^{\circ}\text{C}$	R _L = 5.2 Ω	10	60	145				
t _{d(off)_0,1,2,3} ⁽¹⁾	Turn-off delay time at $T_j = 25 ^{\circ}\text{C}$	R _L = 5.2 Ω	10	50	100	μs			
(dVout/dt)on_0,1,2,3 ⁽¹⁾	Turn-on voltage slope at T _j = 25 °C	R _L = 5.2 Ω	0.1	0.5	0.7	\//us			
(dV _{OUT} /dt) _{off_0,1,2,3} ⁽¹⁾	Turn-off voltage slope at $T_j = 25$ °C	R _L = 5.2 Ω	0.1	0.5	0.7	V/µs			
Won_0,1,2,3	Switching energy losses at turn-on (twon)	R _L = 5.2 Ω	_	0.2	0.52	mJ			
W _{OFF_0,1,2,3}	Switching energy losses at turn-off (twoff)	R _L = 5.2 Ω		0.2	0.5 ⁽²⁾	mJ			
t _{SKEW_0,1,2,3} ⁽¹⁾	Differential pulse skew (tphl - tplh)	R _L = 5.2 Ω	-100	-15	35	μs			

Table 11: MultiSense in Bulb Mode

$7 \text{ V} < \text{V}_{CC} < 18 \text{ V}; -40 ^{\circ}\text{C} < \text{T}_{j} < 150 ^{\circ}\text{C}$								
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
Current sense characteristics								
Channel 0, 1	, 2 and 3							
Kol_ch0,1_B	lout/Isense	I _{OUT} = 10 mA; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	430					
Kol_ch2,3_b	lout/Isense	I _{OUT} = 10 mA; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	430					
dK _{cal} /K _{cal} ⁽¹⁾⁽²⁾	Current sense ratio drift at calibration point	I _{CAL} = 30 mA; I _{OUT} = 10 mA to 50 mA; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	-35		35	%		
KLED_CH0,1_B	lout/Isense	I _{OUT} = 0.05 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	720	1440	2160			
KLED_CH2,3_B	lout/Isense	I _{OUT} = 0.05 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	720	1440	2160			

⁽¹⁾See Figure 4: "Switching times and Pulse skew".

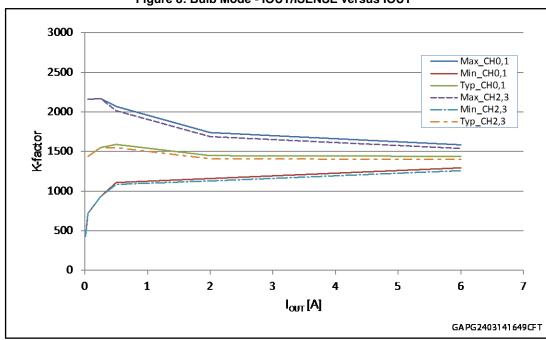
 $[\]ensuremath{^{(2)}}\mbox{Parameter guaranteed by design and characterization, not subject to production test.}$

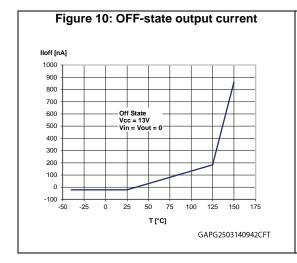
$7 \text{ V} < \text{V}_{CC} < 18 \text{ V}$; -40 °C < T _j < 150 °C								
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
K _{0_CH0,1_B}	lout/Isense	I _{OUT} = 0.25 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	930	1550	2170			
К _{0_СН2,3_В}	lout/Isense	I _{OUT} = 0.25 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	930	1550	2170			
dK ₀ /K ₀ ⁽¹⁾⁽²⁾	Current sense ratio drift	I _{OUT} = 0.25 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	-20		20	%		
K _{1_CH0,1_B}	I _{OUT} /I _{SENSE}	I _{OUT} = 0.5 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	1110	1590	2070			
К 1_СH2,3_В	lout/Isense	I _{OUT} = 0.5 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	1085	1550	2015			
dK ₁ /K ₁ ⁽¹⁾⁽²⁾	Current sense ratio drift	I _{OUT} = 0.5 A; V _{SENSE} = 4V; V _{SEn} = 5 V	-15		15	%		
K _{2_CH0,1_B}	lout/Isense	IOUT = 2 A; VSENSE = 4 V; VSEn = 5 V	1160	1450	1740			
K _{2_CH2,3_} B	I _{OUT} /I _{SENSE}	IOUT = 2 A; VSENSE = 4 V; VSEn = 5 V	1130	1410	1690			
dK ₂ /K ₂ ⁽¹⁾⁽²⁾	Current sense ratio drift	I _{OUT} = 2 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-10		10	%		
К _{3_СН0,1_В}	lout/Isense	I _{OUT} = 6 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	1295	1440	1585			
К _{3_СH2,3_В}	lout/Isense	Iout = 6 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	1260	1400	1540			
dK ₃ /K ₃ ⁽¹⁾⁽²⁾	Current sense ratio drift	Iout = 6 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-5		5	%		
MultiSense t	imings (Current Sense mode s	ee Figure 5: "MultiSense	timing	s (curre	ent sens	e		
Channel 0, 1	, 2 and 3							
tosense1H	Current sense settling time from rising edge of SEn	V_{IN} = 5 V; V_{SEn} = 0 V to 5 V; R_{SENSE} = 1 k Ω ; R_L = 5.2 Ω			60	μs		
tdsense1L	Current sense disable delay time from falling edge of SEn	$V_{SEn} = 5 \text{ V to 0 V};$ $R_{SENSE} = 1 \text{ k}\Omega;$ $R_{L} = 5.2 \Omega$		5	20	μs		

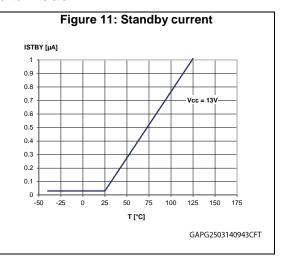
577

$7 \text{ V} < \text{V}_{CC} < 18 \text{ V}; -40 \text{ °C} < \text{T}_{j} < 150 \text{ °C}$								
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
tosensezh	Current sense settling time from rising edge of INPUT	$V_{IN} = 0 \text{ V to 5 V;}$ $V_{SEn} = 5 \text{ V;}$ $R_{SENSE} = 1 \text{ k}\Omega;$ $R_{L} = 5.2 \Omega$		100	250	μs		
Δt _{DSENSE2H}	Current sense settling time from rising edge of lout (dynamic response to a step change of lout)	$V_{\text{IN}} = 5 \text{ V; } V_{\text{SEn}} = 5 \text{ V;}$ $R_{\text{SENSE}} = 1 \text{ k}\Omega;$ $R_{\text{L}} = 5.2 \Omega$			100	μs		
t _{DSENSE2L}	Current sense turn-off delay time from falling edge of INPUT	$V_{IN} = 5 \text{ V to 0 V};$ $V_{SEn} = 5 \text{ V};$ $R_{SENSE} = 1 \text{ k}\Omega;$ $R_L = 5.2 \Omega$		50	250	μs		

 $^{^{(2)}\}text{All}$ values refer to Vcc = 13 V; T_j = 25 °C, unless otherwise specified.




Figure 8: Bulb Mode - IOUT/ISENSE versus IOUT


 $[\]ensuremath{^{(1)}}\mbox{Parameter specified by design; not subject to production test.}$

65.0 60.0 55.0 50.0 45.0 40.0 Current sense uncalibrated precision 35.0 % 30.0 -Current sense calibrated precision 25.0 20.0 15.0 10.0 5.0 0.0 1 2 3 5 6 7 $I_{OUT}[A]$ GAPG2403141655CFT

Figure 9: Bulb Mode - current sense precision vs. IOUT

2.3.3 Electrical characteristics curves - Bulb Mode

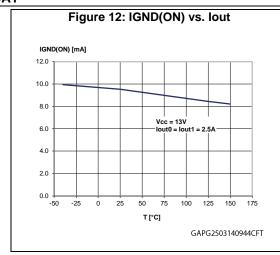


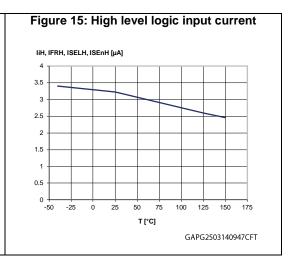
Figure 13: Logic Input high level voltage

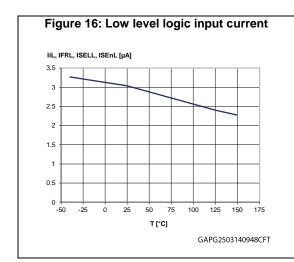
ViH, VFRH, VSELH, VSEnH [V]

2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0.5
0.25
0 25 50 75 100 125 150 175

T [°C]

GAPG2503140945CFT


Figure 14: Logic Input low level voltage


VIIL VFRL, VSELL, VSENL [V]

1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0.-50 -25 0 25 50 75 100 125 150 175

T [*C]

GAPG2503140946CFT

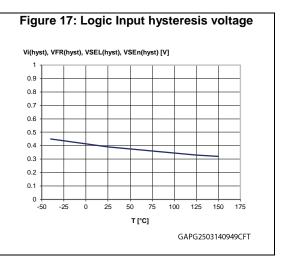


Figure 19: Undervoltage shutdown

vusp [v]

8

7

6

5

4

3

2

1

0

-50

-25

0

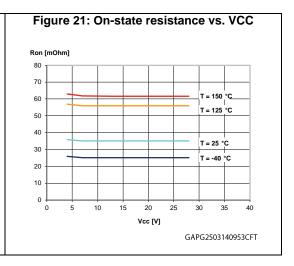
25

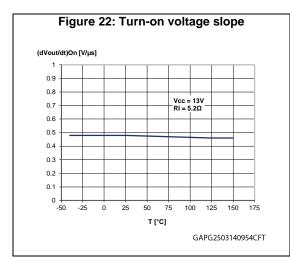
50

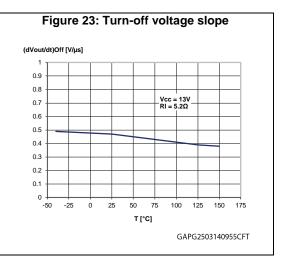
75

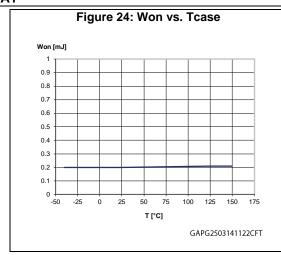
100

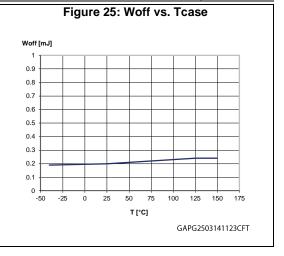
125

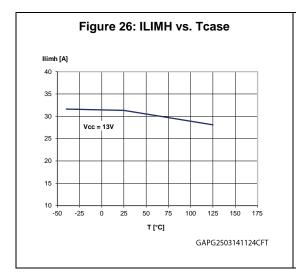

150

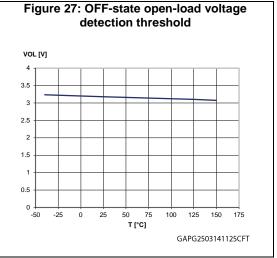

175

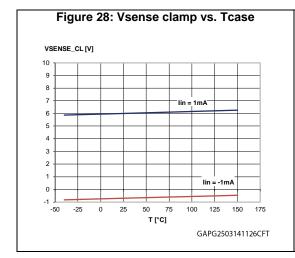

T [°C]

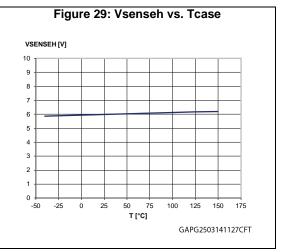

GAPG2503140951CFT


Figure 20: On-state resistance vs. Tcase Ron [mOhm] 100 90 80 70 60 lout = 2.5A Vcc = 13V 50 40 30 10 25 50 75 125 100 150 GAPG2503140952CFT









2.3.4 LED Mode (Channel 0 and 1)

Table 12: Switching in LED Mode

V_{CC} = 13 V; -40 °C < T_j < 150 °C, unless otherwise specified									
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit			
td(on)_0,1_LED ⁽¹⁾	Turn-on delay time at $T_j = 25 ^{\circ}\text{C}$	R _L = 22.8 Ω	10	65	145				
t _{d(off)_0,1_LED} (1)	Turn-off delay time at $T_j = 25$ °C	R _L = 22.8 Ω	10	40	100	μs			
(dVout/dt)on_0,1_LED ⁽¹⁾	Turn-on voltage slope at $T_j = 25$ °C	R _L = 22.8 Ω	0.2	0.5	0.8	V/uo			
(dVout/dt) _{off_0,1_LED} (1)	Turn-off voltage slope at $T_j = 25 ^{\circ}\text{C}$	R _L = 22.8 Ω	0.1	0.5	0.7	V/µs			
Won_0,1_LED	Switching energy losses at turn-on (twon)	R _L = 22.8 Ω	_	0.04	0.1 (2)	mJ			
Woff_0,1_LED	Switching energy losses at turn-off (twoff)	R _L = 22.8 Ω	_	0.045	0.11(2)	mJ			
tskew_0,1_LED ⁽¹⁾	Differential Pulse skew (t_{PHL} - t_{PLH})	R _L = 22.8 Ω	-100	-25	25	μs			

Notes:

Table 13: Power section in LED Mode

7 V < Vcc < 28	3 V; -40 °C < T _j < 150 °C, unless	otherwise specified				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	On-state resistance in LED Mode Ch0 and Ch1	I _{OUT} = 0.57 A; T _j = 25°C		140		
R _{ON_0,1_} LED		I _{OUT} = 0.57 A; T _j = 150°C			280	mΩ
		$I_{OUT} = 0.57 \text{ A};$ $V_{CC} = 5 \text{ V}; T_j = 25^{\circ}\text{C}$			210	
ILIMH_0,1_LED ⁽¹⁾	DC short circuit current in Bulb	Vcc = 13 V	5.5	8	11	
ILIMH_0,1_LED**/	Mode Ch0 and Ch1	4 V < V _{CC} < 18 V ⁽²⁾			11	
ILIML_0,1_LED	Short circuit current during thermal cycling in Bulb Mode Ch0 and Ch1	$V_{CC} = 13 \text{ V};$ $T_R < T_j < T_{TSD}$		2		A
Von_0,1_led	Output voltage drop limitation in LED Mode Ch0 and Ch1	I _{OUT} = 0.07 A		20		mV

⁽¹⁾See Figure 4: "Switching times and Pulse skew".

⁽²⁾Parameter guaranteed by design and characterization, not subject to production test.

⁽¹⁾Parameter guaranteed by an indirect test sequence.

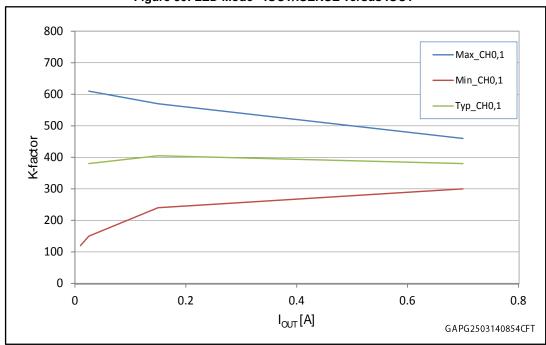
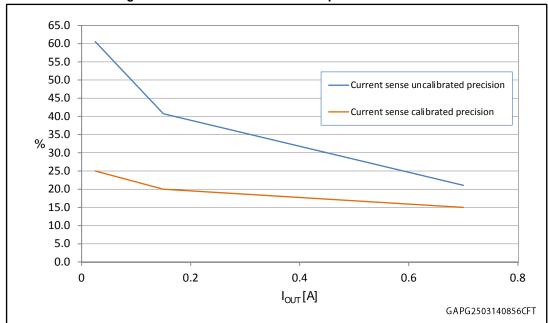
 $^{^{(2)}}$ Parameter guaranteed by design and characterization; not subject to production test.

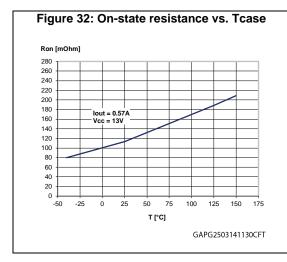
Table 14: MultiSense in LED Mode

7 V < V _{CC} < 18	V; -40 °C < T _j < 150 °C	tiSense in LED Mode				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
K _{OL}	Iout/Isense	I _{OUT} = 0.01 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	120			
dK _{cal} /K _{cal} ⁽¹⁾⁽²⁾	Current sense ratio drift at calibration point	$I_{cal} = 17.5 \text{ mA};$ $I_{OUT} = 10 \text{ mA to } 25 \text{ mA};$ $V_{SENSE} = 0.5 \text{ V};$ $V_{SEn} = 5 \text{ V}$	-30		30	%
K _{LED}	Iout/Isense	I _{OUT} = 0.025 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	150	380	610	
dK _{LED} /K _{LED} ⁽¹⁾⁽²⁾	Current sense ratio drift	I _{OUT} = 0.025 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	-25		25	%
K _{0_CH0,1_L}	Iout/Isense	I _{OUT} = 0.15 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	240	405	570	
dK ₀ /K ₀ ⁽¹⁾⁽²⁾	Current sense ratio drift	I _{OUT} = 0.15 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-15		15	%
K _{1_CH0,1_L}	Iout/Isense	I _{OUT} = 0.7 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	300	380	460	
dK ₁ /K ₁ ⁽¹⁾⁽²⁾	Current sense ratio drift	I _{OUT} = 0.7 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-8		8	%
MultiSense tim	nings (Current Sense mode - s	see Figure 5: "MultiSense	e timing	gs (curi	rent ser	ise
tdsense1H	Current sense settling time from rising edge of SEn	$V_{IN} = 5 \text{ V};$ $V_{SEn} = 0 \text{ V to 5 V};$ $R_{SENSE} = 1 \text{ k}\Omega;$ $R_{L} = 22.8 \Omega$			60	μs
t _{DSENSE1L}	Current sense disable delay time from falling edge of SEn	$V_{SEn} = 5 \text{ V to 0 V};$ $R_{SENSE} = 1 \text{ k}\Omega;$ $R_{L} = 22.8 \Omega$		5	20	μs
t _{DSENSE2} H	Current sense settling time from rising edge of INPUT	$\begin{aligned} V_{\text{IN}} &= 0 \text{ V to 5 V;} \\ V_{\text{SEn}} &= 5 \text{ V;} \\ R_{\text{SENSE}} &= 1 \text{ k}\Omega; \\ R_{L} &= 22.8 \Omega \end{aligned}$			250	μs
$\Delta t_{ extsf{DSENSE2H}}$	Current sense settling time from rising edge of louT (dynamic response to a step change of louT)	$V_{IN} = 5 \text{ V}; \text{ V}_{SEn} = 5 \text{ V};$ $R_{SENSE} = 1 \text{ k}\Omega;$ $R_{L} = 22.8 \Omega$			100	μs
tdsense2L	Current sense turn-off delay time from falling edge of INPUT	$\begin{aligned} V_{\text{IN}} &= 5 \text{ V to 0 V;} \\ V_{\text{SEn}} &= 5 \text{ V;} \\ R_{\text{SENSE}} &= 1 \text{ k}\Omega; \\ R_{\text{L}} &= 22.8 \Omega \end{aligned}$		50	250	μs

DocID027406 Rev 4

Figure 30: LED Mode - IOUT/ISENSE versus IOUT


Figure 31: LED Mode - current sense precision vs. IOUT

 $[\]ensuremath{^{(1)}}\mbox{Parameter specified by design; not subject to production test.}$

 $^{^{(2)}}AII$ values refer to Vcc = 13 V; T_{j} = 25 °C, unless otherwise specified.

2.3.5 Electrical characteristics curves - LED mode

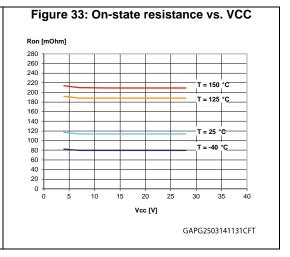
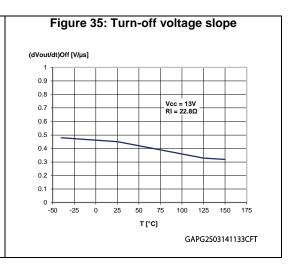
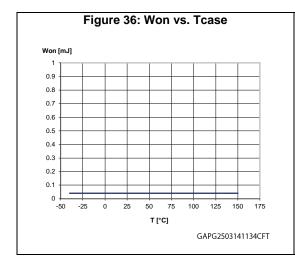
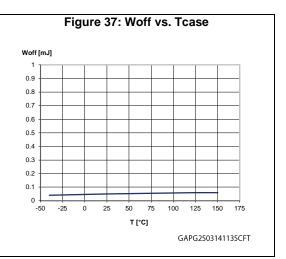
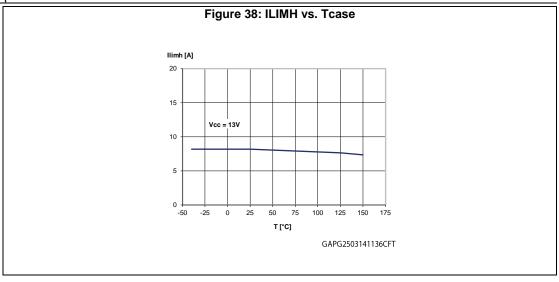






Figure 34: Turn-on voltage slope (dVout/dt)On [V/µs] 0.9 0.8 Vcc = 13V RI = 22.8Ω 0.7 0.6 0.5 0.4 0.3 0.2 0.1 -50 -25 ò 25 50 75 100 125 150 T [°C] GAPG2503141132CFT

2.3.6 Truth tables

Table 15: Truth table

Tubio 10. Tradit tubio									
Mode	Conditions	INx	FR	SEn	SELx	OUTx	MultiSense	Comments	
Standby	All logic inputs low	L	L	L	L	L	Hi-Z	Low quiescent current consumption	
Normal	Nominal load connected; T _j < 150°C	L	Х	See (1)		L	See (1)		
		Η	L			Н	See ⁽¹⁾	Outputs configured for auto-restart	
		Η	Н			Н	See (1)	Outputs configured for Latch-off	
Overload	Overload or short to GND causing: $T_{j} > T_{TSD} \text{ or } \\ \Delta T_{j} > \Delta T_{j_SD}$	L	Х	See ⁽¹⁾		L	See (1)		
		Н	L			Н	See ⁽¹⁾	Output cycles with temperature hysteresis	
		Ι	Н			L	See (1)	Output latches-off	
Under-voltage	V _{CC} < V _{USD} (falling)	X	X	X	X	L L	Hi-Z Hi-Z	Re-start when V _{CC} > V _{USD} + V _{USDhyst} (rising)	
OFF-state diagnostics	Short to Vcc	L	Х	See ⁽¹⁾		Н	See (1)		
	Open load	L	Χ			Н	See (1)	External pull-up	
Negative output voltage	Inductive loads turn off	L	Х	See ⁽¹⁾		< 0V	See ⁽¹⁾		

Notes:

(1)Refer to Table 16: "MultiSense multiplexer addressing"

Table 16: MultiSense multiplexer addressing

	Table 10. managerise manapiezer addressing									
SEn SEL ₂			MUX	MultiSense output						
	SEL ₂	SEL ₁	SEL ₀	channel	Normal mode	Overload	OFF-state diag. (1)	Negative output		
L	Х	Х	Х		Hi-Z					
Н	L	L	L	Channel 0 diagnostic	I _{SENSE} = 1/K * I _{OUT0}	Vsense = Vsenseh	Vsense = Vsenseh	Hi-Z		
Н	L	L	Н	Channel 1 diagnostic	I _{SENSE} = 1/K * I _{OUT1}	V _{SENSE} = V _{SENSEH}	V _{SENSE} = V _{SENSEH}	Hi-Z		
Н	L	Н	L	Channel 2 diagnostic	I _{SENSE} = 1/K * I _{OUT2}	Vsense = Vsenseh	Vsense = Vsenseh	Hi-Z		
Н	L	Н	Н	Channel 3 diagnostic	I _{SENSE} = 1/K * I _{OUT3}	Vsense = Vsenseh	Vsense = Vsenseh	Hi-Z		
Н	Н	L	L	T _{CHIP} Sense	V _{SENSE} = V _{SENSE_TC}					
Н	Н	L	Н	Vcc Sense	Vsense = Vsense_vcc					
Н	Н	Н	L	T _{CHIP} Sense	V _{SENSE} = V _{SENSE_TC}					
Н	Н	Н	Н	Vcc Sense	Vsense = Vsense_vcc					

 $^{(1)}$ In case the output channel corresponding to the selected MUX channel is latched off while the relevant input is low, Multisense pin delivers feedback according to OFF-State diagnostic. Example 1: FR = 1; IN₀ = 0; OUT₀ = L (latched); MUX channel = channel 0 diagnostic; Mutisense = 0. Example 2: FR = 1; IN₀ = 0; OUT₀ = latched, V_{OUT0} > V_{OL}; MUX channel = channel 0 diagnostic; Mutisense = V_{SENSEH}

Table 17: Bulb/LED Mode Configuration

LED ₁	LED₀	Configuration			
		Channel 1	Channel 0		
L	L	Bulb	Bulb		
L	Н	Bulb	LED		
Н	L	LED	Bulb		
Н	Н	LED	LED		

Protections VNQ7040AY

3 Protections

3.1 Power limitation

The basic working principle of this protection consists of an indirect measurement of the junction temperature swing ΔT_j through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output MOSFET as soon as ΔT_j exceeds the safety level of ΔT_{j_SD} . According to the voltage level on the FaultRST pin, the output MOSFET switches on and cycles with a thermal hysteresis according to the maximum instantaneous power which can be handled (FaultRST = Low) or remains off (FaultRST = High). The protection prevents fast thermal transient effects and, consequently, reduces thermo-mechanical fatigue.

3.2 Thermal shutdown

In case the junction temperature of the device exceeds the maximum allowed threshold (typically 175°C), it automatically switches off and the diagnostic indication is triggered. According to the voltage level on the FaultRST pin, the device switches on again as soon as its junction temperature drops to T_R (FaultRST = Low) or remains off (FaultRST = High).

3.3 Current limitation

The device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or during load power-up, the output current is clamped to a safety level, ILIMH, by operating the output power MOSFET in the active region.

3.4 Negative voltage clamp

In case the device drives inductive load, the output voltage reaches a negative value during turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain value, V_{DEMAG} , allowing the inductor energy to be dissipated without damaging the device.

4 Application information

OUT FauliRST Voc OUT Rprot INPUT OUT Rprot SEL OUT RSense GND GND GND GAPG2603140858CFT

Figure 39: Application diagram

4.1 GND protection network against reverse battery

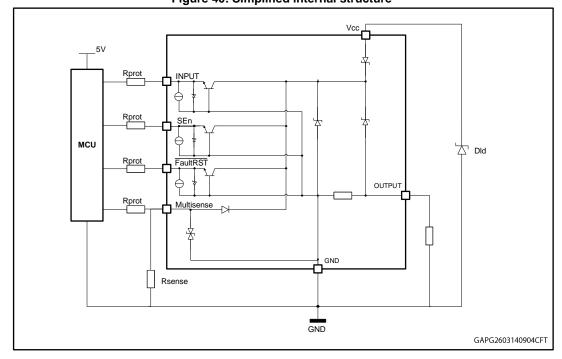


Figure 40: Simplified internal structure

The device does not need any external components to protect the internal logic in case of a reverse battery condition. The protection is provided by internal structures.

77

DocID027406 Rev 4

In addition, due to the fact that the output MOSFET turns on even in reverse battery mode, thus providing the same low ohmic path as in regular operating conditions, no additional power dissipation has to be considered.

4.2 Immunity against transient electrical disturbances

The immunity of the device against transient electrical emissions, conducted along the supply lines and injected into the V_{CC} pin, is tested in accordance with ISO7637-2:2011 (E) and ISO 16750-2:2010.

The related function performance status classification is shown in *Table 18: "ISO 7637-2 - electrical transient conduction along supply line"*.

Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present device only, without components and accessed through Vcc and GND terminals.

Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as follows: "The function does not perform as designed during the test but returns automatically to normal operation after the test".

Table 18: ISO 7637-2 - electrical transient conduction along supply line

Test Pulse 2011(E)	Test pulse severity level with Status II functional performance status		Minimum number of pulses or test time	Burst cycle / pulse repetition time		Pulse duration and pulse generator internal impedance	
	Level	Us ⁽¹⁾	time	min	max		
1	III	-112 V	500 pulses	0.5 s		2 ms, 10 Ω	
2a ⁽³⁾	III	+55 V	500 pulses	0.2 s	5 s	50 μs, 2 Ω	
3a	IV	-220 V	1h	90 ms	100 ms	0.1 μs, 50 Ω	
3b	IV	+150 V	1h	90 ms	100 ms	0.1 μs, 50 Ω	
4 (2)	IV	-7 V	1 pulse			100 ms, 0.01 Ω	
Load dump according to ISO 16750-2:2010							
Test B ⁽³⁾		40 V	5 pulse	1 min		400 ms, 2 Ω	

Notes:

4.3 MCU I/Os protection

If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins will be pulled negative. ST suggests to insert a resistor (R_{prot}) in line both to prevent the microcontroller I/O pins from latching-up and to protect the HSD inputs.

The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os.

577

⁽¹⁾Us is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.

⁽²⁾Test pulse from ISO 7637-2:2004(E).

 $^{^{(3)}}$ With 40 V external suppressor referred to ground (-40°C < T_j < 150 °C).

Equation

 $V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C} - V_{IH} - V_{GND}) / I_{IHmax}$

Calculation example:

For V_{CCpeak} = -150 V; I_{latchup} ≥ 20 mA; V_{OHµC} ≥ 4.5 V

 $7.5 \text{ k}\Omega \leq R_{prot} \leq 140 \text{ k}\Omega.$

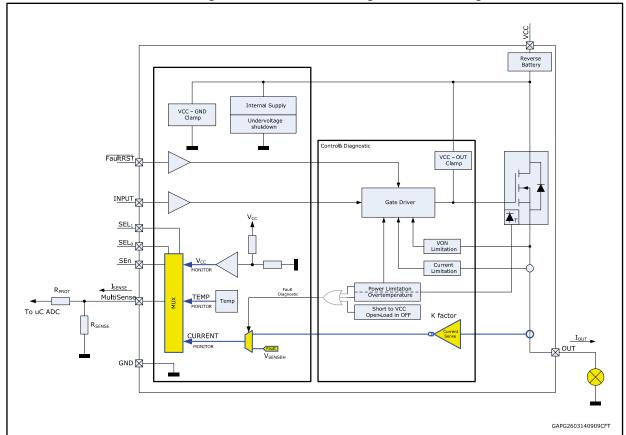
Recommended values: $R_{prot} = 15 \text{ k}\Omega$

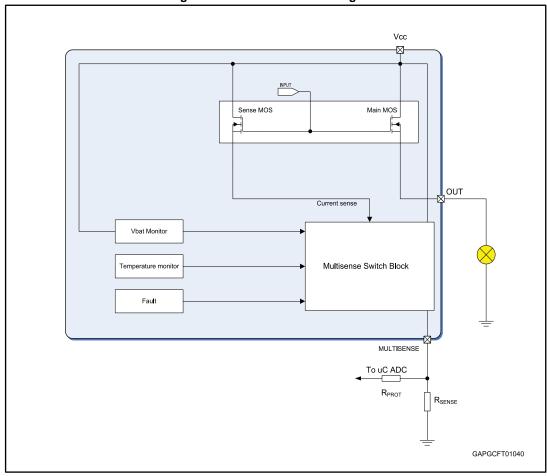
4.4 Multisense - analog current sense

Diagnostic information on device and load status are provided by an analog output pin (MultiSense) delivering the following signals:

- Current monitor: current mirror of channel output current
- V_{CC} monitor: voltage propotional to V_{CC}
- T_{CASE}: voltage propotional to chip temperature

Those signals are routed through an analog multiplexer which is configured and controlled by means of SELx and SEn pins, according to the address map in *MultiSense multiplexer* addressing Table.




Figure 41: MultiSense and diagnostic - block diagram

57

DocID027406 Rev 4

4.4.1 Principle of Multisense signal generation

Figure 42: MultiSense block diagram

Current monitor

When current mode is selected via MultiSense, this output is capable of providing:

- Current mirror proportional to the load current in normal operation, delivering current proportional to the load according to a known ratio named **K**
- Diagnostics flag in fault conditions delivering fixed voltage Vsenseh

The current delivered by the current sense circuit, I_{SENSE}, can be easily converted to a voltage V_{SENSE} by using an external sense resistor, R_{SENSE}, allowing continuous load monitoring and abnormal condition detection.

Normal operation (channel ON, no fault, SEn active)

While device is operating in normal conditions (no fault intervention), V_{SENSE} calculation can be done using simple equations

Current provided by MultiSense output: $I_{SENSE} = I_{OUT}/K$

Voltage on R_{SENSE}: $V_{SENSE} = R_{SENSE} \cdot I_{SENSE} = R_{SENSE} \cdot I_{OUT}/K$

Where:

- Vsense is the voltage measurable on Rsense resistor
- Isense is the current provided from MultiSense pin in current output mode

34/50 DocID027406 Rev 4

- I_{OUT} is the current flowing through output
- K factor represents the ratio between PowerMOS cells and SenseMOS cells; its spread includes geometric factor spread, current sense amplifier offset and process parameters spread of overall circuitry specifying the ratio between I_{OUT} and I_{SENSE}.

Failure flag indication

In case of power limitation/overtemperature, the fault is indicated by the MultiSense pin which is switched to a "current limited" voltage source, V_{SENSEH} .

In any case, the current sourced by the MultiSense in this condition is limited to Isenseh.

The typical behavior in case of overload or hard short circuit is shown in *Waveforms* section.



Figure 43: Analogue HSD - open-load detection in off-state

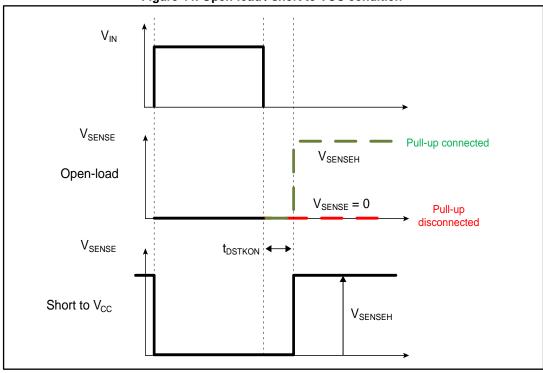
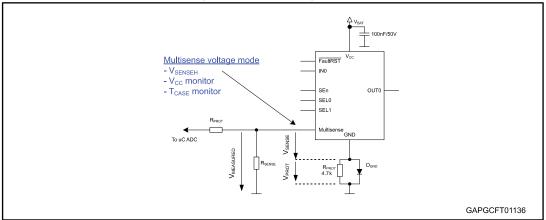


Figure 44: Open-load / short to VCC condition

Table 19: MultiSense pin levels in off-state

Condition	Output	MultiSense	SEn
	V V	Hi-Z	L
Open load	Vout > Vol	Vsenseh	Н
Open-load	V ··V	Hi-Z	L
	V _{OUT} < V _{OL}	0	Н
Chart to \/	V V	Hi-Z	L
Short to Vcc	Vout > Vol	Vsenseh	Н
Nominal	V 4 V	Hi-Z	Ĺ
ivominal	Vout < Vol	0	Н


4.4.2 TCASE and VCC monitor

In this case, MultiSense output operates in voltage mode and output level is referred to device GND. Care must be taken in case a GND network protection is used, because a voltage shift is generated between the device GND and the microcontroller input GND reference.

Figure 45: "GND voltage shift" shows the link between VMEASURED and the real VSENSE signal.

477

Figure 45: GND voltage shift

V_{CC} monitor

Battery monitoring channel provides V_{SENSE} = V_{CC} / 8.

Case temperature monitor

Case temperature monitor is capable of providing information about the actual device temperature. Since a diode is used for temperature sensing, the following equation describes the link between temperature and output V_{SENSE} level:

$$V_{SENSE_TC}(T) = V_{SENSE_TC}(T_0) + dV_{SENSE_TC} / dT * (T - T_0)$$

where dV_{SENSE_TC} / dT ~ typically -5.5 mV/K (for temperature range (-40 °C to 150 °C)).

4.4.3 Short to VCC and OFF-state open-load detection

Short to V_{CC}

A short circuit between V_{CC} and output is indicated by the relevant current sense pin set to V_{SENSEH} during the device off-state. Small or no current is delivered by the current sense during the on-state depending on the nature of the short circuit.

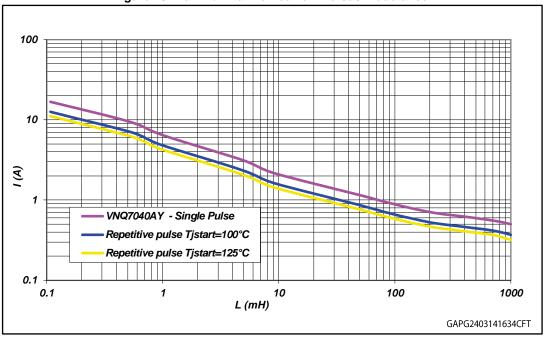
OFF-state open-load with external circuitry

Detection of an open-load in off mode requires an external pull-up resistor R_{PU} connecting the output to a positive supply voltage V_{PU} .

It is preferable that V_{PU} is switched off during the module standby mode in order to avoid the overall standby current consumption to increase in normal conditions, i.e. when load is connected.

 R_{PU} must be selected in order to ensure $V_{OUT} > V_{OLmax}$ in accordance with the following equation:

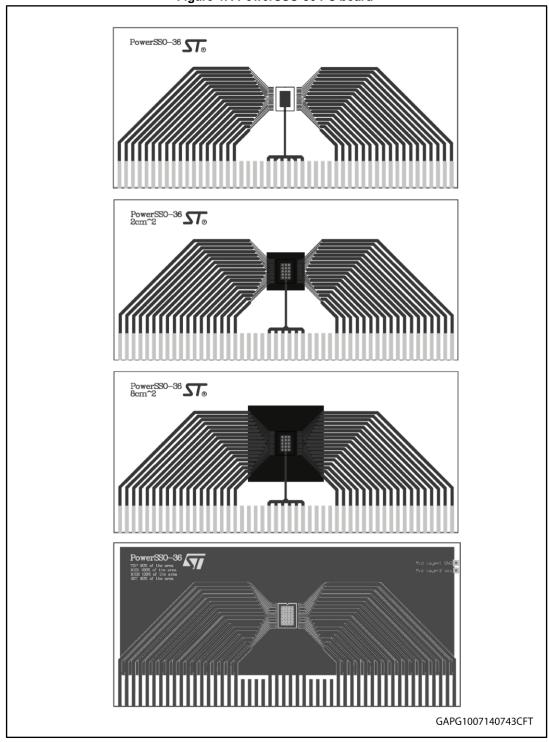
Equation


$$R_{PU} < \frac{V_{PU} - 4}{I_{L(off2)min @ 4V}}$$

DocID027406 Rev 4

5 Maximum demagnetization energy (VCC = 16 V)

Figure 46: Maximum turn off current versus inductance



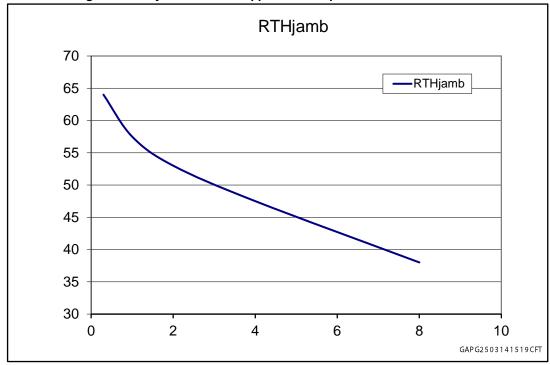
577

6 Package and PCB thermal data

6.1 PowerSSO-36 thermal data

Figure 47: PowerSSO-36 PC board

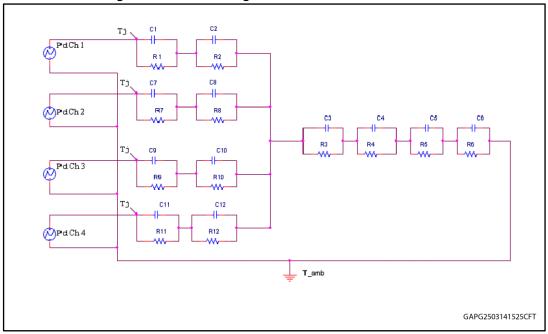
57/


DocID027406 Rev 4

39/50

Table 20: PCB properties

Dimension	Value
Board finish thickness	1.6 mm +/- 10%
Board dimension	129 mm x 60 mm
Board Material	FR4
Cu thickness (outer layers)	0.070 mm
Cu thickness (inner layers)	0.035 mm
Thermal vias separation	1.2 mm
Thermal via diameter	0.3 mm +/- 0.08 mm
Cu thickness on vias	0.025 mm
Footprint dimension	4.1 mm x 6.5 mm


Figure 48: Rthj-amb vs PCB copper area in open box free air condition

ZTH (°C/W) 100 Cu=foot print Cu=2 cm2 Cu=8 cm2 4Layer 10 0.1 0.0001 0.01 0.001 0.1 10 100 1000 Time (s) GAPG2503141522CFT

Figure 49: PowerSSO-36 thermal impedance junction ambient

77/

Table 21: Thermal parameters

Area/island (cm²)	FP	2	8	4L
R1 = R7 = R9 = R11 (°C/W)	1.8			
R2 = R8 = R10 = R12 (°C/W)	1.7			
R3 (°C/W)	3.5	3.5	3.5	2
R4 (°C/W)	8	6	6	4
R5 (°C/W)	20	14	10	2
R6 (°C/W)	30	26	15	7
C1 = C7 = C9 = C11 (W·s/°C)	0.0005			
C2 = C8 = C10 = C12 (W·s/°C)	0.01			
C3 (W·s/°C)	0.1	0.1	0.1	0.1
C4 (W·s/°C)	0.5	0.8	0.8	0.8
C5 (W·s/°C)	1	2	3	10
C6 (W·s/°C)	3	5	9	18

VNQ7040AY Package information

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

7.1 PowerSSO-36 package information

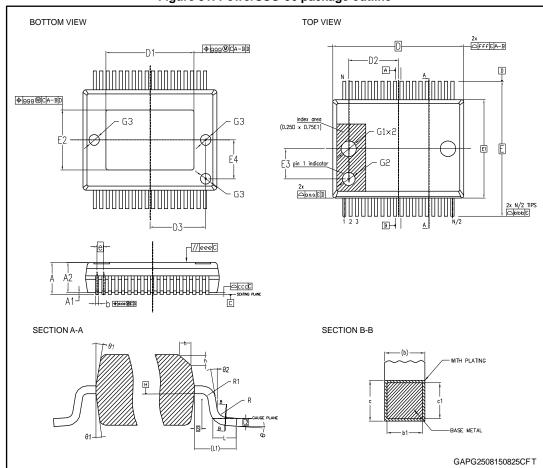


Figure 51: PowerSSO-36 package outline

Table 22: PowerSSO-36 mechanical data

	Dimensions Millimeters		
Ref.			
	Min.	Тур.	Max.
Θ	0°		8°
Θ1	5°		10°
Θ2	0°		
А	2.15		2.45
A1	0.00		0.10

DocID027406 Rev 4

43/50

	Dimensions				
Ref.	Millimeters				
	Min.	Тур.	Max.		
A2	2.15		2.35		
b	0.18		0.32		
b1	0.13	0.25	0.30		
С	0.23		0.32		
c1	0.20	0.20	0.30		
D		10.30 BSC			
D1	6.90		7.50		
D2		3.65			
D3		4.30			
е		0.50 BSC			
Е		10.30 BSC			
E1		7.50 BSC			
E2	4.30		5.20		
E3		2.30			
E4		2.90			
G1		1.20			
G2		1.00			
G3		0.80			
h	0.30		0.40		
L	0.55	0.70	0.85		
L1	1.40 REF				
L2	0.25 BSC				
N	36				
R	0.30				
R1	0.20				
S	0.25				
	Tolerance of form and position				
aaa		0.20			
bbb	0.20				
ccc	0.10				
ddd	0.20				
eee	0.10				
fff	0.20				
999	0.15				

44/50 DocID027406 Rev 4

VNQ7040AY Package information

7.2 PowerSSO-36 packing information

Figure 52: PowerSSO-36 reel 13"

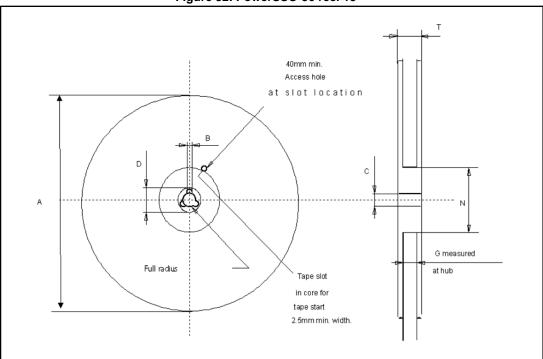


Table 23: Reel dimensions

Description	Value ⁽¹⁾
Base quantity	1000
Bulk quantity	1000
A (max)	330
B (min)	1.5
C (± 0.2)	13
F	20.2
G (+2 / -0)	24.4
N (min)	100
T (max)	30.4

Notes:

⁽¹⁾All dimensions are in mm.

Package information VNQ7040AY

Figure 53: PowerSSO-36 carrier tape

Table 24: PowerSSO-36 carrier tape dimensions

SECTION X - X

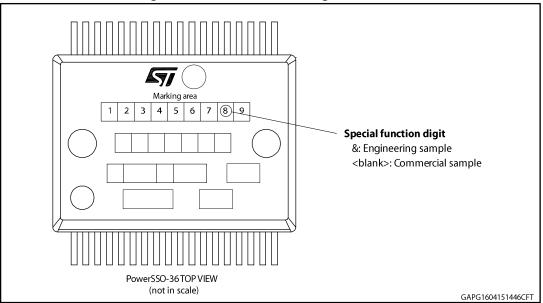
Description	Value ⁽¹⁾
A ₀	10.90 ± 0.10
B ₀	10.80 ± 0.10
K ₀	2.75 ± 0.10
K ₁	2.45 ± 0.10
D ₀	1.50 (+0.10 / -0)
D ₁	1.60 ± 0.10
P ₀	4.00 ± 0.10
P ₁	12.00 ± 0.10
P ₂	2.00 ± 0.10
P ₁₀	40.00 ± 0.20
Е	1.75 ± 0.10
F	11.50 ± 0.10
W	24.00 ± 0.30
Т	0.30 ± 0.05

Notes:

⁽¹⁾All dimensions are in mm.

47/

GAPG2304151646CFT


VNQ7040AY Package information

Embossed Carrier Punched Carrier 8 mm & 12 mm only Round Sprocket Holes START **END** Top Cover Tape Elongated Sprocket Holes (32 mm tape and wider) −100 mm Min. -- Leader Trailer Components-400 mm Minimum, 160 mm minimum, -Top Cover Tape User direction of feed GAPG2004151511CFT

Figure 54: PowerSSO-36 schematic drawing of leader and trailer tape

7.3 PowerSSO-36 marking information

Figure 55: PowerSSO-36 marking information

Engineering Samples: Parts marked as "&" are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

Commercial Samples: fully qualified parts from ST standard production with no usage restrictions.

Order codes VNQ7040AY

8 Order codes

Table 25: Device summary

Pookogo	Order codes	
Package	Tape and reel	
PowerSSO-36	VNQ7040AYTR	

VNQ7040AY Revision history

9 Revision history

Table 26: Document revision history

Date	Revision	Changes
21-Oct-2015	1	Initial release.
02-May-2016	2	Added "AEC-Q100 qualified" in Features Upated Table 4: "Thermal data" Upated Table 8: "MultiSense" Updated Section 6: "Package and PCB thermal data"
15-Jul-2016	3	Updated Figure 52: "PowerSSO-36 reel 13""and Table 23: "Reel dimensions"
21-Dec-2017	4	Updated Table 10: "Switching in Bulb Mode" and Table 12: "Switching in LED Mode"

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

