Contents STS4DNFS30

Contents

1	Electrical ratings 3
2	Electrical characteristics
3	Test circuits8
4	Package mechanical data9
5	Revision history
Obsoli Obsoli	Package mechanical data

STS4DNFS30 **Electrical ratings**

Electrical ratings 1

Table 1. Mosfet absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage (V _{GS} = 0)	30	V
V _{GS}	Gate- source voltage	± 20	V
I _D	Drain current (continuous) at T _C = 25°C	4.5	Α
I _D	Drain current (continuous) at T _C = 100°C	3.2	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	13	Α
P _{TOT}	Total dissipation at T _C = 25°C	2	W

^{1.} Pulse width limited by safe operating area

Schottky absolute maximum ratings Table 2.

Symbol	Parameter	×	Value	Unit
V_{RRM}	Repetitive peak reverse voltage	76	30	V
I _{F(RMS)}	RMS forward current	SO,	10	Α
I _{F(AV)}	Average forward current	T _L =125°C δ=0.5	4	Α
I _{FSM}	Surge non repetitive forward current	tp=10ms Sinusoidal	75	Α
I _{RRM}	Repetitivo pvalk reverse current	tp=2µs F=1kHz	1	Α
I _{RSM}	Non repetitive peak reverse current	tp=100µs	1	Α
dv/dt	Critical rate of rise of reverse voltage		10000	v/µs

	11010	Critical rate of rise of reverse voltage	ιρ=100μs	10000	v/µs
7/6	ſable 3.	Thermal data			
	Symbol	Parameter		Value	Unit
	Rthj-amb	Thermal resistance junction-amb Mos	sfet (1)	62.5	°C/W
	T _{stg}	Storage temperature range Max		-55 to 150	°C
	Tj	Junction temperature		-55 to 150	°C
	1. Mounted	d on FR-4 board (steady state)			

^{1.} Mounted on FR-4 board (steady state)

STS4DNFS30 **Electrical characteristics**

Electrical characteristics 2

(Tcase =25°C unless otherwise specified)

Table 4. On /off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 250\mu A, V_{GS} = 0$	30			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V_{DS} = Max rating V_{DS} = Max rating, T_{C} =125°C			1 10	μ Α μ Α
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	$V_{GS} = \pm 20V$		(t 100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1	70.		V
R _{DS(on)}	Static drain-source on resistance	$V_{GS} = 10V, I_D = 2A$ $V_{GS} = 5V, I_D = 2A$	70	0.044	0.055 0.085	$\Omega \ \Omega$

Table 5. **Static**

Symbol	Parameter	Test co	nuitions	Min.	Тур.	Max.	Unit
I _R ⁽¹⁾	Reverse leakage current	T _j = 25°°° T _j = 100°C	$V_R = V_{RRM}$		6	200 15	μA mA
V _F ⁽¹⁾	Zero gate volwgv	$I_{j} = 125^{\circ}C$	I _F = 2A		0.325	0.45 0.375	V V
v F`'	drain current ($V_{GS} = 0$)	$T_j = 25^{\circ}C$ $T_j = 125^{\circ}C$	I _F = 4A		0.43	0.53 0.51	V V

^{1.} Pulse test tp=380 μ s, δ < 2%. To evaluate the conduction losses use the following equation:

$$P = 0.24 \times I_{F(AV)} + 0.068I_{F^2}(RMS)$$

		000	$T_j = 125^{\circ}C$ $I_F = 4A$		0.43	0.51	V	
	1. Pul et st $tp=380\mu s$, $\delta < 2\%$. To evaluate the conduction losses use the following equation: $P = 0.24 \times I_{F(AV)} + 0.068I_{F^2}(RMS)$							
150/8	Table 6.	Dynamic						
002	Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
0/8	9 _{fs}	Forward transconductance	V _{DS} =10V, I _D =2A		5		S	
Obso	C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	$V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}, V_{GS} = 0$		330 115 28		pF pF pF	
	Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	$V_{DD} = 15V$, $I_D = 4.5A$, $V_{GS} = 5V$ (see Figure 13)		4.7 1.2 2.1		nC nC nC	

Table 7. **Switching times**

Symbol	Parameter	Test Conditions	Min.	Тур.	Max	Unit
t _{d(on)}	Turn-on delay time Rise time	V_{DD} = 15V, I_D = 2A, R_G = 4.7 Ω , V_{GS} = 5V (see <i>Figure 12</i>)		9 17		ns ns
t _{d(off)}	Turn-off delay time Fall time	V_{DD} = 15V, I_D = 2A, R_G = 4.7 Ω , V_{GS} = 5V (see Figure 12)		15 6		ns ns

	t _{d(off)} t _f	Turn-off delay time Fall time	$V_{DD} = 15V$, $I_D = 2A$, $R_G = 4.7\Omega$, $V_{GS} = 5V$ (see Figure 12)		15 6		ns ns
	Table 8.	Source drain diode					
	Symbol	Parameter	Test Conditions	Min.	Тур.	lar	Unit
	I _{SD}	Source-drain current Source-drain current (pulsed)		~ C	M	4.5 13	A A
	V _{SD} (2)	Forward on voltage	I _{SD} = 4.5A, V _{GS} = 0			1.2	V
	t _{rr}	Reverse recovery time	I _{SD} = 4.5A, di/dt = 100A/μο		22		ns
	. Q _{rr}	Reverse recovery charge	$V_{DD} = 15V, T_j = 150^{\circ}C$	2	14.3		nC
	I _{RRM}	Reverse recovery current	(see Figure 17)		1.3		Α
Obsole Obsole	te P	roduci(s),	obsoletie obsoletie				

Electrical characteristics STS4DNFS30

2.1 Electrical characteristics (curves)

Figure 1. Safe operating area

Figure 2. Thermal impedance

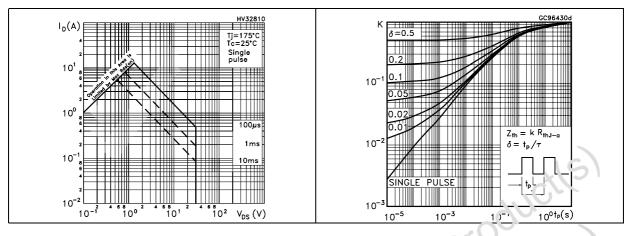


Figure 3. Output characterisics

Figure 4. Transfer c naracteristics

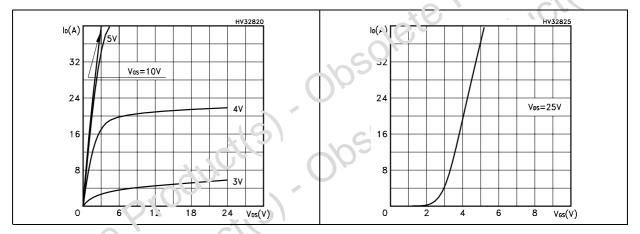


Figure 5. Source-drain diode forward Characteristics

Figure 6. Static drain-source on resistance

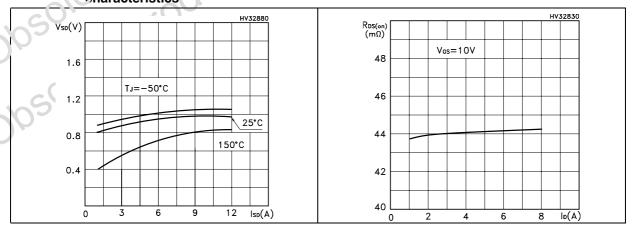


Figure 7. Gate charge vs gate-source voltage Figure 8. Capacitance variations

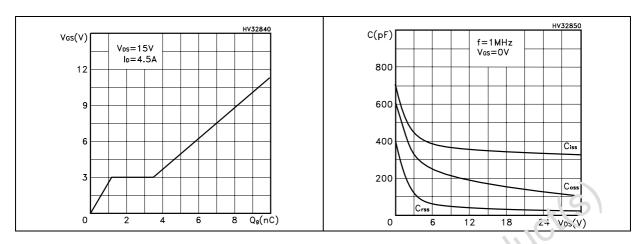


Figure 9. Normalized gate threshold voltage Figure 10. Normalized on resistance vs vs temperature temperature

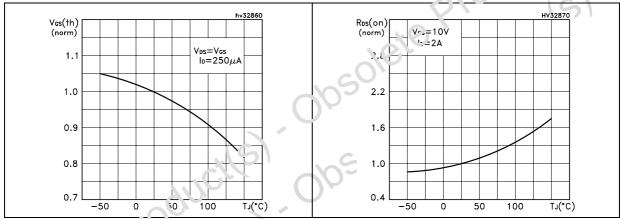
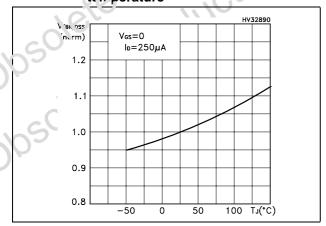



Figure 11. Normcized BV_{DSS} voltage vs temperature

Test circuits STS4DNFS30

3 Test circuits

Figure 12. Switching times test circuit for resistive load

Figure 13. Gate charge test circuit

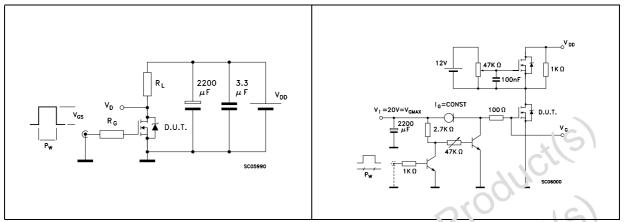


Figure 14. Test circuit for inductive load switching and diode recovery times

Figure 15. Unclaraped inductive load test

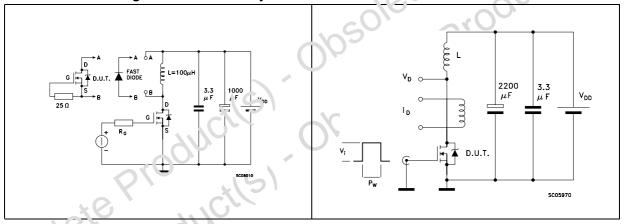
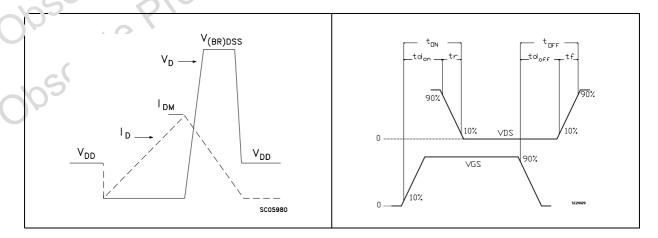
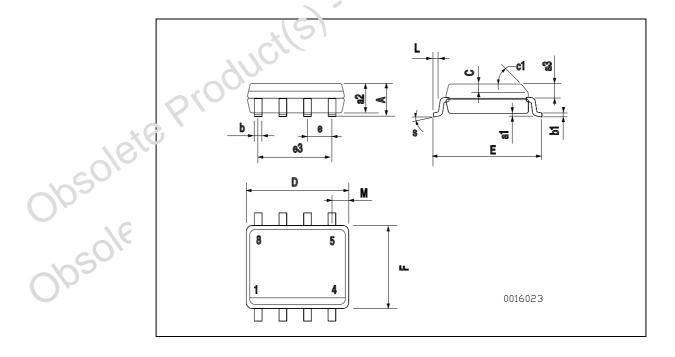



Figura 't Unclamped inductive waveform

Figure 17. Switching time waveform


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

Obsolete Products). Obsolete Products) Obsolete Products) Obsolete Products).

SO-8 MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α			1.75			0.068
a1	0.1		0.25	0.003		0.009
a2			1.65			0.064
a3	0.65		0.85	0.025		0.033
b	0.35		0.48	0.013		0.018
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.019
c1		•	45 (t	typ.)	7/	
D	4.8		5.0	0.188	100	0.196
Е	5.8		6.2	0.228	70	0.244
е		1.27			0.050	
e3		3.81		×0,	0.150	
F	3.8		4.0	7 14		0.157
L	0.4		1.27	0.015		0.050
М			7.6	-		0.023
S			8 (m	ax.)		

STS4DNFS30 Revision history

5 Revision history

Table 9. Revision history

Date	Revision	Changes
19-Jul-2005	1	First release

Obsolete Produci(s) Obsolete Produci(s)
Obsolete Produci(s) Obsolete Produci(s)

577

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its sulhsidia. 'eu ('ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and sen ices described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and solvices described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property Liquis is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a trainant covering the use in any manner whatsoever of such third party products or services or any intellectual property containe 2 to 3 in 3 in 3.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE ANCION BALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNE'SE FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN VIRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCT'S OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PF OP ENTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of S. p. or ucts with provisions different from the statements and/or technical features set forth in this document shall immediately void any war and granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liabi. To T.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com