30CLJQ100

Schottky Rectifier High Efficiency Series

Table of contents

Table of contents

Feat	rures 1
Pote	ential Applications 1
	luct Validation
	ription
	ering Information
	e of contents
1	Absolute Maximum Ratings 3
2	Device Characteristics4
2.1	Electrical Characteristics
2.2	Thermal-Mechanical Specifications4
3	Electrical Characteristics Curves5
4	Package Outline
Revi	sion history

Schottky Rectifier High Efficiency Series

Absolute Maximum Ratings

Absolute Maximum Ratings 1

Absolute Maximum Ratings Table 2

Symbol	Parameter	Value	Unit
V_{R}	DC reverse voltage (per leg)	100	V
V_{RWM}	Working peak reverse voltage (per leg)	100	V
I _{F(AV)}	Max. average forward current (per package) ¹ - Refer to Fig. 5	30	Α
I _{FSM}	Max. peak one cycle non–repetitive surge current (per leg) ²	100	Α
TJ	Operating Junction and	-65 to 150	°C
T_{STG}	Storage Temperature Range		
	Weight	1.0 (Typical)	g

 $^{^{1}}$ 50% duty cycle @ T_{C} = 83°C, square waveform

 $^{^2}$ t_p = 8.3 ms half-sine

Device Characteristics

2 Device Characteristics

2.1 Electrical Characteristics

Table 3 Electrical Characteristics

Symbol	Parameter	Max.	Unit	Test Condit	tions	
		0.95	V	@5.0A		
	Forward Voltage Drop (Per Leg) See Fig. 1 ¹	1.18	V	@15A	T _J = -55°C	
		1.43	V	@30A		
		0.77	V	@5.0A	T _J = 25°C	
V_{F}		1.03	V	@15A		
		1.27	V	@30A		
		0.65	V	@5.0A	T _J = 125°C	
		0.77	V	@15A		
		0.95	V	@30A		
	Reverse Leakage Current (Per Leg)	0.01	mA	T _J = 25°C	V _R = rated V _R	
I _R		1.19	mA	T _J = 100°C		
	See Fig. 2 ¹	5.0	mA	T _J = 125°C		
CJ	Junction Capacitance (Per Leg)	275	pF	$V_R = 5V_{DC}$ (1)	$V_R = 5V_{DC}$ (1MHz, 25°C)	
Ls	Series Inductance (Per Leg)	4.8(Typical)	nH	Measured from center of cathode pad to center of anode pad		

2.2 Thermal-Mechanical Specifications

Table 4 Thermal-Mechanical Specifications

Symbol	Parameter	Max.	Unit	Test Conditions
$R_{ heta JC}$	Thermal Resistance, Junction to Case (Per Leg)	3.5	°C/W	DC operation See Fig. 4
$R_{\theta JC}$	Thermal Resistance, Junction to Case (Per Package)	1.75	°C/W	DC operation
	Die Size (Typical)	84 x 84	mils	

.

 $^{^{1}}$ Pulse Width < 300 μ s, Duty Cycle < 2%

Electrical Characteristics Curves

3 Electrical Characteristics Curves

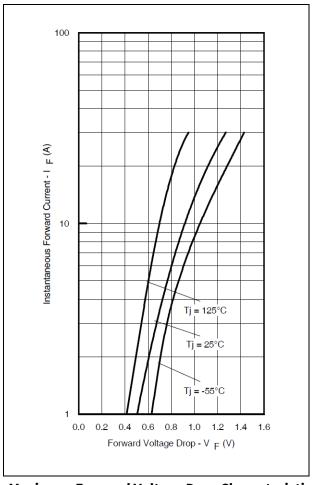


Figure 1 Maximum Forward Voltage Drop Characteristics (Per Leg)

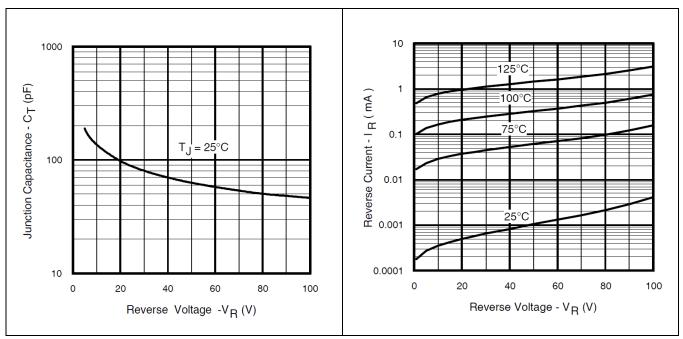


Figure 2 Typical Values of Reverse Current Vs. Reverse Voltage (Per Leg)

Figure 3

Typical Junction Capacitance Vs. Reverse Voltage (Per Leg)

Electrical Characteristics Curves

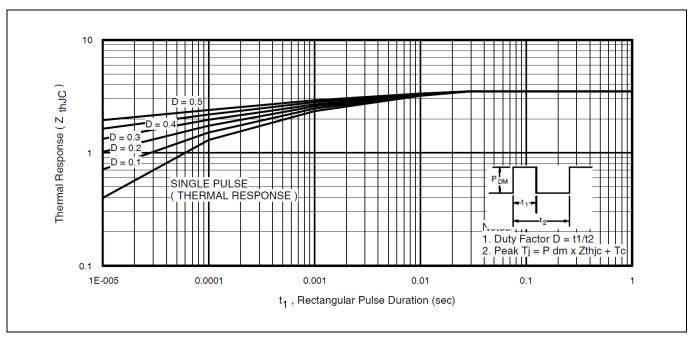
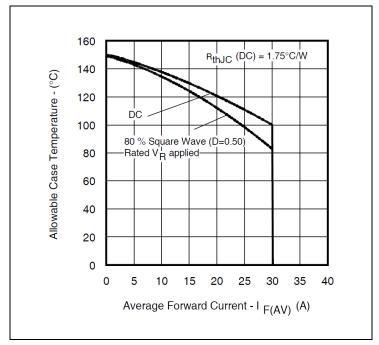
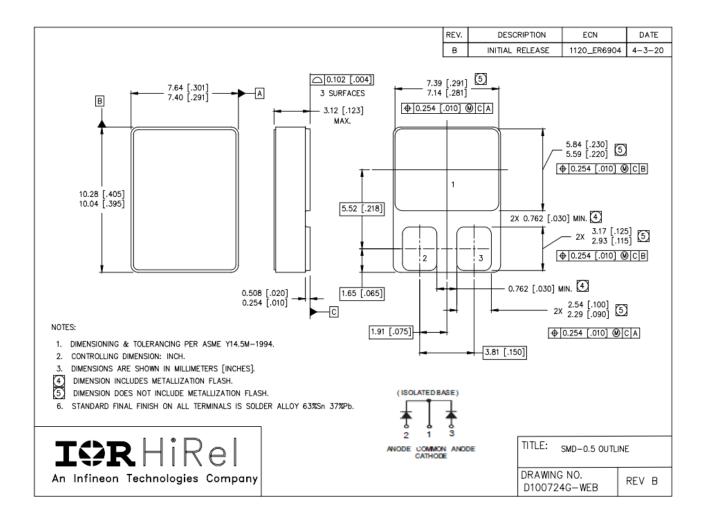


Figure 4 Maximum Thermal Impedance Z_{thJC} Characteristics (Per Leg)




Figure 5 Maximum Allowable Case Temperature Vs.
Average Forward Current (Per Package)

Package Outline

4 Package Outline

Note: For the most updated package outline, please see the website: **SMD-0.5**

30CLJQ100

Schottky Rectifier High Efficiency Series

Revision history

Revision history

Document version	Date of release	Description of changes
	01/23/2001	Final datasheet (PD-94085)
Rev A	08/10/2001	Updated Vf curve –page3
Rev B	11/29/2007	Updated fig 5 –page4
Rev C	05/13/2008	Updated per ECN-16060
Rev D	10/19/2012	Added ESD rating -page1
Rev E	06/15/2021	Updated per ECN-1120-08640

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-06-15

Published by

International Rectifier HiRel Products, Inc.

An Infineon Technologies company El Segundo, California 90245 USA

© 2021 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

MADNINGS

Due to technical requirements components may contain dangerous substances. For information or the types in question please contact your neares International Rectifier HiRel Products, Inc., ar Infineon Technologies company, office.

International Rectifier HiRel Components may only be used in life-support devices or systems with the expressed written approval of International Rectifier HiRel Products, Inc., an Infineon Technologies company, if failure of such components car reasonably be expected to cause the failure of that life-support device or system, or to affect the safety and effectiveness of that device or system.

Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof car reasonably be expected to result in personal injury.

Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. I they fail, it is reasonable to assume that the health of the user or other persons may be endangered.