±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Absolute Maximum Ratings

(All voltages referenced to GND.)	8-Pin TDFN (derate 18.5mW/°C
V _{CC} 0.3V to +6V	3 x 3 UCSP (derate 4.7mW/°C a
I/O V _{CC} 0.3V to (V _{CC} + 0.3V)	3 x 4 UCSP (derate 6.5mW/°C a
I/O VL -0.3V to (VL + 0.3V)	
THREE-STATE0.3V to (VL + 0.3V)	14-Pin TDFN (derate 18.5mW/°
Short-Circuit Duration I/O VL, I/O VCC to GND Continuous	Operating Temperature Range
Short-Circuit Duration I/O V _L or I/O V _{CC} to GND	Storage Temperature Range
Driven from 40mA Source	Lead Temperature (soldering, 10s
(except MAX3372E and MAX3377E)Continuous	Soldering Temperature (reflow)
Continuous Power Dissipation (T _A = +70°C)	
8-Pin SOT23 (derate 5.6mW/°C above +70°C)444.4mW	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

 $(V_{CC} = +1.65V \text{ to } +5.5V, V_L = +1.2V \text{ to } (V_{CC} + 0.3V), \text{ GND } = 0, \text{ I/O } V_L \text{ and I/O } V_{CC} \text{ unconnected}, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted}.$ Typical values are at $V_{CC} = +3.3V, V_L = +1.8V, T_A = +25^{\circ}\overline{C}.$ (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES						
V _L Supply Range	VL		1.2		5.5	V
V _{CC} Supply Range	V _{CC}		1.65		5.50	V
Supply Current from V _{CC}	IQVCC			130	300	μA
Supply Current from VL	I _{QVL}			16	100	μA
V _{CC} Three-State Output Mode Supply Current	ITHREE-STATE-VCC	T _A = +25°C, THREE-STATE = GND		0.03	1	μA
V _L Three-State Output Mode Supply Current	ITHREE-STATE-VL	$T_A = +25^{\circ}C, \overline{THREE}-STATE} = GND$		0.03	1	μA
Three-State Output Mode Leakage Current I/O V _L _ and I/O V _{CC} _	ITHREE-STATE-LKG	$T_A = +25^{\circ}C, \overline{THREE}-STATE} = GND$		0.02	1	μΑ
THREE-STATE Pin Input Leakage		T _A = +25°C		0.02	1	μA
ESD PROTECTION						
		IEC 1000-4-2 Air-Gap Discharge		±8		
I/O V _{CC} (Note 3)		IEC 1000-4-2 Contact Discharge		±8		kV
		Human Body Model		±15		
LOGIC-LEVEL THRESHOLDS (M	IAX3372E/MAX3377E	:)				
I/O V _{L_} Input-Voltage High	V _{IHL}		V _L - 0	.2		V
I/O V _L Input-Voltage Low	V _{ILL}				0.15	V

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Electrical Characteristics (continued)

 $(V_{CC} = +1.65V \text{ to } +5.5V, V_L = +1.2V \text{ to } (V_{CC} + 0.3V), \text{ GND } = 0, \text{ I/O } V_L \text{ and I/O } V_{CC} \text{ unconnected}, \text{ } \text{T}_A = \text{T}_{MIN} \text{ to } \text{T}_{MAX} \text{, unless otherwise noted}. \text{ Typical values are at } V_{CC} = +3.3V, V_L = +1.8V, \text{ } \text{T}_A = +25^{\circ}\overline{\text{C}}.) \text{ (Notes } 1, 2)$

PARAMETER	SYMBOL	CONDITIONS	MIN TYP	MAX	UNITS
I/O V _{CC} Input-Voltage High	VIHC		V _{CC} - 0.4		V
I/O V _{CC} Input-Voltage Low	V _{ILC}			0.15	V
I/O V _L _Output-Voltage High	V _{OHL}	$I/O V_{L}$ source current = 20µA, $I/O V_{CC} \ge V_{CC} - 0.4V$	0.67 × V _L		V
I/O V _L _Output-Voltage Low	V _{OLL}	$I/O V_{L_{sink}}$ sink current = 20µA, $I/O V_{CC_{sink}} \le 0.15V$		0.4	V
I/O $V_{CC_}$ Output-Voltage High	V _{OHC}	$I/O V_{CC}$ source current = 20µA, $I/O V_{L} \ge V_{L} - 0.2V$	0.67 × V _{CC}		V
I/O V _{CC} _Output-Voltage Low	V _{OLC}	$I/O V_{CC}$ sink current = 20µA, $I/O V_{L} \le 0.15V$		0.4	V
THREE-STATE Input-Voltage High	VIL-THREE-STATE		V _L - 0.2		V
THREE-STATE Input-Voltage Low	VIL-THREE-STATE			0.15	V
LOGIC-LEVEL THRESHOLDS (MAX3373E-MAX3376	E/MAX3378E/MAX3379E and MAX33	390E-MAX3393E)		
I/O V _L _Input-Voltage High	V _{IHL}		V _L - 0.2		V
I/O V _L _Input-Voltage Low	V _{ILL}			0.15	V
I/O V _{CC} _Input-Voltage High	VIHC		V _{CC} - 0.4		V
I/O V _{CC} _Input-Voltage Low	V _{ILC}			0.15	V
I/O V _L _Output-Voltage High	V _{OHL}	$I/O V_{L}$ source current = 20µA, $I/O V_{CC} \ge V_{CC} - 0.4V$	0.67 × VL		V
I/O V _L _Output-Voltage Low	V _{OLL}	$I/O V_{L}$ sink current = 1mA, $I/O V_{CC} \le 0.15V$		0.4	V
I/O V _{CC} _Output-Voltage High	V _{OHC}	$I/O V_{CC}$ source current = 20µA, $I/O V_{L} \ge V_{L} - 0.2V$	0.67 × V _{CC}		V
I/O V _{CC} _Output-Voltage Low	V _{OLC}	$I/O V_{CC}$ sink current = 1mA, $I/O V_{L} \le 0.15V$		0.4	V
THREE-STATE Input-Voltage High	VIH-THREE-STATE		V _L - 0.2		V
THREE-STATE Input-Voltage Low	VIL-THREE-STATE			0.15	V

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Timing Characteristics

 $(V_{CC} = +1.65V \text{ to } +5.5V, V_L = +1.2V \text{ to } (V_{CC} + 0.3V), \text{ GND} = 0, R_{LOAD} = 1M\Omega, I/O \text{ test signal of Figure 1, } T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $V_{CC} = +3.3V, V_L = +1.8V, T_A = +25^{\circ}C$, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CON	DITIONS	MIN	TYP	MAX	UNITS
MAX3372E/MAX3377E (CLOA	D = 50pF)	·		•			
I/O V _{CC} Rise Time (Note 4)	t _{RVCC}				1100		ns
I/O V _{CC} Fall Time (Note 5)	t _{FVCC}				1000		ns
I/O V _L _Rise Time (Note 4)	t _{RVL}				600		ns
I/O V _L Fall Time (Note 5)	t _{FVL}				1100		ns
Propagation Dalay	I/O _{VL-VCC}	Driving I/O VL_				1.6	
Propagation Delay	I/O _{VCC-VL}	Driving I/O V _{CC}				1.6	μs
Channel-to-Channel Skew	t _{SKEW}	Each translator equ	ally loaded			500	ns
Maximum Data Rate		C _L = 25pF		230			kbps
MAX3373E-MAX3376E/MAX3	378E/MAX3379E	and MAX3390E-MAX	(3393E (C _{LOAD} = 15pF, D	river Outp	out Impe	dance ≤ 5	50Ω)
$+1.2V \le V_{L} \le V_{CC} \le +5.5V$							
				7	25		
I/O V _{CC} _Rise Time (Note 4)	^t RVCC	Open-drain driving		170	400	ns	
					6	37	
I/O V _{CC} _Fall Time (Note 5)	tFVCC	Open-drain driving			20	50	ns
					8	30	
I/O V _L Rise Time (Note 4)	t _{RVL}	Open-drain driving			180	400	ns
					3	30	
I/O V _L _Fall Time (Note 5)	t _{LFV}	Open-drain driving			30	60	ns
	1/0				5	30	
Descention Delay	I/O _{VL-VCC}	Driving I/O V_L	Open-drain driving		210	1000	1
Propagation Delay	1/0				4	30	ns
	I/O _{VCC-VL}	Driving I/O V _{CC} _	Open-drain driving		190	1000	1
Ohannal ta Ohannal Ohann		Each translator				20	
Channel-to-Channel Skew	^t SKEW	equally loaded	Open-drain driving			50	ns
Maximum Data Rate			·	8			Mbps
Maximum Data Rate		Open-drain driving		500			kbps

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Timing Characteristics (continued)

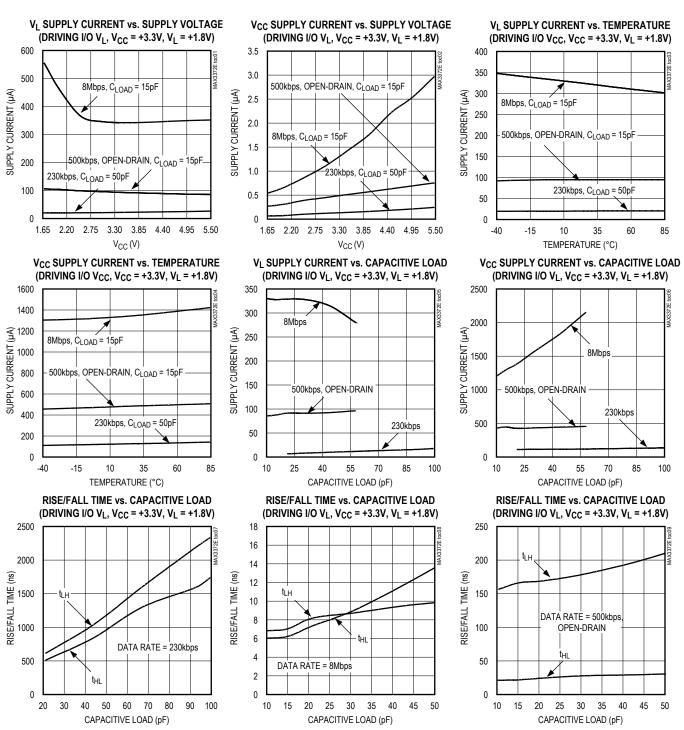
 $(V_{CC} = +1.65V \text{ to } +5.5V, V_L = +1.2V \text{ to } (V_{CC} + 0.3V), \text{ GND} = 0, R_{LOAD} = 1M\Omega, I/O \text{ test signal of Figure 1, } T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless}$ otherwise noted. Typical values are at V_{CC} = +3.3V, V_L = +1.8V, T_A = +25°C, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
$+1.2V \le V_L \le V_{CC} \le +3.3V$							
I/O V _{CC} _Rise Time (Note 4)	t _{RVCC}				25	ns	
I/O V _{CC} _Fall Time (Note 5)	t _{FVCC}				30	ns	
I/O V _L _Rise Time (Note 4)	t _{RVL}				30	ns	
I/O V _L _Fall Time (Note 5)	t _{FVL}				30	ns	
Propagation Dalay	I/O _{VL-VCC}	Driving I/O VL_			20		
Propagation Delay	I/O _{VCC-VL}	Driving I/O V _{CC}			20	ns	
Channel-to-Channel Skew	^t SKEW	Each translator equally loaded			10	ns	
Maximum Data Rate			10			Mbps	
$+2.5 V \leq V_{L} \leq V_{CC} \leq +3.3 V$							
I/O V _{CC} _ Rise Time (Note 4)	t _{RVCC}				15	ns	
I/O V _{CC} _Fall Time (Note 5)	t _{FVCC}				15	ns	
I/O V _L Rise Time (Note 4)	t _{RVL}				15	ns	
I/O V _L _Fall Time (Note 5)	t _{FVL}				15	ns	
Propagation Dalay	I/O _{VL-VCC}	Driving I/O VL_			15		
Propagation Delay	I/O _{VCC-VL}	Driving I/O V _{CC}			15	ns	
Channel-to-Channel Skew	t _{SKEW}	Each translator equally loaded			10	ns	
Maximum Data Rate			16			Mbps	
$+1.8V \le V_L \le V_{CC} \le +2.5V$							
I/O V _{CC} _Rise Time (Note 4)	t _{RVCC}				15	ns	
I/O V _{CC} _ Fall Time (Note 5)	t _{FVCC}				15	ns	
I/O V _L _Rise Time (Note 4)	t _{RVL}				15	ns	
I/O V _L Fall Time (Note 5)	t _{FVL}				15	ns	
Propagation Dolay	I/O _{VL-VCC}	Driving I/O VL_			15		
Propagation Delay	I/O _{VCC-VL}	Driving I/O V _{CC}			15	ns	
Channel-to-Channel Skew	t _{SKEW}	Each translator equally loaded			10	ns	
Maximum Data Rate			16			Mbps	

Note 1: All units are 100% production tested at $T_A = +25^{\circ}C$. Limits over the operating temperature range are guaranteed by design and not production tested.

Note 2: For normal operation, ensure $V_L < (V_{CC} + 0.3V)$. During power-up, $V_L > (V_{CC} + 0.3V)$ will not damage the device. **Note 3:** To ensure maximum ESD protection, place a 1µF capacitor between V_{CC} and GND. See Applications Circuits.

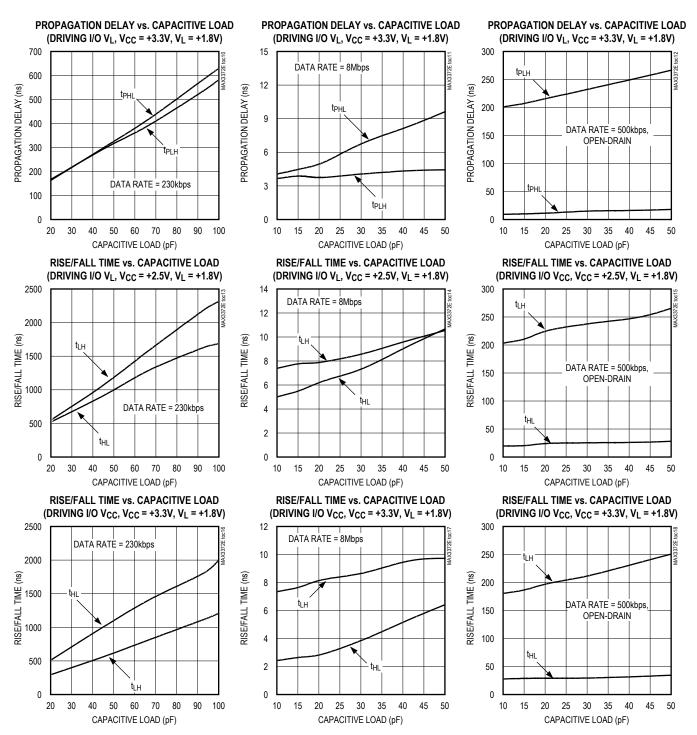
Note 4: 10% to 90%


Note 5: 90% to 10%

Downloaded from Arrow.com.

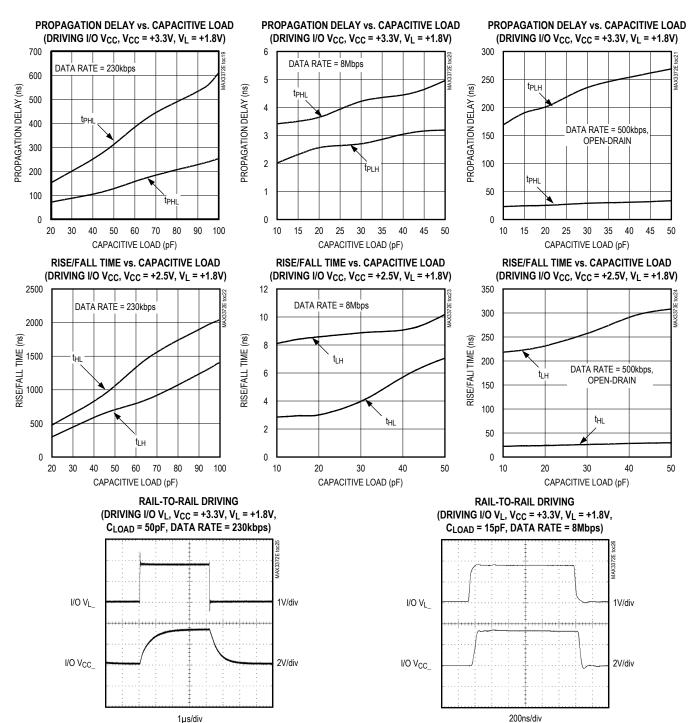
±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Typical Operating Characteristics


 $(R_{LOAD} = 1M\Omega, T_A = +25^{\circ}C)$, unless otherwise noted. All 230kbps TOCs apply to MAX3372E/MAX3377E only. All 8Mbps and 500kbps TOCs apply to MAX3373E–MAX3376E/MAX3378E/MAX3379E and MAX3390E–MAX3393E only.)

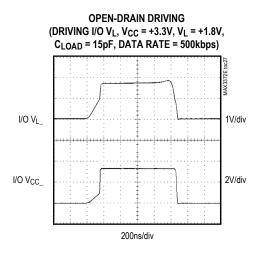
±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

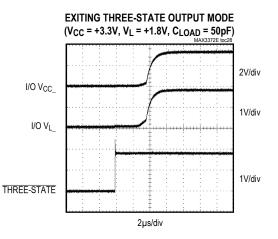
Typical Operating Characteristics (continued)


 $(R_{LOAD} = 1M\Omega, T_A = +25^{\circ}C)$, unless otherwise noted. All 230kbps TOCs apply to MAX3372E/MAX3377E only. All 8Mbps and 500kbps TOCs apply to MAX3373E–MAX3376E/MAX3378E/MAX3379E and MAX3390E–MAX3393E only.)

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Typical Operating Characteristics (continued)


 $(R_{LOAD} = 1M\Omega, T_A = +25^{\circ}C)$, unless otherwise noted. All 230kbps TOCs apply to MAX3372E/MAX3377E only. All 8Mbps and 500kbps TOCs apply to MAX3373E–MAX3376E/MAX3378E/MAX3379E and MAX3390E–MAX3393E only.)



±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Typical Operating Characteristics (continued)

 $(R_{LOAD} = 1M\Omega, T_A = +25^{\circ}C)$, unless otherwise noted. All 230kbps TOCs apply to MAX3372E/MAX3377E only. All 8Mbps and 500kbps TOCs apply to MAX3373E–MAX3376E/MAX3378E/MAX3379E and MAX3390E–MAX3393E only.)

Pin Description

		F	PIN				
3 x 4 UCSP	14 TSSOP	SOT23-8	3 x 3 UCSP	8 TDFN- EP	14 TDFN- EP	NAME	FUNCTION
A1	2	5	C2	6	1	I/O V _L 1	Input/Output 1. Referenced to V _L . (Note 6)
A2	3	4	C3	8	2	I/O V _L 2	Input/Output 2. Referenced to V _L . (Note 6)
A3	4	—		—	5	I/O V _L 3	Input/Output 3. Referenced to V _L . (Note 6)
A4	5	—	—	—	6	I/O V _L 4	Input/Output 4. Referenced to V _L . (Note 6)
B1	14	7	A1	4	14	V _{CC}	V_{CC} Input Voltage +1.65V $\leq V_{CC} \leq$ +5.5V.
B2	1	3	C1	7	10	VL	Logic Input Voltage +1.2V \leq V _L \leq (V _{CC} + 0.3V)
В3	8	6	B1	5	3	THREE- STATE	Three-State Output Mode Enable. Pull THREE-STATE low to place device in three-state output mode. I/O V_{CC} and I/O V_{L} are high impedance in three-state output mode. Note: Logic referenced to V_L (for logic thresholds see the <i>Electrical Characteristics</i> table).
B4	7	2	B3	2	7	GND	Ground
C1	13	8	A2	3	13	I/O V _{CC} 1	Input/Output 1. Referenced to V _{CC} . (Note 6)
C2	12	1	A3	1	12	I/O V _{CC} 2	Input/Output 2. Referenced to V _{CC} . (Note 6)
C3	11	_	—	_	9	I/O V _{CC} 3	Input/Output 3. Referenced to V _{CC} . (Note 6)
C4	10		_		8	I/O V _{CC} 4	Input/Output 4. Referenced to V _{CC} . (Note 6)
_	6, 9	_	—	_	4, 11	N.C.	No Connection. Not internally connected.
_	_	_	B2	_	_	_	B2 bump is not populated for B9+2 9-UCSP packages
	—	—	—	—	—	EP	Exposed Pad. Connect EP to ground.

Note 6: For unidirectional devices (MAX3374E/MAX3375E/MAX3376E/MAX3379E and MAX3390E–MAX3393E) see the *Pin Configurations* for input/output configurations.

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Detailed Description

The MAX3372E-MAX3379E and MAX3390E-MAX3393E ESD-protected level translators provide the level shifting necessary to allow data transfer in a multivoltage system. Externally applied voltages, V_{CC} and V_I, set the logic levels on either side of the device. A low-voltage logic signal present on the VL side of the device appears as a high-voltage logic signal on the V_{CC} side of the device, and vice-versa. The MAX3374E/MAX3375E/MAX3376E/ MAX3379E and MAX3390E-MAX3393E unidirectional level translators level shift data in one direction (V₁ \rightarrow V_{CC} or $V_{CC} \rightarrow V_L)$ on any single data line. The MAX3372E/ MAX3373E and MAX3377E/MAX3378E bidirectional level translators utilize a transmission-gatebased design (see Figure 2) to allow data translation in either direction $(V_I \leftrightarrow V_{CC})$ on any single data line. The MAX3372E-MAX3379E and MAX3390E-MAX3393E accept VI from +1.2V to +5.5V and V_{CC} from +1.65V to +5.5V, making them ideal for data transfer between low-voltage ASICs/ PLDs and higher voltage systems.

All devices in the MAX3372E–MAX3379E, MAX3390E–MAX3393E family feature a three-state output mode that reduces supply current to less than 1µA, thermal shortcircuit protection, and \pm 15kV ESD protection on the V_{CC} side for greater protection in applications that route signals externally. The MAX3372E/MAX3377E operate at a guaranteed data rate of 230kbps. Slew-rate limiting reduces EMI emissions in all 230kbps devices. The MAX3373E–MAX3376E/MAX3378E/MAX3379E and MAX3390E–MAX3393E operate at a guaranteed data rate specified operating voltage range. Within specific voltage domains, higher data rates are possible. (See the *Timing Characteristics* table.)

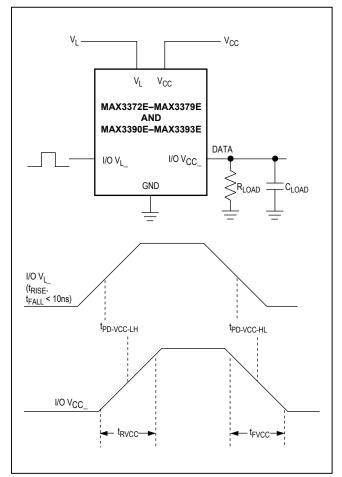


Figure 1a. Rail-to-Rail Driving I/O VL

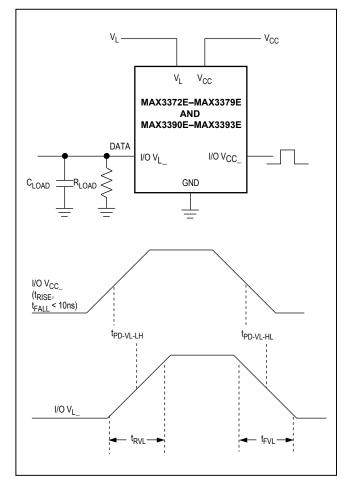


Figure 1b. Rail-to-Rail Driving I/O V_{CC}

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Level Translation

For proper operation ensure that +1.65V $\leq V_{CC} \leq$ +5.5V, +1.2V $\leq V_L \leq$ +5.5V, and $V_L \leq (V_{CC} + 0.3V)$. During power-up sequencing, $V_L \geq (V_{CC} + 0.3V)$ will not damage the device. During power-supply sequencing, when V_{CC} is floating and V_L is powering up, a current may be sourced, yet the device will not latch up. The speed-up circuitry limits the maximum data rate for devices in the MAX3372E– MAX3379E, MAX3390E–MAX3393E family to 16Mbps. The maximum data rate also depends heavily on the load capacitance (see the *Typical Operating Characteristics*), output impedance of the driver, and the operational voltage range (see the *Timing Characteristics* table).

Speed-Up Circuitry

The MAX3373E–MAX3376E/MAX3378E/MAX3379E and MAX3390E–MAX3393E feature a one-shot generator that decreases the rise time of the output. When triggered, MOSFETs PU1 and PU2 turn on for a short time

to pull up I/O V_L and I/O V_{CC} to their respective supplies (see Figure 2b). This greatly reduces the rise time and propagation delay for the low-to-high transition. The scope photo of Rail-to-Rail Driving for 8Mbps Operation in the *Typical Operating Characteristics* shows the speed-up circuitry in operation.

Rise-Time Accelerators

The MAX3373E–MAX3376E/MAX3378E/MAX3379E and the MAX3390E–MAX3393E have internal rise-time accelerators allowing operation up to 16Mbps. The rise-time accelerators are present on both sides of the device and act to speed up the rise time of the input and output of the device, regardless of the direction of the data. The triggering mechanism for these accelerators is both level and edge sensitive. To prevent false triggering of the rise-time accelerators, signal fall times of less than 20ns/V are recommended for both the inputs and outputs of the device. Under less noisy conditions, longer signal fall times may be acceptable.

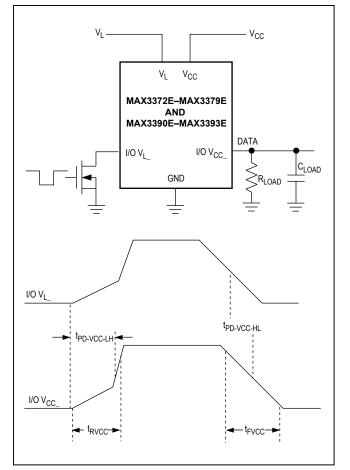


Figure 1c. Open-Drain Driving I/O V_{CC}

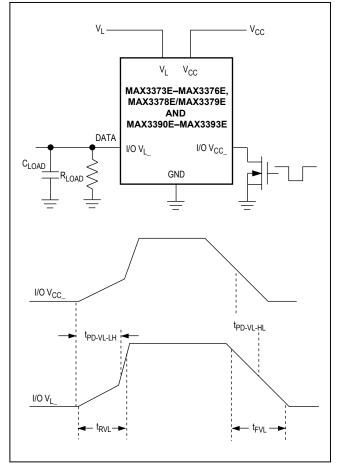


Figure 1d. Open-Drain Driving I/O VL

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Three-State Output Mode

Pull THREE-STATE low to place the MAX3372E– MAX3379E and MAX3390E–MAX3393E in three-state output mode. Connect THREE-STATE to V_L (logic-high) for normal operation. Activating the three-state output mode disconnects the internal 10k Ω pullup resistors on the I/O V_{CC} and I/O V_L lines. This forces the I/O lines to a high-impedance state, and decreases the supply current to less than 1µA. The high-impedance I/O lines in threestate output mode allow for use in a multidrop network. When in three-state output mode, do not allow the voltage at I/O V_L to exceed (V_L + 0.3V), or the voltage at I/O V_{CC} to exceed (V_{CC} + 0.3V).

Thermal Short-Circuit Protection

Thermal overload detection protects the MAX3372E–MAX3379E and MAX3390E–MAX3393E from short-circuit fault conditions. In the event of a short-circuit fault, when the junction temperature (T_J) reaches +152°C, a thermal sensor signals the three-state output mode logic to force the device into three-state output mode. When T_J has cooled to +142°C, normal operation resumes.

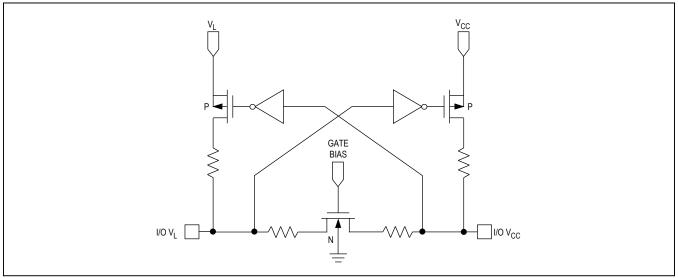


Figure 2a. Functional Diagram, MAX3372E/MAX3377E (1 I/O line)

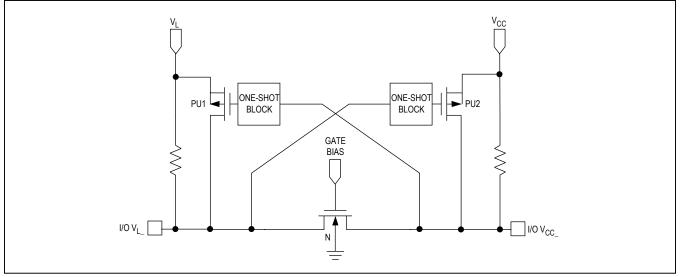


Figure 2b. Functional Diagram, MAX3373E/MAX3378E (1 I/O line)

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

additional ESD-protection components.

ESD contact-discharge test.

Machine Model

The IEC 1000-4-2 standard covers ESD testing and per-

formance of finished equipment; it does not specifically refer to integrated circuits. The MAX3372E-MAX3379E

and MAX3390E-MAX3393E help to design equipment

that meets Level 3 of IEC 1000-4-2, without the need for

The major difference between tests done using the

Human Body Model and IEC 1000-4-2 is higher peak cur-

rent in IEC 1000-4-2, because series resistance is lower

in the IEC 1000-4-2 model. Hence, the ESD with-stand

voltage measured to IEC 1000-4-2 is generally lower than

that measured using the Human Body Model. Figure 4a shows the IEC 1000-4-2 model, and Figure 4b shows the

current waveform for the ±8kV, IEC 1000-4-2, Level 4,

The air-gap test involves approaching the device with a charged probe. The contact-discharge method connects

The Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resistance. Its

objective is to emulate the stress caused by contact that

occurs with handling and assembly during manufacturing.

Of course, all pins require this protection during manufac-

turing, not just inputs and outputs. Therefore, after PCB

the probe to the device before the probe is energized.

IEC 1000-4-2

±15kV ESD Protection

As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The I/O V_{CC} lines have extra protection against static electricity. Maxim's engineers have developed state-ofthe-art structures to protect these pins against ESD of \pm 15kV without damage. The ESD structures withstand high ESD in all states: normal operation, three-state output mode, and powered down. After an ESD event, Maxim's E versions keep working without latchup, whereas competing products can latch and must be powered down to remove latchup.

ESD protection can be tested in various ways. The I/O V_{CC} lines of this product family are characterized for protection to the following limits:

- 1) ±15kV using the Human Body Model
- 2) ±8kV using the Contact Discharge method specified in IEC 1000-4-2
- ±10kV using IEC 1000-4-2's Air-Gap Discharge method

ESD Test Conditions

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test setup, test methodology, and test results.

Human Body Model

Figure 3a shows the Human Body Model and Figure 3b shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a $1.5 k\Omega$ resistor.

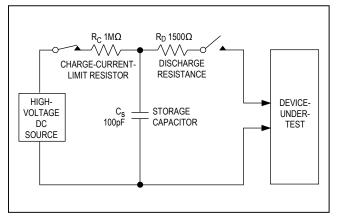


Figure 3a. Human Body ESD Test Model

assembly, the Machine Model is less relevant to I/O ports.

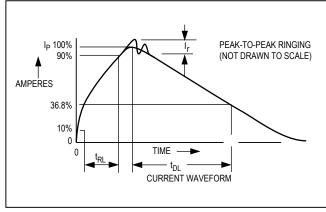


Figure 3b. Human Body Current Waveform

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

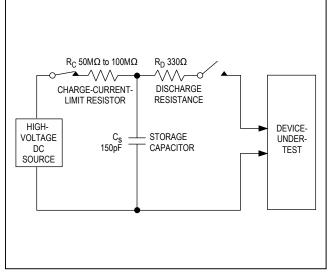


Figure 4a. IEC 1000-4-2 ESD Test Model

Applications Information

Power-Supply Decoupling

To reduce ripple and the chance of transmitting incorrect data, bypass V_L and V_{CC} to ground with a 0.1μ F capacitor. See the *Typical Operating Circuit*. To ensure full ±15kV ESD protection, bypass V_{CC} to ground with a 1µF capacitor. Place all capacitors as close to the power-supply inputs as possible.

I²C Level Translation

The MAX3373E–MAX3376E, MAX3378E/MAX3379E and MAX3390E–MAX3393E level-shift the data present on the I/O lines between +1.2V and +5.5V, making them

Typical Operating Circuit

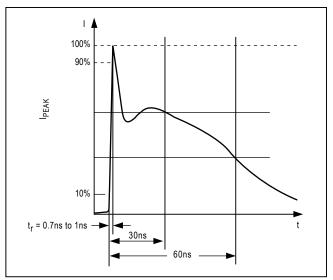
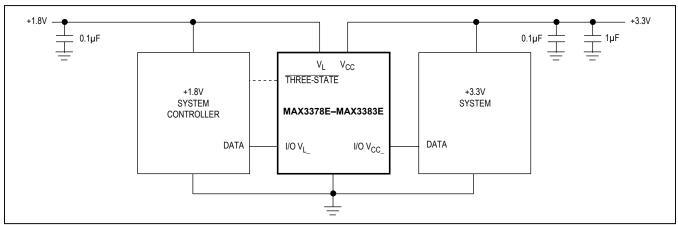
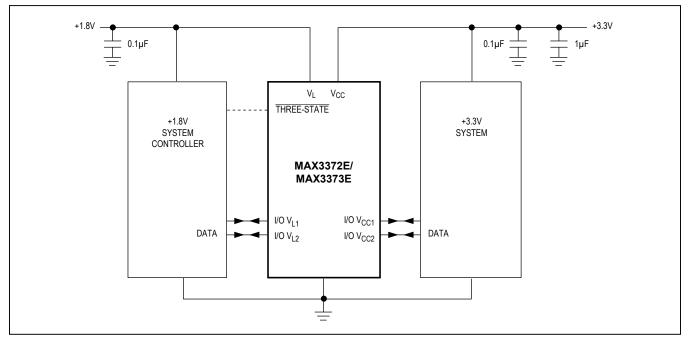
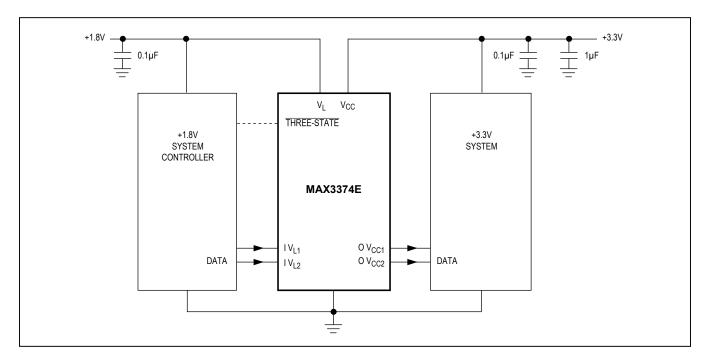



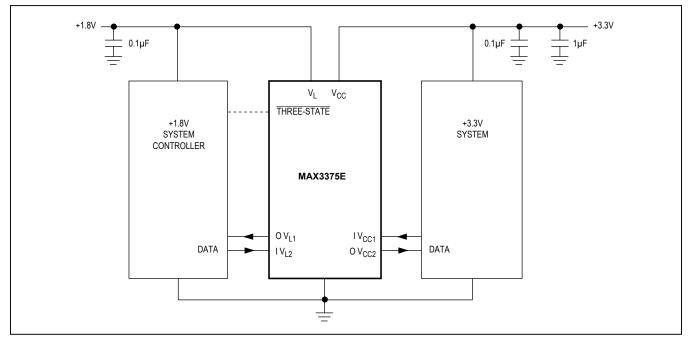
Figure 4b. IEC 1000-4-2 ESD Generator Current Waveform

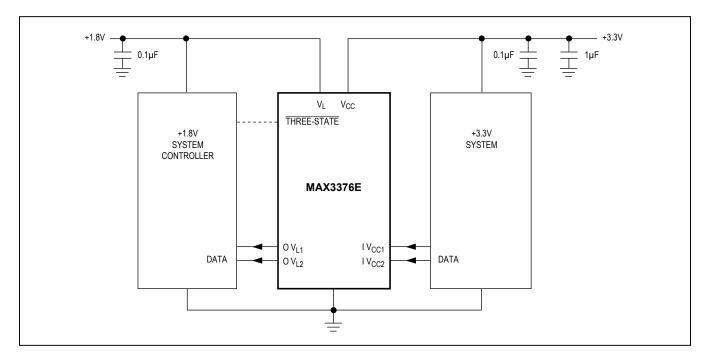
ideal for level translation between a low-voltage ASIC and an I²C device. A typical application involves interfacing a low-voltage microprocessor to a 3V or 5V D/A converter, such as the MAX517.


Push-Pull vs. Open-Drain Driving

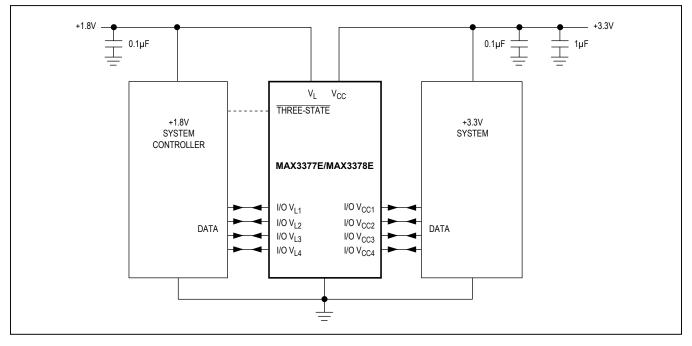

All devices in the MAX3372E–MAX3379E and MAX3390E–MAX3393E family may be driven in a pushpull configuration. The MAX3373E–MAX3376E/MAX3378E/MAX3379E and MAX3390E–MAX3393E include internal 10k Ω resistors that pull up I/O V_L and I/O V_{CC} to their respective power supplies, allowing operation of the I/O lines with open-drain devices. See the *Timing Characteristics* table for maximum data rates when using open-drain drivers.

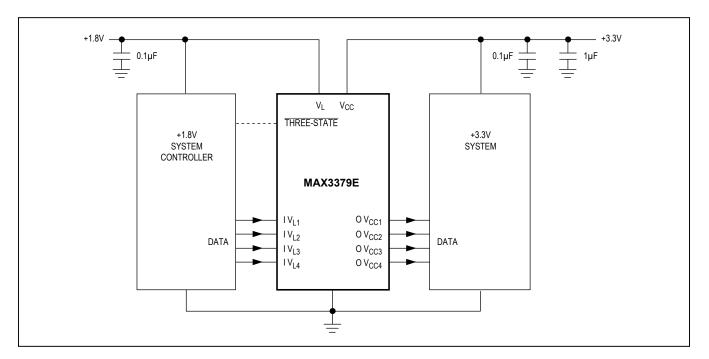
±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP


Applications Circuits

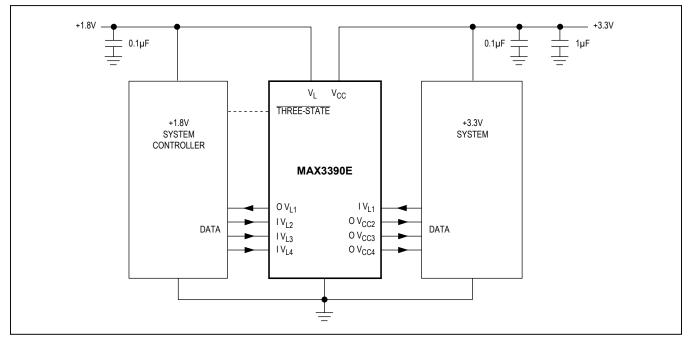


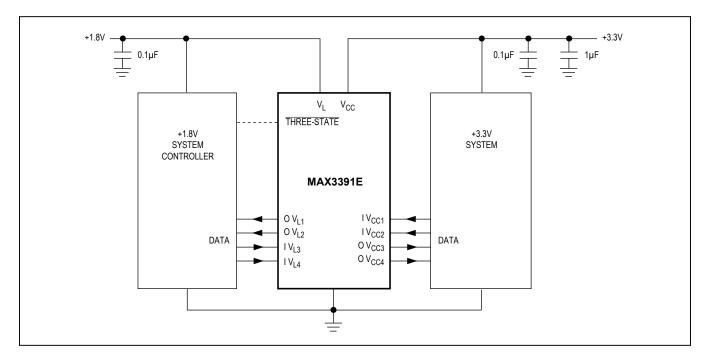
±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP


Applications Circuits (continued)

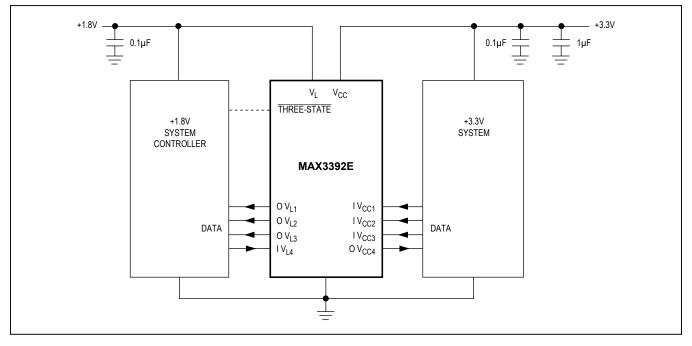


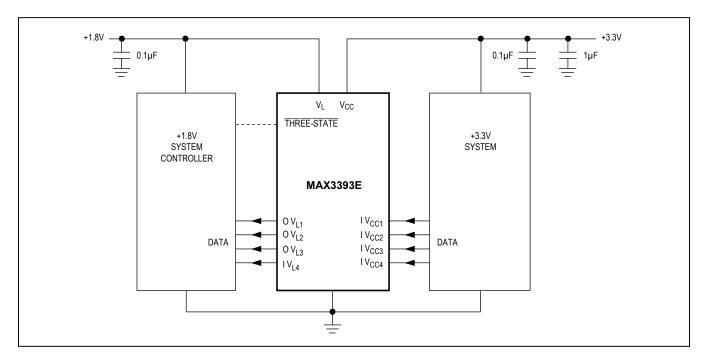
±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP


Applications Circuits (continued)



±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP


Applications Circuits (continued)



±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Applications Circuits (continued)

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Ordering Information

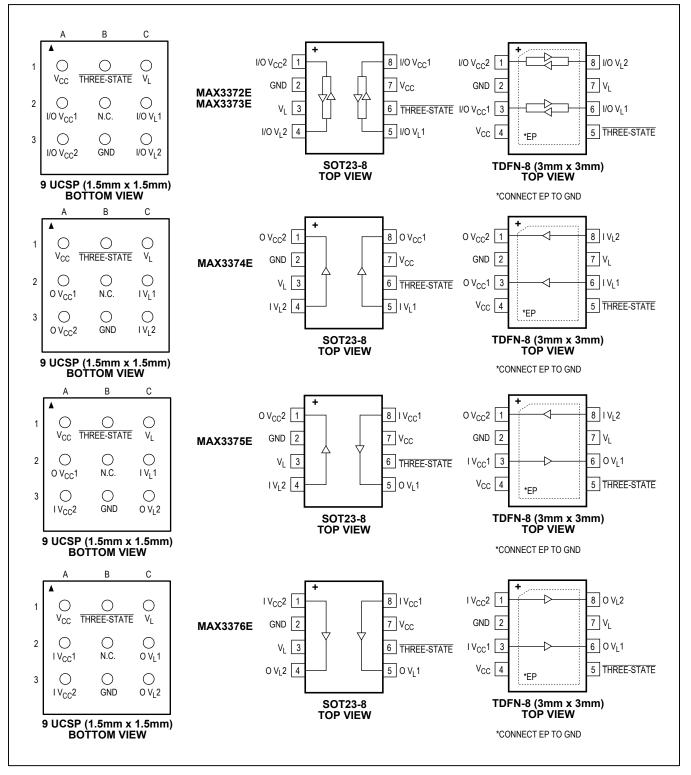
PART	TEMP RANGE	PIN- PACKAGE
MAX3372EEKA+T	-40°C to +85°C	8 SOT23
MAX3372EEBL+T	-40°C to +85°C	9 UCSP (1.5mm x 1.5mm)
MAX3373EEKA+T	-40°C to +85°C	8 SOT23
MAX3373EEBL+T	-40°C to +85°C	9 UCSP (1.5mm x 1.5mm)
MAX3374EEKA+T	-40°C to +85°C	8 SOT23
MAX3375EEKA+T	-40°C to +85°C	8 SOT23
MAX3375EEBL+T	-40°C to +85°C	9 UCSP (1.5mm x 1.5mm)
MAX3376EEKA+T	-40°C to +85°C	8 SOT23
MAX3377EEUD+	-40°C to +85°C	14 TSSOP
MAX3377EETD+T	-40°C to +85°C	14 TDFN-EP** (3mm x 3mm)
MAX3378EEUD+	-40°C to +85°C	14 TSSOP
MAX3378EEBC+T	-40°C to +85°C	12 UCSP (1.5mm x 2.0mm)
MAX3378EETD+T	-40°C to +85°C	14 TDFN-EP** (3mm x 3mm)

PART	TEMP RANGE	PIN- PACKAGE
MAX3379EEUD+	-40°C to +85°C	14 TSSOP
MAX3379EETD+T	-40°C to +85°C	14 TDFN-EP** (3mm x 3mm)
MAX3390EEUD+	-40°C to +85°C	14 TSSOP
MAX3391EEUD+	-40°C to +85°C	14 TSSOP
MAX3391EEBC+T	-40°C to +85°C	12 UCSP (1.5mm x 2.0mm)
MAX3391EETD+T	-40°C to +85°C	14 TDFN-EP** (3mm x 3mm)
MAX3392EEUD+	-40°C to +85°C	14 TSSOP
MAX3393EEUD+	-40°C to +85°C	14 TSSOP
MAX3393EEBC+T	-40°C to +85°C	12 UCSP (1.5mm x 2.0mm)

+Denotes a lead-free package. **EP = Exposed pad.

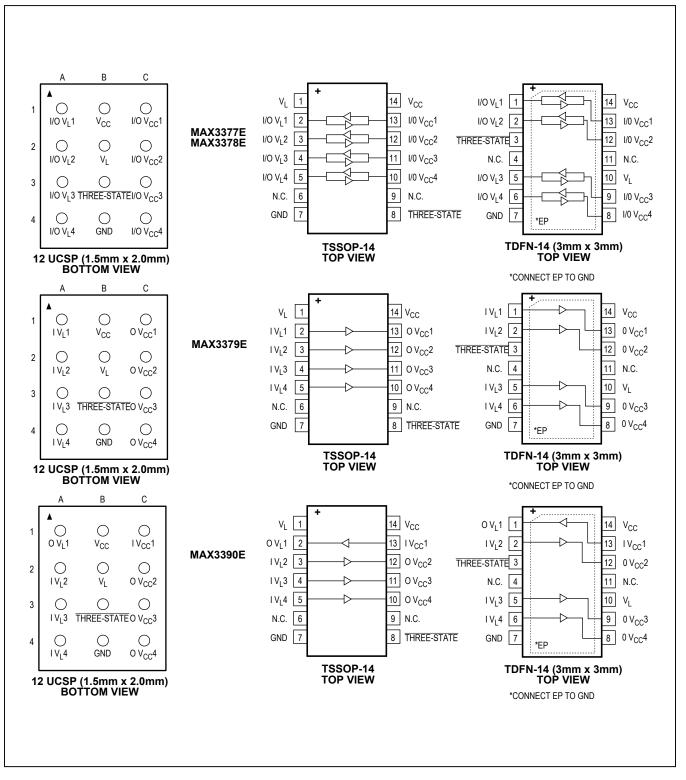
T = Tape and reel.

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

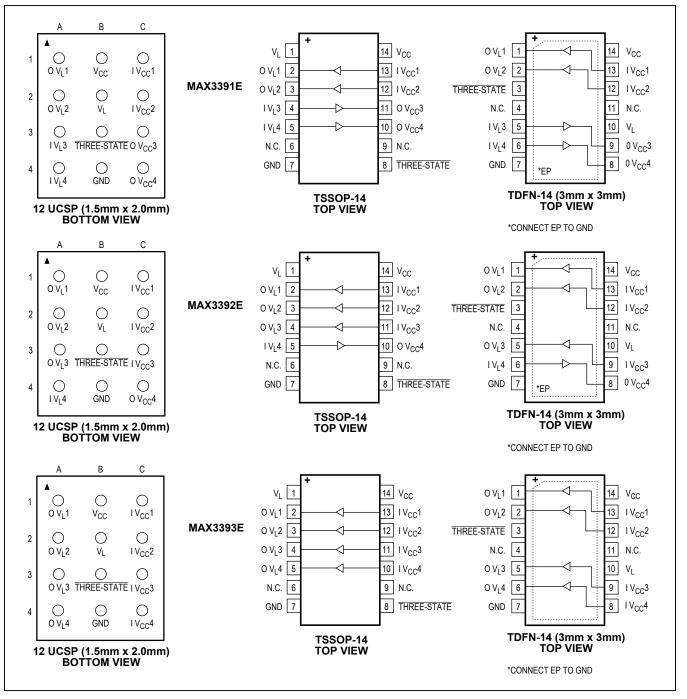

Selector Guide

PART	LEVEL TRANS- LATION	Tx/ Rx†	DATA RATE	TOP MARK	PART	LEVEL TRANS- LATION	Tx/ Rx†	DATA RATE	TOP MARK
MAX3372EEKA+T	✓ Bi	2/2		AAKO	MAX3378EEUD+	✓ Bi	4/4		—
MAX3372EEBL+T	✓ Bi	2/2	230kbps	AAR	MAX3378EEBC+T	✓ Bi	4/4		AAY
MAX3372EETA+T	✓ Bi	2/2		AQG	MAX3378EETD+T	✓ Bi	4/4		AAH
MAX3373EEKA+T	✓ Bi	2/2		AAKS	MAX3379EEUD+	Uni	4/0		—
MAX3373EEBL+T	✓ Bi	2/2		AAZ	MAX3379EEBC+T	Uni	4/0		AAZ
MAX3373EETA+T	✓ Bi	2/2		AQH	MAX3379EETD+T	Uni	4/0		AAI
MAX3374EEKA+T	Uni	2/0		AALH	MAX3390EEUD+	Uni	3/1		—
MAX3374EEBL+T	Uni	2/0		ABA	MAX3390EEBC+T	Uni	3/1		ABA
MAX3374EETA+T	Uni	2/0	9Mbna*	AQI	MAX3390EETD+T	Uni	3/1	9Mbna*	AAJ
MAX3375EEKA+T	Uni	1/1	8Mbps*	AALI	MAX3391EEUD+	Uni	2/2	8Mbps*	—
MAX3375EEBL+T	Uni	1/1		ABB	MAX3391EEBC+T	Uni	2/2		ABB
MAX3375EETA+T	Uni	1/1		AQJ	MAX3391EETD+T	Uni	2/2		AAK
MAX3376EEKA+T	Uni	0/2		AALG	MAX3392EEUD+	Uni	1/3		—
MAX3376EEBL+T	Uni	0/2		AAV	MAX3392EEBC+T	Uni	1/3		ABC
MAX3376EETA+T	Uni	0/2		AQK	MAX3392EETD+T	Uni	1/3		AAL
MAX3377EEUD+	✓ Bi	4/4		_	MAX3393EEUD+	Uni	0/4		—
MAX3377EEBC+T	✓ Bi	4/4	230kbps	AAX	MAX3393EEBC+T	Uni	0/4		ABD
MAX3377EETD+T	✓ Bi	4/4		AAG	MAX3393EETD+T	Uni	0/4		AAM

[†] $Tx = V_L \rightarrow V_{CC}$, $Rx = V_{CC} \rightarrow V_L$ *Higher data rates are possible (see the Timing Characteristics table).


±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Pin Configurations (continued)

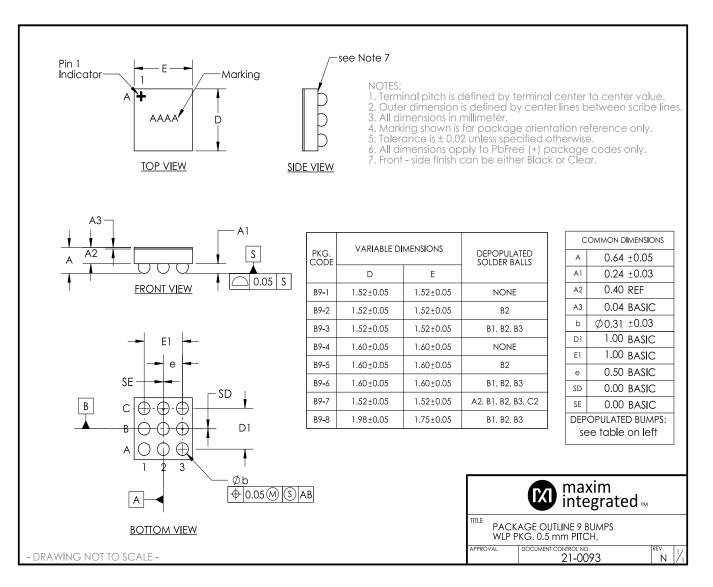

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Pin Configurations (continued)

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Pin Configurations (continued)

Chip Information


PROCESS: BICMOS

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
8 SOT23	K8SN+1	<u>21-0078</u>	<u>90-0176</u>
9 UCSP	B9+2	<u>21-0093</u>	Refer to Application Note 1891
12 UCSP	B12+1	<u>21-0104</u>	Refer to Application Note 1891
8 TDFN	T833+2	<u>21-0137</u>	<u>90-0059</u>
14 TDFN	T1433+2	<u>21-0137</u>	<u>90-0063</u>
14 TSSOP	U14+1	<u>21-0066</u>	<u>90-0113</u>

±15kV ESD-Protected, 1µA, 16Mbps, Dual/Quad Low-Voltage Level Translators in UCSP

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	1/02	Initial Release	—
1	12/06	Addition of 12-bump ECSP packaging	-
2	11/07	Addition of lead-free options	1, 20–31
3	1/13	Updated packaging information; updated Absolute Maximum Ratings	1, 2, 9, 20–23
4	2/15	Updated Benefits and Features section	1
5	10/19	Updated Pin Description table and added package outline drawing for 21-0093	9, 25
6	11/19	Updated Benefits and Features section	1
7	2/20	Updated Ordering Information table	20

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. | 26 2020 Maxim Integrated Products, Inc. | 26