Contents VB6955CM

Contents

1	Ove	rview .		9
	1.1	VB695	55CM use in system with software image processing	10
	1.2	Refere	ence documents	10
2	Devi	ce pino	ut	11
3	Fund	ctional c	description	13
	3.1	Extern	al clock	13
		3.1.1	Clock input type	13
		3.1.2	PLL and clock input	13
	3.2	Device	e operating modes	14
		3.2.1	Power-up procedure	15
		3.2.2	Power-down procedure	18
		3.2.3	Internal power-on reset (POR)	20
		3.2.4	Power off	21
		3.2.5	Hardware standby	21
		3.2.6	Software standby	21
		3.2.7	Streaming	21
		3.2.8	Fast standby mode	22
4	Cam	era con	trol interface (CCI)	23
	4.1	Valid re	egister data types	23
	4.2	Regist	er map	24
		4.2.1	Status registers [0x0000 to 0x001f]	24
		4.2.2	Frame format description registers [0x0040 to 0x0049]	26
		4.2.3	Analogue gain description registers [0x0080 to 0x0093]	26
		4.2.4	Data format description registers [0x00c0 to 0x00c9]	27
		4.2.5	Setup registers [0x0100 to 0x0137]	28
		4.2.6	Integration and gain registers [0x0200 to 0x0215]	30
		4.2.7	Video timing registers [0x0300 to 0x0387]	30
		4.2.8	Scaler and digital crop registers [0x0400 to 0x040f]	32
		4.2.9	Compression setup registers [0x0500 to 0x0501]	33
		4.2.10	Test pattern registers [0x0600 to 0x0611]	33
		4.2.11	CSI2 registers [0x808]	34

VB6955CM Contents

		4.2.12	DPHY registers [0x820 to 0x823]	34
		4.2.13	Binning registers [0x900 to 0x902]	35
		4.2.14	Data transfer registers [0x0a00 to 0x0a43]	35
		4.2.15	Ideal raw registers [0x0b04 to 0x0b05]	36
		4.2.16	Flash registers [0x0c12 to 0x0c2a]	36
		4.2.17	Sensor - high level auto focus registers [0x0d80 to 0x0d89]	37
		4.2.18	Bracketing LUT registers [0x0e00 to 0x0e55]	38
		4.2.19	Integration and gain limit registers [0x1000 to 0x1089]	40
		4.2.20	Video timing limit registers [0x1100 to 0x11c7]	41
		4.2.21	Scaling limit registers [0x1200 to 0x120f]	45
		4.2.22	Compression capability registers [0x1300 to 0x1301]	45
		4.2.23	Derate capability registers [0x1500 to 0x1502]	45
		4.2.24	DPHY capability registers [0x1600 to 0x1604]	46
		4.2.25	Bitrate limit registers [0x1608 to 0x1617]	46
		4.2.26	Binning capability registers [0x1700 to 0x1714]	47
		4.2.27	Data transfer capability registers [0x1800]	47
		4.2.28	Ideal raw capability registers [0x1900 to 0x1907]	48
		4.2.29	EDOF capability registers [0x1980 to 0x19c5]	48
		4.2.30	Timer capability registers [0x1a00 to 0x1a02]	48
		4.2.31	Mechanical shutter capability registers [0x1b00 to 0x1b04]	49
		4.2.32	Static autofocus actuator capability registers [0x1b40 to 0x	1b45] 49
		4.2.33	Bracketing LUT capability registers [0x1c00 to 0x1c02]	49
		4.2.34	Manufacturer specific registers [0x6006 to 0x6008]	50
5	Vide	o data ii	nterface	51
	5.1		format	
	0.1	Tramo	10111at	02
6	Vide	o timing		55
	6.1	Output	size	55
		6.1.1	Analog crop	56
		6.1.2	Subsampling	57
		6.1.3	Binning	58
		6.1.4	Digital crop	58
		6.1.5	Scaling	59
		6.1.6	Output crop	61
	6.2	Video t	iming	62
		6.2.1	PLL block	62
577			DocID028544 Rev 1	3/101

		6.2.2	Framerate	
		6.2.3	Derating	
	6.3	•	and video size capabilities	
	6.4	Bayer	pattern	66
	6.5	Image	compression	68
	6.6	Expos	ure and gain control	68
		6.6.1	Analogue gain model	69
		6.6.2	Digital gain	70
		6.6.3	Integration and gain parameter re-timing	70
7	Elec	trical ch	haracteristics	71
	7.1	Absolu	ute maximum ratings	71
	7.2	Opera	ting conditions	72
	7.3	DC ele	ectrical characteristics	72
		7.3.1	Power supply - VDIG, VANA, VBAT	72
		7.3.2	CCI interface	73
	7.4	AC ele	ectrical and timing characteristics	73
		7.4.1	Power supply (peak current) - VDIG, VANA	73
		7.4.2	System clock - EXTCLK	74
		7.4.3	EXTCLK - timing characteristics	74
		7.4.4	CCI interface - timing characteristics	74
		7.4.5	CSI interface - DATA+, DATA-, CLK+, CLK	75
8	Opti	cal spe	cification	76
	8.1	Lens o	characteristics	76
	8.2	User p	precaution	76
9	Auto	ofocus .		77
	9.1	VCM a	actuator	77
	9.2	VCM o	driver/DAC	78
		9.2.1	VCM driver control	78
		9.2.2	VCM driver register access	78
	9.3	Examp	oles	79
	9.4	•	ication	
10	Non	-volatile	e memory (NVM)	83

11	Defe	ct categ	gorization	84
	11.1	Pixel d	lefects	84
		11.1.1	Overview	84
		11.1.2	Defect detection	84
		11.1.3	Defect categorisation: Single pixels	85
		11.1.4	Defect categorisation: Couplets	85
		11.1.5	Defect categorisation: Clusters and blobs	85
	11.2	Blemis	shes	86
		11.2.1	Blemish overview	86
		11.2.2	Blemish algorithm	86
12	On-c	hip ima	age optimization	89
	12.1	Марре	ed couplet correction (Bruce filter)	89
13	Mech	nanical		90
14	Appl	ication		96
	14.1	Schem	natic	96
15	Acro	nyms a	and abbreviations	97
16	ECOPACK®9			99
17	Revi	sion his	story	100

List of tables VB6955CM

List of tables

Table 1.		1
Table 2.	Technical specification	9
Table 3.	Reference documents	10
Table 4.	Pin description	11
Table 5.	System input clock frequency range	13
Table 6.	Power-up sequence timing constraints	15
Table 7.	Power-down sequence timing constraints for CSI2 communications	18
Table 8.	POR cell characteristics	21
Table 9.	Valid register data types	23
Table 10.	Status registers [0x0000 to 0x001f]	24
Table 11.	Frame format description registers [0x0040 to 0x0049]	26
Table 12.	Analogue gain description [0x0080 to 0x0093]	26
Table 13.	Data format description registers [0x00c0 to 0x00c9]	27
Table 14.	Setup registers [0x0100 to 0x0137]	28
Table 15.	Integration and gain registers [0x0200 to 0x0215]	30
Table 16.	Video timing registers [0x0300 to 0x0387]	30
Table 17.	Scaler and digital crop registers [0x0400 to 0x040f]	32
Table 18.	Compression setup registers [0x0500 to 0x0501]	33
Table 19.	Test pattern registers [0x0600 to 0x0611]	33
Table 20.	CSI2 registers [0x808]	34
Table 21.	DPHY registers [0x820 to 0x823]	34
Table 22.	Binning registers [0x900 to 0x902]	35
Table 23.	Data transfer registers [0x0a00 to 0x0a43]	35
Table 24.	Ideal raw registers [0x0b04 to 0x0b05]	36
Table 25.	Flash registers [0x0c12 to 0x0c2a]	
Table 26.	Sensor - high level auto focus registers [0x0d80 to 0x0d89]	37
Table 27.	Bracketing LUT registers [0x0e00 to 0x0e55]	38
Table 28.	Integration and gain limit registers [0x1000 to 0x1089]	40
Table 29.	Video timing limit registers [0x1100 to 0x11c7]	
Table 30.	Scaling limit registers [0x1200 to 0x120f]	45
Table 31.	Compression capability registers [0x1300 to 0x1301]	45
Table 32.	Derate capability registers [0x1500 to 0x1502]	
Table 33.	DPHY capability registers [0x1600 to 0x1604]	46
Table 34.	Bitrate limit registers [0x1608 to 0x1617]	
Table 35.	Binning capability registers [0x1700 to 0x1714]	
Table 36.	Data transfer capability registers [0x1800]	
Table 37.	Ideal raw capability registers [0x1900 to 0x1907]	
Table 38.	EDOF capability registers [0x1980 to 0x19c5]	48
Table 39.	Timer capability registers [0x1a00 to 0x1a02]	
Table 40.	Mechanical shutter capability registers [0x1b00 to 0x1b04]	
Table 41.	Static autofocus actuator capability registers [0x1b40 to 0x1b45]	
Table 42.	Bracketing LUT capability registers [0x1c00 to 0x1c02]	49
Table 43.	Manufacturer specific registers [0x6006 to 0x6008]	
Table 44.	External clock frequency examples - 5.0 Mpixel Raw10 30 fps (CSI-2 dual lane)	
Table 45.	External clock frequency examples - 5.0 Mpixel Raw10 15 fps (CSI-2 single lane)	
Table 46.	Examples of video mode capabilities	
Table 47.	Analogue gain control	
Table 48.	Absolute maximum ratings	71

577

VB6955CM List of tables

Table 49.	Operating conditions	. 72
Table 50.	Power supply - VDIG, VANA, VBAT	. 72
Table 51.	CCI interface	. 73
Table 52.	In-rush current - VDIG, VANA (CSI-2)	. 73
Table 53.	System clock	. 74
Table 54.	External clock timing characteristics	. 74
Table 55.	CCI interface timing characteristics	. 74
Table 56.	CSI interface - DATA+, DATA-, CLK+, CLK- characteristics	. 75
Table 57.	Lens design characteristics for first source lens supplier	. 76
Table 58.	Autofocus specification - Type M	. 79
Table 59.	Autofocus specification - Type L	. 81
Table 60.	NVM register summary	. 83
Table 61.	Pixel defect specification	. 84
Table 62.	Image settings	
Table 63.	Acronyms and abbreviations	
Table 64.	Document revision history	

List of figures VB6955CM

List of figures

Figure 1.	VB6955CM in system with software image processing	
Figure 2.	VB6955CM module pinout (viewed from bottom of camera module)	. 11
Figure 3.	Clock input types	
Figure 4.	System state diagram	
Figure 5.	VB6955CM power-up sequence for CCP2 mode	. 16
Figure 6.	VB6955CM power-up sequence for CSI-2 mode	. 17
Figure 7.	VB6955CM power-down sequence for CSI-2 mode	. 19
Figure 8.	POR timing	. 20
Figure 9.	VB6955CM CCP2 frame format	. 52
Figure 10.	VB6955CM CSI-2 frame format	. 53
Figure 11.	Data flow	. 55
Figure 12.	Programmable addressable region of the pixel array	. 56
Figure 13.	Subsample readout example	. 57
Figure 14.	Digital crop	. 58
Figure 15.	Scaling modes	. 59
Figure 16.	Scaler quality	. 60
Figure 17.	Example image horizontal scaled by a downscale factor of 2	. 60
Figure 18.	Output size within a CCP data frame	. 61
Figure 19.	VB6955CM clock relationships	. 62
Figure 20.	Timing block diagram	. 64
Figure 21.	SMIA output timing	. 65
Figure 22.	Bayer pattern	. 67
Figure 23.	Analogue gain register format	. 69
Figure 24.	External clock timing	. 74
Figure 25.	CCI AC characteristics	. 75
Figure 26.	Host and VB6955CM module system overview	. 77
Figure 27.	Typical plot of displacement versus DAC control	. 78
Figure 28.	Pixel numbering notation	. 85
Figure 29.	Single pixel fault	. 85
Figure 30.	Couplet pixel fault	. 85
Figure 31.	Blemish convolution areas	. 86
Figure 32.	Scan array for blemish	. 87
Figure 33.	Fail map	. 87
Figure 34.	Contiguous pixel example	. 88
Figure 35.	VB6955CM exploded view	. 90
Figure 36.	VB6955CM outline drawing in mm - sheet 1 of 6	. 91
Figure 37.	VB6955CM outline drawing in mm - sheet 2 of 6	. 92
Figure 38.	VB6955CM outline drawing in mm - sheet 3 of 6	. 93
Figure 39.	VB6955CM outline drawing in mm - sheet 4 of 6	
Figure 40.	VB6955CM outline drawing in mm - sheet 5 of 6	. 94
Figure 41.	VB6955CM outline drawing in mm - sheet 6 of 6	
Figure 42	Mobile camera application	96

VB6955CM Overview

1 Overview

The VB6955CM image sensor produces raw digital video data at up to 30 frames per second. The sensor supports horizontal flip and vertical mirroring. Output frequency can be derated as defined in the specification for power saving. Higher frame rate can be achieved through analog binning and subsampling modes.

The image data is digitized using an internal 10-bit column ADC. The resulting pixel data is output together with checksums and embedded codes for synchronization. The interface conforms to MIPI CSI-2 interface standards.

The sensor is fully configurable through a CCI serial interface. Both the CSI-2 and CCI interfaces are specified in a separate document: MIPI alliance standard for camera serial interface 2 (CSI-2).

Table 2. Technical specification

Feature	Detail
Pixel resolution	2600x 1952 with border pixels
Sensor technology	ST IMG140 FSI Gen2 based CMOS imaging process
Pixel size	1.4 μm x 1.4 μm
Analog gain	+ 24 dB
Digital gain	+ 6 dB
Dynamic range	60 dB
Signal to noise	36 dB (@ 100 lux)
Supply voltages	Analog: 2.6 to 2.9V Digital: 1.7 to 1.9 V VBAT: 2.5 to 4.8V
Typical power consumption 30 fps	130 mA (typical)
Operating temperature	-30°C to +70°C
Storage temperature	-40°C to +85°C
Average dark current (60C)	25 e/s
Shading (60C)	12 e/s

Overview VB6955CM

1.1 VB6955CM use in system with software image processing

The VB6955CM image sensor can be directly connected to a baseband or multimedia processor. The image processing is done in software or hardware within the baseband processor.

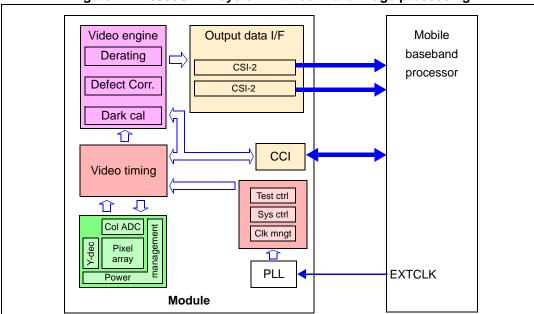


Figure 1. VB6955CM in system with software image processing

1.2 Reference documents

Table 3. Reference documents

Title	Date
MIPI Alliance Standard for Camera Serial Interface 2 (CSI-2) v1.0	29/11/2005
MIPI Alliance D-PHY Specification (v1.00.00)	14/05/2009

\7/

VB6955CM Device pinout

2 Device pinout

Figure 2 shows the position of the pins on the module and *Table 4* provides the signal descriptions.

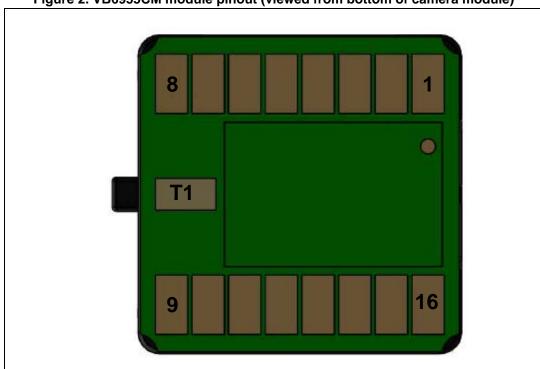


Figure 2. VB6955CM module pinout (viewed from bottom of camera module)

Table 4. Pin description

Pad number	Pad name	Description			
Power supplies	Power supplies				
3	VBAT	VCM power			
7, 11	DGND, AGND	Digital and analog ground			
8	VANA	Analog power			
14	VCM_GND	VCM ground			
1	VDIG	Digital power			
System					
6	FSTROBE	Flash strobe			
5	EXTCLK	System clock input			
Control					
4	SCL	Serial communication clock			
2	SDA	Serial communication data			

DocID028544 Rev 1

11/101

Device pinout VB6955CM

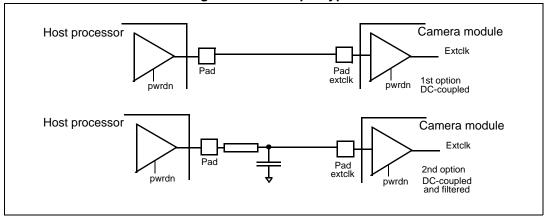
Table 4. Pin description (continued)

Pad number	Pad name	Description		
Data				
12	CLK- ⁽¹⁾	Output qualifying clock		
13	CLK+ ⁽¹⁾	Output qualifying clock		
9	DATA1- ⁽¹⁾	Serial output data		
10	DATA1+ ⁽¹⁾	Serial output data		
15	DATA2- ⁽¹⁾ / CCP DATA+	Serial output data		
16	DATA2+ ⁽¹⁾ / CCP DATA-	Serial output data		
ST test				
T1	ST test pin	Do not connect ⁽²⁾		

^{1.} By default, the polarity of the CSI-2 data lanes and clock lanes are swapped. It is necessary to swap them by writing 0x02 to the registers 0x6006, 0x6007 and 0x6008. It is not possible to swap the CCP data lanes.

577

^{2.} Test pin is not floating.


3 Functional description

3.1 External clock

3.1.1 Clock input type

The external clock provided by the host to the VB6955CM must be a DC coupled square wave and may also be RC-filtered.

Figure 3. Clock input types

3.1.2 PLL and clock input

The VB6955CM has an embedded PLL block. This block generates all necessary internal clocks from an input range defined in *Table 5*.

Table 5. System input clock frequency range

Minimum (MHz)	Maximum (MHz)
6	27

The value of the external clock frequency must be written to the register 0x0136 (extclk_frequency_mhz).

3.2 Device operating modes

The mode changes in VB6955CM are shown in *Figure 4*. Further details are provided in Section 3.2.1 to Section 3.2.8.

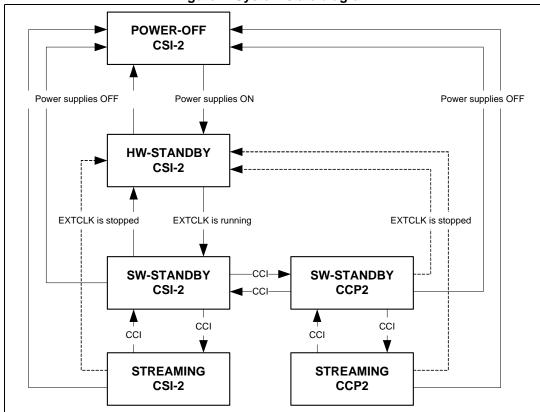


Figure 4. System state diagram

3.2.1 Power-up procedure

To start the sensor, VDIG, VANA should be set high and EXTCLK started. These can be powered up in any order and have no time constraints. After all three signals are working, the software standby state is reached, the OTP data is read internally^(b) and CCI activity can begin.

On power-up the on-chip power-on reset cell ensures that the CCI register values are initialized correctly to their default values.

The power-up sequence timing constraints are shown in *Table 6*.

Table 6. Power-up sequence timing constraints

Symbol	Parameter	Minimum	Maximum	Units
tO	VANA rising – VDIG rising	VBAT, VANA and	,	ns
t1	VDIG rising – VANA rising	any order. The ri can vary from 0		ms
t4	EXTCLK – first CCI transaction with gated clock	5	-	ms
t5	PLL start up/lock time	-	1	ms
t6	Entering streaming mode – First frame start sequence (fixed part)	-	10	ms
t7	Entering streaming mode – First frame start sequence (variable part) = Integration time	fine_integration_ time_min	-	ms

b. The OTP is read once coming out from hardware standby and VANA powers the OTP.

DocID028544 Rev 1 15/101

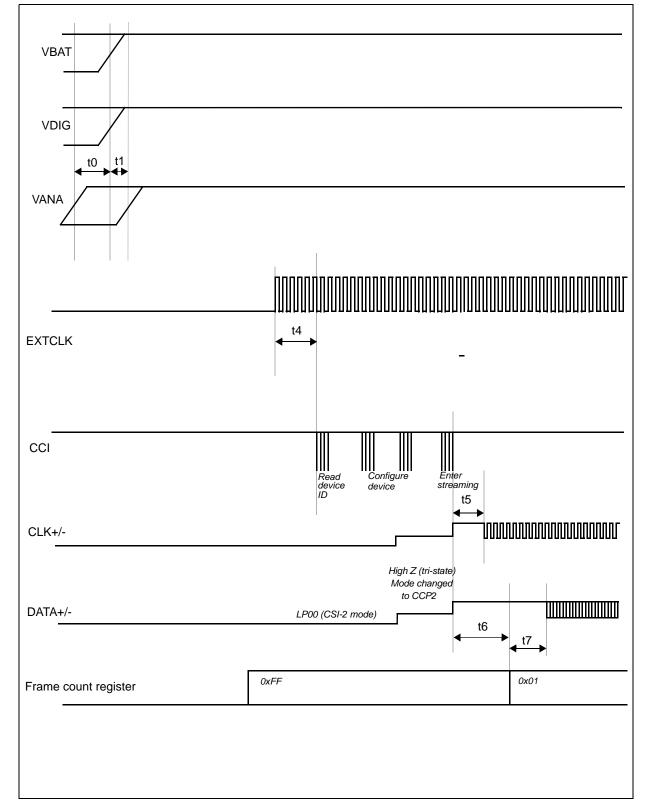


Figure 5. VB6955CM power-up sequence for CCP2 mode

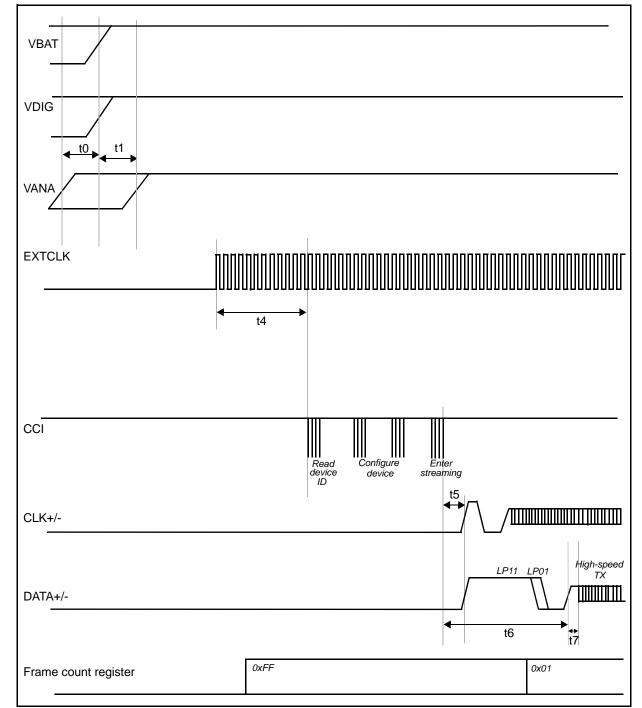


Figure 6. VB6955CM power-up sequence for CSI-2 mode

3.2.2 Power-down procedure

The power-down sequence timing constraints are shown in *Table 7*.

Table 7. Power-down sequence timing constraints for CSI2 communications

Symbol	Parameter	Minimum	Maximum	Units
t8	Last CCI transaction to MIPI frame end ⁽¹⁾	-	1 frame	
t9	Minimum EXTCLK cycles required after last CCI transaction or MIPI frame end ⁽²⁾	512	-	clock cycles
t11	VBAT, VANA, VDIG falling	VBAT, VANA and any order, the fa can vary from 0	lling separation	

The whole power-down sequence is triggered by the CCI power-down request, however the power-down sequence only starts after the end of the frame when all active data is consumed on CSI-2 DN/DP pins. Once this is done, the CSI-2 DN/DP signals enter LP11 and the system enters software standby. The CSI-2 clock enters LP11 with a delay of 5 us (corresponding to TcIk_post + TcIk_trail) compared to DN/DP pins.

^{2.} After the last frame completion, the gated clock needs to be kept for at least 512 cycles so the system can enter LP11 Low Power mode. After the system enters LP11 mode, you can keep or stop the EXTCLK.

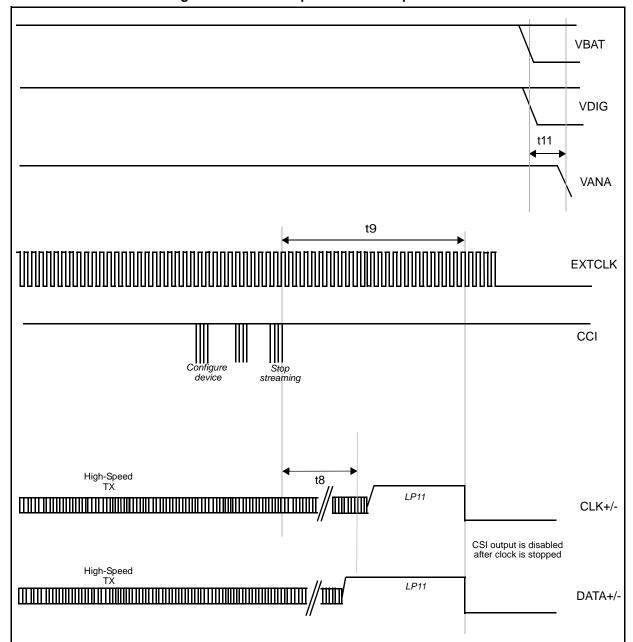


Figure 7. VB6955CM power-down sequence for CSI-2 mode

3.2.3 Internal power-on reset (POR)

The VB6955CM internally performs a power-on reset (POR) when the 1V2 VDD digital supply rises through the trigger level, Vtrig rising. Similarly, if the 1V2 VDD digital power supply falls through the trigger level, Vtrig falling, then the power-on reset also triggers.

Definitions

Rise threshold voltage (VTRIGR) This is the supply voltage level that is recognized by the

> POR as voltage "HIGH". Only after the supply reaches this level does the output of POR change to high level if

it is off, after a specified amount of delay.

This is the supply voltage level that is recognized by the Fall threshold voltage (VTRIGF)

POR as voltage "LOW". Only after the supply reaches this level does the output of POR change to low

(ground) level if it is on.

Burst width (pw) Burst is the negative pulse riding the supply signal. The

> burst width is measured as the amount of duration for which the supply signal dropped beyond the threshold

levels.

Delay duration (TPOR) Delay duration is defined as the time duration for which

POR stays off before re-powering. Each reset of POR imparts a specified delay duration before POR re-

powers.

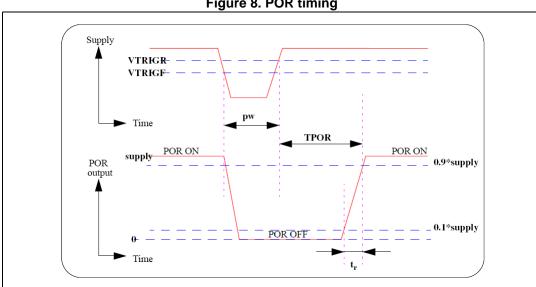


Figure 8. POR timing

Table 8. POR cell characteristics

Symbol	Constraint	Minimum	Typical	Maximum	Units
VTRIGR	POR rise voltage detection			0.95	V
VTRIGF	POR fall voltage detection	0.4			V
Tburst (pw)	Burst filter		2	8	μs
Tpor	Delay duration		20	45	μs

3.2.4 Power off

The power off state is defined as either or both of the digital and analog supplies not present.

3.2.5 Hardware standby

This is the lowest power consumption mode. CCI communications are not supported in this mode. The PLL and the video blocks are powered down. This state is entered by stopping the external clock. All registers are returned to their default values

3.2.6 Software standby

Software standby mode preserves the contents of the CCI register map. CCI communications are supported in this mode. The software standby mode is selected using a serial interface command. If this state is entered from hardware standby, the data pads remain at LP-00. If this state is entered from streaming then the data pads go to LP-11 at the end of the current frame. The internal video timing is reset to the start of a video frame in preparation for the enabling of active video. The values of the serial interface registers such as exposure and gain are preserved. The system clock must remain active when communicating with the sensor.

This state is entered by releasing the device from hard reset by writing 0x00 to the mode control register (0x0100) or commanding a soft reset by writing 0x01 to the software reset register (0x0103).

Note: After a soft reset, all registers are returned to their default values.

3.2.7 Streaming

The VB6955CM streams live video. This mode is entered by writing 0x01 to the mode control register (0x0100).

3.2.8 Fast standby mode

The fast software standby mode can be controlled using register 0x0106. By default it is disabled.

If this mode is disabled (that is, standard mode is enabled) and the software standby command is issued while streaming, the transmission of the current frame completes before the VB6955CM enters software standby.

If fast software standby mode is enabled, there are three possibilities for where the VB6955CM may be in the frame that is being read out when the command to go to software standby is received:

- command received during frame blanking
 There is no difference in this situation if fast standby mode is enabled or disabled. The VB6955CM immediately enters software standby.
- · command received during the active line
 - In CCP2 mode, the VB6955CM outputs the current line including the line end code and then terminates the frame by transmitting a line start code and a frame end code. The VB6955CM then immediately enters software standby mode.
 - In CSI-2 mode, the VB6955CM outputs the current packet and terminates the frame with a frame end packet. The VB6955CM then immediately enters software standby mode.
- command received during the line blanking
 - In CCP2 mode, the VB6955CM terminates the frame by transmitting a line start code and a frame end code. The VB6955CM then immediately enters software standby mode.

In CSI-2 mode, as the VB6955CM is already in an LP idle state, the VB6955CM immediately enters software standby mode.

57

4 Camera control interface (CCI)

This chapter specifies the camera control interface (CCI). The I²C-type interface uses 1.8 V I/O with two signals: serial data line (SDA) and serial clock line (SCL). CCI is used for control data transfer. Clock signal (SCL) generation is performed by the master device (the camera module is a slave device). The master device initiates data transfer. The CCI bus on the camera module has a maximum speed of 400 Kbits/s and has a software switchable device address. The default device address is 0x20.

Any internal register that can be written to, can also be read from. There are also read only registers that contain device status information, for example, design revision details. A read instruction from an unused register location returns the value 0x00. A read instruction from a reserved address may return any value. A write instruction to a reserved or unused register location is illegal and the effect of such a write is undefined. It is the responsibility of the host system to only write to register locations which have been defined.

4.1 Valid register data types

The contents of the registers can represent a number of different data types (see *Table 9*). The register map uses this coding to help with the interpretation of the contents of each register.

Data type Name Range Description 8UI 0 to 255 8-bit unsigned integer 8SI 8-bit signed integer -128 to 127 Two's complement notation **16UI** 16-bit unsigned integer 0 to 65535 16SI 16-bit signed integer -32768 to 32767 Two's complement notation 08.08 fixed point number. 8 integer **16UR** 16-bit unsigned iReal 0 to 255.99609375 bits (MS Byte), 8 fractional bits (LS Byte) Two's complement notation, 16SR 16-bit signed iReal -128 to 127.9960375 8 fractional bits 16.16 fixed point number. 32UR 32-bit unsigned iReal 0 to 65535.99998474 16 integer bits (MS 2 Bytes), 16 fractional bits (LS 2 Bytes) 32-bit IEEE floating-As per IEEE 754. 1 sign bit, 32SF As per IEEE 754 point number 8 exponent bits, 23 fractional bits This indicates that the value is 8C or 16C 8-bit or 16-bit coded decoded to select one of several functions or modes. Each bit represents a specific 8B or 16B 8 or 16 bits -b function or mode.

Table 9. Valid register data types

4.2 Register map

The registers default values are expressed as hexadecimal numbers.

4.2.1 Status registers [0x0000 to 0x001f]

Table 10. Status registers [0x0000 to 0x001f]

Index	Byte	Register name	Data type	Default	Туре	Comment
0	Hi			07		1955
1	LO	module_model_id	16UI	a3	RO	Camera model identification number. Default values depend on NVM content.
2		revision_number_major	8UI	00	RO	Revision identifier of the camera for DCC change. Default value depends on NVM content.
3		manufacturer_id	8UI	01	RO	Module manufacturer number. Default value depends on NVM content.
4		smia_version	8UI	0a	RO	SMIA version that sensor complies with 10 - Version 1.0
5		frame_count	8UI	ff	RW	Frame count register. Increments from 1 to 254 when streaming. Reports 255 when idle.
6		pixel_order	8UI	00	RO	Color pixel readout order. Changes with mirror and flip (register 0x0101). 0x00 - GR/BG normal. 0x01 - RG/GB horizontal mirror. 0x02 - BG/GR vertical flip. 0x03 - GB/RG vertical flip and horizontal mirror.
8	HI	data pedestal	16UI	00	RO	Offset applied to the video data.
9	LO	data_pedestal	1001	40	NO	Onset applied to the video data.
С		pixel_depth	8UI	0a	RO	Pixel depth resolution of the sensor.
10		revision_number_minor	8UI	00	RO	Revision identifier of the camera for minor changes. Default value depends on NVM content.
11		additional_spec_ver	8UI	08	RO	Additional specification identifier.
12	[3:0]	module_date_year	8UI	00	RO	Last digit of manufacturing year. Default value depends on NVM content.

Table 10. Status registers [0x0000 to 0x001f] (continued)

Index	Byte	Register name	Data type	Default	Туре	Comment
13	[3:0]	module_date_month	8UI	00	RO	Manufacturing month. Default value depends on NVM content.
14	[4:0]	module_date_day	8UI	00	RO	Manufacturing day. Default value depends on NVM content.
15	[2:0]	module_date_phase	8UI	01	RO	Manufacturing phase identification. 0 = TS (Test Sample) 1 = ES (Engineering Sample) 2 = CS (Customer Sample) 3 = MP (Mass Production) Default value depends on NVM content.
16				03		Silicon identification number.
17		sensor_model_id	16UI	bb	RO	This may not be the same as the module identification number, for example, in the case where the same silicon is used in two different modules.
18	[3:0]	sensor_nvm_revision_id	8UI	00	RO	Silicon NVM revision number. Default value depends on NVM content.
	[7:4]	sensor_mask_set_revision_id		01	RO	Silicon mask revision code.
19		sensor_manufacturer_id	8UI	01	RO	Silicon manufacturer number - ST Microelectronics.
1a		sensor_firmware_version	8UI	11	RO	Silicon firmware version with format "[7:4].[3:0]", for example 0x11 = "1.1".
1c	НІ			00		Sequential number starting at 0 and
1d	3rd	- serial_number	32UI	00	RO	incrementing by 1. Specification identifier.
1e	2nd		5201	00		Default value depends on NVM
1f	LO			00		content.

4.2.2 Frame format description registers [0x0040 to 0x0049]

For a full description of the frame format description refer to Section 5.1.

Table 11. Frame format description registers [0x0040 to 0x0049]

Index	Byte	Register name	Data type	Default	Туре	Comment
40		frame_format_model_type	8UI	01	RO	Generic frame format.
41		frame_format_model_ subtype	8UI	22	RO	Contains the number of 2-byte data format descriptors used. The upper nibble defines the number of column descriptors. The lower nibble defines the number of row descriptors.
42	HI	frame_format_descriptor_0_	16UI 5a	5a	RO	number of visible columns.
43	LO	req	1001	28	KO	number of visible columns.
44	HI	frame_format_descriptor_1	16UI	20	RO	8 dummy columns.
45	LO	name_format_descriptor_f	1001	08	NO	o durning columns.
46	HI	frome format descriptor 2	16UI	10	RO	2 omboddod rowo (SOE)
47	LO	frame_format_descriptor_2	1001	03	INO.	3 embedded rows (SOF).
48	HI	frame_format_descriptor_3_	16UI	57	RO	number of visible rows
49	LO	req	1001	a0	INO.	Trumber of visible tows

4.2.3 Analogue gain description registers [0x0080 to 0x0093]

For a full description of the analogue gain description registers refer to Section 6.6.1.

Table 12. Analogue gain description [0x0080 to 0x0093]

Index	Byte	Register name	Data type	Default	Туре	Comment
80	HI	analogue_gain_capability	16UI	00	RO	Analogue gain capability - single
81	LO	analogue_gain_capability	1001	00	INO	global gain only.
84	HI	analogue gain code min	16UI	00	RO	Minimum recommended analogue
85	LO	analogue_gain_code_min	1001	00	KO	gain code.
86	HI		16UI	00	RO	Maximum recommended analogue gain code.
87	LO	analogue_gain_code_max	1001	fO		
88	HI	analogue gain ando aton	40111	00	RO	Analogue spin and stan sing
89	LO	analogue_gain_code_step	16UI	10	KO	Analogue gain code step size.
8a	HI	analogue gain tune	16111	00	RO	Analogue gain tune
8b	LO	analogue_gain_type	16UI	00	RO	Analogue gain type.
8c	HI	- analogue_gain_m0 16l	16111	00	DO.	Analogue gain constant MO
8d	LO		1001	00	RO	Analogue gain constant M0.

Table 12. Analogue gain description [0x0080 to 0x0093] (continued)

Index	Byte	Register name	Data type	Default	Туре	Comment
8e	HI	analamus main s0	16UI	01	RO	Analogue gain constant C0.
8f	LO	analogue_gain_c0	1001	00	INO	Analogue gain constant co.
90	HI	analogue gain m1	ff ff	RO	Analagua gain agnatant M4	
91	LO	analogue_gain_m1	16UI	ff	KO	Analogue gain constant M1.
92	HI	analagua gain at	40111	01	RO	Analogue gain constant C1.
93	LO	analogue_gain_c1	16UI	00		

4.2.4 Data format description registers [0x00c0 to 0x00c9]

Table 13. Data format description registers [0x00c0 to 0x00c9]

Index	Byte	Register name	Data type	Default	Туре	Comment
с0		data_format_model_type	8UI	01	RO	2-byte generic data format model type
c1		data_format_model_ subtype	8UI	04	RO	Number of data format descriptors.
c2	HI	data farrant danarintar O	16UI 08 RO	RAW8 mode - transmit top 8 bits of		
с3	LO	data_format_descriptor_0	1001	08	NO	pixel data.
с4	HI	data format doggrintar 1	16UI	0a	0a RO	RAW10 mode - transmit top 10 bits of pixel data.
c5	LO	data_format_descriptor_1	1001	0a		
с6	HI			0a		10-8 compressed mode - transmit
с7	LO	data_format_descriptor_2	16UI	08	RO	top 10 bits of pixel data, compressed to 8 bits.
c8	HI		40111	0a		10-6 compressed mode - transmit
с9	LO	data_format_descriptor_3	16UI	06 RO	top 10 bits of pixel data, compressed to 6 bits.	

4.2.5 Setup registers [0x0100 to 0x0137]

Table 14. Setup registers [0x0100 to 0x0137]

Index	Byte	Register name	Data type	Default	Туре	Comment
100		mode_select	8UI	00	RW	Mode select. 0 = Software standby. 1 = Streaming.
101	[0]	x_rev_req	- 8UI	00	RW	Image orientation in X. 0 = Normal 1 = X-mirror mode.
101	[1]	y_rev_req	- 601	00	RW	Image orientation in Y. 0 = Normal 1 = Y-flip mode.
103		soft_reset	8UI	00	RW	Software reset returns the sensor to its power-on defaults. 0 = Normal operation. 1 = Software reset enabled.
104		inhibit_retime	8UI	00	RW	The grouped parameter hold register disables the consumption of integration, gain and video timing parameters. 0 = Consume values as normal. 1 = Do not consume values whilst set high.
105		mask_corrupt	8UI	00	RW	Setting this register to 1 prevents the sensor out-putting frames that have been corrupted by video timing parameter changes. 0 = Output as normal. 1 = Mask corrupted frames.
107		cci_addr	8UI	20	RW	Device address.
108	[0]	second_i2c_if_en	- 8UI	00	RW	Second I ² C interface enable. 0 = Disabled 1 = Enabled
100	[1]	second_i2c_if_ack_en	- 601	00	RW	Second I ² C interface ACK enable. 0 = Disabled 1 = Enabled
109		cci_2nd_addr	8UI	20	RW	Additional device address that can be responded to.
110		csi_channel_identifier	8UI	00	RW	The DMA (CCP2) or virtual (CSI2) channel identifier. Valid range = 0 to 7 for CCP2. Valid range = 0 to 3 for CSI2.

Table 14. Setup registers [0x0100 to 0x0137] (continued)

Index	Byte	Register name	Data type	Default	Туре	Comment
111		csi_signalling_mode	8UI	02	RW	Determines which transmission signalling mode is to be used. 0 = CCP2 data-clock signaling. 1 = CCP2 data-strobe signaling. 2 = CSI2.
112	НІ		16UI	0a	RW -	The value of this register contains the pixel width of the uncompressed pixel data. Valid values are 0xA and 0x8.
113	LO	csi_data_format	1601	0a		The value of this register contains the pixel width of the compressed pixel data. Valid values are 0xA and 0x8.
114		csi_lane_mode	8UI	01	RW	Number of data lanes in use. 0 = 1-lane. 1 = 2-lane.
115		csi2_10_to_8_dt	8UI	30	RW	CSI-2 data type for 10-to-8 compression.
117		csi2_10_to_6_dt	8UI	31	RW	CSI-2 data type for 10-to-6 compression.
120		gain_mode	8UI	00	RO	Global gain mode - this device only supports 0x00.
130	HI	vana voltago	16UR	02	RW	Typical supplied VANA voltage.
131	LO	vana_voltage	IOUK	сс	KVV	Typical Supplied VAINA Voltage.
132	HI	vdig_voltage	16UR	01	RW	Typical supplied VDIG voltage.
133	LO	vaig_voitage	10010	сс	1700	Typical supplied VBIC Voltage.
134	HI	vio_voltage	16UR	01	RW	Typical IO voltage.
135	LO		10011	сс		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
136	HI	ext_clkfreq	16UR	06	RW	8.8 fixed-point representation of the
137	LO	<u>-</u>		00		external clock-frequency, in MHz.

4.2.6 Integration and gain registers [0x0200 to 0x0215]

These registers are used to control the image exposure. See Section 6.6 for more information.

Table 15. Integration and gain registers [0x0200 to 0x0215]

Index	Byte	Register name	Data type	Default	Туре	Comment
200	HI	fine over year	16UI	02	RW	Fine integration time in pixels.
201	LO	fine_exp_req	1001	ae	IXVV	ine integration time in pixels.
202	HI	goorge eve reg	16UI	00	RW	Coargo integration time in lines
203	LO	coarse_exp_req	1001	00	KVV	Coarse integration time in lines.
204		gain_req_dummy_hi	8UI	00	RO	Dummy HI byte to ensure presence in SLC test
205		gain_req	8UI	00	RW	Gain code for all channels.
20e	HI	digital gain groopP	16UR	01	DW	Green (red row) channel digital gain
20f	LO	digital_gain_greenR	IOUK	00	RW	value
210	HI	digital gain rad	16LID	01	DW	Dod shannel digital gain value
211	LO	digital_gain_red	16UR	00	RW	Red channel digital gain value
212	HI	digital gain blue	16LID	01	RW	Dive channel digital gain value
213	LO	digital_gain_blue	16UR	00	KVV	Blue channel digital gain value
214	HI	dicital main manage		01	DW	Green (blue row) channel digital gain
215	LO	digital_gain_greenB	16UR	00	RW	value.

4.2.7 Video timing registers [0x0300 to 0x0387]

For a full description of the video timing registers refer to *Chapter 5*.

Table 16. Video timing registers [0x0300 to 0x0387]

Index	Byte	Register name	Data type	Default	Туре	Comment
300		vt_pix_clk_div_dummy_hi	8UI	00	RO	Dummy HI byte to ensure presence in SLC.
301		vt_pix_clk_div	8UI	0a	RW	Video timing pixel clock divider.
302		vt_sys_clk_div_dummy_hi	8UI	00	RO	Dummy HI byte to ensure presence in SLC.
303		vt_sys_clk_div	8UI	01	RW	Video timing system clock divider.
304		pre_pll_div_dummy_hi	8UI	00	RO	Dummy HI byte to ensure presence in SLC.
305		pre_pll_div	8UI	01	RW	Pre-PLL clock divider value. 1 = Divide EXTCLK by 1. 2 = Divide EXTCLK by 2. 4 = Divide EXTCLK by 4.

Table 16. Video timing registers [0x0300 to 0x0387] (continued)

Index	Byte	Register name	Data type	Default	Туре	Comment
306		pll_mult_dummy_hi	8UI	00	RO	Dummy HI byte to ensure presence in SLC.
307		pll_mult	8UI	85	RW	PLL multiplier value. Odd and even values can be used, but odd values result in the nearest lower even value being used (for example, 133 becomes 132).
308		op_pix_clk_div_dummy_hi	8UI	00	RO	Dummy HI byte to ensure presence in SLC.
309		op_pix_clk_div	8UI	0a	RW	Output timing pixel clock divider.
30a		op_sys_clk_div_dummy_hi	8UI	00	RO	Dummy HI byte to ensure presence in SLC.
30b		op_sys_clk_div	8UI	01	RW	Output timing system clock divider.
340	HI	frame_length_req	16UI	08	RW	Length of the video frame in lines
341	LO	mame_lengtii_req	1001	24	IXVV	Length of the video frame in lines.
342	HI	line_length_req	16UI	0a	RW	Length of a line of video in pixels.
343	LO	inte_terigut_req	1001	be	IXVV	Length of a line of video in pixels.
344	HI	- x_start_req	16UI	00	RW	X pixel address of the top left corner
345	LO		1001	00		of the visible pixel data.
346	HI	y_start_req	16UI	00	RW	Y line address of the top left corner of
347	LO	7		00		the visible pixel data.
348	HI	x_end_req	16UI	0a	RW	X pixel address of the bottom right corner of the visible pixel data.
349	LO	,		27		
34a	HI	y_end_req	16UI	07	RW	Y line address of bottom right corner
34b	LO	7 1		9f		of the visible pixel data.
34c	HI	x_op_size_req	16UI	0a	RW	Width in pixels of the output image
34d	LO			28		from the sensor.
34e	HI	y_op_size_req	16UI	07	RW	Height in lines of the output image
34f	LO			a0		from the sensor.
380		x_even_inc_req_dummy_hi	8UI	00	RO	Dummy HI byte to ensure presence in SLC Test
381		x_even_inc_req	8UI	01	RW	X address increment for even pixels.
382		x_odd_inc_req_dummy_hi	8UI	00	RO	Dummy HI byte to ensure presence in SLC test
383		x_odd_inc_req	8UI	01	RW	X address increment for odd pixels.
384		y_even_inc_req_dummy_hi	8UI	00	RO	Dummy HI byte to ensure presence in SLC test

DocID028544 Rev 1

Table 16. Video timing registers [0x0300 to 0x0387] (continued)

Index	Byte	Register name	Data type	Default	Туре	Comment
385		y_even_inc_req	8UI	01	RW	Y address increment for even lines.
386		y_odd_inc_req_dummy_hi	8UI	00	RO	Dummy HI byte to ensure presence in SLC test
387		y_odd_inc_req	8UI	01	RW	Y address increment for odd lines.

4.2.8 Scaler and digital crop registers [0x0400 to 0x040f]

Table 17. Scaler and digital crop registers [0x0400 to 0x040f]

Index	Byte	Register name	Data type	Default	Туре	Comment
400		scale_mode_req_dummy_hi	8UI	00	RO	
401		scale_mode_req	8UI	00	RW	Scaling mode 0 = No scaling 1 = Horizontal scaling
402		scale_cosite_req_dummy_ hi	8UI	00	RO	
403		scale_cosite_req	8UI	00	RW	Spatial sampling 0 = Bayer sampling 1 = Co-sited (2- or 4-component) 2 = Co-sited (3-component)
404		scale_m_req_dummy_hi	8UI	00	RO	
405		scale_m_req	8UI	10	RW	Down scale factor. M component.
406	HI	anala n	16UI	00	RO	Down scale factor N component
407	LO	scale_n	1001	10	INO	Down scale factor. N component.
408	HI			00		Offset from X-address of the top left
409	LO	digital_crop_x_offset	16UI	00	RW	corner of the visible pixel data after analog crop, bin and subsample. Even numbers only (pixels).
40a	HI			00		Offset from Y-address of the top left
40b	LO	digital_crop_y_offset	16UI	00	RW	corner of the visible pixel data after analog crop, bin and subsample. Even numbers only (lines).
40c	HI	digital_crop_image_width	16UI	0a	RW	Image width after digital crop. Even
40d	LO	Tuigitai_crop_ii1iage_wiut11	1001	28	T IVV	numbers only (pixels).
40e	HI	digital_crop_image_height	16UI	07	RW	Image height after digital crop. Even
40f	LO	aigitai_crop_image_neignt	1001	a0	1700	numbers only (lines).

4.2.9 Compression setup registers [0x0500 to 0x0501]

Table 18. Compression setup registers [0x0500 to 0x0501]

Index	Byte	Register name	Data type	Default	Туре	Comment
500	compression_algorithm	16UI	00	RO	Compression algorithm is	
501		Compression_aigonumi	1001	01	i NO	DPCM/PCM.

4.2.10 Test pattern registers [0x0600 to 0x0611]

Table 19. Test pattern registers [0x0600 to 0x0611]

Index	Byte	Register name	Data type	Default	Туре	Comment
600		man_spec_patt_req	8UI	00	RW	Enables maufacturer-specific test patterns. 0 = Enable SMIA test patterns. 1 = Enable manufacturer-specific test patterns.
601		test_pattern_req	8UI	00	RW	SMIA test pattern selector. Note that the PN9 test pattern replaces data at output TX stage. bit0 = No pattern bit1 = Solid color bit2 = 100% color bars bit3 = Fade-to-grey color bars bit4 = Pseudo random-PN9
602	HI	test_data_red	16UI	00	RW	Test data used to replace Red pixel
603	LO	1001_4414_104	1001	00	IXVV	data - range 0 to 1023.
604	HI		40111	00	RW	Test data used to replace Green pixel data on lines that also have Red pixels - range 0 to 1023.
605	LO	test_data_greenr	16UI	00	RVV	
606	HI	toot data blue	40111	00	RW	Test data used to replace Blue pixel
607	LO	test_data_blue	16UI	00	KVV	data - range 0 to 1023.
608	HI			00		Test data used to replace Green pixel
609	LO	test_data_greenb	16UI	00	RW	data on lines that also have Blue pixels - range 0 to 1023.
60a	HI	And hour width	40111	00	DW	Defines the width in pixels of the
60b	LO	test_hcur_width	16UI	00	RW	horizontal cursor.
60c	HI	toot hour noon	16111	00	RW	Defines the position of the top edge
60d	LO	test_hcur_posn 16UI 00 RV	IKVV	of the horizontal cursor.		
60e	HI	test_vcur_width	16UI	00	RW	Defines the width in pixels of the
60f	LO	TGSt_vGut_WidtH	1001	00	1744	vertical cursor.

DocID028544 Rev 1

Table 19. Test pattern registers [0x0600 to 0x0611] (continued)

Index	Byte	Register name	Data type	Default	Туре	Comment
610	HI			00		Defines the left hand edge of the vertical cursor
611	LO	test_vcur_posn	16UI	00	RW	The value can be set to 0xFFFF which enables an automatic mode whereby the cursor advances every frame. Can be used to visually check the frame count.

4.2.11 CSI2 registers [0x808]

Table 20. CSI2 registers [0x808]

Index	Byte	Register name	Data type	Default	Туре	Comment
808		dphy_ctrl	8UI	00		CSI2 DPHY control 1 = Use UI control. 2 = Use register control.

4.2.12 DPHY registers [0x820 to 0x823]

Table 21. DPHY registers [0x820 to 0x823]

Index	Byte	Register name	Data type	Default	Туре	Comment
820	HI					CSI2 DPHY requested (target) channel rate in Mbps (16.16 fixed-
821	3rd				RW	point representation)
822	2nd	dphy_channel_mbps_for_ui		00.00		This is used to calculate the DPHY unit-interval (UI) value.
			32UR			It does not control the sensor clock setup, but should normally correspond to those settings.
823	LO			00.00		0 = Sensor automatically calculates UI from host-programmed EXTCLK and clock divider values and reports in MAN_SPEC_DPHYCLKLANE_ UIX4 register. 80-800 = Sensor calculates UI from Mbps value.

47/

4.2.13 Binning registers [0x900 to 0x902]

Table 22. Binning registers [0x900 to 0x902]

Index	Byte	Register name	Data type	Default	Туре	Comment
900		binning_mode	8UI	00	RW	Binning mode. 0 = Disabled 1 = Enabled
901		binning_type	8UI	00	RW	High-nibble = Column binning factor. High-nibble = Row binning factor.
902		binning_weighting	8UI	00	RW	Binning weighting type: 0 = Averaged.

4.2.14 Data transfer registers [0x0a00 to 0x0a43]

Table 23. Data transfer registers [0x0a00 to 0x0a43]

Index	Byte	Register name	Data type	Default	Туре	Comment
a00		data_xfer_if1_ctrl	8UI	00	RW	bit0: 0 = Disable Xfer IF1. 1 = Enable Xfer IF1. bit1: 0 = Read enable on IF1 1 = Write enable on IF1 bit2: 0 = Disabled 1 = Clear error bits on IF1
a01		data_xfer_if1_status	8UI	00	RO	bit0: Read IF ready bit1: Write IF ready. bit2: Data corrupt. bit3: Improper IF usage.
a02		data_xfer_if1_page_select	8UI	00	RW	Select RW Pages from 0 to 255 for IF1.
a04		DataXfer_Data0	8UI	00	RW	Data Xfer Interface - DataLoc0
a43		DataXfer_Data63	8UI	00	RW	Data Xfer Interface - DataLoc63

4.2.15 Ideal raw registers [0x0b04 to 0x0b05]

Table 24. Ideal raw registers [0x0b04 to 0x0b05]

Index	Byte	Register name	Data type	Default	Туре	Comment
b04		black_level_correction_ enable	8UI	01	RW	Black level correction. 0 = Disabled 1 = Enabled
b05		mapped_couplet_correct_ enable	8UI	01	RW	Mapped couplet correction enable. 0 = Disabled 1 = Enabled

4.2.16 Flash registers [0x0c12 to 0x0c2a]

Table 25. Flash registers [0x0c12 to 0x0c2a]

Index	Byte	Register name	Data type	Default	Туре	Comment
c12		flash_strobe_adjustment	8UI	00	RW	Register to control pre-divider for flash_strobe_width counter.
c14	HI	flash_strobe_start_point	16UI	00	RW	Register to select reference point for flash strobe. Adjustable in one line steps. Range 0 - last line.
c15	LO			00		
c16	HI	tFlash_strobe_delay_rs_ ctrl	16UI	00	RW	1H step. 0-65535.
c17	LO			00		
c18	HI	tFlash_strobe_width_high_ rs_ctrl	16UI	00	RW	Used to control flash strobe width in rolling shutter mode. 1-65535.
c19	LO		וטטו	00	RVV	
c1a		Flash_mode_rs	8UI	00	RW	Bit[0] - Flash mode (rolling shutter): 0 = strobe usage in single trigger mode. 1 = strobe usage in continuous mode.
c1b		Flash_trigger_rs	8UI	00	RW	Bit[0] - Flash trigger (rolling shutter): 0 = disable strobe generation. 1 = trigger flash (auto clear in single mode).
c1c		Flash_status	8UI	00	RO	Bit[0] - Flash status: 0 = flash strobe is not retimed to this frame. 1 = flash strobe is retimed to this frame. Bit[1]: 0 = flash is not active in global reset. 1 = flash is active in global reset mode.

_y/

Table 25. Flash registers [0x0c12 to 0x0c2a] (continued)

Index	Byte	Register name	Data type	Default	Туре	Comment
c26	HI	tFlash_strobe_width_ high_rs_ctrl	16UI	00	RW	Used to control flash strobe width in rolling shutter mode. 1-65535.
c27	LO			00		
c28	HI	tFlash_strobe_width_low_ rs_ctrl	16UI	00	RW	Used to control flash strobe width in rolling shutter mode. 1-65535.
c29	LO			00		
c2a		tFlash_strobe_count_rs_ ctrl	8UI	00	RW	Used to control flash strobe width in rolling shutter mode. 1-255.

4.2.17 Sensor - high level auto focus registers [0x0d80 to 0x0d89]

Table 26. Sensor - high level auto focus registers [0x0d80 to 0x0d89]

Index	Byte	Register name	Data type	Default	Туре	Comment
d80	HI	FOCUS_CHANGE	16UI	00	RW	This register is used to change the focus point.
d81	LO			00		
d82	HI	FOCUS_CHANGE_CONTR OL	16UI	00	RW	Bit[0] - fcc_enable Bit[9] - Automatic ringing compensation enable
d83	LO			00		
d84	HI	FOCUS_CHANGE_NUMBE R_ PHASE1	16UI	00		Specifies the increased or decreased value from focus change register and specifies the amount of focus change at each strobe. Applicable for phase 1 sequence.
d85	LO			00	RW	
d86	HI	FOCUS_CHANGE_NUMBE R_ PHASE2	16UI	00	RW	Specifies the increased or decreased value from focus change register and specifies the amount of focus change at each strobe. Applicable for phase 2 sequence.
d87	LO			00		
d88		STROBE_COUNT_PHASE 1	8UI	00	RW	Specifies how many strobes are counted during Phase1 of two types of sequences.
d89		STROBE_COUNT_PHASE 2	8UI	00	RW	Specifies how many strobes are counted for Phase2 sequence.

4.2.18 Bracketing LUT registers [0x0e00 to 0x0e55]

Table 27. Bracketing LUT registers [0x0e00 to 0x0e55]

Index	Byte	Register name	Data type	Default	Туре	Comment
e00		bracketing_lut_ctrl	8UI	00	RW	Bracketing LUT Ctrl. 1-n - Bracketing over n frames
e01		bracketing_lut_mode	8UI	00	RW	Bit[0] - Bracketing LUT Mode: 0 = return to SW standby after bracketing. 1 = continue in streaming after bracketing
e02	HI	bracketing_lut_entry_	16111	00	RW	Bracketing LUT entry control
e03	LO	control	16UI	00	KVV	(Reserved).
e10	HI	bracketing_lut_frame_a_	16UI	00	RW	Bracketing LUT frame A coarse
e11	LO	coarse_int_time	1001	00	TNV	integration time
e12	HI	bracketing_lut_frame_a_	16UI	00	RW	Bracketing LUT frame A analog gain
e13	LO	analog_gain_code	1601	00	KVV	code
e14	HI	bracketing_lut_frame_a_	16CD	00	RW	Bracketing LUT frame A digital gain
e15	LO	digital_gain_gr	16SR	00	KVV	GR
e16	HI	bracketing_lut_frame_a_	16SR	00	DW	Bracketing LUT frame A digital gain
e17	LO	digital_gain_r	105K	00	RW	R
e18	HI	bracketing_lut_frame_a_	16SR	00	RW	Bracketing LUT frame A digital gain B
e19	LO	digital_gain_b	103K	00		
e1a	HI	bracketing_lut_frame_a_	160D	00	RW	Bracketing LUT frame A digital gain
e1b	LO	digital_gain_gb	16SR	00	T KVV	GB
e1c	HI	bracketing_lut_frame_a_	16UI	00	RW	Bracketing LUT frame A bracketing
e1d	LO	bracketing_lut_entry	1601	00	T KVV	LUT entry
e1e	HI	bracketing_lut_frame_b_	16UI	00	RW	Bracketing LUT frame B coarse
e1f	LO	coarse_int_time	1601	00	KVV	integration time
e20	HI	bracketing_lut_frame_b_	16111	00	DW	Bracketing LUT frame B analog gain
e21	LO	analog_gain_code	16UI	00	RW	code
e22	HI	bracketing_lut_frame_b_	16CD	00	RW	Bracketing LUT frame B digital gain
e23	LO	digital_gain_gr	16SR	00	KVV	GR
e24	HI	bracketing_lut_frame_b_ digital_gain_r	16CD	00	RW	Bracketing LUT frame B digital gain
e25	LO		16SR	00	_ KVV	R
e26	HI	bracketing_lut_frame_b_	16SD	00	RW	Bracketing LUT frame B digital gain
e27	LO	digital_gain_b	16SR	00	T IV V	В

Table 27. Bracketing LUT registers [0x0e00 to 0x0e55] (continued)

Index	Byte	Register name	Data type	Default	Туре	Comment
e28	HI	bracketing_lut_frame_b_	16SR	00	RW	Bracketing LUT frame B digital gain
e29	LO	digital_gain_gb	1031	00	11.00	GB
e2a	HI	bracketing_lut_frame_b_	16UI	00	RW	Bracketing LUT frame B bracketing
e2b	LO	bracketing_lut_entry	1001	00	IXVV	LUT entry
e2c	HI	bracketing_lut_frame_c_	16UI	00	RW	Bracketing LUT frame C coarse
e2d	LO	coarse_int_time	1001	00	IXVV	integration time
e2e	HI	bracketing_lut_frame_c_	16UI	00	RW	Bracketing LUT frame C analog gain
e2f	LO	analog_gain_code	1001	00		code
e30	HI	bracketing_lut_frame_c_	16SR	00	RW	Bracketing LUT frame C digital gain
e31	LO	digital_gain_gr	1031	00	IXVV	GR
e32	HI	bracketing_lut_frame_c_	16SR	00	RW	Bracketing LUT frame C digital gain
e33	LO	digital_gain_r	1031	00		R
e34	HI	bracketing_lut_frame_c_	16SR	00	RW	Bracketing LUT frame C digital gain
e35	LO	digital_gain_b	00	KVV	В	
e36	HI	bracketing_lut_frame_c_	16SR	00 RW	Bracketing LUT frame C digital gain	
e37	LO	digital_gain_gb	1031	00		GB
e38	HI	bracketing_lut_frame_c_	16UI	00	RW	Bracketing LUT frame C bracketing
e39	LO	bracketing_lut_entry		00		LUT entry
еЗа	HI	bracketing_lut_frame_d_	16UI	00	RW	Bracketing LUT frame D coarse
e3b	LO	coarse_int_time	1601	00		integration time
е3с	HI	bracketing_lut_frame_d_	16UI	00	RW	Bracketing LUT frame D analog gain code
e3d	LO	analog_gain_code	1001	00	11.00	
е3е	HI	bracketing_lut_frame_d_	16SR	00	RW	Bracketing LUT frame D digital gain
e3f	LO	digital_gain_gr	1031	00	IXVV	GR
e40	HI	bracketing_lut_frame_d_	16SR	00	RW	Bracketing LUT frame D digital gain
e41	LO	digital_gain_r	1031	00	IXVV	R
e42	HI	bracketing_lut_frame_d_	16SR	00	RW	Bracketing LUT frame D digital gain
e43	LO	digital_gain_b	TOOK	00		В
e44	HI	bracketing_lut_frame_d_	16SR	00	RW	Bracketing LUT frame D digital gain
e45	LO	digital_gain_gb	1031	00		GB
e46	HI	bracketing_lut_frame_d_	16UI	00	RW	Bracketing LUT frame D bracketing
e47	LO	bracketing_lut_entry	1001	00		LUT entry
e48	HI	bracketing_lut_frame_e_	16UI	00	RW	Bracketing LUT frame E coarse
e49	LO	coarse_int_time		00		integration time

DocID028544 Rev 1

39/101

Table 27. Bracketing LUT registers [0x0e00 to 0x0e55] (continued)

Index	Byte	Register name	Data type	Default	Туре	Comment
e4a	HI	bracketing_lut_frame_e_	16UI	00	RW	Bracketing LUT frame E analog gain
e4b	LO	analog_gain_code	1001	00	IXVV	code
e4c	HI	bracketing_lut_frame_e_	16SD	00	RW	Bracketing LUT frame E digital gain
e4d	LO	digital_gain_gr	16SR	00	KVV	GR
e4e	HI	bracketing_lut_frame_e_ digital_gain_r	16SR	00	RW	Bracketing LUT frame E digital gain
e4f	LO			00		R
e50	HI	bracketing_lut_frame_e_	4000	00	RW	Bracketing LUT frame E digital gain
e51	LO	digital_gain_b	16SR	00	KVV	В
e52	HI	bracketing_lut_frame_e_	16SR	00	RW	Bracketing LUT frame E digital gain
e53	LO	digital_gain_gb	103K	00	KVV	GB
e54	HI	bracketing_lut_frame_e_	16UI	00	RW	Bracketing LUT frame E bracketing
e55	LO	bracketing_lut_entry		00		LUT entry

4.2.19 Integration and gain limit registers [0x1000 to 0x1089]

Table 28. Integration and gain limit registers [0x1000 to 0x1089]

Index	Byte	Register name	Data type	Default	Туре	Comment
1000	HI	integration_capability	16UI	00	RO	This device supports coarse and
1001	LO	integration_capability	1001	01	I KO	smooth (1 pixel) integration.
1004	HI	min coarse	16UI	00	RO	Minimum coarse integration time (in
1005	LO	Tilli_coarse	1001	00	IXO	line periods).
1006	HI	coarse margin	16UI	00	RO	Current frame length - current max
1007	LO	Coarse_margin	1001	09	INO	coarse exposure (in line periods).
1008	HI	min_fine	16UI	02	RO	Minimum fine integration time (in
1009	LO			ae		pixels).
100a	HI	fine margin	16UI	08	RO	Current line length - maximum fine exposure (pixel periods).
100b	LO	ilile_margiii		02	KO	
1080	HI	digital_gain_capability	16UI	00	RO	This device supports digital gain
1081	LO	digital_gairi_capability	1001	01	I.O	This device supports digital gain.
1084	HI	digital gain min	16UI	00	RO	Minimum supported digital gain
1085	LO	- digital_gain_min	1601	08		value.
1086	HI	disital sais sasy	16UI	01	RO	Maximum supported digital gain
1087	LO	digital_gain_max		f8	i.o	value

Table 28. Integration and gain limit registers [0x1000 to 0x1089] (continued)

Index	Byte	Register name	Data type	Default	Туре	Comment
1088	HI	digital_gain_step_size	16UI	00	RO	Digital gain step size.
1089	LO	uigitai_gaiii_step_size	1001	08	IXO	Digital gailt step size.

4.2.20 Video timing limit registers [0x1100 to 0x11c7]

Table 29. Video timing limit registers [0x1100 to 0x11c7]

Index	Byte	Register name	Data type	Default	Туре	Comment
1100	HI			40		
1101	3rd	min out ally from	32UI	с0	RO	Minimum external clock frequency.
1102	2nd	min_ext_clk_freq	3201	00	RO	iviiriimum externar clock frequency.
1103	LO			00		
1104	HI			41		
1105	3rd	max_ext_clk_freq	32UI	d8	RO	Maximum external clock frequency.
1106	2nd	illiax_ext_cik_lieq	3201	00	NO	iviaximum external clock frequency.
1107	LO			00		
1108	HI	min pro pll clk div	16UI	00	RO	Minimum value of pre-PLL clock divider.
1109	LO	min_pre_pll_clk_div		01	20	
110a	HI	max_pre_pll_clk_div	16UI	00	RO	Maximum value of pre-PLL clock
110b	LO			04		divider.
110c	HI		32UI	40	RO	Minimum input clock frequency to the PLL.
110d	3rd	min_pll_ip_freq		c0		
110e	2nd	i min_pii_ip_neq		00	RO	
110f	LO			00		
1110	HI			41		
1111	3rd	may all in frag	32UI	40	RO	Maximum input clock frequency to
1112	2nd	max_pll_ip_freq	3201	00	RO	the PLL.
1113	LO			00		
1114	HI	min all multiplier	16111	00	DO.	Minimum DLL multiplier value
1115	LO	min_pll_multiplier	16UI	4c	RO	Minimum PLL multiplier value.
1116	HI	may all multiplier	40111	01	DO.	Maximum DLL multiplier value
1117	LO	max_pll_multiplier	16UI	4c	RO	Maximum PLL multiplier value.

Table 29. Video timing limit registers [0x1100 to 0x11c7] (continued)

Index	Byte	Register name	Data type	Default	Туре	Comment
1118	HI			44		
1119	3rd	min all on frog	32UI	61	RO	Minimum PLL output frequency.
111a	2nd	- min_pll_op_freq	3201	00	KO	
111b	LO			00		
111c	HI			44		
111d	3rd	max_pll_op_freq	32UI	fa	RO	Maximum DLL output fraguency
111e	2nd	- max_pii_op_iieq	3201	00	KO	Maximum PLL output frequency.
111f	LO			00		
1120	HI	min ut ava alle dive	16111	00	-RO	Minimum video timing system clock
1121	LO	- min_vt_sys_clk_div	16UI	01	RO	divider value.
1122	HI		40111	00	DO	Maximum video timing system clock
1123	LO	- max_vt_sys_clk_div	16UI	04	RO	divider value.
1124	HI	- min_vt_sys_clk_freq		43		
1125	3rd		00111	61	DO	Minimum video timing system clock
1126	2nd		32UI	00	RO	frequency.
1127	LO			00		
1128	HI			44	RO	Maximum video timing system clock frequency.
1129	3rd	may ut ava ally from	32UI	fa		
112a	2nd	- max_vt_sys_clk_freq		00		
112b	LO			00		
112c	HI			41		Minimum video timing pixel clock
112d	3rd	min ut niv alle frag	20111	f0	RO	
112e	2nd	-min_vt_pix_clk_freq	32UI	00	RO	frequency.
112f	LO			00		
1130	HI			43		
1131	3rd	may ut niv ally frog	32UI	28	RO	Maximum video timing pixel clock
1132	2nd	- max_vt_pix_clk_freq	3201	00	KO	frequency.
1133	LO			00		
1134	HI	min ut niv alle div	16111	00	DO.	Minimum video timing pixel clock
1135	LO	-min_vt_pix_clk_div	16UI	04	RO	divider value.
1136	HI	may ut niv alle div	16111	00	-RO	Maximum video timing pixel clock
1137	LO	- max_vt_pix_clk_div	16UI	0a	KU	divider value.
1140	НІ	min frama langth	16UI	00	RO	Minimum frame length in lines
1141	LO	- min_frame_length	1001	d9		Minimum frame length in lines.

Table 29. Video timing limit registers [0x1100 to 0x11c7] (continued)

Index	Byte	Register name	Data type	Default	Туре	Comment
1142	HI	max_frame_length	16UI	ff	- RO	Maximum frame length in lines.
1143	LO	- max_name_lengin	1001	ff	INO	Waximum frame length in lines.
1144	HI	min_line_length	16UI	0a	-RO	Minimum line length in pixel clocks.
1145	LO	- min_ime_lengur	1001	be		iviii iii iii iii e iei gu iii pixei ciocks.
1146	HI	max_line_length	16UI	3f	-RO	Maximum line length in pixel clocks.
1147	LO	max_ime_lengin	1001	ff	NO	iviaximum iirie ierigiir iir pixer clocks.
1148	HI	min_line_blanking	16UI	00	- RO	Minimum line blanking in pixel
1149	LO	- min_ine_blanking	1001	86	INO	clocks.
114a	Н	min frame blanking	16UI	00	RO	Minimum frame blanking in lines.
114b	LO	- min_frame_blanking	1601	16	KO	willimum frame blanking in lines.
114c	HI	min_line_length_pck_	16UI	00	- RO	Minimum aton aiza of line langth nok
114d	LO	step_size	1601	01	KO	Minimum step size of line length pck.
1160	HI	min on ove elle dive	16111	00	- RO	Minimum output timing system clock
1161	LO	- min_op_sys_clk_div	16UI	01	KO	divider value.
1162	HI	max_op_sys_clk_div	16UI	00	RO	Maximum output timing system clock
1163	LO			14		divider value.
1164	HI		32UI	42	-RO	Minimum output timing system clock frequency.
1165	3rd	min on eye elk frog		34		
1166	2nd	min_op_sys_clk_freq		00		
1167	LO]		00		
1168	HI			44		
1169	3rd		20111	fa	DO	Maximum output timing system clock
116a	2nd	- max_op_sys_clk_freq	32UI	00	RO	frequency.
116b	LO]		00		
116c	HI	main an miss alls aliss	40111	00	DO	Minimum output timing pixel clock
116d	LO	- min_op_pix_clk_div	16UI	06	RO	divider value.
116e	HI		40111	00	DO	Maximum output timing pixel clock
116f	LO	- max_op_pix_clk_div	16UI	0a	RO	divider value.
1170	НІ			40		
1171	3rd	lanta an artico ()	32UI	90		Minimum output timing pixel clock
1172	2nd	min_op_pix_clk_freq		00	RO	frequency.
1173	LO			00	1	

DocID028544 Rev 1

Table 29. Video timing limit registers [0x1100 to 0x11c7] (continued)

Index	Byte	Register name	Data type	Default	Туре	Comment
1174	HI			43		
1175	3rd	may on hiv ally from	32UI	28	RO	Maximum output timing pixel clock
1176	2nd	- max_op_pix_clk_freq	3201	00	NO	frequency.
1177	LO			00		
1180	HI	v oddr min	16UI	00	RO	Minimum XADDR value.
1181	LO	x_addr_min	1601	00	RO	Willimum AADDR Value.
1182	HI	y oddr min	16UI	00	RO	Minimum YADDR value.
1183	LO	- y_addr_min	1601	00	RO	Willimum TADDR Value.
1184	HI	v oddr mov	16111	0a	RO	Maximum VADDR value
1185	LO	x_addr_max	16UI	27	RO	Maximum XADDR value.
1186	HI	v oddr mov	40111	07	DO.	Maximum YADDR value.
1187	LO	y_addr_max	16UI	9f	RO	
1188	HI	x_op_size_min	16UI	01	RO	Minimum V autout aire in nivele
1189	LO		1601	00		Minimum X output size in pixels.
118a	HI	v on size min	16UI	00	RO	Minimum Y output size in lines.
118b	LO	- y_op_size_min		c0		
118c	HI	v on size may	16UI	0a	RO	Maximum V autaut ains in nivela
118d	LO	x_op_size_max	1601	28	RO	Maximum X output size in pixels.
118e	HI	v en eize mev	16UI	07	RO	Maximum V autaut aiza in linea
118f	LO	y_op_size_max	1601	a0	RO	Maximum Y output size in lines.
11c0	HI	oven ine min	16UI	00	RO	Minimum even increment used in
11c1	LO	even_inc_min	1601	01	RO	digital subsampling.
11c2	HI	oven ine mov	16111	00	PO.	Maximum even increment used in
11c3	LO	even_inc_max	16UI	01	RO	digital subsampling.
11c4	HI	add inc min	16111	00	PO.	Minimum odd increment used in
11c5	LO	odd_inc_min	16UI	01	RO	digital subsampling.
11c6	HI	odd ing may	16UI	00	RO	Maximum odd increment used in
11c7	LO	- odd_inc_max	1001	13		digital subsampling.

577

4.2.21 Scaling limit registers [0x1200 to 0x120f]

Table 30. Scaling limit registers [0x1200 to 0x120f]

Index	Byte	Register name	Data type	Default	Туре	Comment
1200	HI	scaling_capability	16UI	00	RO	VB6955CM supports horizontal digital scaling
1201	LO	Scaling_capability	1001	01	KO	
1204	HI	scale m min	16UI	00	RO	Minimum M value for downscale.
1205	LO	Scale_III_IIIIII	1001	10	INO	William Wi Value for downscale.
1206	HI	acolo m may	16111	00	RO	Maximum M value for downscale.
1207	LO	- scale_m_max	16UI	a3	KO	iviaximum ivi value ioi downscale.
1208	HI		16UI	00	RO	Minimum N value for downscale.
1209	LO	scale_n_min		10		willimum in value for downscale.
120a	HI		40111	00	D.C.	Maximum N value for downscale.
120b	LO	scale_n_max	16UI	10	RO	Maximum in value for downscale.
120c	HI	anatial compling		00		Spatial sampling capability
120d	LO	spatial_sampling_ capability	16UI	03	RO	Bayer sampling supported 2 or 4 component co-sited supported
120e	HI			00		Digital crop is supported.
120f	LO	digital_crop_capability	16UI	01	RO	Note. This should be a 8 bit register. i.e. The value for 0x120E should be 01

4.2.22 Compression capability registers [0x1300 to 0x1301]

Table 31. Compression capability registers [0x1300 to 0x1301]

Index	Byte	Register name	Data type	Default	Туре	Comment
1300	HI	compression_capability	16UI	00	RO	Compression capability is DPCM/PCM.
1301	LO			01		

4.2.23 Derate capability registers [0x1500 to 0x1502]

Table 32. Derate capability registers [0x1500 to 0x1502]

Index	Byte	Register name	Data type	Default	Туре	Comment
1500	HI	fifo_size_pixels	16UI	00	RO	FIFO size in pixels (derate sync RAM).
1501	LO			00		
1502	HI	fifo_support_capability	8UI	01	RO	VB6955CM supports derating

DocID028544 Rev 1

45/101

4.2.24 DPHY capability registers [0x1600 to 0x1604]

Table 33. DPHY capability registers [0x1600 to 0x1604]

Index	Byte	Register name	Data type	Default	Туре	Comment
1600		dphy_ctrl_capability	8UI	03	RO	CSI2 DPHY control capability: Automatic DPHY control supported. UI based DPHY control supported.
1601		csi_lane_mode_capability	8UI	03	RO	1 and 2 lane supported.
1602		csi_signalling_mode_ capability	8UI	07	RO	CCP2 data/clock supported. CCP2 data/strobe supported. CSI2 supported.
1603		fast_standby_capability	8UI	01	RO	Fast standby is supported for rolling shutter).
1604		cci_address_control_ capability	8UI	07	RO	VB6955CM supports: - SW changeable CCI address - 2nd CCI address. - 2nd SW changeable CCI address.

4.2.25 Bitrate limit registers [0x1608 to 0x1617]

Table 34. Bitrate limit registers [0x1608 to 0x1617]

Index	Byte	Register name	Data type	Default	Туре	Comment
1608	HI			03		
1609	3rd	max_per_lane_bitrate_1_ lane_mode_mbps	32UR	e8	RO	Maximum bitrate for a 1 lane
160a	2nd		320K	00	iko	configuration.
160b	LO			00		
160c	HI		32UR	03	RO	Maximum bitrate for a 2 lane configuration.
160d	3rd	max_per_lane_bitrate_2_ lane_mode_mbps		e8		
160e	2nd			00		
160f	LO			00		

4.2.26 Binning capability registers [0x1700 to 0x1714]

Table 35. Binning capability registers [0x1700 to 0x1714]

Index	Byte	Register name	Data type	Default	Туре	Comment
1700	HI	min_frame_length_lines_	16UI	00	- RO	Minimum frame length (lines)
1701	LO	bin	1601	d9	KO	allowed in binning mode.
1702	HI	max_frame_length_lines_	16UI	ff	RO	Maximum possible number of lines
1703	LO	bin	1001	ff	INO	per frame in binning mode.
1704	HI	min line length nek hin	16UI	0a	DO.	Minimum line length (pixel clocks)
1705	LO	min_line_length_pck_bin	1601	be	RO	allowed in binning mode.
1706	HI	may line length nek hin	16111	3f	- RO	Maximum possible number of pixel
1707	LO	- max_line_length_pck_bin	16UI	ff	RO	clocks per line in binning mode.
1708	HI	min_line_blanking_pck_ bin	16UI	00 RO	Minimum line blanking time in pixel	
1709	LO		1001	86	NO.	clocks in binning mode.
170a	HI	fine_integration_time_	16UI	02	RO	Minimum fine integration time
170b	LO	min_bin		51		allowed in binning mode (in pixels).
170c	HI	fine_integration_time_		09		Margin used to determine the
170d	LO	max_margin_bin	16UI	d8	RO	maximum fine integration time allowed in binning mode (in pixels).
1710		binning_capability	8UI	01	RO	Binning supported
1711		binning_weighting_ capability	8UI	01	RO	Binning weighting capability: Averaged weighting supported
1712		binning_sub_types	8UI	02	RO	Number of binning subtypes available.
1713		binning_type_1	8UI	22	RO	Binning type is 2 x 2 (Col x Row).
1714		binning_type_2	8UI	44	RO	Binning type is 4 x 4 (Col x Row).

4.2.27 Data transfer capability registers [0x1800]

Table 36. Data transfer capability registers [0x1800]

Index	Byte	Register name	Data type	Default	Туре	Comment
1800		data_xfer_if_capability	8UI	Od	RO	Data transfer capability. I/F1 supported Polling not needed in reading or writing

DocID028544 Rev 1

4.2.28 Ideal raw capability registers [0x1900 to 0x1907]

Table 37. Ideal raw capability registers [0x1900 to 0x1907]

Index	Byte	Register name	Data type	Default	Туре	Comment
1900		shading_correction_ capability	8UI	00	RO	Shading correction not supported.
1901		green_imbalance_ capability	8UI	00	RO	Green imbalance not supported
1902		black_level_capability	8UI	01	RO	Black level correction supported.
1903		module_specific_ correction_capability	8UI	00	RO	Module specific correction not supported
1904	HI	defect_correction_	16UI	00	RO	Mapped couplet defect correction
1905	LO	capability	1601	01	KO	supported.
1906	HI	defect_correction_ capability_2	16UI	00	RO	Defect correction capability 2.
1907	LO			00		

4.2.29 EDOF capability registers [0x1980 to 0x19c5]

Table 38. EDOF capability registers [0x1980 to 0x19c5]

Index	Byte	Register name	Data type	Default	Туре	Comment
1980		edof_capability	8UI	00	RO	EDoF not supported.

4.2.30 Timer capability registers [0x1a00 to 0x1a02]

Table 39. Timer capability registers [0x1a00 to 0x1a02]

Index	Byte	Register name	Data type	Default	Туре	Comment
1a00	HI	- capability_trdy_min	16UI	00	RO	Minimum value.
1a01	LO		1001	00	INO	
1a02		flash_mode_capability	8UI	03	RO	Flash mode capability: Single and multiple flash strobe supported

4.2.31 Mechanical shutter capability registers [0x1b00 to 0x1b04]

Table 40. Mechanical shutter capability registers [0x1b00 to 0x1b04]

Index	Byte	Register name	Data type	Default	Туре	Comment
1b00		mech_shut_and_act_cci_ addr	8UI	00	RO	Mechanical shutter and actuator CCI address. 7-bit address. Address can point to, for example, camera module main chip, but also to, for example, separate lens driver chip.
1b02	HI	mech_shut_and_act_	16UI	00	RO	Defines start address in CCI space.
1b03	LO	start_addr		00		
1b04		actuator_capability	8UI	04	RO	Actuator capability: Mechanical shutter not supported AF actuator supported

4.2.32 Static autofocus actuator capability registers [0x1b40 to 0x1b45]

Table 41. Static autofocus actuator capability registers [0x1b40 to 0x1b45]

Index	Byte	Register name	Data type	Default	Туре	Comment
1b40	HI	actuator_type	16UI	00	RO	Actuator type: Bit[0] - Linear Bit[7] - Actuator with home position at far mechanical end
1b41	LO			81		
1b42		af_device_address	8UI	20	RO	Specifies the device CCI address of focusing control device.
1b44	HI	focus_change_address	16UI	0d	RO	Specifies the start address of high
1b45	LO			80		level command set

4.2.33 Bracketing LUT capability registers [0x1c00 to 0x1c02]

Table 42. Bracketing LUT capability registers [0x1c00 to 0x1c02]

				T .		
Index	Byte	Register name	Data type	Default	Туре	Comment
1c00		bracketing_lut_1_ capability	8UI	1b	RO	Bracketing interface LUT 1 capability The following is supported: - Coarse integration time - Global analog gain - Per channel digital gain - Flash

DocID028544 Rev 1

Table 42. Bracketing LUT capability registers [0x1c00 to 0x1c02] (continued)

Index	Byte	Register name	Data type	Default	Туре	Comment
1c01		bracketing_lut_2_ capability	8UI	00	RO	Bracketing interface LUT 2 capability (Reserved)
1c02		bracketing_lut_size_ capability	8UI	05	RO	LUT can contain settings for five frames

4.2.34 Manufacturer specific registers [0x6006 to 0x6008]

Table 43. Manufacturer specific registers [0x6006 to 0x6008]

Index	Byte	Register name	Data type	Default	Туре	Comment
6006		datalane1_ctrl	8UI	00	RW	Bit0: Invert data lane, P & N function Bit1: Swap data lane, P & N function
6007		datalane2_ctrl	8UI	00	RW	Bit0: Invert data lane, P & N function Bit1: Swap data lane, P & N function
6008		clklane_ctrl	8UI	00	RW	Bit0: Invert clock lane, P & N function Bit1: Swap clock lane, P & N function
fadf		af_delay	8UI	03	RW	This register controls the delay between setting bit 0 of the focus_change_control register (0x0d83) and it being cleared. This value should be 0x00

VB6955CM Video data interface

5 Video data interface

The video stream output from the VB6955CM through the compact camera port (CCP) or camera serial interface (CSI) contains both video data and other auxiliary information. This section describes the frame formats.

The VB6955CM is SMIA version 1.0 and MIPI CSI-2 version 1.00 and D-PHY 1.0 compliant.

The selection of the video data format is controlled using the following register: CSI_SIGNALLING_MODE (0x0111)

- 0 CCP2 data/clock
- 1 CCP2 data/strobe
- 2 CSI-2 (default)

Changing the video data format must be performed when the sensor is in software standby.

- The VB6955CM supports maximum output data rates of 1.68 Gbps using a dual lanes interface (840 Mbps). However, the data rate is limited to 1.0 Gbps when operated in CSI-2 single lane mode.
- The VB6955CM CCP lane is capable of transmitting at 640 Mbps.
- The CSI-2 data lane transmitter supports:
 - unidirectional master
 - HS-TX
 - LP-TX (ULPS)
 - CIL-MUYN function
- The CSI-2 clock lane transmitter supports:
 - unidirectional master
 - HS-TX
 - LP-TX (ULPS)
 - CIL-MCNN function

Video data interface VB6955CM

5.1 Frame format

The frame format for the VB6955CM is described by the frame format description registers, see *Table 11*. For CCP2 this results in a frame as shown in *Figure 9* and for CSI-2 it results in a frame as shown in *Figure 10*.

Frame start code

| Start code | Start code

Figure 9. VB6955CM CCP2 frame format

VB6955CM Video data interface

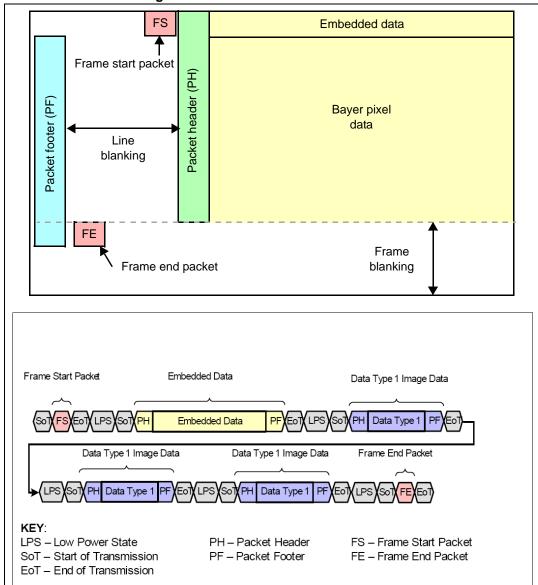


Figure 10. VB6955CM CSI-2 frame format

Embedded data lines

The embedded data lines provide a mechanism to embed non-image data such as sensor configuration details within the output data stream. The number of embedded data lines at the start and end of the frame is specified as part of the frame format description. VB6955CM has three embedded data lines.

Dummy pixel data

This is invalid pixel data. The receiver should always ignore dummy pixel data. The VB6955CM has eight dummy columns.

Video data interface VB6955CM

Visible pixel data

The visible pixels contain valid image data. The correct integration time and analog gain for the visible pixels is specified in the blank lines at the start of the frame. The number of visible pixels can be varied with the requested frame size.

Dark pixel data (light shielded pixels)

The VB6955CM has 0 dark pixels.

Black pixel data (zero integration time)

The VB6955CM has 0 black pixels.

Manufacturer specific pixel data

The VB6955CM has 0 manufacturer specific pixels.

Interline padding/line blanking

During interline padding all bits in the data stream in a CCP2 frame are set to 1.

In a CSI-2 frame there is no concept of line blanking being transmitted, the sensor simply spends a longer time in the LP state between active line data.

Interframe padding/frame blanking

During interframe padding all bits in the data stream in a CCP2 frame are set to 1.

In a CSI-2 frame there is no concept of frame blanking being transmitted, the sensor simply spends a longer time in the LP state at the end of the active data for a frame.

6 Video timing

6.1 Output size

The VB6955CM has the following methods available to achieve the required output size, these can be used independently or in conjunction with any other:

- analog crop, see Section 6.1.1
- subsampling, see Section 6.1.2
- binning, see Section 6.1.3
- digital cropping, see Section 6.1.4
- scaling, see Section 6.1.5
- output crop, see Section 6.1.6

The programmable image size and output size are independent functions. It is the responsibility of the host to ensure that these functions are programmed correctly for the intended application. These functions also reduce the amount of data and therefore reduce the peak data rate of CCP2/CSI-2.

Imaging array

Analog crop

Binning/subsampling

Digital crop

Scaler

Output crop

Video timing VB6955CM

6.1.1 Analog crop

The native size for the VB6955CM is 2592 x 1944, the maximum addressable array is 2600 x 1952 which gives border pixels (outer 4 rows and 4 columns) for the color reconstruction algorithms to use at the edges of the array.

By programming the x_addr_start, y_addr_start, x_addr_end and y_addr_end registers it is possible to use the full size of the array as you would do for a native size output or you can select a "window of interest". The addressed region of the array is used in any subsequent subsampling or scaling.

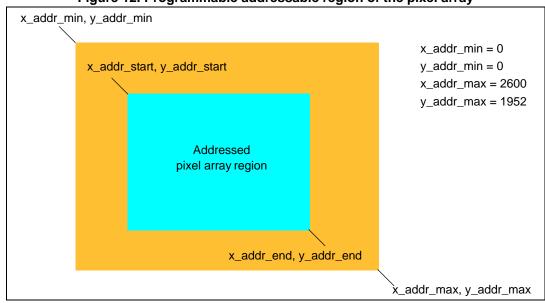


Figure 12. Programmable addressable region of the pixel array

The host must ensure the following rules are kept;

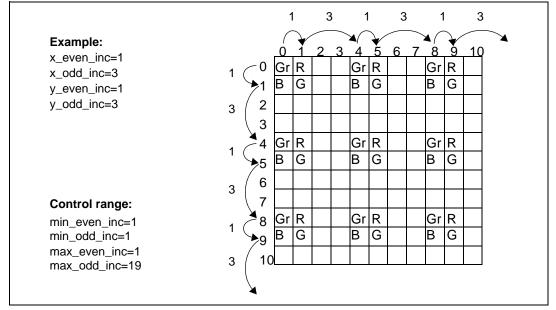
- the end address must be greater than the start address
- the x and y start addresses are restricted to even numbers only, and the x and y end addresses are restricted to odd numbers only, to ensure that there is always a even number of pixels read out

577

6.1.2 Subsampling

Subsampling is achieved by programming the x_odd_inc and y_odd_inc registers.

If the pixel being readout has an even address then the address is incremented by the even increment value either x_even_inc or y_even_inc. If the pixel being readout has an odd address then the address is incremented by the odd increment value either x_odd_inc or y_odd_inc.


The subsampled readout is disabled by setting the odd and even increment values to 1. (The even increment must always be set to 1.)

Subsampling acts upon the addressed region of the array which is determined by the x_{addr_start} , y_{addr_start} , x_{addr_end} and y_{addr_end} registers.

The equation for the sub-sampling factor is given below:

$$sub_sampling_factor \ = \ \frac{even_inc + odd_inc}{2}$$

Figure 13. Subsample readout example

Video timing **VB6955CM**

6.1.3 **Binning**

The VB6955CM also has a binning mode, sometimes also referred to as analogue Bayer scaling, that offers a reduced size full field of view image. The pixel binning mode averages row and column pixel data.

The binning mode results in a reduced number of lines and so can be used to give a higher image frame rate. Compared to subsampling, analog binning makes use of the light gathered from the whole pixel array and it results in higher image quality.

The binning mode is scaled by 2 x 2 or by 4 x 4 in the X and Y direction.

6.1.4 **Digital crop**

Digital crop can be used in addition to or instead of the analog crop function. It occurs after the subsampling function. It is affected by the amount of subsampling as well as by the analog crop. Since the input to the digital crop block is variable, there are no limit registers associated with digital crop.

digital_crop_y_offset digital_crop_image_width digital_crop _x_offset digital_crop_image_height

Figure 14. Digital crop

The host must ensure the following rule is kept:

the x and y offsets and the image width and height are restricted to even numbers only

Note:

In VB6955CM it is mandatory to maintain a consistency between y_output_size and digital_crop_image_height to have a similar value.

6.1.5 Scaling

The VB6955CM is compliant with the SMIA Profile Level 1 - Full horizontal level of image scaling.

The image scaling function within the sensor provides a flexible way of generating lower resolution full field of view image data, at a reduced data rates, for viewfinder and video applications.

The scaler is able to scale the full resolution of the sensor down to within 10% of a the target image size (the smallest output size is 256x192). This flexibility means that the VB6955CM can support a wide range of LCD viewfinder sizes and different codec resolutions.

The VB6955CM has two scaling modes which are controlled by the scale_mode_req register shown in *Figure 15*.

Pixel array output

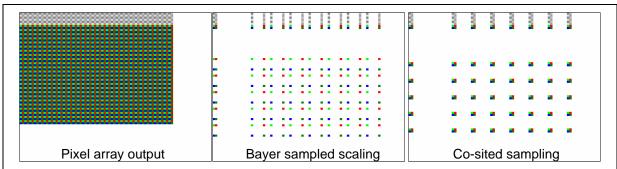
O- no scaling

1- horizontal scaling

Figure 15. Scaling modes

Scaler quality

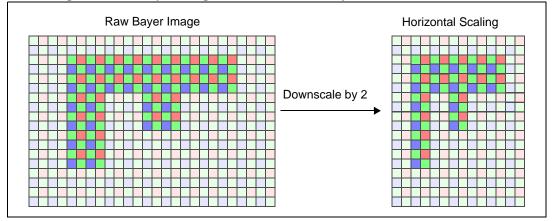
The scaler supports two options for the spatial sampling of the scaled image data (see *Figure 16*).


- Bayer sampled scaled image data
 - The sampling point for the scaler for the output Gr value appears to be in the centre of the Gr pixel (that is between the first and second pixels and between the first and second rows of the original input Bayer pixel data). The R (or B) sampling points are similarly in the centre of the R pixel (or B pixel).
- Co-sited scaled image data

The sampling point for the Gr, R. Gb and B vales in each output 'quad' are functions of the same color input array pixels such that the spatial sampling point for all four appears to be in the centre of the 'quad' that is between the second and third pixels and between the first and second rows.

The spatial sampling mode is controlled by the scale_cosite_req register.

Video timing VB6955CM


Down scaler factor

The down scaler factor is controlled by an M/N ratio, scale_m is >= 16 and scale_n is fixed at 16. scale_m is in the range 16 to 164.

$$down_scale_factor = \frac{scale_m}{scale_n} = \frac{scale_m}{16}$$

This single down scale factor is used by the horizontal scalers. The scaler acts upon the addressed region of the array which is determined by the x_{addr_start} , y_{addr_start} , x_{addr_end} and y_{addr_end} registers.

Figure 17. Example image horizontal scaled by a downscale factor of 2

577

6.1.6 Output crop

The x_output_size and y_output_size registers are not intended as the primary cropping controls.

They are intended to define the position of the LE/FE codes in the CCP2 and CSI-2 data frame to comply with SMIA CCP2 and MIPI CSI-2 data format rules. It is expected that the host sets the output sizes to exactly enclose the output image data. If the host does not do this, the VB6955CM treats the output sizes as being calculated from the top left hand corner of the output array. So in the case where output sizes are smaller than the output data, the data is cropped from its right hand and lower limits. In the case where larger than the output data, the lines are padded out to the defined output size with undefined data.

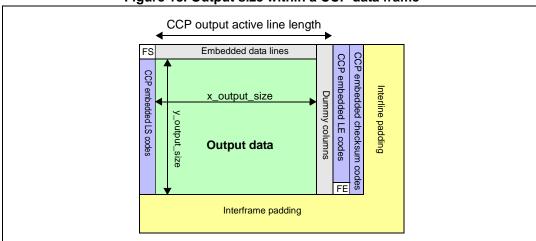


Figure 18. Output size within a CCP data frame

Note:

CCP2 requires that the CCP output active line length (between start and end sync codes) for RAW8 is a multiple of 4 and for RAW10 is a multiple of 16.

CSI-2 requires that RAW8 is a multiple of 2 pixels (actual definition is 1 pixel but 2 are required to preserve the Bayer pattern) and RAW10 is a multiple of 4 pixels (40 bits).

The host must control the x_output_size to ensure that the CCP output active line length meets the above criteria.

Video timing VB6955CM

6.2 Video timing

This section specifies the timing for the image data that is read out from the pixel array and the output image data. These are not necessarily the same size.

The application of all of the video timing read/write parameters must be re-timed to the start of the frame boundary to ensure that the parameters are consistent within a frame. The video stream which is output from the VB6955CM contains both video data and other auxiliary information.

6.2.1 PLL block

The VB6955CM contains a phase locked loop (PLL) block, which generates all the necessary internal clocks from the external clock input. Changes to the PLL settings on the VB6955CM are only consumed on the software standby to streaming mode transition.

Figure 19 shows the internal functional blocks, which define the relationship between the external input clock frequency and the pixel clock frequency.

The majority of the logic within the device is clocked by vt_sys_clk however the CCI block is clocked by the external input clock.

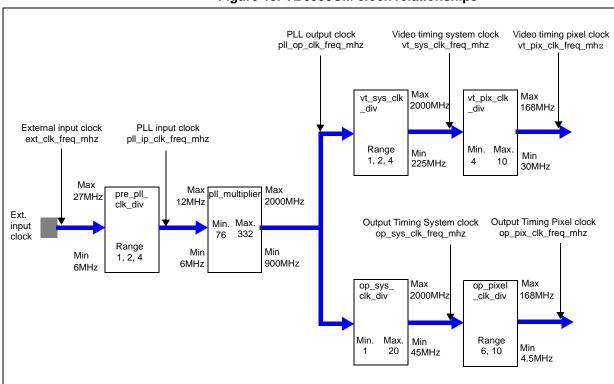


Figure 19. VB6955CM clock relationships

The equations relating the input clock frequency to pixel clock frequencies are given below.

577

6.2.2 Framerate

The framerate of the array readout and therefore the output framerate is governed by the line length, frame length and the video timing pixel clock frequency.

- Line length is specified as a number of pixel clocks, line_length_pck.
- Frame length is specified as a number of lines, frame_length_lines.
- Video timing pixel clock is specified in MHz, vt_pix_clk_freq_mhz.

The equation relating the framerate to the Line length, frame length and the video timing pixel clock frequency is given below:.

$$Framerate = \frac{vt_pix_clk_freq_mhz}{line_length_pck \times frame_length_lines}$$

The maximum frame rate that can be achieved in profile 0 is 30 fps with CSI2 dual lane. *Table 44* provides examples of frame timing for Raw10 mode for 30 fps for a variety of external clock frequencies.

Table 44. External clock frequency examples - 5.0 Mpixel Raw10 30 fps (CSI-2 dual lane)

Ext clk freq	Pre-PLL clk div	PLL multiplier	VT sys clk div	VT pixel clk div	VT pixel clock	OP sys clk div	OP pixel clk div	OP pixel clock	Line length	Frame length
MHz	Integer	Integer (Dec)	Integer	Integer	MHz	Integer	Integer	MHz	Pixel Clks	Lines (Dec)
9.60	1	174	1	10	167.0	1	10	167.0	2750	1988
12.00	2	280	1	10	168.0	1	10	168.0	2750	1988
13.00	2	258	1	10	167.7	1	10	167.7	2750	1988

Table 45 provides examples of frame timing for Raw10 mode for 15 fps with CSI-2 single lane for a variety of external clock frequencies.

Table 45. External clock frequency examples - 5.0 Mpixel Raw10 15 fps (CSI-2 single lane)

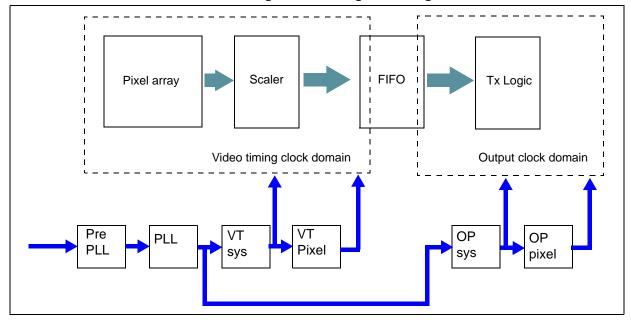
Ext clk freq	Pre-PLL clk div	PLL multiplier	VT sys clk div	VT pixel clk div	VT pixel clock	OP sys clk div	OP pixel clk div	OP pixel clock	Line length	Frame length
MHz	Integer	Integer (Dec)	Integer	Integer	MHz	Integer	Integer	MHz	Pixel Clks	Lines (Dec)
9.60	1	176	2	10	84.48	2	10	84.48	2750	1988
12.00	2	280	2	10	84.00	2	10	84.00	2750	1988
13.00	2	258	2	10	83.85	2	10	83.85	2750	1988

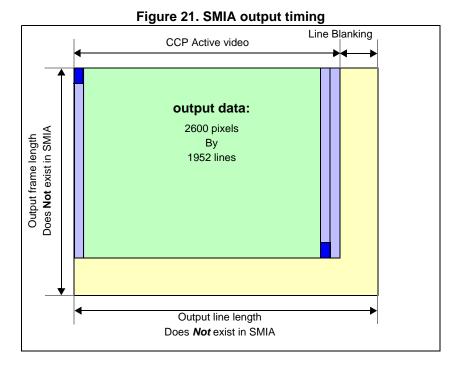
Video timing VB6955CM

6.2.3 Derating

To provide a wide range of data rate reduction options, the full image scaler is able to reduce the data and therefore data rates in both the horizontal and vertical directions. In the VB6955CM this is achieved by the use of a FIFO between video timing and output clock domains.

It is therefore necessary for the host to configure the OP clock domain to ensure that the FIFO neither over flows or under flows.




Figure 20. Timing block diagram

Derating shows the difference between the video timing domain and the output clock domain.

FIFO

The FIFO is used to implement the data rate reduction required for profile 1 operation.

The concept of an output frame length and a line length for the output timing domain does not exist for SMIA devices such as the VB6955CM. This is a result of the FIFO input data patterns being different depending on scaling factor and if the data is co-sited or Bayer sampled, which results in variable interframe and interline blanking time between lines and between frames.

Video timing VB6955CM

6.3 Image and video size capabilities

The VB6955CM supports various video modes ranging from VGA@120 fps to HD formats like 3.8 Mpixel @ 42 fps, 1080p30 and 720p30.

The VB6955CM has two CSI-2 data lanes capable of transmitting up to:

- 1.68 Gbps in dual lane mode (840 Mbps per lane)
- 1.0 Gbps in single lane mode

Table 46. Examples of video mode capabilities

	Resolution	FPS	Mode	Format	Number of CSI2 interfaces	Lane data rate (Mbps)
Full FOV	2600 x 1952	23 (max)	5 Mpixel 4:3	RAW8, 10/8	1 lane	996
Full FOV	2600 x 1952	31 (max)	5 Mpixel 4:3	RAW10	2 lanes	840
	1080p	41 (max)	16:9 (full horizontal + vertical crop)	RAW8, 10/8	1 lane	996
	1080p 55 (max)		16:9 (full horizontal + vertical crop)	RAW8, 10/8	2 lanes	672
HD video	1080p	33 (max)	16:9 (full horizontal + vertical crop)	RAW10	1 lane	996
capture	1080p	55 (max)	16:9 (full horizontal + vertical crop)	RAW10	2 lanes	840
	720p	61 (max)	3.8 Mpixel 16:9 + Binning 2x2	RAW8, 10/8	1 lane	996
	720p	82 (max)	3.8 Mpixel 16:9 + Binning 2x2	RAW10	2 lanes	840
	VGA (648x488)	89	5 Mpixel 4:3 with Binning 2x2 + 2x2 subsampling	RAW8, 10/8	1 lane	996
VGA	VGA (648x488)	120	5 Mpixel 4:3 with Binning 2x2 + 2x2 subsampling	RAW8, 10/8	2 lanes	672
	VGA (648x488)	120	5 Mpixel 4:3 with Binning 2x2 + 2x2 subsampling	RAW10	2 lanes	840
WVGA	WVGA (800x480)	120	1.5 Mpixel + Binning 2x2	RAW10	2 lanes	840

6.4 Bayer pattern

The three color (Red, Green, Blue) filters are arranged over the pixel array in a repeated 2 x 2 arrangement known as the Bayer Pattern. When the pixel array is read, the output order of red, green, blue depends on the settings of vertical flip and horizontal mirror.

Figure 22 shows the read-out order for the default settings of vertical flip and horizontal mirror both turned off. Vertical flip changes the first line to be output from a green/red line to a blue/green line and horizontal mirror changes the sequence within a line, for example, green/red to red/green.

As shown in *Figure 22*, the first pixel to be readout from the imaging array is green followed by red.

0 Red Green Red Red Green Red Green Blue Gree Blue Blue Greer 2 Red Red Red Red Green Green 3 Blue Green Blue Greer Blue Blue Red Red Green Red Green Red Green Blue 5 Blue Green Gree Blue Blue 1952 active rows 2600 active columns 1946 Red Red Red Green Red Green 1947 Blue Red Red 1948 Red Green Red Green Green Blue Blue Blue Green Blue 1949 Gree Green Gree Red Red Red 1950 Red Green Green Green Green Blue Blue Blue Green Blue Gree 1951 Greer 2592 2593 2594 2595 2596 2597 2598 2599

Figure 22. Bayer pattern

Video timing VB6955CM

6.5 Image compression

The objective of image compression is to reduce the required bandwidth in transmission between the sensor and the host.

The key features of the DPCM/PCM compression algorithm are:

- visually lossless
- low cost implementation (no line memories are required)
- fixed rate compression

The 10-bit to 8-bit DPCM/PCM image compression algorithm is supported by VB6955CM. 10-bit to 8-bit compression has the additional advantage that one pixel value equals one byte of data.

The level of compression is controlled through the CSI_data_format register. The same register is also used to enable and disable compression.

The compression_mode register is used to select which compression algorithm is used. Currently only the DPCM/PCM technique is supported. Therefore the value of this register is always 0x01.

The compression_capability register tells the host whether a sensor does or does not have compression and if it has compression then what is the compression technique. Currently only the DPCM/PCM technique is supported.

Also refer to section 10 of the SMIA1.0 specification document.

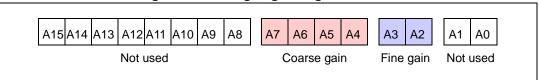
6.6 Exposure and gain control

VB6955CM does not contain any form of automatic exposure control. To produce a correctly exposed image the integration period and analogue gain for the pixels must be calculated by an exposure control algorithm implemented externally. The parameters are then written to the VB6955CM through the CCI interface.

The exposure control parameters available on VB6955CM are:

- fine integration time
- coarse integration time
- analog gain
- · digital gain

The exposure control parameter registers are defined in Section 4.2.6.


Integration time and analogue gain capability registers should be used to determine the exposure control parameter limits for a given video timing configuration. See Section 6.7 of the SMIA 1.0 part 1 specification for more information on how to interpret the integration and gain capability registers and how to calculate exposure and gain limits.

6.6.1 Analogue gain model

VB6955CM only supports the single global analogue gain mode. VB6955CM has a 16-bit register (0x0204 and 0x0205) to control analogue gain. However, only 4 bits are supported by the SMIA 1.0 description. Two extra bits can be used for fine gain between values 8 and 16 but their description is not currently supported by SMIA 1.0 specification.

Figure 23 shows the way the analogue gain bits are used for VB6955CM. **Use only Coarse** Gain bits for standard 1/x functionality.

Figure 23. Analogue gain register format

The following generic equation describes VB6955CM coarse gain behavior specified by the analogue gain description registers 0x008A to 0x0093:

$$gain = c0/(m1 \cdot x + c1)$$

where:

m1 = -1

c0 = 256

c1 = 256

Table 47 specifies the valid analogue gain values for VB6955CM.

Table 47. Analogue gain control

Gain value (0x0204/0x0205)	Coarse gain code [A7:A4]	Coarse analogue gain	Fine gain code [A3:A2]	Fine analogue gain
0x0000	0000	0.0 dB (x1.00)	00	N/A
0x0010	0001	0.6 dB (x 1.07)	00	N/A
0x0020	0010	1.1 dB (x1.14)	00	N/A
0x0030	0011	1.8 dB (x1.23)	00	N/A
0x0040	0100	2.5 dB (x1.33)	00	N/A
0x0050	0101	3.2 dB (x1.45)	00	N/A
0x0060	0110	4.1 dB (x1.60)	00	N/A
0x0070	0111	5.0 dB (x1.78)	00	N/A
0x0080	1000	6.0 dB(x2.00)	00	N/A
0x0090	1001	7.2 dB (x2.29)	00	N/A
0x00A0	1010	8.5 dB (x2.66)	00	N/A
0x00B0	1011	10.1 dB (x3.20)	00	N/A
0x00C0	1100	12.0 dB (x4.00)	00	N/A
0x00D0	1101	14.5 dB (x5.33)	00	N/A
0x00E0	1110	18.1 dB (x8.00)	00	N/A

DocID028544 Rev 1

69/101

Video timing VB6955CM

Gain value (0x0204/0x0205)			Fine gain code [A3:A2]	Fine analogue gain	
0x00E4	1110	fine ctrl	01	19.2 dB (x9.14)	
0x00E8	1110	fine ctrl	10	20.6 dB (x10.66)	
0x00EC	1110	fine ctrl	11	22.1 dB (x12.80)	
0x00F0	1111	24.1 dB (x16.00)	00	N/A	

Table 47. Analogue gain control (continued)

Also refer to section 6.3 of the SMIA1.0 specification document.

6.6.2 Digital gain

Downloaded from Arrow.com.

To help compensate for the relatively coarse analogue gain steps, VB6955CM contains a digital multiplier to "fill" in the missing steps. By mixing analogue and digital gain it is possible to implement 3% gain steps across the full 1x to 16x gain range

The details of the digital gain implementation are listed below:

- four individual 16-bit digital channel gains one per Bayer channel
 - digital_gain_greenR (0x020E and 0x020F)
 - digital_gain_red (0x0210 and 0x0211)
 - digital_gain_blue (0x0212 and 0x0213)
 - digital_gain_greenB (0x0214 and 0x0215)
- the digital gain range for each channel is 1.000 to 1.96875 in steps of 0.03125 (1/32), that is, 5 fractional bits
 - digital_gain_min $\{0x1084:0x1085\} = 0x0100 (1.00)$
 - digital_gain_max $\{0x1086:0x1087\} = 0x01F8 (1.96875)$
 - digital_gain_step {0x1088:0x1089} = 0x0008 (0.03125)

6.6.3 Integration and gain parameter re-timing

The modification of exposure parameter (integration time, analog and digital gain) register values does not take effect immediately.

The exact time at which changes to certain parameters take effect is controlled both to ensure that each frame of image data produced has consistent settings and that changes in groups of related parameters can be synchronized.

A group of parameter changes is marked by the host using a dedicated Boolean control parameter, grouped_parameter_hold (register 0x0104). Any changes made to 'retimed' parameters while the grouped_parameter_hold signal is in the 'hold' state will be considered part of the same group. Only when the grouped_parameter_hold control signal is moved back to the default 'no-hold' state will the group of changes be executed.

7 Electrical characteristics

7.1 Absolute maximum ratings

Table 48. Absolute maximum ratings

Symbol	Parameter	Minimum	Maximum	Unit
VDIG _{MAX}	Digital power supply	-0.5	2.2	V
VANA _{MAX}	Analog power supply	-0.5	3.2	V
VBAT _{MAX}	VBAT power supply	-0.3	5.5	V
V _{IHMAX}	CCI signals, system clock input	-0.5	2.2	V
T _{STO}	Storage temperature	-40	+85 ⁽¹⁾	°C
V _{ESD}	Electrostatic discharge model Human body model Charge device model ⁽²⁾	-2.0 -250	2.0 250	kV V

This is a maximum long term standard storage temperature, see soldering profile for short term high temperature tolerance.

Caution:

Stresses above those listed under "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

^{2.} CDM tests are performed in compliance with JESD22-C101D.

Electrical characteristics VB6955CM

7.2 Operating conditions

Table 49. Operating conditions

Symbol	Parameter	Minimum	Typical	Maximum	Unit			
Voltage								
VDIG	Digital power supply	1.62	1.80	1.98	V			
VANA	Analog power supply	2.6	2.80	2.9	V			
VBAT	VBAT power supply	2.5		4.8	V			
Temperatu	Temperature							
T _{AS}	Temperature (storage) ⁽¹⁾	-40	-	+85	°C			
T _{AF}	Temperature (functional operating) ⁽²⁾	-30	-	+70	°C			
T _{AN}	Temperature (normal operating) ⁽³⁾	-25	-	+55	°C			
T _{AO}	Temperature (optimal operating) ⁽⁴⁾	+5	-	+40	°C			
T _{AT}	Temperature (test) ⁽⁵⁾	+21	-	+25	°C			

^{1.} Device has no permanent degradation.

- 4. Device produces optimal optical performance.
- 5. 100% tested parameters are measured at this temperature.

7.3 DC electrical characteristics

In this section, typical values are quoted for nominal voltage, process and temperature and maximum values are quoted for worst case conditions (process, voltage and functional temperature) unless otherwise specified.

7.3.1 Power supply - VDIG, VANA, VBAT

Table 50. Power supply - VDIG, VANA, VBAT

Parameter	Digital		Analog		VCM	Unit	
raiametei	Typical	Max	Typical	Max	Max	Unit	
Hardware standby	8	45	7	35	8	μΑ	
5.0 Mpixel 4:3 streaming ⁽¹⁾ :	42	80	65	90	125 ⁽²⁾	mA	

^{1.} Profile 0, 30 fps, CSI-2 dual lane, 10-10 data, 9.6 MHz external clock.

^{2.} Device is electrically functional.

^{3.} Device produces 'acceptable' images.

^{2.} Worst case driver condition 0mA to 100mA output transition

7.3.2 CCI interface

Table 51. CCI interface

Symbol	Parameter	Minimum	Maximum	Unit
V_{IL}	Low level input voltage	-0.5	0.3*VDIG	V
V _{IH}	High level input voltage	0.7*VDIG	VDIG+0.5	V
V _{OL}	Low level output voltage ⁽¹⁾	0	0.2*VDIG	V
V _{OH}	High level output voltage	0.8*VDIG	VDIG	V
I _{IL}	Low level input current	-	-10	μΑ
I _{IH}	High level input current	-	10	μΑ

^{1. 3} mA sink current.

7.4 AC electrical and timing characteristics

In this section, typical values are quoted for nominal voltage, process and temperature and maximum values are quoted for worst case conditions (process, voltage and functional temperature).

7.4.1 Power supply (peak current) - VDIG, VANA

The peak current (in-rush) consumption of the sensor module is defined as any current pulse $>= 10\mu s$. The duty cycle of the peak to the low part of the current profile is 33% with a worst-case period of 500 μs .

Table 52. In-rush current - VDIG, VANA (CSI-2)

Parameter	Dig	jital	Ana	Unit	
Falantee	Typical	Maximum	Typical	Maximum	Oliit
Boot clock peak current ⁽¹⁾	80	100	200	230	mA
Start streaming current ⁽²⁾	80	100	200	210	mA
Stop streaming current ⁽³⁾	80	105	100	140	mA

This corresponds to the transient current when the module is powered up and the sensor is being set to SW_Standby mode. Maximum value is given for maximum supply voltages and 70°C ambient temperature. Typical value is for 25°C ambient temperature and supply voltages set to nominal value.

When the sensor is changed from software standby to streaming mode. Maximum value is given for maximum supply voltages and 70°C ambient temperature. Typical value is for 25°C ambient temperature and supply voltages set to nominal value.

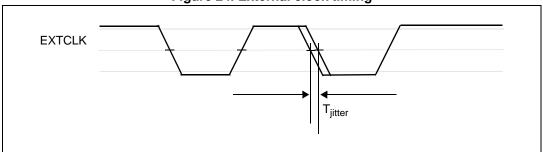
When the sensor is changed from streaming to software standby. Maximum value is given for maximum supply voltages and 70°C ambient temperature. Typical value is for 25°C ambient temperature and supply voltages set to nominal value.

VB6955CM Electrical characteristics

System clock - EXTCLK 7.4.2

Table 53. System clock

Symbol	Parameter Minin		Maximum	Unit
V_{CL}	DC coupled square wave low level	-0.5	0.3*VDIG	V
V _{CH}	DC coupled square wave high level	0.7*VDIG	VDIG+0.5	V
f _{EXTCLK}	Clock frequency input	6.0 - 1% ⁽¹⁾	27 + 1% ⁽¹⁾	MHz


^{1.} Nominal frequencies are 6.0 to 27 MHz with a 1% centre frequency tolerance.

EXTCLK - timing characteristics 7.4.3

Table 54. External clock timing characteristics

Symbol	Parameter	Minimum	Maximum	Unit
T _{jitter}	Input clock jitter	-	100	ps

Figure 24. External clock timing

CCI interface - timing characteristics 7.4.4

Table 55. CCI interface timing characteristics

Symbol	Parameter	Minimum	Maximum	Unit
t _{SCL}	SCL clock frequency	0	400	kHz
t _{LOW}	Clock pulse width low	1.3	-	μs
t _{HIGH}	Clock pulse width high	0.6	-	μs
t _{BUF}	Bus free time between transmissions	1.3	-	μs
t _{HD.STA}	Start hold time	0.6	-	μs
t _{SU.STA}	Start set-up time	0.6	-	μs
t _{HD.DAT}	Data in hold time	0	0.9	μs
t _{SU.DAT}	Data in set-up time	100	-	ns
t _R	SCL/SDA rise time	20+0.1 C _b ⁽¹⁾	300	ns
t _F	SCL/SDA fall time	20+0.1 C _b ⁽¹⁾	300	ns
t _{SU.STO}	Stop set-up time	0.6	-	μs

Table 33. 301 interface tilling characteristics (continued)							
Symbol	Parameter	Minimum	Maximum	Unit			
Ci/o	Input/output capacitance (SDA)	-	8	pF			
Cin Input capacitance (SCL)		-	6	pF			

Table 55. CCI interface timing characteristics (continued)

Ci/o

Cin

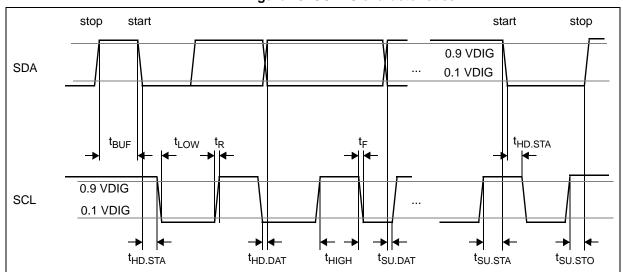


Figure 25. CCI AC characteristics

All timings are measured from either 0.1 VDIG or 0.9 VDIG.

For further information on the CCI interface, refer to the following specification documents: MIPI Alliance Standard for Camera Serial Interface 2 (CSI-2).

7.4.5 CSI interface - DATA+, DATA-, CLK+, CLK-

Symbol Parameter Minimum Maximum Unit **Typical** HS transmit differential voltage(1) 140 200 270 m۷ V_{OD} HS transmit static common mode 150 200 250 m۷ V_{CMTX} voltage Single ended output impedance 40 50 62.5 Zos Ω 0.3UI⁽²⁾ 20% to 80% rise time and fall time 150 t_r and t_f ps

Table 56. CSI interface - DATA+, DATA-, CLK+, CLK- characteristics

- Value when driving into load impedance anywhere in the Z_{ID} range (80 to 125 Ω).
- UI is equal to 1/(2*fh) where fh is the fundamental frequency of the transmission for a certain bit rate. For example, for 600 Mbps fh is 300 MHz.

Note: For further information on the D-PHY, refer to the following specification document: MIPI Alliance Standard for D PHY.

DocID028544 Rev 1

^{1.} Cb = total capacitance of one bus line in pF

Optical specification VB6955CM

Optical specification 8

8.1 Lens characteristics

Table 57. Lens design characteristics for first source lens supplier

Parameter	Value					
Construction	4-elemer	4-element plastic lens				
F/number	2.4					
Effective focal length	2.99 mm	(primary	waveleng	ıth 530 nn	n used)	
Diagonal FOV	74° +/- 1	0				
Closest focusing distance	100 mm					
Distortion	TV: < 2% Absolute: < 1.0% across whole field (by design)			۱)		
Relative illumination (lens only)	40% at fo	ull image	height, typ	oical desig	gn value	
Spectral weighting: Wavlength (nm) Weight	656.28 151	587.56 318	546.07 312	486.13 157	435.84 49	404.66 13
Lateral chromatic aberration from 435 nm to 656 nm	<2.8um					
Coating reflectance - All surfaces are coated.	<1%					
Maximum chief ray angle	29°					
IR coating filter cut-off wavelength	650 nm +/-10 nm					

8.2 **User precaution**

Downloaded from Arrow.com.

As is common with many CMOS imagers, the camera should not be pointed at bright static objects for long periods of time as permanent damage to the sensor may occur.

DocID028544 Rev 1 76/101

VB6955CM Autofocus

9 **Autofocus**

This chapter is intended to give an overview of the control layer for the VB6955CM autofocus (AF) actuator and explain how to control the lens position.

The VB6955CM autofocus camera module contains the following AF components:

- lens
- voice-coil motor (VCM) actuator
- actuator driver
- NVM (on VB6955 silicon)

Host Actuator control loop, AF algorithm **↓** ↑ I²C I²C I²C NVM DAC VB6955 silicon VCM driver IC Actuator Lens VB6955CM module

Figure 26. Host and VB6955CM module system overview

9.1 **VCM** actuator

The voice-coil motor operates with a coil suspended in a magnetic field just as in a loudspeaker. A current is passed through the coil to displace the coil in the magnetic field. By design the displacement is linear with the current passed through the coil (in linear mode). The amount of current passed though the coil is controlled from an on-board DAC and actuator driver.

A diagram showing the typical displacement versus the DAC control is given in Figure 27.

Autofocus VB6955CM

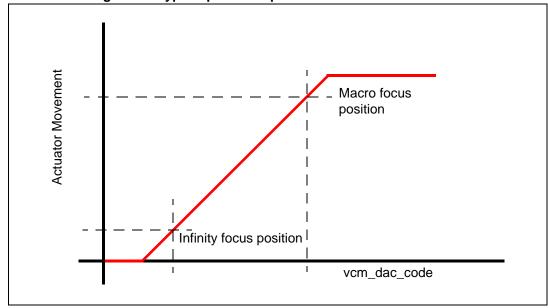


Figure 27. Typical plot of displacement versus DAC control

For mechanical stability and precision the lens is pressed against its zero position with a spring. Therefore a certain force (current) and thus DAC code must be applied before a displacement takes place. Beyond this so called start current the VCM moves proportional to the applied current/DAC code.

The maximum displacement is defined by a stop position which is reached before the maximum excitation DAC code is reached. The linear stroke/DAC code relationship between the zero and the stop positions is exploited to deliver a repeatable positioning of the lens without need of a separate position sensor.

9.2 VCM driver/DAC

The VCM driver in this camera module is an Analog Devices AD5816D. Details of how to control it can be found in the associated datasheet.

A few bytes of calibration data will need to be loaded into the driver IC during initialization.

9.2.1 VCM driver control

The VCM driver registers are accessed through an I²C interface. However in normal operation the user will not need to access these registers directly. All autofocus operations are controlled by the high level autofocus control registers, see *Section 4.2.17*.

9.2.2 VCM driver register access

It may be necessary to setup certain parameters in the VCM driver IC in order to match the characteristics of the mechanical VCM to obtain optimum performance. If this is required then the VCM driver registers may be accessed using the data transfer registers, see Section 4.2.14.

VB6955CM Autofocus

9.3 Examples

Contact ST for the latest application notes regarding reading the NVM and autofocus configuration.

9.4 Specification

Note: All parameters include the total moving mass.

Table 58. Autofocus specification - Type M

Parameter		Minimum	Target	Maximum	Unit	Notes
Voltage range (Ad Voltage range (su	•	1.5 2.5		4.4 4.8	V V	Actuator voltage VBAT supply
Rated current				80	mA	Macro focus current under worst case orientation and temperature conditions in linear drive mode
Resistance	at 70°C	12.6	13.8	15	ohm	Between VCM terminal
Resistance	at -30°C	9.1	10	10.9	ohm	between voivi terminai
Insulation resistar	nce	1M			ohm	Resistance of terminal to ground (shield) with 40V.
Rated stroke		150			micron	Stroke at 80 mA
Full stroke		200			micron	Maximum stroke
	Upward	20	30	40	mA	Based upon sensitivity
Starting current	Downward	10	20	30	mA	calculated between 0-150um
	Horizontal	15	25	35	mA	stroke
Linearity				10	micron	Deviation from ideal line calculated between 0 - 150 micron stroke
Starting displacer	nent			12	micron	Stroke at starting current position
Sensitivity		4.0		8.0	micron/mA	Based upon ideal line calculated between 0-150um stroke
Reproducibility			<2		um	For a 20um step away from and back to original position
Posture dependency		24	32	40	micron	Lens gravitational deviation from horizontal orientation
Hysteresis				10	micron	Measured between 0-150um stroke
Force generation	efficiency	0.29	0.51	0.96	mN/mW	includes magnet and coil resistance spreads
Spring force prelo	pad	5.1	5.6	6.2	mN	

DocID028544 Rev 1

Autofocus VB6955CM

Table 58. Autofocus specification - Type M (continued)

Parameter		Minimum	Target	Maximum	Unit	Notes
Force at macro		9.0	9.9	10.8	mN	
Hold nower	Infinity	20		50	mW	Including DWM driver
Hold power	Maximum	50		100	mW	Including PWM driver.
Spring constant		30	33	36	mN/mm	
Primary resonand (including total mo			93		Hz	
Settling time				15	mS	When displacement larger than 100 micron and settling to +/- 3 micron
Total moving mas	S			0.12	g	
Tilt (dynamic) (not optical)				0.15	degrees	Tilt of lens holder at "Rated Stroke" minus the tilt when unpowered condition
Tilt (static) (not optical)				0.1	degrees	Maximum tilt of lens holder when unpowered
Total tilt (not optical)				0.2	degrees	dynamic and static combined
Barrel torque	focusing			80	gfcm	Torque needed to focus the barrel in the focusing stage of final assembly
	breaking	120			gfcm	Torque needed to unlock the barrel after gluing
Mechanical shock start current chan				7.5	%	Start current pre/post mechanical shock.
Mechanical shock induced sensitivity change				15	%	Sensitivity pre/post mechanical shock.
Infinity search time				0.2	S	
Speed		3			mm/S	Including settling inside +/- 3 micron target
AF step movemen	nt time			20	mS	Includes settling time limit.
Audible noise leve	el			30	dB	
Actuator step reso	olution			2	micron	

VB6955CM Autofocus

Table 59. Autofocus specification - Type L

Parame	ter	Minimum	Target	Maximum	Unit	Notes
Voltage range (Actuator)		1.5		4.4	V	Actuator voltage
Voltage range (su	pply)	2.5		4.8	V	VBAT supply
Rated current				80	mA	Macro focus current under worst case orientation and temperature conditions in linear drive mode
Resistance	at 70°C	17.6	19.4	21.3	ohm	Between VCM terminal
rtoolotarioo	at -30°C	11.3	12.6	13.8	ohm	Bottwoon volvitonnina
Insulation resistan	ice	1M			ohm	Resistance of terminal to ground (shield) with 40V.
Rated stroke		150			micron	Stroke at 80 mA
Full stroke		200			micron	Maximum stroke
	Upward	20	30	40	mA	Based upon sensitivity
Starting current	Downward	10	20	30	mA	calculated between 0-150um
	Horizontal	15	25	35	mA	stroke
Linearity				10	micron	Deviation from ideal line calculated between 0 - 150 micron stroke
Starting displacem	nent			12	micron	Stroke at starting current position
Sensitivity		4.0		8.0	micron/mA	Based upon ideal line calculated between 0-150um stroke
Reproducibility			<2		um	For a 20um step away from and back to original position
Posture depender	псу	30	40	50	micron	Lens gravitational deviation from horizontal orientation
Hysteresis				10	micron	Measured between 0-150um stroke
Force generation	efficiency	0.29	0.51	0.96	mN/mW	includes magnet and coil resistance spreads
Spring force prelo	ad	5.2	5.8	6.3	mN	
Force at macro		10.4	11.6	12.6	mN	
Hold power	Infinity	30		75	mW	Including PWM driver.
l lold power	Maximum	75		150	mW	including F WW driver.
Spring constant		35	39	43	mN/mm	
Primary resonance (including total mo			100		Hz	
Settling time				15	mS	When displacement larger than 100 micron and settling to +/- 3 micron

DocID028544 Rev 1

Autofocus VB6955CM

Table 59. Autofocus specification - Type L (continued)

Parame	ter	Minimum	Target	Maximum	Unit	Notes
Total moving mass				0.12	g	
Tilt (dynamic) (not optical)				0.15	degrees	Tilt of lens holder at "Rated Stroke" minus the tilt when unpowered condition
Tilt (static) (not optical)				0.1	degrees	Maximum tilt of lens holder when unpowered
Total tilt (not optical)				0.2	degrees	dynamic and static combined
Barrel torque	focusing			80	gfcm	Torque needed to focus the barrel in the focusing stage of final assembly
	breaking	120			gfcm	Torque needed to unlock the barrel after gluing
Mechanical shock start current chan				7.5	%	Start current pre/post mechanical shock.
Mechanical shock sensitivity change				15	%	Sensitivity pre/post mechanical shock.
Infinity search time	е			0.2	S	
Speed		3			mm/S	Including settling inside +/- 3 micron target
AF step movement time				20	mS	Includes settling time limit.
Audible noise leve	el			30	dB	
Actuator step reso	olution			2	micron	

10 Non-volatile memory (NVM)

A summary of the NVM register map is shown in Table 60.

Table 60. NVM register summary

		-
	Byte	Segment
	0 to 5	NVM configuration
	6 to 264	Lens shading data (illuminant 1 - 5300K)
Host payload	265 to 520	Lens shading data (illuminant 2 - 2800K)
	521 to 534	Auto focus data
	535 to 537	Error checking
	538 to 539	Empty (padding)
ST	540 to 901	ST test payload
ST firmware payload	902 to 1023	ST firmware

11 Defect categorization

11.1 Pixel defects

11.1.1 Overview

Pixel defect density measures the average number of defective pixels per color channel under "Diffuse" and "Dark" conditions, refer to *Table 61*.

rabio o i i ixoi abioot opoomoation					
	Reference Area	Threshold			
Dark	Full Channel	64 codes			
Light	9x9	+/-12%			

Table 61. Pixel defect specification

11.1.2 Defect detection

Defect detection is performed in two parts; once in diffuse conditions and once in dark conditions, as defined in *Table 61*. The methods used for these differ to account for the differing conditions and for the difference in the failure modes detected by each.

rabio 02: imago comingo						
	Dark	Diffuse				
Exposure	100ms	33ms ⁽¹⁾				
Analog gain	x8	x1				
Digital gain	x1	x1				

Table 62. Image settings

In both the dark and light cases, two images are averaged pixel-by-pixel in order to reduce the impact of temporal noise. Detection is performed individually on the four colour channels.

"Dark defects" are those which appear too bright in a dark image, either due to dark current or a stuck-at fault. These are measured by thresholding against the difference between the actual pixel value and the local or full-frame average (this is dependent on the uniformity of the dark image). The threshold is defined such that it can identify gain error above the normal noise distribution of photon shot noise and sensor noise and so pixels that deviate by more than the dark threshold are declared defective.

"Light defects" tend to be caused by small foreign material or damage to the die surface. The diffused image is processed to remove very low frequency variation by gaining the image towards the centre peak value for each colour channel, mimicking the lens shading gains applied in the application. Pixels that deviate from the local average by more than the light threshold in either direction are defined as defective. The 64-code pedestal is not removed from this relative calculation.

^{1.} Image exposure targets 75% of full-scale deflection in the green channels at the centre of the image.

VB6955CM Defect categorization

11.1.3 Defect categorisation: Single pixels

Figure 28. shows the numbering of the neighboring pixels in a 3x3 grid within a single color channel; all the pixels will either be red, green-red, green-blue or blue. The pixel under test is X. If a pixel under test is on the edge on the image, the array is reduced to its existing neighbor pixels (i.e. the top-left pixel uses only a 2x2 array).

Figure 28. Pixel numbering notation

	[0]	[1]	[2]
	[7]	Χ	[3]
	[6]	[5]	[4]

A single pixel fail is defined as a failing pixel with no adjacent failing pixels in the neighboring pixels 0 to 7. A single pixel fail can be a stuck at white, where the output of the pixel is permanently saturated regardless of the level of incident light and exposure level, a stuck at black where the pixel output is zero regardless of the level of incident light and exposure level (major fail) or simply a pixel that differs from its immediate neighbors by more than the test threshold (minor fail).

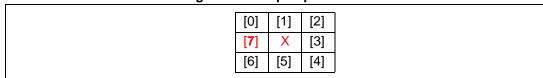

In the example in *Figure 29*, shown, we assume that pixel X is a failing pixel. For this pixel to be categorised as a single pixel fail, the pixels at positions [0], [1], [2], [3], [4], [5], [6] and [7] must be "good" pixels that pass final test. The test program will pass a sensor with up to the defined limit of single pixel faults per colour channel.

Figure 29. Single pixel fault

11.1.4 Defect categorisation: Couplets

A couplet is formed by a failing pixel at X neighboring a failing pixel at position [0] or [1] or [2] or [3] or [4] or [5] or [6] or [7], such that there is a maximum of 2 failing pixels from the group of 9 pixels. The example shown in *Figure 30* has the centre pixel and the pixel at position [7] failing the test criteria.

Figure 30. Couplet pixel fault

This product has on-chip mapped couplet correction capable of storing up to 14 defect locations. No unmapped couplets are allowed in a full resolution image.

11.1.5 Defect categorisation: Clusters and blobs

If pixel X is a failure and between 2 and 7 of the surrounding pixels are also defective, then the pixels are categorised as a cluster. If all nine pixels are defective then the failure is classified as a blob. Neither clusters nor blobs are allowed.

DocID028544 Rev 1

11.2 Blemishes

11.2.1 Blemish overview

A specific test algorithm is applied in production to identify and reject samples that display defocussed artefacts often referred to as blemishes or shapes. These artefacts are caused by scratches or contamination in the optical path away from the focal plane, i.e. on the IR glass or lens. The principal idea behind the test is to band-pass filter the image to remove very low frequency lens shading and very high frequency noise and pixel defectivity. The residual non-uniformity of the frame is at a frequency the shows the mark in the image. This test is performed independently on each of the four colour channels.

11.2.2 Blemish algorithm

The diffuse image is first flattened using a combination of model-based lens shading correction and very low pass filtering using convolution. In both cases, the pixels values are gained towards the pixel values at the image centre, which results in amplification of errors in far field, similar to the application condition.

The resulting image is then passed through a gross defect-correction algorithm to remove extreme errors, which result in notable residual error even in a smoothed frame.

The blemish test itself uses band-pass filtering, implemented by convolving the preprocessed image using two "flat" kernels (kernels where all positions are given an equal value and the result is normalised to the sum, resulting in a local averaging effect).

The test requires two kernels to be defined:

k_{small}: A square kernel defined to remove artefacts smaller than the target size, 9x9 pixels in the following example.

k_{large}: A second square kernel, much larger and defined to remove artefacts and shading larger than the target size, 31x31 pixels in the following example.

Figure 31. Blemish convolution areas

The local mean for each kernel is calculated for every pixel in the input frame. When a kernel overlaps the edge of the frame (in the border regions), every missing pixel outside the

frame boundary is compensated by the removal of a pixel on the inside, maintaining a symmetrical kernel at all times. This avoids the amplification of non-uniformities at the edge and can reduce the need to exclude image borders from the test.

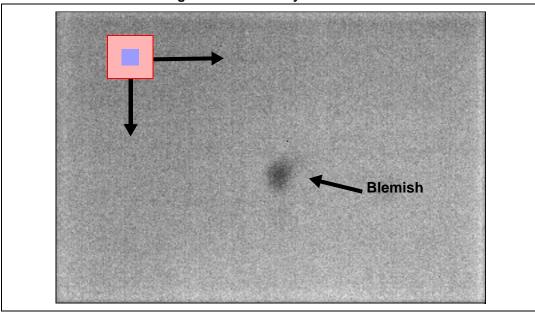


Figure 32. Scan array for blemish

The two convolved images are compared against a threshold relative to the localised average from the larger kernel. Each pixel that deviates by more than a chosen threshold (positive or negative) is marked as a defective pixel in a fail map: See *Figure 33*.

- Small_average < Large_average (Threshold x Large_average)
 or
- Small_average > Large_average + (Threshold x Large_average)

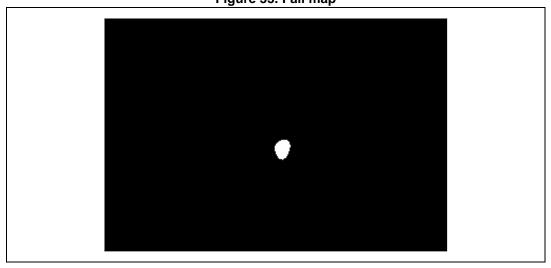


Figure 33. Fail map

57/

DocID028544 Rev 1

At this point, a border may be removed from the failmap in order to remove convolution related and border related errors. This can also allow for a two pass test that does not exclude the border, but does apply a relaxed specification.

The failmaps are scanned by a seed-fill algorithm to determine the size of the largest contiguous area.

Areas smaller than, or close to the size of the small kernel can be caused by single pixel and couplet defects, so a threshold is applied to the minimum shape size. The result is recorded as a pass or a fail.

If more than one blemish type test is put in place then any failing iteration results in rejection of the device under test.

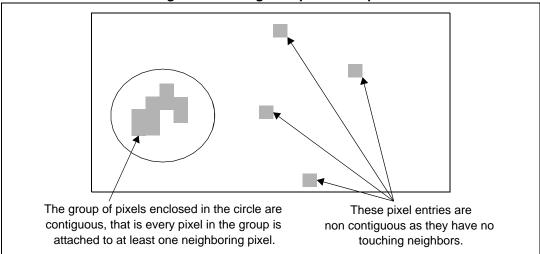


Figure 34. Contiguous pixel example

12 On-chip image optimization

12.1 Mapped couplet correction (Bruce filter)

The mapped couplet defect correction filter is designed to intelligently correct the first defect in a couplet thereby changing a couplet into a single pixel defect. Single pixel correction is achieved by the host (coprocessor, MMP or baseband). The mapped couplet correction filter only operates in full resolution mode.

The mapped couplet correction filter requires exact coordinate information for each of the couplets to be repaired. The couplet coordinates are stored in non-volatile-memory (NVM) during production test.

DocID028544 Rev 1

Mechanical VB6955CM

13 Mechanical

VB6955CM Mechanical

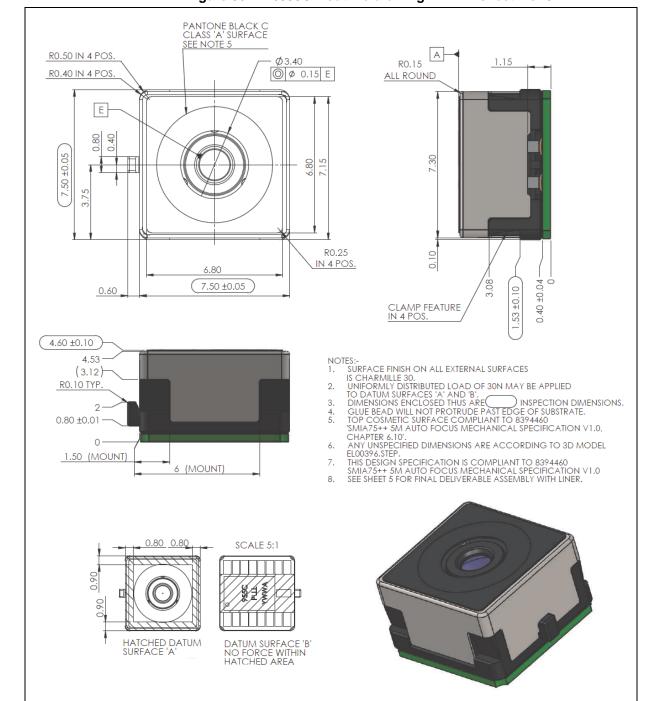


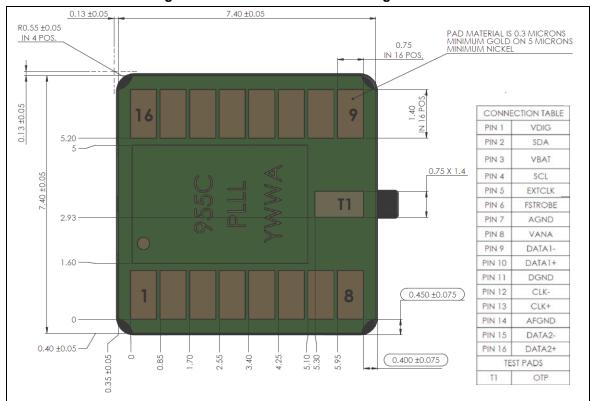
Figure 36. VB6955CM outline drawing in mm - sheet 1 of 6

Mechanical VB6955CM

DIMENSION 'F' AT DATUM 'A' DIAMETER 'D' AT DATUM 'A' PYRÁMID SEE TABLE DIM.'C CONE SEE TABLE DIM.'A A DIMENSION 'E' AT DATUM 'A' **PYRAMID** SEE TABLE DIM.'B' TOP SCENE PYRAMID CONE The image orientation shown here assumes that the sensor has been configured for image flip and image mirror dring initialisation. Refers to datasheet for details EXCLUSION ZONE NOTES:
I. EDGES OF CIRCULAR HOLES IN CUSTOMER'S EQUIPMENT MUST NOT INTRUDE INTO THE CONE. EDGES OF RECTANGULAR HOLES MUST NOT PROTRUDE INTO THE PYRAMID. DIMENSIONS SHOWN ARE MAXIMUM. **EXCLUSION ZONE DIMENSIONS** MODULE/ SILICON В С Е F 1.4µM 5M Pixel 80.3° 68° 53.7° 2.01 1.61 1.21

Figure 37. VB6955CM outline drawing in mm - sheet 2 of 6

VB6955CM Mechanical



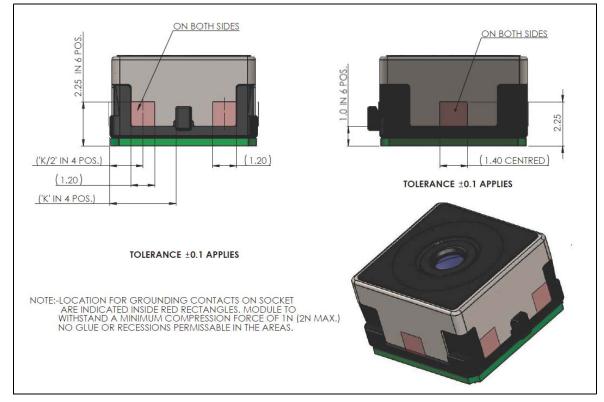


Figure 38. VB6955CM outline drawing in mm - sheet 3 of 6

DocID028544 Rev 1

Mechanical VB6955CM

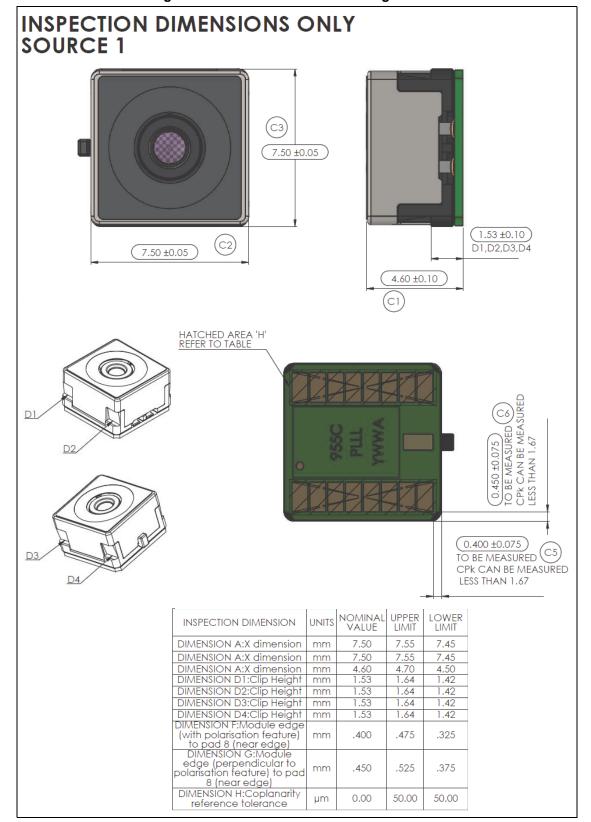
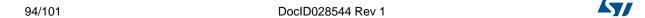
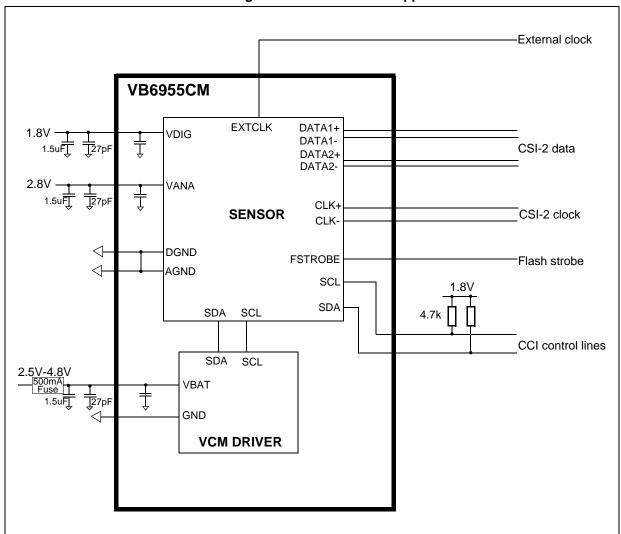



Figure 40. VB6955CM outline drawing in mm - sheet 5 of 6

VB6955CM Mechanical

INSPECTION DIMENSIONS ONLY **SOURCE 2** 7.50 ±0.05 (1.53 ±0.10) D1,D2,D3,D4 (C2) 7.50 ±0.05 4.60 ±0.10 (CI HATCHED AREA 'H' REFER TO TABLE LOWER LIMIT NOMINAL UPPER UNITS INSPECTION DIMENSION VALUE (0.400 ±0.075) DIMENSION A:X dimension mm 7.50 7.55 7.45 (0.450 ±0.075) TO BE MEASURED 7.55 TO BE MEASURED 7.45 7.50 DIMENSION A:X dimension mm CPk CAN MEASURED CPk CAN MEASURED DIMENSION A:X dimension DIMENSION D1:Clip Height 4.60 1.53 **4.70 1.64** mm 4.50 LESS THAN 1.67 LESS THAN 1.67 mm 1.42 1.53 1.53 DIMENSION D2:Clip Height mm 1.64 1.42 DIMENSION D3:Clip Height mm 1.64 1.42 DIMENSION D4:Clip Height DIMENSION F:Module edge (with polarisation feature) 1.53 1.64 1.42 .400 .475 .325 to pad 8 (near edge) DIMENSION G:Module edge (perpendicular to polarisation feature) to pad .450 .525 .375 8 (near edge) DIMENSION H:Coplanarity reference tolerance 0.00 50.00 50.00

Figure 41. VB6955CM outline drawing in mm - sheet 6 of 6



Application VB6955CM

14 Application

14.1 Schematic

Figure 42. Mobile camera application

15 Acronyms and abbreviations

Table 63. Acronyms and abbreviations

Acronym/ abbreviation Definition				
CCI	Camera control interface			
CMI				
	Camera module integrator			
CSI	Camera serial interface			
DPCM	Differential pulse code modulation			
EMC	Electromagnetic compatibility			
EMI	Electromagnetic interference			
EOF	End of frame			
EOT	End of transmission			
FE	Frame end			
fps	Frames per second			
FS	Frame start			
HS	High speed; identifier for operation mode			
HS-RX	High speed receiver (low-swing differential)			
HS-TX	High speed transmitter (low-swing differential)			
I ² C	Inter ICbus			
LE	Line end			
LLP	Low level protocol			
LS	Line start			
LSB	Least significant byte			
LP	Low power; identifier for operation mode			
LP-RX	Low power receiver (large-swing single ended)			
LP-TX	Low power transmitter (large-swing single ended)			
LVDS	Low voltage differential signaling			
Mbps	Megabits per second			
MIPI	Mobile industry processor interface			
MSB	Most significant byte			
PCK	Pixel clock			
PCM	Pulse code modulation			
PF	Packet footer			
PH	Packet header			
PI	Packet identifier			
PT	Packet type			
L				

DocID028544 Rev 1

Table 63. Acronyms and abbreviations (continued)

idadio dei / terenyme dira destrottatione (communed)						
Acronym/ abbreviation	Definition					
PHY	Physical layer					
PLL	Phase locked loop					
RO	Read only					
RW	Read/write					
SCL	Serial clock (for CCI)					
SDA	Serial data (for CCI)					
SMIA	Standard mobile imaging architecture					
SOT	Start of transmission					
SOF	Start of frame					
SSCG	Spread spectrum clock generator					
SubLVDS	Sub-low voltage differential signaling					
WDR	Wide dynamic reconstructor					
ULPM	Ultra low power mode					

VB6955CM ECOPACK®

16 ECOPACK®

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Revision history VB6955CM

17 Revision history

Table 64. Document revision history

Date	Revision	Changes
22-Oct-2015 1		Initial release

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

DocID028544 Rev 1