
■ PIN ASSIGNMENT

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

					``	a = +25°C
Parameter	Symbol	Symbol Condition		Ra	ting	Unit
				Min	Max	
Power supply voltage	Vcc			—	16	V
Error amp. input voltage	Vı	—		-0.3	+10	V
Output source current	ISOURCE			—	-50	mA
Output sink current	Isink	—	_	50	mA	
		Ta ≤ +25°C (DIP)		_	550	mW
Dower dissipation	Pp	$T_{0} < 125^{\circ}C(SOD)$	EIAJ	_	*570	mW
Power dissipation	PD	Ta ≤ +25°C (SOP)	JEDEC	_	*430	mW
		Ta < +25°C (SSOP)		_	*580	mW
Operating temperature	Тор	_		-30	+75	°C
Storage temperature	Tstg	_		-55	+125	°C

*: The packages are mounted on the epoxy board (10 cm \times 10 cm \times 1.5 mm)

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol		Unit		
Faiameter	Symbol	Min	Тур	Max	Unit
Power supply voltage	Vcc	2.0	_	15	V
Error amp. input voltage	Vi	-0.2	—	1.0	V
Output source current	ISOURCE	-40	—	—	mA
Output sink current	Isink	_		40	mA
Phase compensation capacitor	СР	_	0.1		μF
Timing capacitor	Ст	100	1000	10000	pF
Timing resistor	R⊤	1.0	3.0	5.0	kΩ
Oscillator frequency	fosc	10	200	500	kHz
Operating temperature	Тор	-30	25	75	°C

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

ELECTRICAL CHARACTERISTICS

1. Reference Section and Error Amp. Section

 $(Ta = +25^{\circ}C, Vcc = 3 V)$

Parameter	Symbol	Condition	Value			Unit
Falameter	Symbol	Condition	Min	Тур	Max	Unit
Input threshold voltage	VT	V _{FB} = 450 mV	487	507	527	mV
V⊤ input stability	V _{TdV1}	Vcc = 2.0 V to 6.0 V	-5		5	mV
	VTdV2	Vcc = 6.0 V to 15 V	-5		5	mV
V⊤ temp. stability	Vtdt	Ta = -30 °C to +75 °C	-3		3	%
Input bias current	Ів	V _{IN} = 0 V to 0.6 V	-1.0	-0.2	1.0	μΑ
Voltage gain	Av	—	70	100	145	V/V
Frequency band width	BW	Av = 0 dB		6		MHz

2. Saw-tooth Waveform Oscillator Section

(Ta = +25°C, Vcc = 3 V)

Parameter	Symbol	Condition		Unit		
Falameter	Symbol	Condition	Min	Тур	Мах	Unit
Oscillator frequency	fosc	R _T = 3.0 kΩ C _T = 1000 pF	160	200	240	kHz
Frequency input stability	fd∨	Vcc = 2.0 V to 15 V	_	±2		%
Frequency temp. stability	fат	$Ta = -30^{\circ}C$ to $+75^{\circ}C$	_	±10	_	%

3. Under Lockout Protection

 $(Ta = +25^{\circ}C, Vcc = 3 V)$

Parameter	Symbol	Condition		Unit		
rarameter	Symbol	Condition	Min	Тур	Max	Onit
Threshold voltage	Vth	_		1.4	—	V

4. Dead-time Control Section

(Ta = +25°C, Vcc = 3 V)

Parameter	Symbol	Condition	Value			Unit
r al ameter			Min	Тур	Max	Unit
Max duty cycle	t duty	Cτ = 1000 pF Rτ = 3.0 kΩ V _{FB} = 0.9 V	60	70	85	%

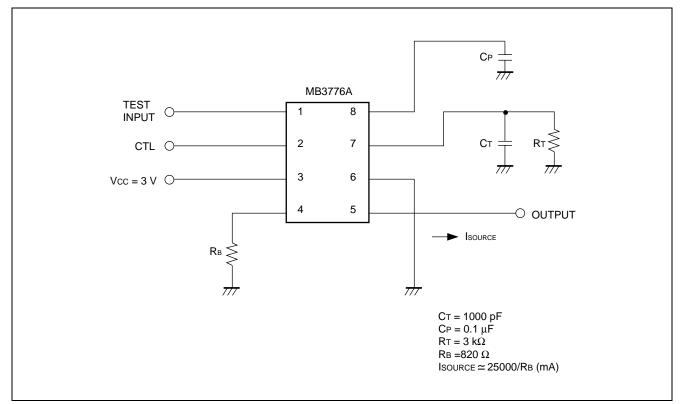
5. Output Section

(Ta = +25°C, Vcc = 3 V)

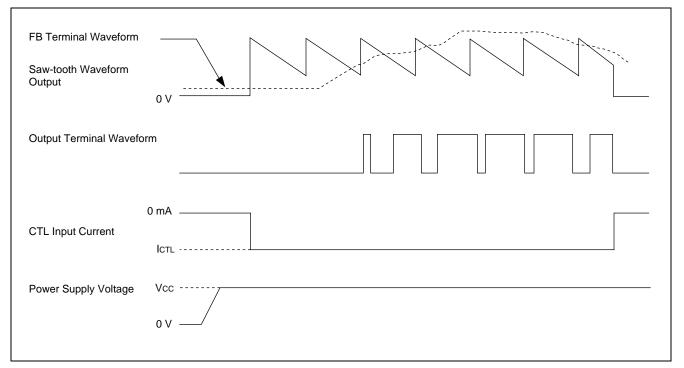
Parameter	Symbol	Condition		Unit		
Faiameter	Symbol	Condition	Min	Тур	Max	Unit
Output source current	ISOURCE	R _B = 820 Ω, Vo = 1 V	-40	-30	-20	mA
Output sink current	ISINK	R _B = 820 Ω, Vo = 0.3 V	30	60		mA
High-level output voltage	Vон	$R_B = 820 \Omega$, $V_0 = 7 V$ $I_0 = -15 mA$	5.5	6.0		V
Output voltage	Vol	$V_{CTL} = V_{CC}$, Io = 3 μ A	—	0.1	0.2	V

6. Control Section

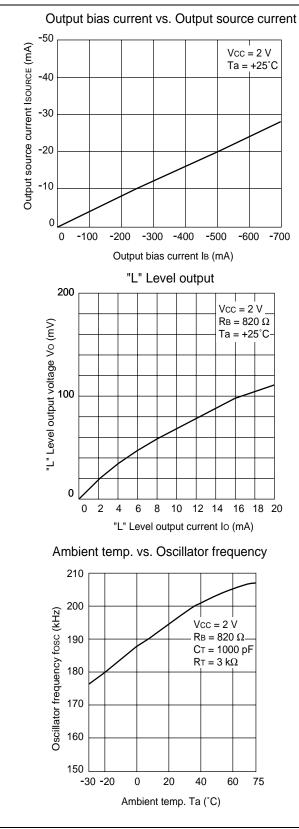
 $(Ta = +25^{\circ}C, Vcc = 3 V)$

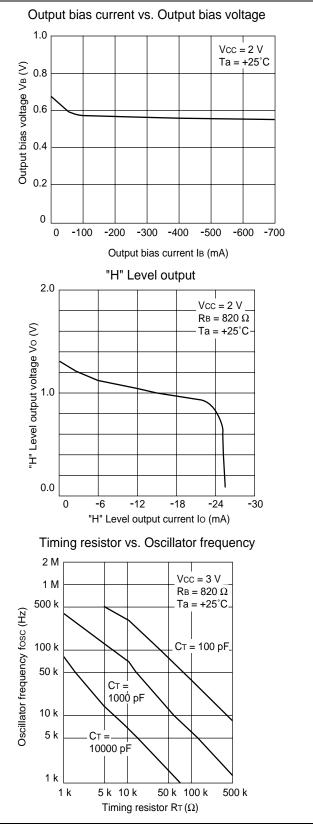

Parameter	Symbol	Condition		Unit		
Faiameter	Symbol	Symbol Condition		Тур	Мах	Unit
Input off condition	OFF	—	-300	_	_	μΑ
Input on condition	Ion	_		_	-700	μA
Control terminal current	Іст∟	$V_{CC} = 7 V, V_{CTL} = 0 V$	-1.3	-1	—	mA

7. All Device

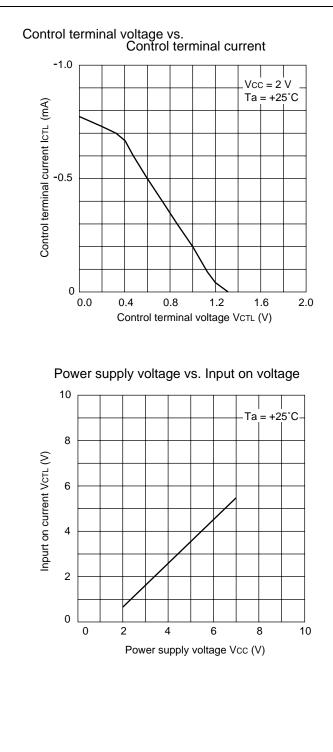

(Ta = +25°C, Vcc = 3 V)

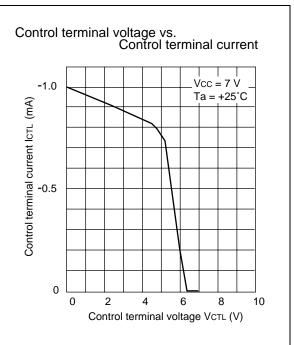
Parameter	Symbol	Condition		Unit		
Falaneter	Symbol		Min	Тур	Max	Unit
Stand by current	lccs	VctL = Vcc or CTL terminal open	_	—	0.5	μA
Average supply current	Icc	Ictl = -700 μA R _B = 820 Ω	_	4.5	8	mA

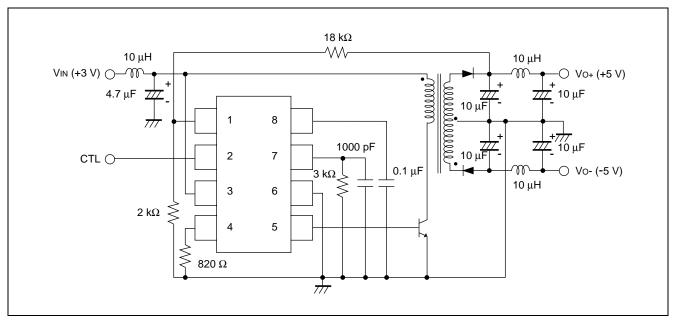

■ MEASURMENT CIRCUIT

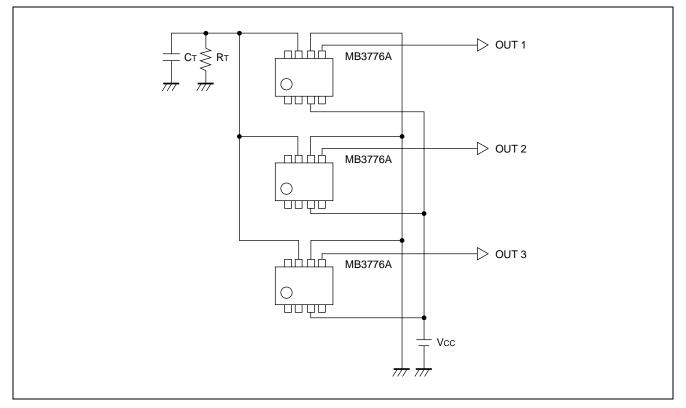


DIAGRAM




TYPICAL CHARACTERISTIC

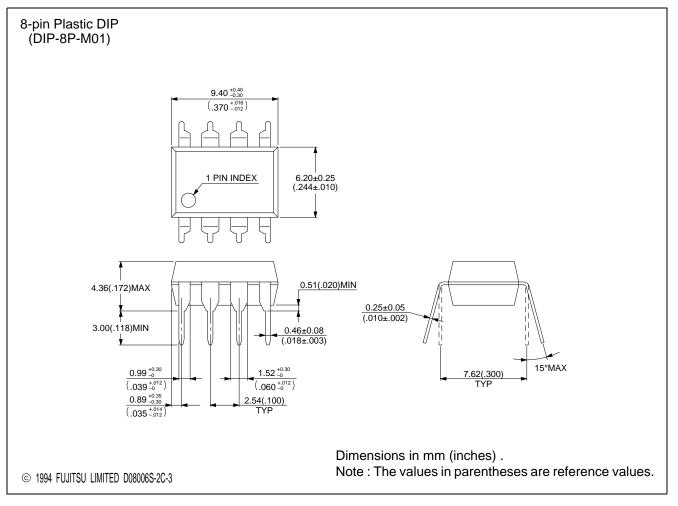

(Continued)


Downloaded from Arrow.com.

■ APPLICATION EXAMPLE

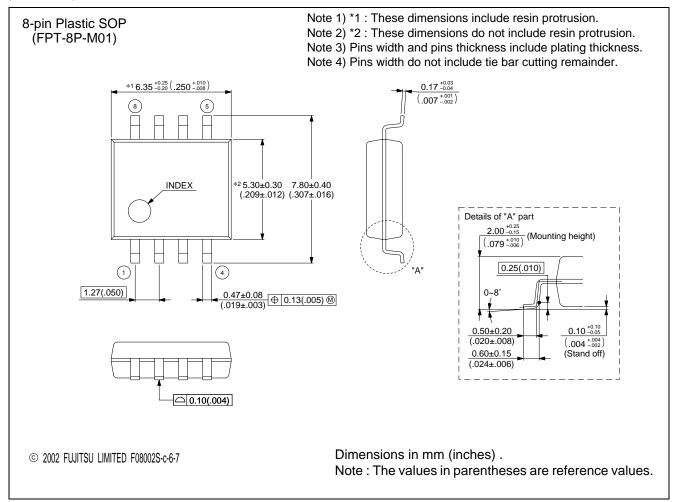
Synchronization

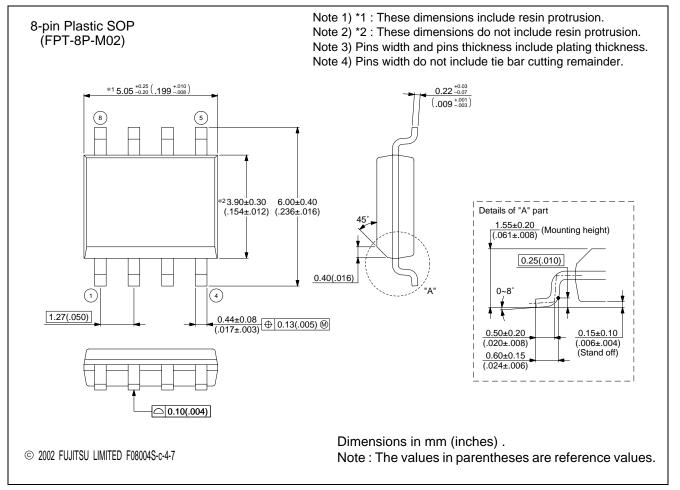
To synchronize MB3776A controllers, the OSC terminal of each IC is shared and the same specified capacitor and resistor used on a signal IC application is connected for self-excitation oscillation. The CTL terminal controls power on/off of each IC.

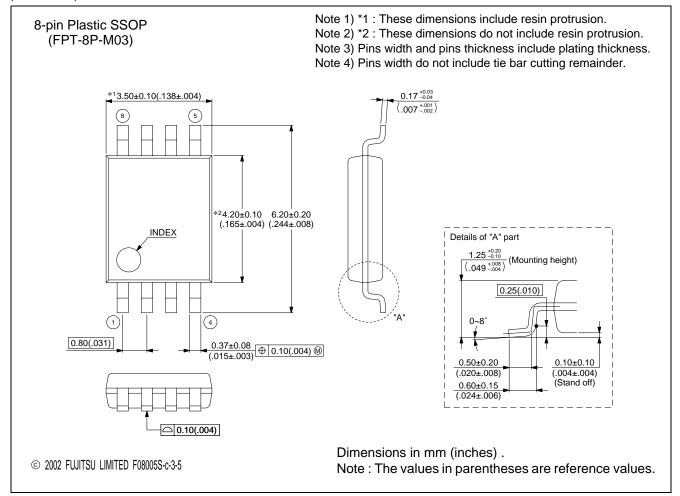

NOTES ON USE

- Take account of common impedance when designing the earth line on a printed wiring board.
- Take measures against static electricity.
 - For semiconductors, use antistatic or conductive containers.
 - When storing or carrying a printed circuit board after chip mounting, put it in a conductive bag or container.
 - The work table, tools and measuring instruments must be grounded.
 - The worker must put on a grounding device containing 250 k Ω to 1 M Ω resistors in series.
- Do not apply a negative voltage
 - Applying a negative voltage of –0.3 V or less to an LSI may generate a parasitic transistor, resulting in malfunction.

Part number	Package	Remarks
MB3776A-P	8-pin Plastic DIP (DIP-8P-M01)	
MB3776APF	8-pin Plastic SOP (FPT-8P-M01)	
MB3776APNF	8-pin Plastic SOP (FPT-8P-M02)	
MB3776APFV	8-pin Plastic SSOP (FPT-8P-M03)	


ORDERING INFORMATION


■ PACKAGE DIMENSIONS



(Continued)

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0309 © FUJITSU LIMITED Printed in Japan