
ABSOLUTE MAXIMUM RATINGS

(Note 1)

Input Voltage (V _{IN}) 16V
SW Voltage
D Voltage40V
SDREF, FB Voltage 2.5V
Operating Ambient
Temperature Range (Note 3)40°C to 85°C
Maximum Junction Temperature 125°C
Storage Temperature Range65°C to 150°C
Lead Temperature (Soldering, 10sec)

PACKAGE/ORDER INFORMATION

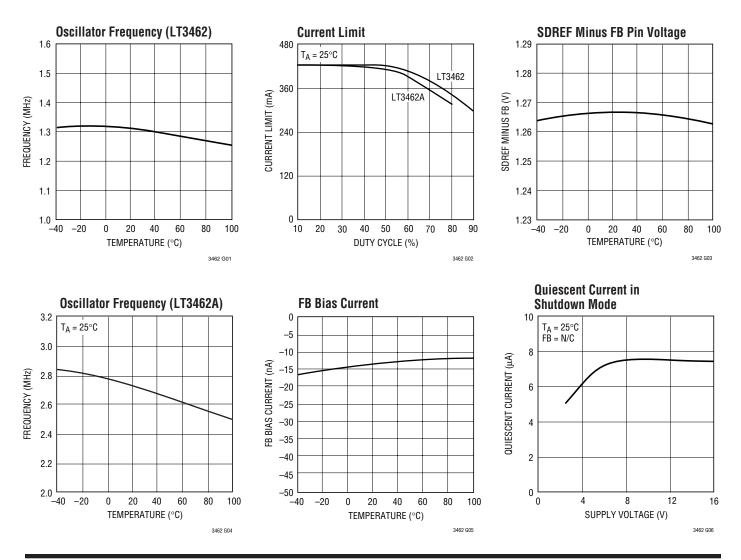
Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating

temperature range, otherwise specifications are at $T_A = 25^{\circ}C$, $V_{IN} = 3V$, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Minimum Operating Voltage			2.5			V
Maximum Operating Voltage					16	V
SDREF Voltage	10μA > I _{SDREF} ≥ −80μA	•	1.245	1.265	1.285	V
FB Pin Bias Current (Note 2)				15	50	nA
SDREF Minus FB Voltage	10µА > I _{SDREF} ≥ −80µА	•	1.235	1.263	1.285	V
Error Amp Offset Voltage			-12		12	m۷
SDREF Reference Source Current	SDREF >1.2V	•	120	180		μA
Supply Current	FB = -0.05V, Not Switching SDREF = 0V, FB = Open, V _{IN} = 5V			2.9 6.5	3.6 10	mA μA
SDREF Line Regulation				0.007		%/\
Switching Frequency (LT3462)			0.8	1.2	1.6	MHz
Switching Frequency (LT3462A)		•	2.0	2.7	3.5	MHz
Maximum Duty Cycle (LT3462)		•	90			%
Maximum Duty Cycle (LT3462A)		•	77			%
Switch Current Limit			300	420		mA
Switch V _{CESAT}	I _{SW} = 250mA			270	350	m۷
Switch Leakage Current	V _{SW} = 5V			0.01	1	μA
Rectifier Leakage Current	$V_D = -40V$			0.03	4	μA
Rectifier Forward Drop	I _{SCHOTTKY} = 250mA			800	1100	m۷
SDREF Voltage Low		•			0.20	V
SDREF Off-State Pull-Up Current			1	2	3	μA
SDREF Turn-Off Current			-300	-200		μA

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.


Note 2: Current flows out of the pin.

Note 3: The LT3462E is guaranteed to meet specifications from 0°C to 70°C. Specifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls.

3462af

TYPICAL PERFORMANCE CHARACTERISTICS

PIN FUNCTIONS

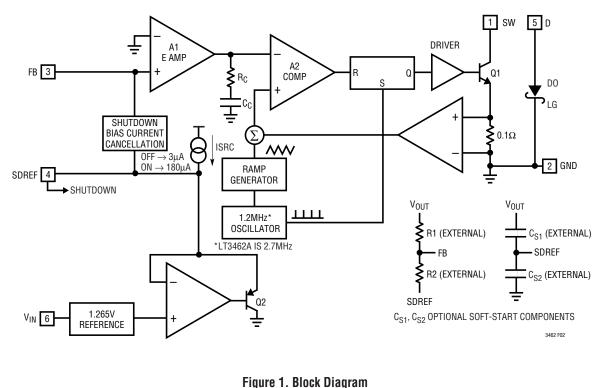
SW (Pin 1): Switch Pin. Connect to external inductor L1 and positive terminal of transfer cap.

GND (Pin 2): Ground. Tie directly to local ground plane.

FB (Pin 3): Feedback Pin. Connect resistive divider tap here. Set R1 according to R1 = R2 • ($V_{OUT}/1.265V$). In shutdown, a proprietary shutdown bias current cancellation circuit allows the internal $3\mu A$ source to pull up the SDREF pin, even with residual negative voltage on V_{OUT} .

SDREF (Pin 4): Dual Function Shutdown and 1.265V Reference Output Pin. Pull to GND with external N-FET to

turn regulator off. Turn-off pull-down and a 2µA internal source will pull SDREF up to turn-on the regulator. At turnon, a 180µA internal source pulls the pin to the regulation voltage. The SDREF pin can supply up to 80µA at 1.265V to bias the feedback resistor divider. An optional soft-start circuit capacitor connects from this pin to $-V_{OUT}$.


D (**Pin 5**): Anode Terminal of Integrated Schottky Diode. Connect to negative terminal of transfer cap and external inductor L2.

VIN (Pin 6): Input Supply Pin. Must be locally bypassed.

LT3462/LT3462A

BLOCK DIAGRAM

OPERATION

The LT3462 uses a constant frequency, current mode control scheme to provide excellent line and load regulation. Operation can be best understood by referring to the Block Diagram in Figure 1. At the start of each oscillator cycle, the SR latch is set, turning on the power switch Q1. A voltage proportional to the switch current is added to a stabilizing ramp and the resulting sum is fed into the positive terminal of the PWM comparator. When this voltage exceeds the voltage at the output of the EAMP, the SR latch is reset, turning off the power switch. The level at the output of the EAMP is simply an amplified version of the difference between the feedback voltage and GND. In this manner, the error amplifier sets the correct peak current level to keep the output in regulation. If the error amplifier's output increases, more current is taken from the output; if it decreases, less current is taken. One function not shown in Figure 1 is the current limit. The switch current is constantly monitored and not allowed to exceed the nominal value of 400mA. If the switch current reaches 400mA, the SR latch is reset regardless of the output state of the PWM comparator. This current limit cell protects the power switch as well as various external components connected to the LT3462.

SDREF is a dual function input pin. When driven low it shuts the part down, reducing guiescent supply current to less than 10µA. When not driven low, the SDREF pin has an internal pull-up current that turns the regulator on. Once the part is enabled, the SDREF pin sources up to 180µA nominally at a fixed voltage of 1.265V through external resistor R2 to FB. If there is no fault condition present, FB will regulate to OV, and V_{OUT} will regulate to 1.265V • (-R1/R2). An optional soft-start circuit uses the fixed SDREF pull-up current and a capacitor from SDREF to V_{OUT} to set the dV/dt on V_{OUT} . In shutdown, an FB bias current cancellation circuit supplies up to 150µA biasing current to external resistor R1 while V_{OUT} is lower than FB. This function eliminates R2 loading of SDREF during shutdown. As a result, supply current in shutdown may exceed 10µA by the amount of current flowing in R1.

APPLICATIONS INFORMATION

Inrush Current

The LT3462 has a built-in Schottky diode. When supply voltage is applied to the V_{IN} pin, the voltage difference between V_{IN} and V_D generates inrush current flowing from input through the inductor and the Schottky diode to charge the flying capacitor to V_{IN}. The maximum nonrepetitive surge current the Schottky diode in the LT3462 can sustain is 1.5A. The selection of inductor and capacitor value should ensure the peak of the inrush current to be below 1.5A. The peak inrush current can be calculated as follows:

$$I_{P} = \frac{V_{IN} - 0.6}{\sqrt{\frac{L}{C} - 1}} \exp\left(-\frac{\pi}{2\sqrt{\frac{L}{C} - 1}}\right)$$

where L is the inductance between supply and SW, and C is the capacitance between SW and D.

Table 3 gives inrush peak currents for some component selections.

V _{IN} (V)	L (μΗ)	C (µF)	I _P (A)			
5	22	1	0.70			
5	33	1	0.60			
12	47	1	1.40			

Table 3. Inrush Peak Current

Inductor Selection

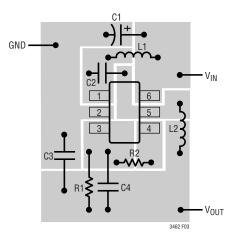
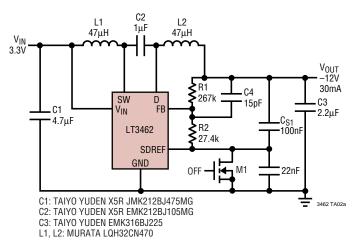
Each of the two inductors used with LT3462 should have a saturation current rating (where inductance is approximately 70% of zero current inductance) of approximately 0.25A or greater. If the device is used in the charge pump mode, where there is only one inductor, then its rating should be 0.35A or greater. DCR of the inductors should be less than 1 Ω . For LT3462, a value of 22µH is suitable if using a coupled inductor such as Sumida CLS62-220. If using two separate inductors, increasing the value to 47µH will result in the same ripple current. For LT3462A, a value of 10µH for the coupled inductor and 22µH for two inductors will be acceptable for most applications.

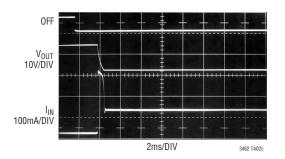
Capacitor Selection

Ceramic capacitors are recommended. An X7R or X5R dielectric should be used to avoid capacitance decreasing severely with applied voltage and at temperature limits. The "flying" capacitor between the SW and D pins should be a ceramic type of value 1μ F or more. When used in the dual inductor or coupled inductor topologies the flying capacitor should have a voltage rating that is more than the difference between the input and output voltages. For the charge pump inverter topology, the voltage rating should be more than the output voltage. The output capacitor should be a ceramic type. Acceptable output capacitor should be a ceramic type. Acceptable output capacitance varies from 1μ F for high V_{OUT} (-36V), to 10μ F for low V_{OUT} (-5V). The input capacitor should be a 1μ F ceramic type and be placed as close as possible to the LT3462/LT3462A.

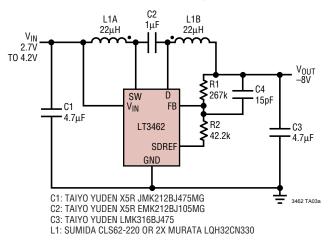
Layout Hints

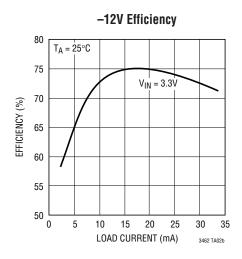
The high speed operation of the LT3462 demands careful attention to board layout. You will not get advertised performance with careless layout. Figure 2 shows the recommended component placement. A ceramic capacitor of 1μ F or more must be placed close to the IC for input supply bypassing.

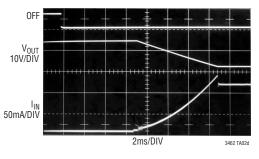

Figure 2. Suggested Layout

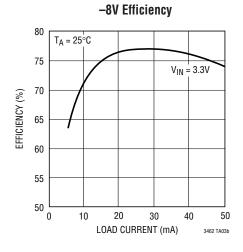
TYPICAL APPLICATIONS


3.3V to -12V with Soft-Start Circuit

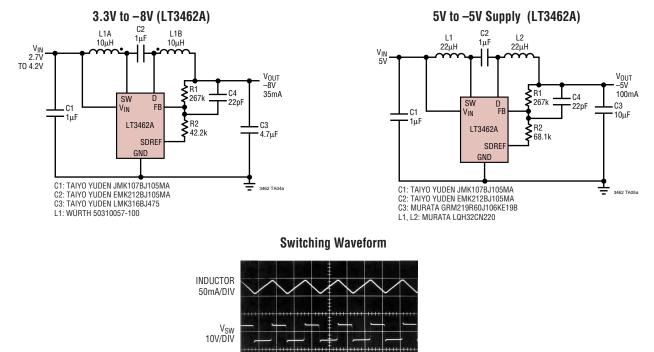


 V_{OUT} Reaches –12V in 750 $\mu s;$ Input Current Peaks at 300mA without C_{S1}




Li⁺ to -8V Supply

 V_{0UT} Reaches –12V in 7.5ms; Input Current Peaks at 125mA with C_{S1} = 100nF



3462af

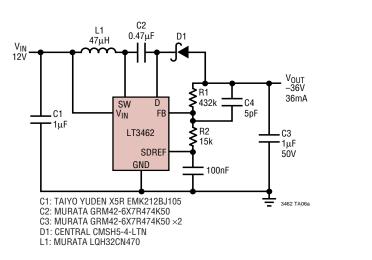
TYPICAL APPLICATIONS

200ns/DIV

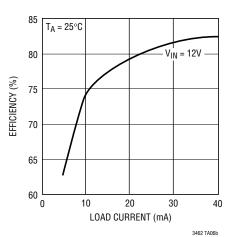
S6 Package

PACKAGE DESCRIPTION

V_{OUT} 1mV/DIV AC COUPLED


6-Lead Plastic TSOT-23 (Reference LTC DWG # 05-08-1636) 0.95 REF 0.62 2.90 BSC MAX (NOTE 4) .22 REF NOTE: 1. DIMENSIONS ARE IN MILLIMETERS 2. DRAWING NOT TO SCALE 3. DIMENSIONS ARE INCLUSIVE OF PLATING 1.50 - 1.752.80 BSC 3.85 MAX 2.62 REF 1.4 MIN 4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR (NOTE 4) PIN ONE ID 5. MOLD FLASH SHALL NOT EXCEED 0.254mm 6. JEDEC PACKAGE REFERENCE IS MO-193 +RECOMMENDED SOLDER PAD LAYOUT PER IPC CALCULATOR 0.30 - 0.45 6 PLCS (NOTE 3) 0.95 BSC 0.80 - 0.90 0.09 - 0.20 0.20 BSC (NOTE 3) 0.01 - 0.10 1.00 MAX DATUM 'A ۲ ¥ - 0 30 - 0 50 BEE 1.90 BSC S6 TS0T-23 0302

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 3462af



.INEAR

TYPICAL APPLICATIONS

12V to -36V DC/DC Converter

-36V Efficiency

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1617/LT1617-1	350mA/100mA (I _{SW}) High Efficiency Micropower Inverting DC/DC Converter	V_{IN} : 1.2V to 15V, $V_{\text{OUT}(\text{MAX})}$ = -34V, I_{Q} = 20µA, I_{SD} <1µA ThinSOT Package
LT1931/LT1931A	1A (I _{SW}), 1.2MHz/2.2MHz, High Efficiency Micropower Inverting DC/DC Converter	V_{IN} : 2.6V to 16V, $V_{OUT(MAX)}$ = -34V, I_{Q} = 5.8mA, I_{SD} <1 μA ThinSOT Package
LT1945	Dual Output, Boost/Inverter, 350mA (I _{SW}), Constant Off-Time, High Efficiency Step-Up DC/DC Converter	V_{IN} : 1.2V to 15V, $V_{OUT(MAX)}$ = $\pm 34V,~I_Q$ = 40µA, I_{SD} <1µA, MS10 Package
LT1946/LT1946A	1.5A (I _{SW}), 1.2MHz/2.7MHz, High Efficiency Step-Up DC/DC Converter	V_{IN} : 2.45V to 16V, $V_{OUT(MAX)}$ = 34V, I_Q = 3.2mA, I_{SD} <1 μA MS8 Package
LT3463	Dual Output, Boost/Inverter, 250mA (I _{SW}), Constant Off-Time, High Efficiency Step-Up DC/DC Converter with Integrated Schottky Diodes	V_{IN} : 2.3V to 15V, $V_{OUT(MAX)}$ = $\pm40V,~I_Q$ = 40µA, I_{SD} <1µA DFN Package
LT3464	85mA (I _{SW}), High Efficiency Step-Up DC/DC Converter with Integrated Schottky and PNP Disconnect	V_{IN} : 2.3V to 10V, $V_{OUT(MAX)}$ = 34V, I_Q = 25µA, I_{SD} <1µA ThinSOT Package

