Power MOSFET

60 V, 17 m Ω , 54 A, Single N–Channel Logic Level, DPAK

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- High Current Capability
- Avalanche Energy Specified
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_J = 25° C unless otherwise noted)

Param	Symbol	Value	Unit		
Drain-to-Source Voltage	V _{DSS}	60	V		
Gate-to-Source Voltage			V _{GS}	±20	V
Continuous Drain Cur-		$T_{C} = 25^{\circ}C$	Ι _D	54	А
rent $R_{\theta JC}$ (Notes 1 & 3)	Steady	$T_{C} = 100^{\circ}C$		38	
Power Dissipation $R_{\theta JC}$	State	$T_C = 25^{\circ}C$	PD	100	W
(Note 1)		$T_{C} = 100^{\circ}C$		50	
Continuous Drain Cur-		$T_A = 25^{\circ}C$	۱ _D	10.7	А
rent R _{θJA} (Notes 1, 2 & 3)	Steady State	T _A = 100°C		7.6	
Power Dissipation $R_{\theta JA}$		$T_A = 25^{\circ}C$	PD	3.9	W
(Notes 1 & 2)		T _A = 100°C		2.0	
Pulsed Drain Current	$T_A = 25^{\circ}C$, $t_p = 10 \ \mu s$		I _{DM}	305	А
Current Limited by Package (Note 3)	T _A	= 25°C	I _{Dmaxpkg}	60	A
Operating Junction and Storage Temperature			T _J , T _{stg}	–55 to +175	°C
Source Current (Body Diode)			I _S	83	А
Single Pulse Drain-to-Source Avalanche Energy (T _J = 25°C, V _{DD} = 50 V, V _{GS} = 10 V, $I_{L(pk)}$ = 50 A, L = 0.1 mH, R _G = 25 Ω)			E _{AS}	125	mJ
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			ΤL	260	°C

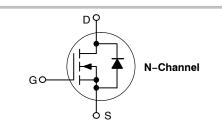
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State (Drain)	$R_{\theta JC}$	1.5	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	38	

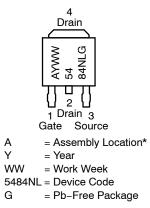
 The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.


3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

ON Semiconductor®

www.onsemi.com


V _{(BR)DSS}	R _{DS(on)}	I _D
60 V	$17\mathrm{m}\Omega\ensuremath{@}\xspace10\mathrm{V}$	54 A
00 V	23 mΩ @ 4.5 V	34 A

DPAK CASE 369AA STYLE 2

MARKING DIAGRAMS & PIN ASSIGNMENT

* The Assembly Location Code (A) is front side optional. In cases where the Assembly Location is stamped in the package bottom (molding ejecter pin), the front side assembly code may be blank.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

Downloaded from Arrow.com.

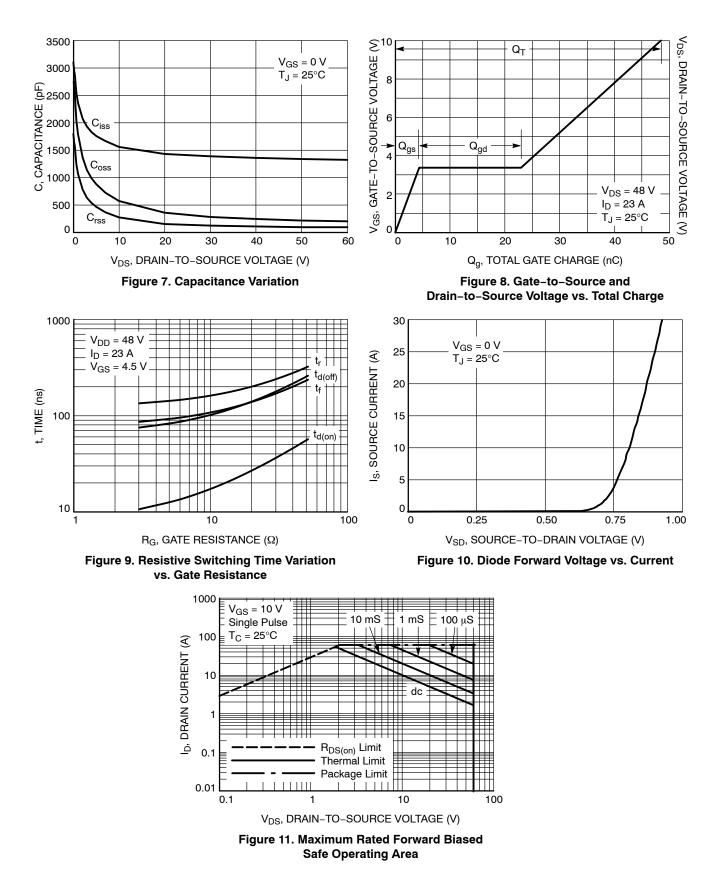
ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = 250 μA		60			V
Zero Gate Voltage Drain Current	I _{DSS}					1.0	μA
		· · · · · · · · · · · · · · · · · · ·	T _J = 125°C			10	1
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	= ±20 V			±100	nA
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(TH)}	V_{GS} = V_{DS} , I_D = 250 μ A		1.5	1.9	2.5	V
Drain-to-Source On Resistance	R _{DS(on)}	$V_{GS} = 10 \text{ V}, \text{ I}_D = 25 \text{ A}$ $V_{GS} = 4.5 \text{ V}, \text{ I}_D = 25 \text{ A}$			13.5	17	mΩ
					18	23	1
Forward Transconductance	9 _{FS}	V _{DS} = 15 V, I _D = 20 A			41		S
CHARGES AND CAPACITANCES	-				-	-	-
Input Capacitance	C _{iss}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 25 V			1410		pF
Output Capacitance	C _{oss}				315		-
Reverse Transfer Capacitance	C _{rss}				135		
Total Gate Charge		V _{DS} = 48 V,	V _{GS} = 4.5 V		27		nC
		$I_{\rm D} = 23 \rm{A}$	V _{GS} = 10 V		48		-
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = 10 \text{ V}, V_{DS} = 48 \text{ V},$ $I_D = 23 \text{ A}$			0.9		-
Gate-to-Source Charge	Q _{GS}				4.4		
Gate-to-Drain Charge	Q _{GD}				19		
Gate Resistance	R _G				8.5		Ω
WITCHING CHARACTERISTICS (Not	te 5)						
Turn-On Delay Time	t _{d(on)}				18		ns
Rise Time	t _r	V_{GS} = 4.5 V, V_{DS} = 48 V, I_{D} = 23 A, R_{G} = 10 Ω			160		1
Turn–Off Delay Time	t _{d(off)}				100		1
Fall Time	t _f				110		1
Turn-On Delay Time	t _{d(on)}	V_{GS} = 10 V, V_{DS} = 48 V, I _D = 23 A, R _G = 10 Ω			7.8		1
Rise Time	t _r				45		1
Turn-Off Delay Time	t _{d(off)}				152		
Fall Time	t _f				113		1
DRAIN-SOURCE DIODE CHARACTER	RISTICS	-	I		•		
Forward Diode Voltage	V _{SD}	lo – 25 A	T _J = 25°C		0.9	1.2	V
			T _J = 125°C		0.8		1
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dls/dt = 100 A/μs, I _S = 23 A			64		ns
Charge Time	ta				33		1

Reverse Recovery Charge

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
Switching characteristics are independent of operating junction temperatures.

Q_{RR}

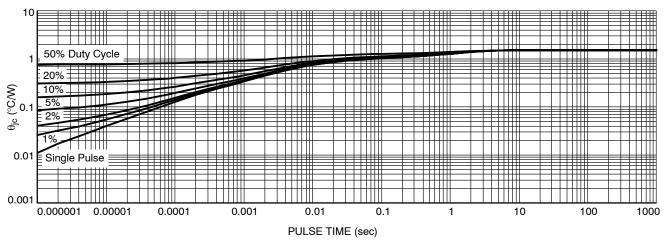

118

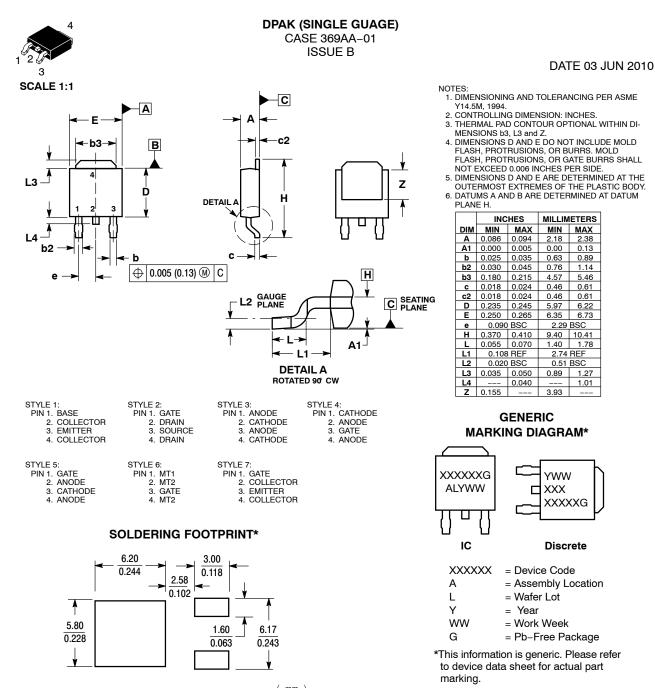
nC

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS




Figure 12. Thermal Response

ORDERING INFORMATION

Order Number	Package	Shipping [†]
NVD5484NLT4G	DPAK (Pb-Free)	2500 / Tape & Reel
NVD5484NLT4G-VF01	DPAK (Pb-Free)	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

mm SCALE 3:1 inches

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Electronic versions are uncontrolled except when accessed directly from the Document Repository. 98AON13126D Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. DPAK (SINGLE GAUGE) PAGE 1 OF 1

ON Semiconductor and unarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others

DESCRIPTION:

DOCUMENT NUMBER:

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥