

TABLE OF CONTENTS

Table	of Figu	ıres	7
Table	of Tab	les	7
1	Introd	duction	8
	1.1	Purpose and Scope	8
	1.2	Product Overview	8
	1.3	Applications	8
2	Featu	res	9
	2.1	Gyroscope Features	9
	2.2	Accelerometer Features	9
	2.3	Additional Features	9
3	Electr	rical Characteristics	10
	3.1	Gyroscope Specifications	10
	3.2	Accelerometer Specifications	11
	3.3	Electrical Specifications	12
	3.4	I ² C Timing Characterization	15
	3.5	SPI Timing Characterization – 4-Wire SPI Mode	16
	3.6	SPI Timing Characterization – 3-Wire SPI Mode	17
	3.7	Absolute Maximum Ratings	18
4	Appli	cations Information	19
	4.1	Pin Out Diagram and Signal Description	19
	4.2	Typical Operating Circuit	20
	4.3	Bill of Materials for External Components	21
	4.4	Block Diagram	22
	4.5	Overview	22
	4.6	Three-Axis MEMS Gyroscope with 16-bit ADCs and Signal Conditioning	22
	4.7	Three-Axis MEMS Accelerometer with 16-bit ADCs and Signal Conditioning	23
	4.8	I ² C and SPI Host Interface	23
	4.9	SPI OIS Interface and Auxiliary I ² C Interface	23
	4.10	Self-Test	23
	4.11	Clocking	23
	4.12	Sensor Data Registers	24
	4.13	FIFO	24
	4.14	Interrupts	24
	4.15	Digital-Output Temperature Sensor	24
	4.16	Bias and LDOs	24
	4.17	Charge Pump	24
	4.18	Standard Power Modes	24

5	Progra	ammable Interrupts	25
	5.1	Wake-on-Motion Interrupt	26
6	Digita	Interface	27
	6.1	I ² C and SPI Serial Interfaces	27
	6.2	I ² C Interface	27
	6.3	I ² C Communications Protocol	28
	6.4	I ² C Terms	30
	6.5	SPI Interface	31
7	Assem	ıbly	32
	7.1	Orientation of Axes	32
	7.2	Package Dimensions	33
8	Part N	umber Package Marking	35
9	Enviro	nmental Compliance	36
10	Use N	otes	37
	10.1	Valid Combinations Of UI And OIS Datapath Settings	37
	10.2	FIFO Watermark Threshold	37
	10.3	FIFO Watermark Interrupt	37
	10.4	Accelerometer-Only Low-Noise Mode	37
	10.5	Accelerometer Low-Power Mode	38
	10.6	Sensor Mode Change	38
	10.7	Temp Sensor during Gyroscope Standby Mode	38
	10.8	Gyroscope Mode Change	38
	10.9	Power Management 1 Register Setting	38
	10.10	Unlisted Register Locations	38
	10.11	Clock Transition When Gyroscope is Turned Off	38
	10.12	Sleep Mode	38
	10.13	No special operation needed for FIFO read in low power mode	38
	10.14	Gyroscope Standby Procedure	39
11	Regist	er Map	40
	11.1	Registers Specific To Secondary Interface In OIS Mode	43
12	Regist	er Descriptions	44
	12.1	Registers 0 to 2 – Gyroscope Self-Test Registers	44
	12.2	Registers 13 to 15 – Accelerometer Self-Test Registers	45
	12.3	Register 19 – Gyro Offset Adjustment Register	45
	12.4	Register 20 – Gyro Offset Adjustment Register	45
	12.5	Registers 21 – Gyro Offset Adjustment Register	46
	12.6	Registers 22 – Gyro Offset Adjustment Register	46
	12.7	Registers 23 – Gyro Offset Adjustment Register	46
	12.8	Register 24 – Gyro Offset Adjustment Register	46
	12.9	Register 25 – Sample Rate Divider	47

12.10	Register 26 – Configuration	47
12.11	Register 27 – Gyroscope Configuration	48
12.12	Register 28 – Accelerometer Configuration	49
12.13	Register 29 – Accelerometer Configuration 2	49
12.14	Register 30 – Gyroscope Low Power Mode ConfiguratioN	50
12.15	Register 32 – Wake-On Motion Threshold (X-Axis Accelerometer)	50
12.16	Register 33 – Wake-On Motion Threshold (Y-Axis Accelerometer)	51
12.17	Register 34 – Wake-On Motion Threshold (Z-Axis Accelerometer)	51
12.18	Register 35 – FIFO Enable	51
12.19	Register 36 – I ² C Master Control	52
12.20	Register 37 – I ² C Slave 0 Physical Address	52
12.21	Register 38 – I ² C Slave 0 Register Address	53
12.22	Register 39 – I ² C Slave 0 Control	53
12.23	Register 40 – I ² C Slave 1 Physical Address	53
12.24	Register 41 – I ² C Slave 1 Register Address	54
12.25	Register 39 – I ² C Slave 1 Control	54
12.26	Register 43 – I ² C Slave 2 Physical Address	54
12.27	Register 44 – I ² C Slave 2 Register Address	55
12.28	Register 45 – I ² C Slave 2 Control	55
12.29	Register 46 – FSYNC ODR Delay Enable	55
12.30	Register 54 – FSYNC Interrupt Status	56
12.31	Register 55 – INT Pin Configuration	56
12.32	Register 56 – Interrupt Enable	56
12.33	Register 57 – FIFO Watermark Interrupt Status	57
12.34	Register 58 – Interrupt Status	57
12.35	Register 59 – High Byte Of Accelerometer X-Axis Data	57
12.36	Register 60 – Low Byte Of Accelerometer X-Axis Data	57
12.37	Register 61 – High Byte Of Accelerometer Y-Axis Data	58
12.38	Register 62 – Low Byte Of Accelerometer Y-Axis Data	58
12.39	Register 63 – High Byte Of Accelerometer Z-Axis Data	58
12.40	Register 64 – Low Byte Of Accelerometer Z-Axis Data	58
12.41	Register 65 – High Byte Of Temperature Sensor Data	58
12.42	Register 66 – Low Byte Of Temperature Sensor Data	59
12.43	Register 67 – High Byte Of Gyroscope X-Axis Data	59
12.44	Register 68 – Low Byte Of Gyroscope X-Axis Data	59
12.45	Register 69 – High Byte Of Gyroscope Y-Axis Data	59
12.46	Register 70 – Low Byte Of Gyroscope Y-Axis Data	59
12.47	Register 71 – High Byte Of Gyroscope Z-Axis Data	60
12.48	Register 72 – Low Byte Of Gyroscope Z-Axis Data	60
12.49	Register 73 – Sensor Data From External I ² C devices	60

12.50	Register 74 – Sensor Data From External I ² C devices	.60
12.51	Register 75 – Sensor Data From External I ² C devices	.60
12.52	Register 76 – Sensor Data From External I ² C devices	.61
12.53	Register 77 – Sensor Data From External I ² C devices	.61
12.54	Register 78 – Sensor Data From External I ² C devices	.61
12.55	Register 79 – Sensor Data From External I ² C devices	.61
12.56	Register 80 – Sensor Data From External I ² C devices	.61
12.57	Register 81 – Sensor Data From External I ² C devices	.62
12.58	Register 82 – Sensor Data From External I ² C devices	.62
12.59	Register 83 – Sensor Data From External I ² C devices	.62
12.60	Register 84 – Sensor Data From External I ² C devices	.62
12.61	Register 95 – FSYNC ODR Delay Counter High Byte	.63
12.62	Register 96 – FSYNC ODR Delay Counter Low Byte	.63
12.63	Register 97 – FIFO Watermark Threshold In Number Of Bytes	. 63
12.64	Register 99 – Slave 0 Data Out	.63
12.65	Register 100 – Slave 1 Data Out	.63
12.66	Register 101 – Slave 2 Data Out	.64
12.67	Register 103 – I2C Master Delay Control	. 64
12.68	Register 104 – Signal Path Reset	.64
12.69	Register 105 – Accelerometer Intelligence Control	.65
12.70	Register 106 – User Control	. 65
12.71	Register 107 – Power Management 1	. 66
12.72	Register 108 – Power Management 2	. 67
12.73	Register 112 – OIS Enable	. 67
12.74	Registers 114 and 115 – FIFO Count Registers	. 68
12.75	Register 116 – FIFO Read Write	.68
12.76	Register 117 – WHO AM I	. 69
12.77	Register 119 to 126 – Accelerometer Offset Registers	.70
Descript	ion Of Registers Specific To Secondary Interface In OIS Mode	. 71
13.1	Register 0 – High Byte Of Accelerometer X-Axis OIS Data	.71
13.2	Register 1 – Low Byte Of Accelerometer X-Axis OIS Data	.71
13.3	Register 2 – High Byte Of Accelerometer Y-Axis OIS Data	.71
13.4	Register 3 – Low Byte Of Accelerometer Y-Axis OIS Data	.71
13.5	Register 4 – High Byte Of Accelerometer Z-Axis OIS Data	.71
13.6	Register 5 – Low Byte Of Accelerometer Z-Axis OIS Data	.72
13.7	Register 6 – High Byte Of Temperature Sensor OIS Data	.72
13.8	Register 7 – Low Byte Of Temperature Sensor OIS Data	.72
13.9	Register 8 – High Byte Of Gyroscope X-Axis OIS Data	.72
13.10	Register 9 – Low Byte Of Gyroscope X-Axis OIS Data	.72
13.11	Register 10 – High Byte Of Gyroscope Y-Axis OIS Data	.73

13

	13.12	Register 11 – Low Byte Of Gyroscope Y-Axis OIS Data	73
	13.13	Register 12 – High Byte Of Gyroscope Z-Axis OIS Data	73
	13.14	Register 13 – Low Byte Of Gyroscope Z-Axis OIS Data	73
L4	Referen	ce	74
15	Docume	ent Information	75
	15 1	Pavision History	75

Page 6 of 76

TABLE OF FIGURES

Figure 1. I ² C Bus Timing Diagram	15
Figure 2. 4-Wire SPI Bus Timing Diagram	16
Figure 3. 3-Wire SPI Bus Timing Diagram	17
Figure 4. Pin Out Diagram for ICM-20690 2.5x3.0x0.91 mm LGA	19
Figure 5. ICM-20690 Application Schematic (I ² C Interface to Host & OIS Operation)	20
Figure 6. ICM-20690 Application Schematic (SPI Interface to Host & OIS Operation)	20
Figure 7. ICM-20690 Block Diagram	22
Figure 8. START and STOP Conditions	28
Figure 9. Acknowledge on the I ² C Bus	28
Figure 10. Complete I ² C Data Transfer	29
Figure 11. Typical SPI Master/Slave Configuration	31
Figure 12. Orientation of Axes of Sensitivity and Polarity of Rotation	32
TABLE OF TABLES	
Table 1. Gyroscope Specifications	
Table 2. Accelerometer Specifications	11
Table 3. D.C. Electrical Characteristics	12
Table 4. A.C. Electrical Characteristics	13
Table 5. Other Electrical Specifications	14
Table 6. I ² C Timing Characteristics	15
Table 7. SPI Timing Characteristics (10-MHz Operation)	16
Table 8. SPI Timing Characteristics (20-MHz Operation)	17
Table 9. Absolute Maximum Ratings	18
Table 10. Signal Descriptions	19
Table 11. Bill of Materials	
Table 12. Standard Power Modes for ICM-20690	24
Table 13. Table of Interrupt Sources	
Table 14. Serial Interface	
Table 15. I ² C Terms	30
Table 16. ICM-20690 Register Map	
Table 17. Registers Specific to Secondary Interface in OIS Mode	43

1 INTRODUCTION

1.1 PURPOSE AND SCOPE

This document is a product specification, providing a description, specifications, and design related information on the ICM-20690 Dual-Interface MotionTracking device. The device is housed in a small 2.5x3x0.91 mm 14-pin LGA package.

1.2 PRODUCT OVERVIEW

The ICM-20690 is a 6-axis MotionTracking device with a main Interface for UI and an Auxiliary interface configurable as SPI slave for Optical Image Stabilization (OIS) applications or as I²C Master to support other sensors such as a compass or pressure sensor. It combines a 3-axis gyroscope, and a 3-axis accelerometer in a small 2.5x3x0.91 mm (14-pin LGA) package. The device supports independent data paths for UI and OIS, with independent control for full-scale range (FSR), output data rate (ODR).

ICM-20690 also features a 1K-byte FIFO that can lower the traffic on the serial bus interface, and reduce power consumption by allowing the system processor to burst read sensor data and then go into a low-power mode. ICM-20690, with its 6-axis integration, enables manufacturers to eliminate the costly and complex selection, qualification, and system level integration of discrete devices, guaranteeing optimal motion performance for consumers.

The gyroscope and accelerometer support the following independently programmable full-scale range settings:

Signal Path	Gyroscope	Accelerometer
UI Path	±31.25, ±62.5, ±125, ±250, ±500, ±1000, and ±2000 degrees/sec	±2, ±4, ±8, ±16g
OIS Path	±31.25, ±62.5, ±125, ±250, ±500, ±1000, and ±2000 degrees/sec	±1, ±2, ±4, ±8g

Other industry-leading features include on-chip 16-bit ADCs, programmable digital filters, an embedded temperature sensor, and programmable interrupts. The device features I^2C and SPI serial interfaces, a VDD operating range of 1.71 V to 3.45 V, and a separate digital IO supply, VDDIO from 1.71 V to 3.45 V.

The host interface can be configured to support SPI slave or I^2C slave modes. The SPI interface supports speeds up to 10 MHz and the I^2C interface supports speeds up to 400 kHz. A secondary interface can be configured to support SPI slave mode (3-wire) for interfacing to OIS controllers, or I^2C master mode for interfacing to external sensors. The SPI interface supports speeds up to 20 MHz and the I^2C interface supports speeds up to 400 kHz.

By leveraging its patented and volume-proven CMOS-MEMS fabrication platform, which integrates MEMS wafers with companion CMOS electronics through wafer-level bonding, InvenSense has driven the package size down to a footprint and thickness of 2.5x3x0.91 mm (14-pin LGA), to provide a very small yet high performance low cost package. The device provides high robustness by supporting 20,000*q* shock reliability.

1.3 APPLICATIONS

- Smartphones and Tablets
- Head Mounted Displays
- Wearable Sensors

Page 8 of 76

2 FEATURES

2.1 GYROSCOPE FEATURES

The triple-axis MEMS gyroscope in the ICM-20690 includes a wide range of features:

- Digital-output X-, Y-, and Z-axis angular rate sensors (gyroscopes) with independently programmable full-scale range of ±31.25, ±62,5, ±125, ±250, ±500, ±1000, and ±2000 degrees/sec for UI and OIS paths
- Integrated 16-bit ADCs per axis
- Digitally-programmable low-pass filters
- Low-power gyroscope operation
- Factory calibrated sensitivity scale factor
- Self-test

2.2 ACCELEROMETER FEATURES

The triple-axis MEMS accelerometer in ICM-20690 includes a wide range of features:

- Digital-output X-, Y-, and Z-axis accelerometer with independently programmable full-scale range of ±2g, ±4g, ±8g and ±16g for UI path and ±1g, ±2g, ±4g and ±8g for OIS path
- Integrated 16-bit ADCs per axis
- User-programmable interrupts
- Wake-on-motion interrupt for low power operation of applications processor
- Self-test

2.3 ADDITIONAL FEATURES

The ICM-20690 includes the following additional features:

- Smallest and thinnest LGA package for portable devices: 2.5x3x0.91 mm (14-pin LGA)
- 1K byte FIFO buffer enables the applications processor to read the data in bursts
- Digital-output temperature sensor
- User-programmable digital filters for gyroscope, accelerometer, and temp sensor
- 20,000 *g* shock tolerant
- Main interface: 10 MHz SPI / 400 kHz I²C slave host interface
- Auxiliary interface: 20 MHz SPI slave OIS controller interface / 400 kHz I²C master interface for external sensors
- MEMS structure hermetically sealed and bonded at wafer level
- RoHS and Green compliant

Page 9 of 76

3 ELECTRICAL CHARACTERISTICS

3.1 GYROSCOPE SPECIFICATIONS

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, T_A=25°C, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
	GYROSCOPE SENSITIVITY	•	•			
	FS_SEL=0		±250		º/s	3
	FS_SEL=1		±500		º/s	3
	FS_SEL=2		±1000		º/s	3
Full-Scale Range	FS_SEL=3		±2000		º/s	3
	FS_SEL=5		±31.25		º/s	3
	FS_SEL=6		±62.5		º/s	3
	FS_SEL=7		±125		º/s	3
Gyroscope ADC Word Length			16		bits	3
	FS_SEL=0		131		LSB/(º/s)	3
	FS_SEL=1		65.5		LSB/(º/s)	3
	FS_SEL=2		32.8		LSB/(º/s)	3
Sensitivity Scale Factor	FS_SEL=3		16.4		LSB/(º/s)	3
	FS_SEL=5		1048.6		LSB/(º/s)	3
	FS_SEL=6		524.3		LSB/(º/s)	3
	FS_SEL=7		262		LSB/(º/s)	3
Sensitivity Scale Factor Initial Tolerance	25°C		±1		%	1
Sensitivity Scale Factor Variation Over Temperature	-40°C to +85°C		±0.01		%/°C	1
Nonlinearity	Best fit straight line; 25°C		±0.1		%	1
Cross-Axis Sensitivity			±1		%	1
	ZERO-RATE OUTPUT (ZRO)			•		
Initial ZRO Tolerance	25°C		±1		º/s	1
ZRO Variation vs. Temperature	-40°C to +85°C		±0.01		º/s/ºC	1
	OTHER PARAMETERS		· I	1	<u>I</u>	
Rate Noise Spectral Density	@ 10 Hz		0.004		º/s/√Hz	1
Total RMS Noise	Bandwidth = 100 Hz		0.04		º/s-rms	1, 4
Gyroscope Mechanical Frequencies		25	27	29	KHz	2
Low Pass Filter Response	Programmable Range	5		250	Hz	3
Gyroscope Start-Up Time	Time from gyro enable to gyro drive ready		80		ms	1, 5
Output Data Rate	Low-Noise Mode	3.91		32k	Hz	3
Output Data Nate	Low-Power Mode	3.91		333.33	Hz	3

Table 1. Gyroscope Specifications

Notes:

- 1. Target spec. Subject to update.
- 2. Tested in production.
- 3. Guaranteed by design.
- 4. For low-noise mode.
- 5. The gyroscope output will be stable if ~200 ms are provided between a disable and the subsequent enable of the sensor.

Page 10 of 76

3.2 ACCELEROMETER SPECIFICATIONS

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, T_A=25°C, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES			
ACCELEROMETER SENSITIVITY									
	AFS_SEL=0		±2		g	2			
Full Cools Days	AFS_SEL=1		±4		g	2			
Full-Scale Range ADC Word Length	AFS_SEL=2		±8		g	2			
	AFS_SEL=3		±16		g	2			
ADC Word Length	Output in two's complement format		16		bits	2			
	AFS_SEL=0		16,384		LSB/g	2			
Caratti il Carlo Franco	AFS_SEL=1		8,192		LSB/g	2			
Sensitivity Scale Factor	AFS_SEL=2		4,096		LSB/g	2			
	AFS_SEL=3		2,048		LSB/g	2			
Sensitivity Scale Factor Initial Tolerance	Component-level		±1		%	1			
Sensitivity Change vs. Temperature	-40°C to +85°C		±0.008		%/°C	1			
Nonlinearity	Best Fit Straight Line		±0.3		%	1			
Cross-Axis Sensitivity			±1		%	1			
	ZERO-G OUTPUT	•				•			
Initial Tolerance	Board-level, all axes		±40		m <i>g</i>	1			
Zara Charal Characa Tanana	X & Y-axis (-40°C to +85°C)		±0.5		m <i>g/</i> ºC	1			
Zero-G Level Change vs. Temperature	Z-axis (-40°C to +85°C)		±1		m <i>g/</i> ºC	1			
	OTHER PARAMETERS								
Power Spectral Density	@ 10 Hz		100		μ <i>g</i> /√Hz	1			
RMS Noise	Bandwidth = 100 Hz		1		mg-rms	1, 3			
Low-Pass Filter Response	Programmable Range	5		218	Hz	2			
Accelerometer Startup Time	From sleep mode to valid data		10		ms	2			
Output Data Rate	Low-Noise Mode	3.91		4000	Hz	2			
Output Data Nate	Low-Power Mode	3.91		500	Hz	2			

Table 2. Accelerometer Specifications

Notes:

- 1. Target spec. Subject to update.
- Guaranteed by design.
- For low-noise mode.

3.3 ELECTRICAL SPECIFICATIONS

3.3.1 D.C. Electrical Characteristics

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, T_A=25°C, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS	NOTES	
	SUPPLY VOLTAGES						
VDD		1.71	1.8	3.45	V	2	
VDDIO		1.71	1.8	3.45	V	2	
	SUPPLY CURRENTS						
Low-Noise Mode	6-Axis Gyroscope + Accelerometer		3.1		mA	1	
	3-Axis Accelerometer		440		μΑ	1	
	3-Axis Gyroscope		2.9		mA	1	
Accelerometer Low -Power Mode (Gyroscope disabled)	100Hz ODR, 1x averaging		50		μΑ	1	
Gyroscope Low-Power Mode (Accelerometer disabled)	100Hz ODR, 1x averaging		1.40		mA	1	
6-Axis Low-Power Mode (Gyroscope Low-Power Mode; Accelerometer Low- Noise Mode)	100Hz ODR, 1x averaging		1.66		mA	1	
Full-Chip Sleep Mode	At 25ºC		6		μΑ	1	
TEMPERATURE RANGE							
Specified Temperature Range	Performance parameters are not applicable beyond Specified Temperature Range	-40		+85	°C	1	

Table 3. D.C. Electrical Characteristics

Notes:

- 1. Target spec. Subject to update.
- 2. Derived from validation or characterization of parts, not guaranteed in production.

Page 12 of 76

3.3.2 A.C. Electrical Characteristics

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, T_A=25°C, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS	NOTES	
	SUPI	PLIES					
Supply Ramp Time	Monotonic ramp. Ramp rate is 10% to 90% of the final value	0.01		3	ms	1	
Power Supply Noise			10		mV peak-peak	1	
	TEMPERATU	JRE SENSOR					
Operating Range	Ambient	-40		85	°C	1	
25°C Output			0		LSB	3	
ADC Resolution			16		bits	2	
ODR	Without Filter		8000		Hz	2	
	With Filter	3.91		1000	Hz	2	
Room Temperature Offset	25°C	-15		15	°C	3	
Stabilization Time				14000	μs	2	
Sensitivity	Untrimmed		326.8		LSB/°C	1	
Sensitivity Error	20055	-2.5		+2.5	%	1	
		ON RESET	Г		1		
Start-up time for register read/write	From power-up	DDECC		1	ms	1	
I ² C ADDRESS	AD0 = 0	DRESS	1101000				
	AD0 = 1		1101001				
V. High Loyal Input Valtage	DIGITAL INPUTS (FSYN		1		,, I		
V _{IH} , High Level Input Voltage		0.7*VDDIO			V		
V _{IL} , Low Level Input Voltage				0.3*VDDIO	V	1	
C _I , Input Capacitance			< 10		pF		
	DICITAL QUITNUT	(CDO INITA INITA)					
V _{OH} , High Level Output Voltage	$\begin{array}{c c} & \textbf{DIGITAL OUTPUT} \\ \hline R_{\text{LOAD}} = 1 \text{ M}\Omega; \end{array}$	0.9*VDDIO	1		V		
		0.9**VDDIO				-	
V _{OL1} , LOW-Level Output Voltage	R _{LOAD} =1 MΩ;			0.1*VDDIO	V		
V _{OL.INT} , INT Low-Level Output Voltage	OPEN=1, 0.3 mA sink Current			0.1	V	1	
Output Leakage Current	OPEN=1		100		nA		
t _{INT} , INT Pulse Width	LATCH_INT_EN=0		50		μς		
THE STATE OF THE S	I ² C I/O (S	SCL SDA)	30		μο		
V _{IL} , LOW-Level Input Voltage	1 2 7 2 (3	-0.5 V		0.3*VDDIO	V		
V _{IH} , HIGH-Level Input Voltage		0.7*VDDIO		VDDIO +	V		
V. Hustovasis			0.1*VDDIO	0.5 V	V		
V _{hys} , Hysteresis	2 4 1		0.1.40010	0.4		4	
V _{OL} , LOW-Level Output Voltage	3 mA sink current	0		0.4	V	1	
I _{OL} , LOW-Level Output Current	V _{OL} =0.4 V		3		mA		
	V _{OL} =0.6 V		6		mA		
Output Leakage Current			100		nA		
$t_{\text{of}}\text{, Output Fall Time from }V_{\text{IHmax}}$ to V_{ILmax}	C _b bus capacitance in pf	20+0.1C _b		300	ns		
	INTERNAL CL	OCK SOURCE					
	FCHOICE_B=1,2,3; SMPLRT_DIV=0		32		kHz	2	
	FCHOICE_B=0;						
	DLPFCFG=0 or 7		8		kHz	2	
Sample Rate	SMPLRT_DIV=0						
	FCHOICE_B=0;						
	DLPFCFG=1,2,3,4,5,6;		1		kHz	2	
	SMPLRT_DIV=0		1				
Clock Frequency Initial Tolerance	CLK_SEL=0, 6 or gyro inactive; 25°C	-3	ļ	+3	%	1	
clost requertey findar folerance	CLK_SEL=1,2,3,4,5 and gyro active; 25°C	-1		+1	%	1	
	CLK_SEL=0,6 or gyro inactive. (-40°C to +85°C)			±2	%	1	
Frequency Variation over Temperature							

Table 4. A.C. Electrical Characteristics

Notes:

- ${\bf 1.} \quad {\bf Derived \ from \ validation \ or \ characterization \ of \ parts, \ not \ guaranteed \ in \ production.}$
- 2. Guaranteed by design.
- 3. Production tested.

Page 13 of 76

3.3.3 Other Electrical Specifications

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, T_A=25°C, unless otherwise noted.

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES	
SERIAL INTERFACE							
	Low Speed Characterization	100	100 ±10%		kHz	1,3	
SPI Operating Frequency, All Registers Read/Write	High Speed Characterization	0.2	1	10	MHz	1, 2, 3	
Ready Write	OIS Mode Characterization			20	MHz	1, 2, 3	
SPI Modes			0 and 3				
12C Operating Frequency	All registers, Fast-mode	100		400	kHz	1	
I ² C Operating Frequency	All registers, Standard-mode			100	kHz	1	

Table 5. Other Electrical Specifications

Notes:

- 1. Derived from validation or characterization of parts, not guaranteed in production.
- 2. SPI clock duty cycle between 45% and 55% should be used for 10-MHz/20-MHz operation.
- 3. Minimum SPI/I²C clock rate is dependent on ODR. If ODR is below 4 kHz, minimum clock rate is 100 kHz. If ODR is greater than 4 kHz, minimum clock rate is 200 kHz.

Page 14 of 76

3.4 I²C TIMING CHARACTERIZATION

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, T_A=25°C, unless otherwise noted.

Parameters	Conditions	Min	Typical	Max	Units	Notes
I ² C TIMING	I ² C FAST-MODE					
f _{SCL} , SCL Clock Frequency		100		400	kHz	1
t _{HD.STA} , (Repeated) START Condition Hold Time		0.6			μs	1
t _{LOW} , SCL Low Period		1.3			μs	1
t _{HIGH} , SCL High Period		0.6			μs	1
t _{SU.STA} , Repeated START Condition Setup Time		0.6			μs	1
t _{HD.DAT} , SDA Data Hold Time		0			μs	1
t _{SU.DAT} , SDA Data Setup Time		100			ns	1
t _r , SDA and SCL Rise Time	C _b bus cap. from 10 to 400 pF	20+0.1C _b		300	ns	1
t _f , SDA and SCL Fall Time	C _b bus cap. from 10 to 400 pF	20+0.1C _b		300	ns	1
t _{SU.STO} , STOP Condition Setup Time		0.6			μs	1
t _{BUF} , Bus Free Time Between STOP and START Condition		1.3			μѕ	1
C _b , Capacitive Load for each Bus Line			< 400		pF	1
t _{VD.DAT} , Data Valid Time				0.9	μs	1
t _{VD.ACK} , Data Valid Acknowledge Time				0.9	μs	1

Table 6. I²C Timing Characteristics

Notes:

1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets

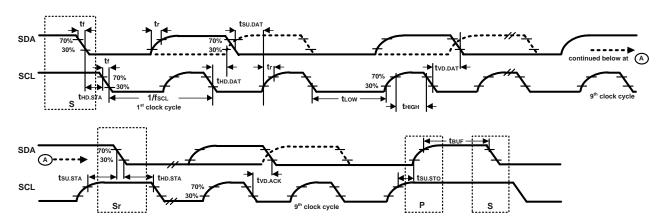


Figure 1. I²C Bus Timing Diagram

Page 15 of 76

3.5 SPI TIMING CHARACTERIZATION – 4-WIRE SPI MODE

The following section is applicable to 4-wire SPI mode for the Main Interface.

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, T_A=25°C, unless otherwise noted.

PARAMETERS	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
SPI TIMING						
f _{SPC} , SCLK Clock Frequency				10	MHz	1
t _{LOW} , SCLK Low Period		56			ns	1
t _{HIGH} , SCLK High Period		56			ns	1
t _{SU.CS} , CS Setup Time		2			ns	1
t _{HD.CS} , CS Hold Time		63			ns	1
t _{SU.SDI} , SDI Setup Time		3			ns	1
t _{HD.SDI} , SDI Hold Time		7			ns	1
t _{VD.SDO} , SDO Valid Time	C _{load} = 20 pF			40	ns	1
t _{HD.SDO} , SDO Hold Time	C _{load} = 20 pF	6			ns	1
t _{DIS.SDO} , SDO Output Disable Time				20	ns	1
t _{Fall} , SCLK Fall Time				6.5	ns	2
t _{Rise} , SCLK Rise Time				6.5	ns	2

Table 7. SPI Timing Characteristics (10-MHz Operation)

Notes:

- 1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets
- 2. Based on other parameter values

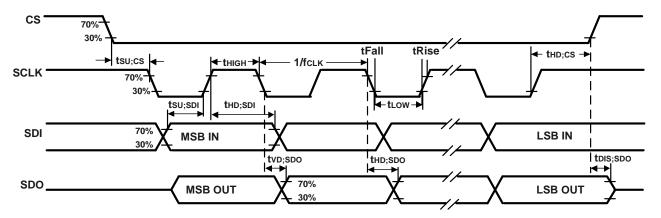


Figure 2. 4-Wire SPI Bus Timing Diagram

Page 16 of 76

3.6 SPI TIMING CHARACTERIZATION – 3-WIRE SPI MODE

The following section is applicable to 3-wire SPI mode for the Auxiliary Interface.

Typical Operating Circuit of section 4.2, VDD = 1.8 V, VDDIO = 1.8 V, T_A=25°C, unless otherwise noted.

PARAMETERS	CONDITIONS	MIN	ТҮР	MAX	UNITS	NOTES
SPI TIMING						
f _{SPC} , SCLK Clock Frequency				20	MHz	1
t _{LOW} , SCLK Low Period		30			ns	1
t _{HIGH} , SCLK High Period		30			ns	1
t _{SU.CS} , CS Setup Time		14.5			ns	1
t _{HD.CS} , CS Hold Time		9			ns	1
t _{SU.SDIO} , SDOI Input Setup Time		3.5			ns	1
t _{HD.SDIO} , SDIO Input Hold Time		8.5			ns	1
t _{VD.SDIO} , SDIO Output Valid Time	C _{load} = 20 pF			21	ns	1
t _{HD.SDIO} , SDIO Output Hold Time	C _{load} = 20 pF	19			ns	1
t _{DIS.SDIO} , SDIO Output Disable Time				41	ns	1
t _{Fall} , SCLK Fall Time				8	ns	2
t _{Rise} , SCLK Rise Time				8	ns	2

Table 8. SPI Timing Characteristics (20-MHz Operation)

Notes:

- 1. Based on characterization of 5 parts over temperature and voltage as mounted on evaluation board or in sockets
- 2. Based on other parameter values

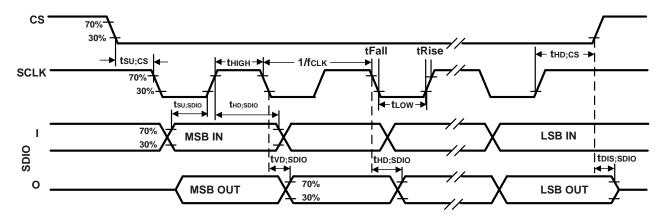


Figure 3. 3-Wire SPI Bus Timing Diagram

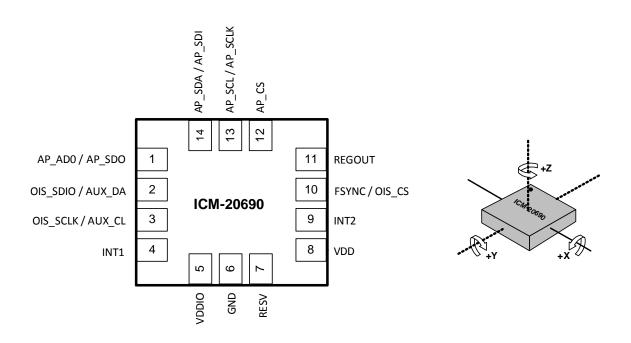
Page 17 of 76

3.7 ABSOLUTE MAXIMUM RATINGS

Stress above those listed as "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to the absolute maximum ratings conditions for extended periods may affect device reliability.

Parameter	Rating
Supply Voltage, VDD	-0.5 V to +4 V
Supply Voltage, VDDIO	-0.5 V to +4 V
REGOUT	-0.5 V to 2 V
Input Voltage Level (ADO, FSYNC, SCL, SDA)	-0.5 V to VDDIO + 0.5 V
Acceleration (Any Axis, unpowered)	20,000g for 0.2 ms
Operating Temperature Range	-40°C to +85°C
Storage Temperature Range	-40°C to +125°C
Electrostatic Discharge (ESD) Protection	2 kV (HBM); 250 V (MM)
Latch-up	JEDEC Class II (2),125°C ±100 mA

Table 9. Absolute Maximum Ratings


4 APPLICATIONS INFORMATION

4.1 PIN OUT DIAGRAM AND SIGNAL DESCRIPTION

Pin Number	Pin Name	Pin Description		
1	AP_AD0 / AP_SDO	Application Processor (AP) Interface: AP I ² C slave address LSB (AP_AD0); AP SPI serial data output (AP_SDO)		
2	OIS_SDIO / AUX_DA	OIS SPI serial data IO (OIS_SDIO); I ² C master serial data (AUX_DA)		
3	OIS_SCLK / AUX_CL	OIS SPI serial clock (OIS_SCLK); I ² C master serial clock (AUX_CL)		
4	INT1	Interrupt digital output (totem pole or open-drain)		
5	VDDIO Digital I/O supply voltage			
6	GND	Power supply ground		
7	RESV	Reserved, connect to ground		
8	VDD	Power supply voltage		
9	INT2	Interrupt digital output (totem pole or open-drain)		
10	FSYNC / OIS_CS	Frame synchronization digital input; OIS SPI chip select (OIS_CS)		
11	REGOUT	Regulator filter capacitor connection		
12	AP_CS	AP SPI Chip select (SPI mode only)		
13	AP_SCL / AP_SCLK	AP I ² C serial clock (AP_SCL); AP SPI serial clock (AP_SCLK)		
14	AP_SDA / AP_SDI	AP I ² C serial data (AP_SDA); AP SPI serial data input (AP_SDI)		

Table 10. Signal Descriptions

Note: Power up with AP_SCL / AP_SCLK and AP_CS pins held low is not a supported use case. In case this power up approach is used, software reset is required using the PWR_MGMT_1 register, prior to initialization.

LGA Package (Top view)

Orientation of Axes of and Polarity of Rotation

Figure 4. Pin Out Diagram for ICM-20690 2.5x3.0x0.91 mm LGA

Page 19 of 76

4.2 TYPICAL OPERATING CIRCUIT

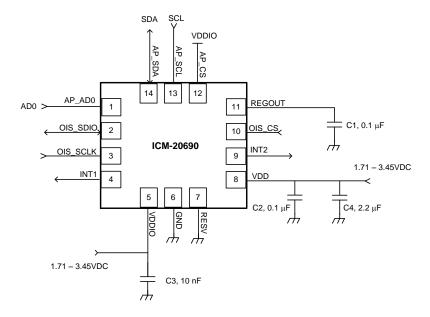


Figure 5. ICM-20690 Application Schematic (I²C Interface to Host & OIS Operation)

Note: I^2C lines are open drain and pull-up resistors (e.g. 10 k Ω) are required.

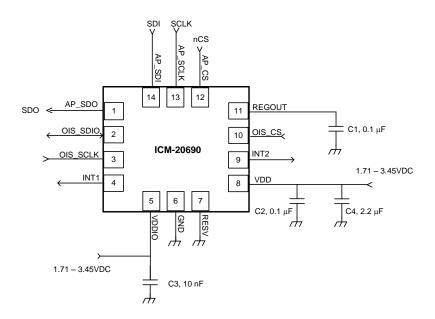


Figure 6. ICM-20690 Application Schematic (SPI Interface to Host & OIS Operation)

Page 20 of 76

4.3 BILL OF MATERIALS FOR EXTERNAL COMPONENTS

Component	Label	Specification	Quantity
REGOUT Capacitor	C1	X7R, 0.1μF ±10%	1
VDD Bypass Capacitors	C2	X7R, 0.1μF ±10%	1
VDD Bypass Capacitors	C4	X7R, 2.2μF ±10%	1
VDDIO Bypass Capacitor	С3	X7R, 10nF ±10%	1

Table 11. Bill of Materials

4.4 BLOCK DIAGRAM

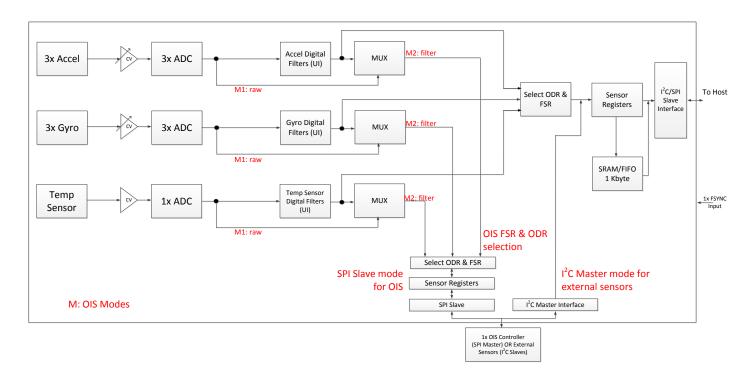


Figure 7. ICM-20690 Block Diagram

4.5 **OVERVIEW**

The ICM-20690 is comprised of the following key blocks and functions:

- Three-axis MEMS rate gyroscope sensor with 16-bit ADCs and signal conditioning
- Three-axis MEMS accelerometer sensor with 16-bit ADCs and signal conditioning
- Primary I²C and SPI serial communications interfaces
- Self-Test
- Clocking
- Sensor Data Registers
- FIFO
- Interrupts
- Digital-Output Temperature Sensor
- Bias and LDOs
- Charge Pump
- Standard Power Modes

4.6 THREE-AXIS MEMS GYROSCOPE WITH 16-BIT ADCS AND SIGNAL CONDITIONING

The ICM-20690 consists of three independent vibratory MEMS rate gyroscopes, which detect rotation about the X-, Y-, and Z- Axes. When the gyros are rotated about any of the sense axes, the Coriolis Effect causes a vibration that is detected by a capacitive pickoff. The resulting signal is amplified, demodulated, and filtered to produce a voltage that is proportional to the angular rate. This voltage is digitized using individual on-chip 16-bit Analog-to-Digital Converters (ADCs) to sample each axis. The full-scale range of the gyro sensors may be digitally programmed to ± 31.25 , ± 62.5 , ± 125 , ± 250 , ± 500 , ± 1000 , or ± 2000 degrees per second (dps). The ADC sample rate is programmable from 8,000 samples per second, down to 3.9 samples per second, and user-selectable low-pass filters enable a wide range of cut-off frequencies.

Page 22 of 76

4.7 THREE-AXIS MEMS ACCELEROMETER WITH 16-BIT ADCS AND SIGNAL CONDITIONING

The ICM-20690's 3-Axis accelerometer uses separate proof masses for each axis. Acceleration along a particular axis induces displacement on the corresponding proof mass, and capacitive sensors detect the displacement differentially. The ICM-20690's architecture reduces the accelerometers' susceptibility to fabrication variations as well as to thermal drift. When the device is placed on a flat surface, it will measure 0g on the X- and Y-axes and +1g on the Z-axis. The accelerometers' scale factor is calibrated at the factory and is nominally independent of supply voltage. Each sensor has a dedicated sigma-delta ADC for providing digital outputs. The full scale range of the digital output can be adjusted to $\pm 2g$, $\pm 4g$, or $\pm 16g$ for UI mode or to $\pm 1g$, $\pm 2g$, $\pm 4g$, or $\pm 8g$ for OIS mode.

4.8 I²C AND SPI HOST INTERFACE

The ICM-20690 communicates to the application processor using either a SPI or an I^2C serial interface. The ICM-20690 always acts as a slave when communicating to the application processor. The LSB of the I^2C slave address is set by pin 1 (AD0).

4.9 SPI OIS INTERFACE AND AUXILIARY I²C INTERFACE

The ICM-20690 has an SPI interface for communicating to OIS controllers. This interface supports 3-wire SPI. The ICM-20690 always acts as a slave when communicating to OIS controllers over this interface. The SPI interface is multiplexed with an auxiliary I^2C bus that can be used for communicating to off-chip sensors. This bus has two operating modes:

 $\underline{I^2C}$ Master Mode: The ICM-20690 acts as a master to any external sensors connected to the auxiliary I^2C bus. The ICM-20690 can directly access the data registers of external digital sensors. In this mode, the ICM-20690 directly obtains data from auxiliary sensors without intervention from the application processor. The I^2C Master can be configured to read up to 12 bytes from up to 3 auxiliary sensors.

<u>Pass-Through Mode</u>: The ICM-20690 directly connects the primary and auxiliary I²C buses together, allowing the application processor to directly communicate with any external sensors connected to the auxiliary I²C interface. Pass-through mode is useful for configuring external sensors.

4.10 SELF-TEST

Self-test allows for the testing of the mechanical and electrical portions of the sensors. The self-test for each measurement axis can be activated by means of the gyroscope and accelerometer self-test registers.

When the self-test is activated, the electronics cause the sensors to be actuated and produce an output signal. The output signal is used to observe the self-test response.

The self-test response is defined as follows:

Self-test response = Sensor output with self-test enabled - Sensor output with self-test disabled

When the value of the self-test response is within the specified min/max limits of the product specification, the part has passed self-test. When the self-test response exceeds the min/max values, the part is deemed to have failed self-test.

4.11 CLOCKING

The ICM-20690 has a flexible clocking scheme, allowing a variety of internal clock sources to be used for the internal synchronous circuitry. This synchronous circuitry includes the signal conditioning and ADCs, and various control circuits and registers. An on-chip PLL provides flexibility in the allowable inputs for generating this clock.

Allowable internal sources for generating the internal clock are:

- a) An internal relaxation oscillator
- b) Auto-select between internal relaxation oscillator and gyroscope MEMS oscillator to use the best available source

The only setting supporting specified performance in all modes is option b). It is recommended that option b) be used.

Page 23 of 76

4.12 SENSOR DATA REGISTERS

The sensor data registers contain the latest gyroscope, accelerometer, and temperature measurement data. They are read-only registers, and are accessed via the serial interface. Data from these registers may be read anytime.

4.13 FIFO

The ICM-20690 contains a 1K-byte FIFO register that is accessible via the Serial Interface. The FIFO configuration register determines which data is written into the FIFO. Possible choices include gyro data, accelerometer data, temperature readings, and FSYNC input. A FIFO counter keeps track of how many bytes of valid data are contained in the FIFO. The FIFO register supports burst reads. The interrupt function may be used to determine when new data is available.

The ICM-20690 allows FIFO read in low-power accelerometer mode.

4.14 INTERRUPTS

Interrupt functionality is configured via the Interrupt Configuration register. Items that are configurable include the INT pin configuration, the interrupt latching and clearing method, and triggers for the interrupt. Items that can trigger an interrupt are (1) Clock generator locked to new reference oscillator (used when switching clock sources); (2) new data is available to be read (from the FIFO and Data registers); (3) accelerometer event interrupts; (4) FIFO watermark; (5) FIFO overflow. The interrupt status can be read from the Interrupt Status register.

4.15 DIGITAL-OUTPUT TEMPERATURE SENSOR

An on-chip temperature sensor and ADC are used to measure the ICM-20690 die temperature. The readings from the ADC can be read from the FIFO or the Sensor Data registers.

4.16 BIAS AND LDOS

The bias and LDO section generates the internal supply and the reference voltages and currents required by the ICM-20690. Its two inputs are an unregulated VDD and a VDDIO logic reference supply voltage. The LDO output is bypassed by a capacitor at REGOUT. For further details on the capacitor, please refer to the Bill of Materials for External Components.

4.17 CHARGE PUMP

An on-chip charge pump generates the high voltage required for the MEMS oscillator.

4.18 STANDARD POWER MODES

The following table lists the user-accessible power modes for ICM-20690.

Mode	Name	Gyro	Accel
1	Sleep Mode	Off	Off
2	Standby Mode	Drive On	Off
3	Accelerometer Low-Power Mode	Off	Duty-Cycled
4	Accelerometer Low-Noise Mode	Off	On
5	Gyroscope Low-Power Mode	Duty-Cycled	Off
6	Gyroscope Low-Noise Mode	On	Off
7	6-Axis Low-Noise Mode	On	On
8	6-Axis Low-Power Mode	Duty-Cycled	On

Table 12. Standard Power Modes for ICM-20690

Notes:

1. Power consumption for individual modes can be found in section 3.3.1.

Page 24 of 76

5 PROGRAMMABLE INTERRUPTS

The ICM-20690 has a programmable interrupt system that can generate an interrupt signal on the INT pins. Status flags indicate the source of an interrupt. Interrupt sources may be enabled and disabled individually.

Interrupt Name	Interrupt Pin
Motion Detection	INT2
FIFO Overflow	INT2
FIFO Watermark	INT1
Data Ready	INT1
FSYNC	INT2

Table 13. Table of Interrupt Sources

5.1 WAKE-ON-MOTION INTERRUPT

The ICM-20690 provides motion detection capability. A qualifying motion sample is one where the high passed sample from any axis has an absolute value exceeding a user-programmable threshold. The following steps explain how to configure the Wake-on-Motion Interrupt.

Step 1: Ensure that Accelerometer is running

- In PWR_MGMT_1 register (0x6B) set CYCLE = 0, SLEEP = 0, and GYRO_STANDBY = 0
- In PWR_MGMT_2 register (0x6C) set STBY_XA = STBY_YA = STBY_ZA = 0, and STBY_XG = STBY_YG = STBY_ZG = 1

Step 2: Accelerometer Configuration

• In ACCEL CONFIG2 register (0x1D) set ACCEL FCHOICE B = 1 and A DLPF CFG[2:0] = 1 (b001)

Step 3: Enable Motion Interrupt

 In INT_ENABLE register (0x38) set WOM_X_INT_EN = WOM_Y_INT_EN = WOM_Z_INT_EN = 1 to enable motion interrupt for X, Y, and Z axis

Step 4: Set Motion Threshold

- Set the motion threshold for X-axis in ACCEL_WOM_X_THR register (0x20)
- Set the motion threshold for Y-axis in ACCEL_WOM_Y_THR register (0x21)
- Set the motion threshold for Z-axis in ACCEL WOM Z THR register (0x22)

Step 5: Set Interrupt Mode

• In ACCEL_INTEL_CTRL register (0x69) clear bit 0 (WOM_TH_MODE) to select the motion interrupt as an OR of the enabled interrupts for X, Y, Z-axes and set bit 0 to make the interrupt an AND of the enabled interrupts for X, Y, Z axes)

Step 6: Enable Accelerometer Hardware Intelligence

In ACCEL INTEL CTRL register (0x69) set ACCEL INTEL EN = ACCEL INTEL MODE = 1; Ensure that bit 0 is set to 0.

Step 7: Set Frequency of Wake-Up

• In register (0x19) set SMPLRT_DIV for a sample rate as indicated in the register map

Step 8: Enable Cycle Mode (Accelerometer Low-Power Mode)

• In PWR_MGMT_1 register (0x6B) set CYCLE = 1

6 DIGITAL INTERFACE

6.1 I²C AND SPI SERIAL INTERFACES

The internal registers and memory of the ICM-20690 can be accessed using either I²C at 400 kHz or SPI at 10 MHz. SPI operates in four-wire mode.

Pin Number	Pin Name	Pin Description
1	AP_AD0 / AP_SDO	Application Processor (AP) Interface: AP I ² C slave address LSB (AP_AD0); AP SPI serial data output (AP_SDO)
12	AP_CS	AP SPI Chip select (SPI mode only)
13	AP_SCL / AP_SCLK	AP I ² C serial clock (AP_SCL); AP SPI serial clock (AP_SCLK)
14	AP_SDA / AP_SDI	AP I ² C serial data (AP_SDA); AP SPI serial data input (AP_SDI)

Table 14. Serial Interface

Note:

To prevent switching into I²C mode when using SPI, the I²C interface should be disabled by setting the I2C_IF_DIS configuration bit. Setting this bit should be performed immediately after waiting for the time specified by the "Start-Up Time for Register Read/Write" in Section 6.3.

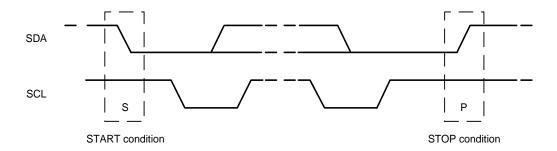
For further information regarding the I2C_IF_DIS bit, please refer to sections 11 and 12 of this document.

6.2 I²C INTERFACE

 I^2C is a two-wire interface comprised of the signals serial data (SDA) and serial clock (SCL). In general, the lines are open-drain and bidirectional. In a generalized I^2C interface implementation, attached devices can be a master or a slave. The master device puts the slave address on the bus, and the slave device with the matching address acknowledges the master.

The ICM-20690 always operates as a slave device when communicating to the system processor, which thus acts as the master. SDA and SCL lines typically need pull-up resistors to VDD. The maximum bus speed is 400 kHz.

The slave address of the ICM-20690 is b110100X, which is 7 bits long. The LSB bit of the 7-bit address is determined by the logic level on pin AD0. This allows two ICM-20690s to be connected to the same I²C bus. When used in this configuration, the address of one of the devices should be b1101000 (pin AD0 is logic low) and the address of the other should be b1101001 (pin AD0 is logic high).


Page 27 of 76

6.3 I²C COMMUNICATIONS PROTOCOL

START (S) and STOP (P) Conditions

Communication on the I²C bus starts when the master puts the START condition (S) on the bus, which is defined as a HIGH-to-LOW transition of the SDA line while SCL line is HIGH (see figure below). The bus is considered to be busy until the master puts a STOP condition (P) on the bus, which is defined as a LOW to HIGH transition on the SDA line while SCL is HIGH (see figure below). Additionally, the bus remains busy if a repeated START (Sr) is generated instead of a STOP condition.

Figure 8. START and STOP Conditions

Data Format / Acknowledge

I²C data bytes are defined to be 8-bits long. There is no restriction to the number of bytes transmitted per data transfer. Each byte transferred must be followed by an acknowledge (ACK) signal. The clock for the acknowledge signal is generated by the master, while the receiver generates the actual acknowledge signal by pulling down SDA and holding it low during the HIGH portion of the acknowledge clock pulse.

If a slave is busy and cannot transmit or receive another byte of data until some other task has been performed, it can hold SCL LOW, thus forcing the master into a wait state. Normal data transfer resumes when the slave is ready, and releases the clock line (refer to the following figure).

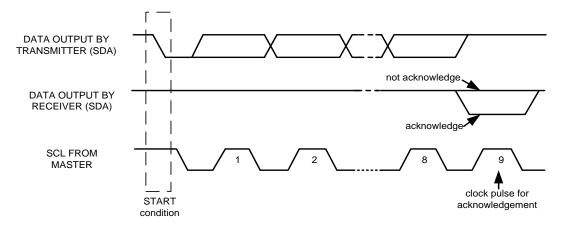


Figure 9. Acknowledge on the I²C Bus

Page 28 of 76

Communications

After beginning communications with the START condition (S), the master sends a 7-bit slave address followed by an 8th bit, the read/write bit. The read/write bit indicates whether the master is receiving data from or is writing to the slave device. Then, the master releases the SDA line and waits for the acknowledge signal (ACK) from the slave device. Each byte transferred must be followed by an acknowledge bit. To acknowledge, the slave device pulls the SDA line LOW and keeps it LOW for the high period of the SCL line. Data transmission is always terminated by the master with a STOP condition (P), thus freeing the communications line. However, the master can generate a repeated START condition (Sr), and address another slave without first generating a STOP condition (P). A LOW to HIGH transition on the SDA line while SCL is HIGH defines the stop condition. All SDA changes should take place when SCL is low, with the exception of start and stop conditions.

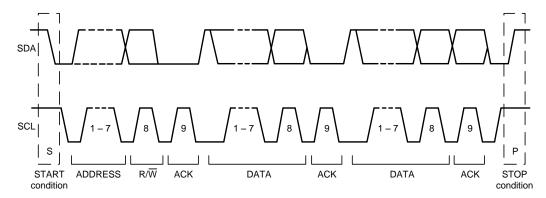


Figure 10. Complete I²C Data Transfer

To write the internal ICM-20690 registers, the master transmits the start condition (S), followed by the I²C address and the write bit (0). At the 9th clock cycle (when the clock is high), the ICM-20690 acknowledges the transfer. Then the master puts the register address (RA) on the bus. After the ICM-20690 acknowledges the reception of the register address, the master puts the register data onto the bus. This is followed by the ACK signal, and data transfer may be concluded by the stop condition (P). To write multiple bytes after the last ACK signal, the master can continue outputting data rather than transmitting a stop signal. In this case, the ICM-20690 automatically increments the register address and loads the data to the appropriate register. The following figures show single and two-byte write sequences.

Single-Byte Write Sequence

Master	S	AD+W		RA		DATA		Р
Slave			ACK		ACK		ACK	

Burst Write Sequence

Master	S	AD+W		RA		DATA		DATA		Р
Slave			ACK		ACK		ACK		ACK	

To read the internal ICM-20690 registers, the master sends a start condition, followed by the I²C address and a write bit, and then the register address that is going to be read. Upon receiving the ACK signal from the ICM-20690, the master transmits a start signal followed by the slave address and read bit. As a result, the ICM-20690 sends an ACK signal and the data. The communication ends with a not acknowledge (NACK) signal and a stop bit from master. The NACK condition is defined such that the SDA line remains high at the 9th clock cycle. The following figures show single and two-byte read sequences.

Single-Byte Read Sequence

Master	S	AD+W		RA		S	AD+R			NACK	Р
Slave			ACK		ACK			ACK	DATA		

Burst Read Sequence

Page 29 of 76

	Slave			ACK		ACK			ACK	DATA		DATA		
--	-------	--	--	-----	--	-----	--	--	-----	------	--	------	--	--

6.4 I²C TERMS

Signal	Description
S	Start Condition: SDA goes from high to low while SCL is high
AD	Slave I ² C address
W	Write bit (0)
R	Read bit (1)
ACK	Acknowledge: SDA line is low while the SCL line is high at the 9 th clock
	cycle
NACK	Not-Acknowledge: SDA line stays high at the 9 th clock cycle
RA	ICM-20690 internal register address
DATA	Transmit or received data
Р	Stop condition: SDA going from low to high while SCL is high

Table 15. I²C Terms

6.5 SPI INTERFACE

The ICM-20690 support 4-wire SPI for host interface and 3-wire SPI for the OIS interface. 4-wire SPI is a synchronous serial interface that uses two control lines and two data lines. 3-wire SPI is a synchronous serial interface that uses two control lines and one data line. The ICM-20690 always operates as a Slave device during standard Master-Slave SPI operation.

With respect to the Master, the Serial Clock output (SCLK), the Serial Data Output (SDO) and the Serial Data Input (SDI) for 4-wire SPI (or Serial Data IO (SDOI) for 3-wire SPI) are shared among the Slave devices. Each SPI slave device requires its own Chip Select (nCS) line from the master.

nCS goes low (active) at the start of transmission and goes back high (inactive) at the end. Only one nCS line is active at a time, ensuring that only one slave is selected at any given time. The nCS lines of the non-selected slave devices are held high, causing their SDO lines to remain in a high-impedance (high-z) state so that they do not interfere with any active devices.

SPI Operational Features

- 1. Data is delivered MSB first and LSB last
- 2. Data is latched on the rising edge of SCLK
- 3. Data should be transitioned on the falling edge of SCLK
- 4. The maximum frequency of SCLK is 10 MHz
- 5. SPI read and write operations are completed in 16 or more clock cycles (two or more bytes). The first byte contains the SPI Address, and the following byte(s) contain(s) the SPI data. The first bit of the first byte contains the Read/Write bit and indicates the Read (1) or Write (0) operation. The following 7 bits contain the Register Address. In cases of multiple-byte Read/Writes, data is two or more bytes:

SPI Address format

MSB							LSB
R/W	A6	A5	A4	А3	A2	A1	Α0

SPI Data format

MSB							LSB
D7	D6	D5	D4	D3	D2	D1	D0

6. Supports Single or Burst Read/Writes.

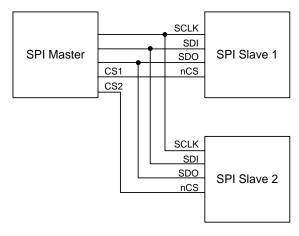


Figure 11. Typical SPI Master/Slave Configuration

Page 31 of 76

7 ASSEMBLY

This section provides general guidelines for assembling InvenSense Micro Electro-Mechanical Systems (MEMS) gyros packaged in LGA package.

7.1 ORIENTATION OF AXES

The diagram below shows the orientation of the axes of sensitivity and the polarity of rotation. Note the pin 1 identifier (•) in the figure.

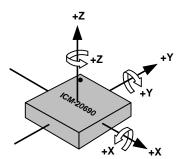
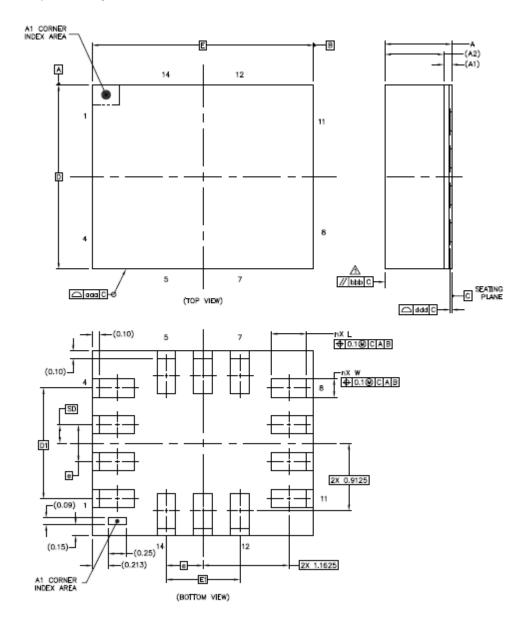
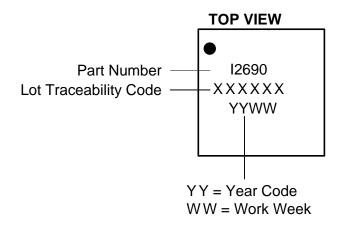



Figure 12. Orientation of Axes of Sensitivity and Polarity of Rotation

7.2 PACKAGE DIMENSIONS

14 Lead LGA (2.5x3x0.91) mm NiAu pad finish


		DIMI	NSIONS IN MILLIM	IETERS
	SYMBOLS	MIN	NOM	MAX
Total Thickness	Α	0.85	0.91	0.97
Substrate Thickness	A1		0.105	REF
Mold Thickness	A2		0.8	REF
Body Size	D		2.5	BSC
Bouy Size	E		3	BSC
Lead Width	W	0.2	0.25	0.3
Lead Length	L	0.425	0.475	0.525
Lead Pitch	е		0.5	BSC
Lead Count	n		14	
Edge Pin Center to Center	D1		1.5	BSC
Luge Fill Center to Center	E1		1	BSC
Body Center to Contact Pin	SD		0.25	BSC
Package Edge Tolerance	aaa		0.1	
Mold Flatness	bbb		0.2	
Coplanarity	ddd		0.08	

8 PART NUMBER PACKAGE MARKING

The part number package marking for ICM-20690 devices is summarized below:

Part Number	Part Number Package Marking
ICM-20690	12690

9 ENVIRONMENTAL COMPLIANCE

The ICM-20690 is RoHS and Green compliant.

The ICM-20690 is in full environmental compliance as evidenced in report HS-ICM-20690A, Materials Declaration Data Sheet.

Environmental Declaration Disclaimer:

InvenSense believes this environmental information to be correct but cannot guarantee accuracy or completeness. Conformity documents for the above component constitutes are on file. InvenSense subcontracts manufacturing and the information contained herein is based on data received from vendors and suppliers, which has not been validated by InvenSense.

Page 36 of 76

10 USE NOTES

10.1 VALID COMBINATIONS OF UI AND OIS DATAPATH SETTINGS

When the device is being used with UI and OIS datapaths active, certain combinations of settings are valid and others are invalid. These are summarized in the tables below. The device is in low-noise mode for these configurations.

Gyroscope Configurations:

				UI Mode			
	Filter Settings		FCHOICE_B = 01	FCHOICE_B = 10	FCHOICE_B = 00; DLPFCFG = 7	FCHOICE_B = 00; DLPFCFG = 0	FCHOICE_B = 00; DLPFCFG = 1 to 6
		ODR	32kHz	32kHz	8kHz	8kHz	≤1kHz
	FCHOICE_OIS_B = 11	32kHz	Valid	Valid	Valid	Valid	Valid
OIS Mode	FCHOICE_OIS_B = 10; FCHOICE_B = 10	32kHz	Invalid	Valid	Invalid	Invalid	Invalid
	FCHOICE_OIS_B = 10; FCHOICE_B = 00	8kHz	Invalid	Invalid	Valid	Valid	Valid
	FCHOICE_OIS_B = 01; FCHOICE_B = 00	8kHz	Invalid	Invalid	Valid	Valid	Valid
	FCHOICE_OIS_B = 01; FCHOICE_B = 00; DLPF_CFG = 1 to 6	≤1kHz	Invalid	Invalid	Invalid	Invalid	Valid

Accelerometer Configurations:

	UI Mode								
	Filter Settings		ACCEL_FCHOICE_B = 1	ACCEL_FCHOICE_B = 0; A_DLPF_CFG = 7	ACCEL_FCHOICE_B = 0; A_DLPF_CFG = 0 to 6				
		ODR	4kHz	≤1kHz	≤1kHz				
OIS Mode	ACCEL_FCHOICE_OIS_B = 11	4kHz	Valid	Valid	Valid				
	ACCEL_FCHOICE_OIS_B = 10; ACCEL_FCHOICE_B = 0	≤1kHz	Invalid	Valid	Valid				
	ACCEL_FCHOICE_OIS_B = 01; ACCEL_FCHOICE_B = 0; A_DLPF_CFG = 0 to 6	≤1kHz	Invalid	Invalid	Valid				

10.2 FIFO WATERMARK THRESHOLD

FIFO watermark threshold, FIFO_WM_TH, is limited to 8 bits but the FIFO size is 1Kbytes. This limits the use of FIFO watermark to 256 out of a possible 1024 bytes.

10.3 FIFO WATERMARK INTERRUPT

For FIFO watermark interrupt, FIFO_WM_INT, to receive future interrupts after a first interrupt, the host must clear the status register with a read.

10.4 ACCELEROMETER-ONLY LOW-NOISE MODE

The first output sample in Accelerometer-Only Low-Noise Mode after wake up from sleep always has 1 ms delay, independent of ODR.

Page 37 of 76

10.5 ACCELEROMETER LOW-POWER MODE

Changing the value of SMPLRT_DIV register in Accelerometer Low-Power mode will take effect after up to one sample at the old ODR.

10.6 SENSOR MODE CHANGE

When switching from low-power modes to low-noise modes, unsettled output samples may be observed at the gyroscope or accelerometer outputs due to filter switching and settling. The number of unsettled output samples depends on the filter and ODR settings. The number of unsettled output samples is minimized by selecting the widest low-noise-mode filter bandwidth consistent with the chosen ODR.

10.7 TEMP SENSOR DURING GYROSCOPE STANDBY MODE

During transition from Gyro Low power mode (GYRO_CYCLE=1), to Gyro Standby mode, in addition to the Gyro axis (axes) being turned off, the Temp Sensor will also be turned off if the Accel is disabled. In order to keep the temp sensor on during Gyroscope standby mode when Accel is disabled, the following procedure should be followed:

- Set GYRO CYCLE = 0 at least one ODR cycle prior to entering Standby mode
- At least one of the Gyro axis is ON prior to entering Standby mode
- Set GYRO_STANDBY = 1

10.8 GYROSCOPE MODE CHANGE

Gyroscope will take one ODR clock period to switch from Low-Noise to Low-Power mode after GYRO_CYCLE bit is set. If GYRO_CYCLE is set to 1 prior to turning on the gyroscope, the first sample will be from low-noise mode, which may not be a settled value. It is therefore recommended to ignore the first reading in this case.

10.9 POWER MANAGEMENT 1 REGISTER SETTING

It is required to set CLKSEL[2:0] to 001 (auto-select) for full performance.

10.10 UNLISTED REGISTER LOCATIONS

Do not read unlisted register locations in Sleep mode as this may cause the device to hang up, requiring power cycle to restore operation.

10.11 CLOCK TRANSITION WHEN GYROSCOPE IS TURNED OFF

When the gyroscope is on, the on-chip master clock source will be the gyroscope clock (assuming CLKSEL[2:0] = 001 for auto-select mode); otherwise, the master clock source will be the internal oscillator as long as the part is not in Sleep mode. During a power mode transition, whenever the gyroscope is disabled and the part enters a mode other than Sleep, the on-chip master clock source will transition from the gyroscope clock to the internal oscillator. It will take about 20 µs for this transition to complete.

10.12 SLEEP MODE

The part will only enter Sleep mode when the SLEEP bit in PWR_MGMT_2 is set to '1'. If SLEEP bit is '0' and bit STBY_[X,Y,Z]A and STBY_[X,Y,Z]G are all set to '1', accelerometer and gyroscope will be turned off, but the on-chip master clock will still be running and consuming power.

10.13 NO SPECIAL OPERATION NEEDED FOR FIFO READ IN LOW POWER MODE

The use of FIFO is enabled in all modes including low power mode.

Page 38 of 76

10.14 GYROSCOPE STANDBY PROCEDURE

The follow precaution and procedure must be followed while using the Gyroscope Standby mode: <u>Precaution to follow while entering Standby Mode</u>:

• The user will ensure that at least one gyro axis is ON when setting gyro_standby = 1.

Procedure to transition from Gyro Standby to Gyro off:

- The user should set gyro_standby = 0 first
- Next, turn off gyro x/y/z.

Page 39 of 76

11 REGISTER MAP

The following table lists the register map for the ICM-20690. Note that all registers are accessible in all modes of device operation.

Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
00	00	SELF_TEST_X_GYRO	READ/ WRITE	XG_ST_DATA[7:0]							
01	01	SELF_TEST_Y_GYRO	READ/ WRITE		YG_ST_DATA[7:0]						
02	02	SELF_TEST_Z_GYRO	READ/ WRITE				ZG_ST_D	ATA[7:0]			
0D	13	SELF_TEST_X_ACCEL	READ/ WRITE				XA_ST_D	ATA[7:0]			
0E	14	SELF_TEST_Y_ACCEL	READ/ WRITE				YA_ST_D	ATA[7:0]			
0F	15	SELF_TEST_Z_ACCEL	READ/ WRITE				ZA_ST_D	ATA[7:0]			
13	19	XG_OFFS_USRH	READ/ WRITE				X_OFFS_L	JSR [15:8]			
14	20	XG_OFFS_USRL	READ/ WRITE				X_OFFS_I	USR [7:0]			
15	21	YG_OFFS_USRH	READ/ WRITE				Y_OFFS_L	JSR [15:8]			
16	22	YG_OFFS_USRL	READ/ WRITE				Y_OFFS_I	USR [7:0]			
17	23	ZG_OFFS_USRH	READ/ WRITE				Z_OFFS_U	JSR [15:8]			
18	24	ZG_OFFS_USRL	READ/ WRITE				Z_OFFS_I	USR [7:0]			
19	25	SMPLRT_DIV	READ/ WRITE		SMPLRT_DIV[7:0]						
1A	26	CONFIG	READ/ WRITE	-	FIFO_ MODE	E	XT_SYNC_SET[2:0]			DLPF_CFG[2:0]	
1B	27	GYRO_CONFIG	READ/ WRITE	XG_ST	YG_ST	ZG_ST		FS_SEL [2:0]		FCHOICI	E_B[1:0]
1C	28	ACCEL_CONFIG	READ/ WRITE	XA_ST	YA_ST	ZA_ST	AFS_SEL	[1:0]	-	AFS_SEL_	_OIS[1:0]
1D	29	ACCEL_CONFIG 2	READ/ WRITE	FIFC	_SIZE	DEC	2_CFG	ACCEL_FC HOICE_B		A_DLPF_CFG	
1E	30	LP_MODE_CONFIG	READ/ WRITE	GYRO_CYCL E		GYRO_AVGCFG[2:	0]			-	
20	32	ACCEL_WOM_X_THR	READ/ WRITE				WOM_X	_TH[7:0]			
21	33	ACCEL_WOM_Y_THR	READ/ WRITE				WOM_Y	_TH[7:0]			
22	34	ACCEL_WOM_Z_THR	READ/ WRITE				WOM_Z	_TH[7:0]			
23	35	FIFO_EN	READ/ WRITE	TEMP_OUT	GYRO_XOUT	GYRO_YOUT	GYRO_ZOUT	ACCEL_XY Z_OUT		-	
24	36	I2C_MST_CTRL	READ/ WRITE	MULT_MST _EN		-	I2C_MST_P_N SR		I2C_M	ST_CLK[3:0]	
25	37	I2C_SLVO_ADDR	READ/ WRITE	I2C_SLVO_R NW							
26	38	I2C_SLVO_REG	READ/ WRITE	12C_SLV0_REG[7:0]							
27	39	I2C_SLVO_CTRL	READ/ WRITE								
28	40	I2C_SLV1_ADDR	READ/ WRITE	I2C_SLV1_R NW							
29	41	I2C_SLV1_REG	READ/ WRITE	12C_SLV1_REG[7:0]							
2A	42	I2C_SLV1_CTRL	READ/ WRITE	I2C_SLV1_E N	I2C_SLV1_BY TE_SW	I2C_SLV1_RE G_DIS	I2C_SLV1_GR P		I2C_SL\	/1_LENG[3:0]	
2В	43	I2C_SLV2_ADDR	READ/ WRITE	I2C_SLV2_R NW				I2C_ID_2[6:0]			

Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
2C	44	I2C_SLV2_REG	READ/ WRITE				I2C_SLV2_	REG[7:0]			
2D	45	I2C_SLV2_CTRL	READ/ WRITE	I2C_SLV2_E N							
2E	46	ODR_DELAY_EN	READ/ WRITE	ODR_DELAY _EN				-			
36	54	FSYNC_INT	READ to CLEAR	FSYNC_INT				-			
37	55	INT_PIN_CFG	READ/ WRITE	INT_LEVEL	INT_OPEN	LATCH _INT_EN	INT_RD _CLEAR	FSYNC_IN T_LEVEL	FSYNC _INT_MODE_ EN	-	
38	56	INT_ENABLE	READ/ WRITE	WOM_X_IN T_EN	WOM_Y_INT _EN	WOM_Z_INT _EN	FIFO _OFLOW _EN	-	GDRIVE_INT_ EN	-	DATA_RDY_I NT_EN
39	57	FIFO_WM_INT_STATUS	READ to CLEAR	-	FIFO_WM_IN T			L	-		
3A	58	INT_STATUS	READ to CLEAR	WOM_X_IN T	WOM_Y_INT	WOM_Z_INT	FIFO _OFLOW _INT	-	GDRIVE_INT	-	DATA _RDY_INT
3B	59	ACCEL_XOUT_H	READ				ACCEL_XC	UT[15:8]			
3C	60	ACCEL_XOUT_L	READ				ACCEL_XC	DUT[7:0]			
3D	61	ACCEL_YOUT_H	READ				ACCEL_YO	UT[15:8]			
3E	62	ACCEL_YOUT_L	READ				ACCEL_YC	DUT[7:0]			
3F	63	ACCEL_ZOUT_H	READ				ACCEL_ZO	UT[15:8]			
40	64	ACCEL_ZOUT_L	READ				ACCEL_ZC	DUT[7:0]			
41	65	TEMP_OUT_H	READ				TEMP_OL	JT[15:8]			
42	66	TEMP_OUT_L	READ				TEMP_O	UT[7:0]			
43	67	GYRO_XOUT_H	READ				GYRO_XO	UT[15:8]			
44	68	GYRO_XOUT_L	READ				GYRO_XC	OUT[7:0]			
45	69	GYRO_YOUT_H	READ				GYRO_YO	UT[15:8]			
46	70	GYRO_YOUT_L	READ				GYRO_YC	OUT[7:0]			
47	71	GYRO_ZOUT_H	READ				GYRO_ZO	UT[15:8]			
48	72	GYRO_ZOUT_L	READ				GYRO_ZC	DUT[7:0]			
49	73	EXT_SLV_SENS_DATA_00	READ				EXT_SLV_SENS_	DATA_00[7:0]			
4A	74	EXT_SLV_SENS_DATA_01	READ				EXT_SLV_SENS_	DATA_01[7:0]			
4B	75	EXT_SLV_SENS_DATA_02	READ				EXT_SLV_SENS_	DATA_02[7:0]			
4C	76	EXT_SLV_SENS_DATA_03	READ				EXT_SLV_SENS_	DATA_03[7:0]			
4D	77	EXT_SLV_SENS_DATA_04	READ				EXT_SLV_SENS_	DATA_04[7:0]			
4E	78	EXT_SLV_SENS_DATA_05	READ				EXT_SLV_SENS_				
4F	79	EXT_SLV_SENS_DATA_06	READ				EXT_SLV_SENS_				
50	80	EXT_SLV_SENS_DATA_07	READ				EXT_SLV_SENS_				
51	81	EXT_SLV_SENS_DATA_08	READ				EXT_SLV_SENS_				
52	82	EXT_SLV_SENS_DATA_09	READ				EXT_SLV_SENS_				
53	83	EXT_SLV_SENS_DATA_10	READ				EXT_SLV_SENS_				
54 5F	95	EXT_SLV_SENS_DATA_11 ODR_DLY_CNT_HI	READ/ READ/ WRITE	EXT_SLV_SENS_DATA_11[7:0] ODR_DLY_CNT[15:8]							
60	96	ODR_DLY_CNT_LO	READ/ WRITE	ODR_DLY_CNT[7:0]							
61	97	FIFO_WM_TH	READ/ WRITE	FIFO_WM_TH[7:0]							
63	99	I2C_SLV0_DO	READ/ WRITE	12C_SLV0_DO[7:0]							
64	100	I2C_SLV1_DO	READ/ WRITE	I2C_SLV1_D0[7:0]							
65	101	I2C_SLV2_DO	READ/ WRITE				I2C_SLV2_	_DO[7:0]			
67	103	I2C_MST_DELAY_CTRL	READ/ WRITE	DELAY_ES_ SHADOW			-		I2C_SLV2_DE LAY_EN	I2C_SLV1_DE LAY_EN	I2C_SLV0_DE LAY_EN
68	104	SIGNAL_PATH_RESET	READ/ WRITE		FS_SEL_OIS[2:0]		FCHOICE_OIS	S_B[1:0]	GYRO_RST	ACCEL _RST	TEMP _RST

Page 41 of 76

Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
69	105	ACCEL_INTEL_CTRL	READ/ WRITE	ACCEL_INTE L_EN	ACCEL_INTEL _MODE	ACCEL_FC	HOICE_OIS_B		-		WOM_INT_ MODE
6A	106	USER_CTRL	READ/ WRITE	-	FIFO_EN	I2C_MST_EN	I2C_IF_DIS		FIFO _RST	I2C_MST_RST	SIG_COND _RST
6B	107	PWR_MGMT_1	READ/ WRITE	DEVICE_RES ET	SLEEP	CYCLE	GYRO_ STANDBY	TEMP_DIS		CLKSEL[2:0]	
6C	108	PWR_MGMT_2	READ/ WRITE	LP_DIS	-	STBY_XA	STBY_YA	STBY_ZA	STBY_XG	STBY_YG	STBY_ZG
70	112	OIS_ENABLE	READ/ WRITE				-			OIS_ENABLE	-
72	114	FIFO_COUNTH	READ				FIFO_COL	JNT[15:8]		•	
73	115	FIFO_COUNTL	READ				FIFO_CO	UNT[7:0]			
74	116	FIFO_R_W	READ/ WRITE		FIFO_DATA[7:0]						
75	117	WHO_AM_I	READ				WHOA	MI[7:0]			
77	119	XA_OFFSET_H	READ/ WRITE				XA_OFF	S[14:7]			
78	120	XA_OFFSET_L	READ/ WRITE				XA_OFFS[6:0]				-
7A	122	YA_OFFSET_H	READ/ WRITE		YA_OFFS[14:7]						
7B	123	YA_OFFSET_L	READ/ WRITE	YA_OFFS[6:0]					-		
7D	125	ZA_OFFSET_H	READ/ WRITE	ZA_OFFS[14:7]							
7E	126	ZA_OFFSET_L	READ/ WRITE				ZA_OFFS[6:0]				-

Table 16. ICM-20690 Register Map

Note: Register Names ending in _H and _L contain the high and low bytes, respectively, of an internal register value.

The reset value is 0x00 for all registers other than the registers below; also, the self-test registers contain pre-programmed values and will not be 0x00 after reset.

- Registers 00 02: Trim values
- Registers 13 15: Trim values
- Register 105 ACCEL_INTEL_CTRL value: 0x10
- Register 107 Power Management 1 value: 0x41
- Register 117 WHO_AM_I value: 0x20
- Registers 119, 120, 122, 123, 125, 126: Trim values

Page 42 of 76

11.1 REGISTERS SPECIFIC TO SECONDARY INTERFACE IN OIS MODE

The following registers are accessible from the secondary interface in OIS mode only. OIS controller should only read this data in SPI burst mode to avoid OIS sensor data update during reading. SPI single byte read mode should not be used.

Addr (Hex)	Addr (Dec.)	Register Name	Serial I/F	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
00	00	ACCEL_XOUT_OIS_H	READ	ACCEL_XOUT_OIS[15:8]							
01	01	ACCEL_XOUT_OIS_L	READ				ACCEL_XOU	T_OIS[7:0]			
02	02	ACCEL_YOUT_OIS_H	READ				ACCEL_YOUT	_OIS[15:8]			
03	03	ACCEL_YOUT_OIS_L	READ				ACCEL_YOU	T_OIS[7:0]			
04	04	ACCEL_ZOUT_OIS_H	READ				ACCEL_ZOUT	_OIS[15:8]			
05	05	ACCEL_ZOUT_OIS_L	READ	ACCEL_ZOUT_OIS[7:0]							
06	06	TEMP_OUT_OIS_H	READ	TEMP_OUT_OIS[15:8]							
07	07	TEMP_OUT_OIS_L	READ				TEMP_OUT	_OIS[7:0]			
08	08	GYRO_XOUT_OIS_H	READ				GYRO_XOUT	_OIS[15:8]			
09	09	GYRO_XOUT_OIS_L	READ				GYRO_XOUT	Γ_OIS[7:0]			
0A	10	GYRO_YOUT_OIS_H	READ	GYRO_YOUT_OIS[15:8]							
OB	11	GYRO_YOUT_OIS_L	READ	GYRO_YOUT_OIS[7:0]							
0C	12	GYRO_ZOUT_OIS_H	READ	GYRO_ZOUT_OIS[15:8]							
0D	13	GYRO_ZOUT_OIS_L	READ				GYRO_ZOUT	Γ_OIS[7:0]			

Table 17. Registers Specific to Secondary Interface in OIS Mode

12 REGISTER DESCRIPTIONS

This section describes the function and contents of the registers within the ICM-20690.

Note: The device powers up in Sleep Mode.

12.1 REGISTERS 0 TO 2 – GYROSCOPE SELF-TEST REGISTERS

Register Name: SELF_TEST_X_GYRO, SELF_TEST_Y_GYRO, SELF_TEST_Z_GYRO

Register Type: READ/WRITE

Register Address: 00, 01, 02 (Decimal); 00, 01, 02 (Hex)

REGISTER	BIT	NAME	FUNCTION
SELF_TEST_X_GYRO	[7:0]	XG_ST_DATA[7:0]	The value in this register indicates the self-test output generated during manufacturing tests. This value is to be used to check against subsequent self-test outputs performed by the end user.
SELF_TEST_Y_GYRO	[7:0]	YG_ST_DATA[7:0]	The value in this register indicates the self-test output generated during manufacturing tests. This value is to be used to check against subsequent self-test outputs performed by the end user.
SELF_TEST_Z_GYRO	[7:0]	ZG_ST_DATA[7:0]	The value in this register indicates the self-test output generated during manufacturing tests. This value is to be used to check against subsequent self-test outputs performed by the end user.

The equation to convert self-test codes in OTP to factory self-test measurement is:

$$ST OTP = (2620/2^{FS}) * 1.01^{(ST_code-1)}$$
 (lsb)

where ST_OTP is the value that is stored in OTP of the device, FS is the Full Scale value, and ST_code is based on the Self-Test value (ST_FAC) determined in InvenSense's factory final test and calculated based on the following equation:

$$ST_code = round(\frac{\log(ST_FAC/(2620/2^{FS}))}{\log(1.01)}) + 1$$

Document Number: DS-000178

Revision: 1.0

12.2 REGISTERS 13 TO 15 – ACCELEROMETER SELF-TEST REGISTERS

Register Name: SELF_TEST_X_ACCEL, SELF_TEST_Y_ACCEL, SELF_TEST_Z_ACCEL

Register Type: READ/WRITE

Register Address: 13, 14, 15 (Decimal); 0D, OE, OF (Hex)

REGISTER	BITS	NAME	FUNCTION
SELF_TEST_X_ACCEL	[7:0]	XA_ST_DATA[7:0]	The value in this register indicates the self-test output generated during manufacturing tests. This value is to be used to check against subsequent self-test outputs performed by the end user.
SELF_TEST_Y_ACCEL	[7:0]	YA_ST_DATA[7:0]	The value in this register indicates the self-test output generated during manufacturing tests. This value is to be used to check against subsequent self-test outputs performed by the end user.
SELF_TEST_Z_ACCEL	[7:0]	ZA_ST_DATA[7:0]	The value in this register indicates the self-test output generated during manufacturing tests. This value is to be used to check against subsequent self-test outputs performed by the end user.

The equation to convert self-test codes in OTP to factory self-test measurement is:

$$ST _OTP = (2620/2^{FS}) * 1.01^{(ST_code-1)}$$
 (lsb)

where ST_OTP is the value that is stored in OTP of the device, FS is the Full Scale value, and ST_code is based on the Self-Test value (ST_FAC) determined in InvenSense's factory final test and calculated based on the following equation:

$$ST_code = round(\frac{\log(ST_FAC/(2620/2^{FS}))}{\log(1.01)}) + 1$$

12.3 REGISTER 19 – GYRO OFFSET ADJUSTMENT REGISTER

Register Name: XG_OFFS_USRH Register Type: READ/WRITE

Register Address: 19 (Decimal); 13 (Hex)

BIT	NAME	FUNCTION
[7:0]	X_OFFS_USR[15:8]	Bits 15 to 8 of the 16-bit offset of X gyroscope (2's complement). This register is used to remove DC bias from the sensor output. The value in this register is added to the gyroscope sensor value before going into the sensor register.

12.4 REGISTER 20 – GYRO OFFSET ADJUSTMENT REGISTER

Register Name: XG_OFFS_USRL Register Type: READ/WRITE

Register Address: 20 (Decimal); 14 (Hex)

BIT	NAME	FUNCTION
[7:0]	X_OFFS_USR[7:0]	Bits 7 to 0 of the 16-bit offset of X gyroscope (2's complement). This register is used to remove DC bias from the sensor output. The value in this register is added to the gyroscope sensor value before going into the sensor register.

Page 45 of 76

12.5 REGISTERS 21 – GYRO OFFSET ADJUSTMENT REGISTER

Register Name: YG_OFFS_USRH Register Type: READ/WRITE

Register Address: 21 (Decimal); 15 (Hex)

BIT	NAME	FUNCTION
[7:0]	Y_OFFS_USR[15:8]	Bits 15 to 8 of the 16-bit offset of Y gyroscope (2's complement). This register is used to remove DC bias from the sensor output. The value in this register is added to the gyroscope sensor value before going into the sensor register.

12.6 REGISTERS 22 – GYRO OFFSET ADJUSTMENT REGISTER

Register Name: YG_OFFS_USRL Register Type: READ/WRITE

Register Address: 22 (Decimal); 16 (Hex)

BIT	NAME	FUNCTION
[7:0]	Y_OFFS_USR[7:0]	Bits 7 to 0 of the 16-bit offset of Y gyroscope (2's complement). This register is used to remove DC bias from the sensor output. The value in this register is added to the gyroscope sensor value before going into the sensor register.

12.7 REGISTERS 23 – GYRO OFFSET ADJUSTMENT REGISTER

Register Name: ZG_OFFS_USRH Register Type: READ/WRITE

Register Address: 23 (Decimal); 17 (Hex)

BIT	NAME	FUNCTION
[7:0]	Z_OFFS_USR[15:8]	Bits 15 to 8 of the 16-bit offset of Z gyroscope (2's complement). This register is used to remove DC bias from the sensor output. The value in this register is added to the gyroscope sensor value before going into the sensor register.

12.8 REGISTER 24 – GYRO OFFSET ADJUSTMENT REGISTER

Register Name: ZG_OFFS_USRL Register Type: READ/WRITE

Register Address: 24 (Decimal); 18 (Hex)

BIT	NAME	FUNCTION
		Bits 7 to 0 of the 16-bit offset of Z gyroscope (2's complement). This
[7:0]	Z OFFS USR[7:0]	register is used to remove DC bias from the sensor output. The value in
[7.0]	[2_0113_03N[7.0]	this register is added to the gyroscope sensor value before going into
		the sensor register.

Page 46 of 76

12.9 REGISTER 25 – SAMPLE RATE DIVIDER

Register Name: SMPLRT_DIV Register Type: READ/WRITE

Register Address: 25 (Decimal); 19 (Hex)

BIT	NAME	FUNCTION
[7:0]	SMPLRT_DIV[7:0]	Divides the internal sample rate (see register CONFIG) to generate the sample rate that controls sensor data output rate, FIFO sample rate. NOTE: This register is only effective when FCHOICE_B register bits are 2'b00, and (0 < DLPF_CFG < 7). This is the update rate of the sensor register:
		SAMPLE_RATE = INTERNAL_SAMPLE_RATE / (1 + SMPLRT_DIV) Where INTERNAL_SAMPLE_RATE = 1kHz SMPLRT_DIV values of 0 and 1 are not supported in low-power mode.

12.10 REGISTER 26 - CONFIGURATION

Register Name: CONFIG Register Type: READ/WRITE

Register Address: 26 (Decimal); 1A (Hex)

BIT	NAME	FUNCTION			
[7]	-		Default configuration value is 1. User should set it to 0.		
[6]	FIFO_MODE			ditional writes will not be v	written to FIFO.
		When set to '0', v	vhen the FIFO is full, ad	ditional writes will be writt	en to the FIFO,
		replacing the old	est data.		
[5:3]	EXT_SYNC_SET[2:0]	Enables the FSYN	C pin data to be sample	ed.	
				1	1
			EXT_SYNC_SET	FSYNC bit location	
			0	function disabled	
			1	TEMP_OUT_L[0]	
			2	GYRO_XOUT_L[0]	
			3	GYRO_YOUT_L[0]	
			4	GYRO_ZOUT_L[0]	
			5	ACCEL_XOUT_L[0]	
			6	ACCEL_YOUT_L[0]	
		7 ACCEL_ZOUT_L[0]			
		FSYNC will be latched to capture short strobes. This will be done such that if FSYNC			
		toggles, the latched value toggles, but won't toggle again until the new latched value			new latched value
		is captured by the sample rate strobe.			
[2:0]	DLPF_CFG[2:0]	For the DLPF to b	e used, FCHOICE_B[1:0]] is 2'b00.	_
		See the tables be	low.		

The DLPF is configured by *DLPF_CFG*, when *FCHOICE_B* [1:0] = 2b'00. The gyroscope and temperature sensor are filtered according to the value of *DLPF_CFG* and *FCHOICE_B* as shown in the table below.

Document Number: DS-000178

Revision: 1.0

UI path gyroscope DLPF configuration:

FCHOICE_B		DLPF_CFG	Filter BW (Hz)	Filter Delay (ms)	ODR (kHz)
<1>	<0>				
Χ	1	X	8800	0.064	32
1	0	Х	3600	0.11	32
0	0	0	250	0.97	8
0	0	1	184	2.9	1/(1+SMPLRT_DIV)
0	0	2	92	3.9	1/(1+SMPLRT_DIV)
0	0	3	41	5.9	1/(1+SMPLRT_DIV)
0	0	4	20	9.9	1/(1+SMPLRT_DIV)
0	0	5	10	17.85	1/(1+SMPLRT_DIV)
0	0	6	5	33.48	1/(1+SMPLRT_DIV)
0	0	7	3600	0.17	8

Temperature sensor DLPF configuration:

DLPF_CFG	Filter BW (Hz)	Filter Delay (ms)
0	NA	NA
1	188	1.9
2	98	2.8
3	42	4.8
4	20	8.3
5	10	13.4
6	5	18.6
7	NA	NA

12.11 REGISTER 27 – GYROSCOPE CONFIGURATION

Register Name: GYRO_CONFIG Register Type: READ/WRITE

Register Address: 27 (Decimal); 1B (Hex)

BIT	NAME	FUNCTION	
[7]	XG_ST	1: Enable X Gyro self-test	
[6]	YG_ST	1: Enable Y Gyro self-test	
[5]	ZG_ST	1: Enable Z Gyro self-test	
		UI Path Gyro Full Scale Select:	
		000 = ±250dps	
		001= ±500dps	
[4:2]	FS SEL[2:0]	010 = ±1000dps	
[4.2]	F3_3EL[2.0]	011 = ±2000dps	
		101= ±31.25dps	
		110 = ±62.5dps	
		111 = ±125dps	
[1:0]	FCHOICE_B[1:0]	Used to bypass DLPF as shown in table above	

Page 48 of 76

12.12 REGISTER 28 – ACCELEROMETER CONFIGURATION

Register Name: ACCEL_CONFIG Register Type: READ/WRITE

Register Address: 28 (Decimal); 1C (Hex)

BIT	NAME	FUNCTION
[7]	XA_ST	1: Enable X Accel self-test
[6]	YA_ST	1: Enable Y Accel self-test
[5]	ZA_ST	1: Enable Z Accel self-test
		UI Path Accel Full Scale Select:
		00 = ±2g
[4:3]	AFS_SEL[1:0]	01 = ±4g
		$10 = \pm 8g$
		11 = ±16g
[2]	-	Reserved
		OIS Path Accel Full Scale Select:
		00 = ±2g
[1:0]	AFS_SEL_OIS[1:0]	01= ±4g
		10 = ±8g
		11 = ±1g

12.13 REGISTER 29 – ACCELEROMETER CONFIGURATION 2

Register Name: ACCEL_CONFIG2
Register Type: READ/WRITE

Register Address: 29 (Decimal); 1D (Hex)

BIT	NAME	FUNCTION
		Controls FIFO size as follows:
[7:6]	FIFO_SIZE	00 = 128bytes 01 = 256 bytes 10 = 512 bytes 11 = 1024 bytes
[5:4]	DEC2_CFG[1:0]	Averaging filter settings for Low Power Accelerometer mode as explained in the second table below
[3]	ACCEL_FCHOICE_B	Used to bypass DLPF as shown in the table below
[2:0]	A_DLPF_CFG	UI path accelerometer low pass filter setting as shown in the table below

ACCEL_FCHOICE_B	A_DLPF_CFG	Filter BW (Hz)	Filter Delay (ms)	ODR (kHz)
1	Х	1046.00	0.50	4
0	0	218.10	1.88	1/(1+SMPLRT_DIV)
0	1	218.10	1.88	1/(1+SMPLRT_DIV)
0	2	99.00	2.88	1/(1+SMPLRT_DIV)
0	3	44.80	4.88	1/(1+SMPLRT_DIV)
0	4	21.20	8.87	1/(1+SMPLRT_DIV)
0	5	10.20	16.80	1/(1+SMPLRT_DIV)
0	6	5.05	32.50	1/(1+SMPLRT_DIV)
0	7	420.00	1.38	1

Document Number: DS-000178

Revision: 1.0

Low Power accelerometer mode averaging filter settings:

ACCEL_FCHOICE_B	A_DLPF_CFG	DEC2_CFG	Averaging Filter
1	X	0	1x
0	7	0	4x
0	7	1	8x
0	7	2	16x
0	7	3	32x

12.14 REGISTER 30 – GYROSCOPE LOW POWER MODE CONFIGURATION

Register Name: LP_MODE_CONFIG Register Type: READ/WRITE

Register Address: 30 (Decimal); 1E (Hex)

BIT	NAME	FUNCTION	
[7]	GYRO_CYCLE	GYRO_CYCLE When set to '1' low-power gyroscope mode is enabled. Default setting is '0'	
	_	Averaging filter configuration for low-power gyroscope mode. Default setting is '000' The following list shows averaging filter configurations for different settings: 000 = 1x 001 = 2x	
[6:4]	GYRO_AVGCFG[2:0]	010 = 4x	
		011 = 8x	
		100 = 16x	
		101 = 32x	
		110 = 64x	
		111 = 128x	
[3:0]	-	Reserved	

To operate in gyroscope low-power mode or 6-axis low-power mode, GYRO_CYCLE should be set to '1.' Gyroscope filter configuration is determined by GYRO_AVGCFG[2:0] that sets the averaging filter configuration. It is not dependent on DLPF_CFG[2:0].

12.15 REGISTER 32 – WAKE-ON MOTION THRESHOLD (X-AXIS ACCELEROMETER)

Register Name: ACCEL_WOM_X_THR

Register Type: READ/WRITE

Register Address: 32 (Decimal); 20 (Hex)

BIT	NAME	FUNCTION	
[7:0]	WOM X TH[7:0]	This register holds the threshold value for the Wake on Motion Interrupt for X-axis	
[7.0]	WOW_X_111[7.0]	accelerometer.	

Document Number: DS-000178

Revision: 1.0

12.16 REGISTER 33 – WAKE-ON MOTION THRESHOLD (Y-AXIS ACCELEROMETER)

 $\textbf{Register Name: ACCEL_WOM_Y_THR}$

Register Type: READ/WRITE

Register Address: 33 (Decimal); 21 (Hex)

BIT	NAME	FUNCTION
[7:0]	WOM Y TH[7:0]	This register holds the threshold value for the Wake on Motion Interrupt for Y-axis
[7:0]	VVOIVI_1_1 [7.0]	accelerometer.

12.17 REGISTER 34 – WAKE-ON MOTION THRESHOLD (Z-AXIS ACCELEROMETER)

Register Name: ACCEL_WOM_Z_THR

Register Type: READ/WRITE

Register Address: 34 (Decimal); 22 (Hex)

BIT	NAME	FUNCTION
[7:0]	WOM_Z_TH[7:0]	This register holds the threshold value for the Wake on Motion Interrupt for Z-axis
[7.0]		accelerometer.

12.18 REGISTER 35 – FIFO ENABLE

Register Name: FIFO_EN Register Type: READ/WRITE

Register Address: 35 (Decimal); 23 (Hex)

BIT	NAME	FUNCTION
[7]	TEMP_OUT	1 – Write TEMP_OUT_H and TEMP_OUT_L to the FIFO at the sample rate. If enabled, buffering of data occurs even if data path is in standby. 0 – Function is disabled.
[6]	GYRO_XOUT	1 – Write GYRO_XOUT_H and GYRO_XOUT_L to the FIFO at the sample rate. If enabled, buffering of data occurs even if data path is in standby. 0 – Function is disabled.
[5]	GYRO_YOUT	1 – Write GYRO_YOUT_H and GYRO_YOUT_L to the FIFO at the sample rate. If enabled, buffering of data occurs even if data path is in standby. 0 – Function is disabled.
[4]	GYRO_ZOUT	1 – Write GYRO_ZOUT_H and GYRO_ZOUT_L to the FIFO at the sample rate. If enabled, buffering of data occurs even if data path is in standby. 0 – Function is disabled.
[3]	ACCEL_XYZ_OUT	1 – Write ACCEL_XOUT_H, ACCEL_XOUT_L, ACCEL_YOUT_H, ACCEL_YOUT_L, ACCEL_ZOUT_H, and ACCEL_ZOUT_L to the FIFO at the sample rate. 0 – Function is disabled.
[2:0]	-	Reserved

Page 51 of 76

12.19 REGISTER 36 – I²C MASTER CONTROL

Register Name: I2C_MST_CTRL Register Type: READ/WRITE

Register Address: 36 (Decimal); 24 (Hex)

BIT	NAME	FUNCTION
[7]	NALUT NACT EN	1 – Enables multi-master capability
[7]	MULT_MST_EN	0 – Function is disabled
[6:5]	-	Reserved
	I2C_MST_P_NSR	This bit controls the I ² C master's transition from one slave read to the next slave
[4]		read
[4]		1 – There is a stop between reads
		0 – There is a restart between reads
[3:0]	I2C_MST_CLK	Sets I2C master clock according to the table below

12C_MST_CLK[3:0]	Slowest Frequency (kHz)	Duty Cycle
0	341	42%
1	341	50%
2	315	38%
3	315	46%
4	293	43%
5	293	50%
6	273	40%
7	273	47%
8	256	38%
9	Invalid	Invalid
10	Invalid	Invalid
11	Invalid	Invalid
12	410	40%
13	410	40%
14	372	45%
15	372	45%

12.20 REGISTER 37 – I²C SLAVE 0 PHYSICAL ADDRESS

Register Name: I2C_SLV0_ADDR Register Type: READ/WRITE

Register Address: 37 (Decimal); 25 (Hex)

BIT	NAME	FUNCTION
[7]	[7] I2C_SLVO_RNW	1 – Transfer is a read
[/]		0 – Transfer is a write
[6:0]	I2C_ID_0	Physical address of I ² C slave 0

Page 52 of 76

12.21 REGISTER 38 – I²C SLAVE 0 REGISTER ADDRESS

Register Name: I2C_SLV0_REG Register Type: READ/WRITE

Register Address: 38 (Decimal); 26 (Hex)

BIT	NAME	FUNCTION
[7:0]	I2C_SLVO_REG	I ² C slave 0 register address from where to begin data transfer

12.22 REGISTER 39 - I²C SLAVE 0 CONTROL

Register Name: I2C_SLV0_CTRL Register Type: READ/WRITE

Register Address: 39 (Decimal); 27 (Hex)

BIT	NAME	FUNCTION
[7]	I2C_SLVO_EN	1 – Enable reading data from this slave at the sample rate and storing data at the first available EXT_SENS_DATA register, which is always EXT_SENS_DATA_00 for I ² C slave 0. 0 – Function is disabled for this slave
[6]	I2C_SLVO_BYTE_SW	1 – Swap bytes when reading both the low and high byte of a word. Note there is nothing to swap after reading the first byte if I2C_SLVO_REG[0] = 1, or if the last byte read has a register address lsb = 0. For example, if I2C_SLVO_REG = 0x1, and I2C_SLVO_LENG = 0x4: 1) The first byte read from address 0x1 will be stored at EXT_SENS_DATA_00, 2) The second and third bytes will be read and swapped, so the data read from address 0x2 will be stored at EXT_SENS_DATA_02, and the data read from address 0x3 will be stored at EXT_SENS_DATA_01, 3) The last byte read from address 0x4 will be stored at EXT_SENS_DATA_03 0 – No swapping occurs, bytes are written in order read.
[5]	I2C_SLVO_REG_DIS	When set, the transaction does not write a register value, it will only read data, or write data
[4]	I2C_SLVO_GRP	External sensor data typically comes in as groups of two bytes. This bit is used to determine if the groups are from the slave's register address 0 and 1, 2 and 3, etc, or if the groups are address 1 and 2, 3 and 4, etc O indicates slave register addresses 0 and 1 are grouped together (odd numbered register ends the group). 1 indicates slave register addresses 1 and 2 are grouped together (even numbered register ends the group). This allows byte swapping of registers that are grouped starting at any address.
3:0	I2C_SLVO_LENG	Number of bytes to be read from I ² C slave 0

12.23 REGISTER 40 - I²C SLAVE 1 PHYSICAL ADDRESS

Register Name: I2C_SLV1_ADDR Register Type: READ/WRITE

Register Address: 40 (Decimal); 28 (Hex)

BIT	NAME	FUNCTION
[7] I2C_SLV1_RNW	I2C SLV1 RNW	1 – Transfer is a read
[7]	120_3241_1(1444	0 – Transfer is a write
[6:0]	I2C_ID_1	Physical address of I ² C slave 1

Page 53 of 76

12.24 REGISTER 41 – I²C SLAVE 1 REGISTER ADDRESS

Register Name: I2C_SLV1_REG Register Type: READ/WRITE

Register Address: 41 (Decimal); 29 (Hex)

BIT	NAME	FUNCTION
[7:0]	I2C_SLV1_REG	I ² C slave 1 register address from where to begin data transfer

12.25 REGISTER 39 – I²C SLAVE 1 CONTROL

Register Name: I2C_SLV1_CTRL Register Type: READ/WRITE

Register Address: 42 (Decimal); 2A (Hex)

BIT	NAME	FUNCTION
[7]	I2C_SLV1_EN	1 – Enable reading data from this slave at the sample rate and storing data at the first available EXT_SENS_DATA register, which is always EXT_SENS_DATA_00 for I ² C slave 0. 0 – Function is disabled for this slave.
[6]	I2C_SLV1_BYTE_S W	1 – Swap bytes when reading both the low and high byte of a word. Note there is nothing to swap after reading the first byte if I2C_SLV1_REG[0] = 1, or if the last byte read has a register address lsb = 0. For example, if I2C_SLV1_REG = 0x1, and I2C_SLV1_LENG = 0x4: 1) The first byte read from address 0x1 will be stored at EXT_SENS_DATA_00, 2) The second and third bytes will be read and swapped, so the data read from address 0x2 will be stored at EXT_SENS_DATA_02, and the data read from address 0x3 will be stored at EXT_SENS_DATA_01, 3) The last byte read from address 0x4 will be stored at EXT_SENS_DATA_03
[5]	I2C_SLV1_REG_DIS	0 – No swapping occurs; bytes are written in the order read. When set, the transaction does not write a register value, it will only read data, or write data
[4]	I2C_SLV1_GRP	External sensor data typically comes in as groups of two bytes. This bit is used to determine if the groups are from the slave's register address 0 and 1, 2 and 3, etc, or if the groups are address 1 and 2, 3 and 4, etc O indicates slave register addresses 0 and 1 are grouped together (odd numbered register ends the group). 1 indicates slave register addresses 1 and 2 are grouped together (even numbered register ends the group). This allows byte swapping of registers that are grouped starting at any address.
3:0	I2C_SLV1_LENG	Number of bytes to be read from I ² C slave 1.

12.26 REGISTER 43 – I²C SLAVE 2 PHYSICAL ADDRESS

Register Name: I2C_SLV2_ADDR Register Type: READ/WRITE

Register Address: 43 (Decimal); 2B (Hex)

BIT	NAME	FUNCTION
[7] I2C_SLV2_RNV	I2C SLV2 RNW	1 – Transfer is a read.
[/]	120_3142_1(1444	0 – Transfer is a write.
[6:0]	12C_ID_2	Physical address of I ² C slave 2.

Page 54 of 76

12.27 REGISTER 44 – I²C SLAVE 2 REGISTER ADDRESS

Register Name: I2C_SLV2_REG Register Type: READ/WRITE

Register Address: 44 (Decimal); 2C (Hex)

BIT	NAME	FUNCTION
[7:0]	I2C_SLV2_REG	I ² C slave 2 register address from where to begin data transfer.

12.28 REGISTER 45 - I²C SLAVE 2 CONTROL

Register Name: I2C_SLV2_CTRL Register Type: READ/WRITE

Register Address: 45 (Decimal); 2D (Hex)

BIT	NAME	FUNCTION
[7]	I2C_SLV2_EN	1 – Enable reading data from this slave at the sample rate and storing data at the first available EXT_SENS_DATA register, which is always EXT_SENS_DATA_00 for I ² C slave 0. 0 – Function is disabled for this slave.
[6]	I2C_SLV2_BYTE_S W	1 – Swap bytes when reading both the low and high byte of a word. Note there is nothing to swap after reading the first byte if I2C_SLV2_REG[0] = 1, or if the last byte read has a register address lsb = 0. For example, if I2C_SLV2_REG = 0x1, and I2C_SLV2_LENG = 0x4: 1) The first byte read from address 0x1 will be stored at EXT_SENS_DATA_00, 2) The second and third bytes will be read and swapped, so the data read from address 0x2 will be stored at EXT_SENS_DATA_02, and the data read from address 0x3 will be stored at EXT_SENS_DATA_01, 3) The last byte read from address 0x4 will be stored at EXT_SENS_DATA_03 0 – No swapping occurs; bytes are written in the order read.
[5]	I2C_SLV2_REG_DIS	When set, the transaction does not write a register value, it will only read data, or write data.
[4]	I2C_SLV2_GRP	External sensor data typically comes in as groups of two bytes. This bit is used to determine if the groups are from the slave's register address 0 and 1, 2 and 3, etc, or if the groups are address 1 and 2, 3 and 4, etc O indicates slave register addresses 0 and 1 are grouped together (odd numbered register ends the group). 1 indicates slave register addresses 1 and 2 are grouped together (even numbered register ends the group). This allows byte swapping of registers that are grouped starting at any address.
3:0	I2C_SLV2_LENG	Number of bytes to be read from I ² C slave 2.

12.29 REGISTER 46 – FSYNC ODR DELAY ENABLE

Register Name: ODR_DELAY_EN Register Type: READ/WRITE

Register Address: 46 (Decimal); 2E (Hex)

BIT	NAME	FUNCTION
[7]	ODR DELAY EN	1 – Enables FSYNC ODR delay counter.
[7]	ODK_DELAT_EN	– Function is disabled.
[6:0]	-	Reserved

Page 55 of 76

12.30 REGISTER 54 – FSYNC INTERRUPT STATUS

Register Name: FSYNC_INT Register Type: READ to CLEAR

Register Address: 54 (Decimal); 36 (Hex)

BIT	NAME	FUNCTION	
[7]	FSYNC INT	This bit automatically sets to 1 when a FSYNC interrupt has been generated. The	
[/]	131116_1111	bit clears to 0 after the register has been read.	
[6:0]	-	Reserved	

12.31 REGISTER 55 - INT PIN CONFIGURATION

Register Name: INT_PIN_CFG Register Type: READ/WRITE

Register Address: 55 (Decimal); 37 (Hex)

BIT	NAME	FUNCTION
[7]	INT LEVEL	1 – The logic level for INT pin is active low.
[7]	1141_LLVLL	0 – The logic level for INT pin is active high.
[6]	INT OPEN	1 – INT pin is configured as open drain.
[O]	IIVI_OFLIV	0 – INT pin is configured as push-pull.
[5]	LATCH INT EN	1 – INT pin level held until interrupt status is cleared.
[2]	LATCH_INT_LIN	0 – INT pin indicates interrupt pulse's width is 50 μs.
[4]	INT RD CLEAR	1 – Interrupt status is cleared if any read operation is performed.
[4]	INI_ND_CLEAN	0 – Interrupt status is cleared only by reading INT_STATUS register.
[3]	FSYNC INT LEVEL	1 – The logic level for the FSYNC pin as an interrupt is active low.
ادا	TSTINC_INT_LEVEL	0 – The logic level for the FSYNC pin as an interrupt is active high.
		When this bit is equal to 1, the FSYNC pin will trigger an interrupt when it
[2]	FSYNC INT MODE EN	transitions to the level specified by FSYNC_INT_LEVEL.
[-]	131116_1111	When this bit is equal to 0, the FSYNC pin is disabled from causing an
		interrupt.
[1:0]	-	Reserved

12.32 REGISTER 56 – INTERRUPT ENABLE

Register Name: INT_ENABLE Register Type: READ/WRITE

Register Address: 56 (Decimal); 38 (Hex)

BIT	NAME	FUNCTION
[7]	WOM_X_INT_EN	1 – Enable WoM interrupt on X-axis accelerometer. Default setting is 0.
[6]	WOM_Y_INT_EN	1 – Enable WoM interrupt on Y-axis accelerometer. Default setting is 0.
[5]	WOM_Z_INT_EN	1 – Enable WoM interrupt on Z-axis accelerometer. Default setting is 0.
[4]	FIFO_OFLOW_EN	1 – Enables a FIFO buffer overflow to generate an interrupt.
[4]		0 – Function is disabled.
[3]	-	Reserved
[2]	GDRIVE_INT_EN	Gyroscope Drive System Ready interrupt enable
[1]	-	Reserved
[0]	DATA_RDY_INT_EN	Data ready interrupt enable

Page 56 of 76

12.33 REGISTER 57 – FIFO WATERMARK INTERRUPT STATUS

Register Name: FIFO_WM_INT_STATUS

Register Type: READ to CLEAR

Register Address: 57 (Decimal); 39 (Hex)

BIT	NAME	FUNCTION
[7]	1	Reserved
[6]	FIFO_WM_INT	FIFO Watermark interrupt status. Cleared on Read.
[5:0]	-	Reserved

12.34 REGISTER 58 - INTERRUPT STATUS

Register Name: INT_STATUS
Register Type: READ to CLEAR

Register Address: 58 (Decimal); 3A (Hex)

BIT	NAME	FUNCTION
[7]	WOM_X_INT	X-axis accelerometer WoM interrupt status. Cleared on Read.
[6]	WOM_Y_INT	Y-axis accelerometer WoM interrupt status. Cleared on Read.
[5]	WOM_Z_INT	Z-axis accelerometer WoM interrupt status. Cleared on Read.
[4]	FIFO_OFLOW_INT	This bit automatically sets to 1 when a FIFO buffer overflow has been generated. The bit clears to 0 after the register has been read.
[3]	-	Reserved
[2]	GDRIVE_INT	Gyroscope Drive System Ready interrupt.
[1]	-	Reserved
[0]	DATA_RDY_INT	This bit automatically sets to 1 when a Data Ready interrupt is generated. The bit clears to 0 after the register has been read.

12.35 REGISTER 59 - HIGH BYTE OF ACCELEROMETER X-AXIS DATA

Register Name: ACCEL_XOUT_H

Register Type: READ

Register Address: 59 (Decimal); 3B (Hex)

BIT	NAME	FUNCTION
[7:0]	ACCEL_XOUT[15:8]	High byte of accelerometer x-axis data.

12.36 REGISTER 60 – LOW BYTE OF ACCELEROMETER X-AXIS DATA

Register Name: ACCEL_XOUT_L

Register Type: READ

Register Address: 60 (Decimal); 3C (Hex)

BIT	NAME	FUNCTION
[7:0]	ACCEL_XOUT[7:0]	Low byte of accelerometer x-axis data.

Document Number: DS-000178

Revision: 1.0

12.37 REGISTER 61 – HIGH BYTE OF ACCELEROMETER Y-AXIS DATA

Register Name: ACCEL_YOUT_H

Register Type: READ

Register Address: 61 (Decimal); 3D (Hex)

	BIT	NAME	FUNCTION
ĺ	[7:0]	ACCEL_YOUT[15:8]	High byte of accelerometer y-axis data.

12.38 REGISTER 62 – LOW BYTE OF ACCELEROMETER Y-AXIS DATA

Register Name: ACCEL_YOUT_L

Register Type: READ

Register Address: 62 (Decimal); 3E (Hex)

	BIT	NAME	FUNCTION
ſ	[7:0]	ACCEL YOUT[7:0]	Low byte of accelerometer y-axis data.

12.39 REGISTER 63 – HIGH BYTE OF ACCELEROMETER Z-AXIS DATA

Register Name: ACCEL_ZOUT_H

Register Type: READ

Register Address: 63 (Decimal); 3F (Hex)

BIT	NAME	FUNCTION
[7:0]	ACCEL_ZOUT[15:8]	High byte of accelerometer z-axis data.

12.40 REGISTER 64 – LOW BYTE OF ACCELEROMETER Z-AXIS DATA

Register Name: ACCEL_ZOUT_L

Register Type: READ

Register Address: 64 (Decimal); 40 (Hex)

BIT	NAME	FUNCTION
[7:0]	ACCEL_ZOUT[7:0]	Low byte of accelerometer z-axis data.

12.41 REGISTER 65 - HIGH BYTE OF TEMPERATURE SENSOR DATA

Register Name: TEMP_OUT_H

Register Type: READ

Register Address: 65 (Decimal); 41 (Hex)

BIT	NAME	FUNCTION
[7:0]	TEMP_OUT[15:8]	High byte of the temperature sensor output.

Page 58 of 76

12.42 REGISTER 66 – LOW BYTE OF TEMPERATURE SENSOR DATA

Register Name: TEMP_OUT_L

Register Type: READ

Register Address: 66 (Decimal); 42 (Hex)

BIT	NAME	FUNCTION
[7:0]	TEMP_OUT[7:0]	Low byte of the temperature sensor output.

TEMP_OUT may be converted to temperature in degrees C by using the following formula:

TEMP_degC = (TEMP_OUT[15:0]/Temp_Sensitivity) + RoomTemp_Offset

where Temp Sensitivity = 326.8 LSB/°C and RoomTemp Offset = 25°C

12.43 REGISTER 67 – HIGH BYTE OF GYROSCOPE X-AXIS DATA

Register Name: GYRO_XOUT_H

Register Type: READ

Register Address: 67 (Decimal); 43 (Hex)

BIT	NAME	FUNCTION
[7:0]	GYRO_XOUT[15:8]	High byte of gyroscope x-axis data.

12.44 REGISTER 68 – LOW BYTE OF GYROSCOPE X-AXIS DATA

Register Name: GYRO_XOUT_L

Register Type: READ

Register Address: 68 (Decimal); 44 (Hex)

	BIT	NAME	FUNCTION
ĺ	[7:0]	GYRO_XOUT[7:0]	Low byte of gyroscope x-axis data.

12.45 REGISTER 69 - HIGH BYTE OF GYROSCOPE Y-AXIS DATA

Register Name: GYRO_YOUT_H

Register Type: READ

Register Address: 69 (Decimal); 45 (Hex)

BIT	NAME	FUNCTION
[7:0]	GYRO_YOUT[15:8]	High byte of gyroscope y-axis data.

12.46 REGISTER 70 – LOW BYTE OF GYROSCOPE Y-AXIS DATA

Register Name: GYRO_YOUT_L

Register Type: READ

Register Address: 70 (Decimal); 46 (Hex)

BIT	NAME	FUNCTION
[7:0]	GYRO_YOUT[7:0]	Low byte of gyroscope y-axis data.

Page 59 of 76

12.47 REGISTER 71 – HIGH BYTE OF GYROSCOPE Z-AXIS DATA

Register Name: GYRO_ZOUT_H

Register Type: READ

Register Address: 71 (Decimal); 47 (Hex)

BIT	NAME	FUNCTION
[7:0]	GYRO_ZOUT[15:8]	High byte of gyroscope z-axis data.

12.48 REGISTER 72 – LOW BYTE OF GYROSCOPE Z-AXIS DATA

Register Name: GYRO_ZOUT_L

Register Type: READ

Register Address: 72 (Decimal); 48 (Hex)

BIT	NAME	FUNCTION
[7:0]	GYRO_ZOUT[7:0]	Low byte of gyroscope z-axis data.

12.49 REGISTER 73 – SENSOR DATA FROM EXTERNAL I²C DEVICES

Register Name: EXT_SLV_SENS_DATA_00

Register Type: READ

Register Address: 73 (Decimal); 49 (Hex)

BIT	NAME	FUNCTION
[7:0]	EXT_SLV_SENS_DATA_	Sensor data read from external I ² C devices via the I ² C master interface. The
	00	data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and
		I2C_SLV(0-4)_CTRL registers

12.50 REGISTER 74 – SENSOR DATA FROM EXTERNAL I²C DEVICES

Register Name: EXT_SLV_SENS_DATA_01

Register Type: READ

Register Address: 74 (Decimal); 4A (Hex)

BIT	NAME	FUNCTION
[7:0]	EXT_SLV_SENS_DATA_	Sensor data read from external I ² C devices via the I ² C master interface. The
	01	data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and
		I2C_SLV(0-4)_CTRL registers

12.51 REGISTER 75 – SENSOR DATA FROM EXTERNAL I²C DEVICES

Register Name: EXT_SLV_SENS_DATA_02

Register Type: READ

Register Address: 75 (Decimal); 4B (Hex)

BIT	NAME	FUNCTION
[7:0]	EXT_SLV_SENS_DATA_ 02	Sensor data read from external I ² C devices via the I ² C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers

Page 60 of 76

12.52 REGISTER 76 – SENSOR DATA FROM EXTERNAL I²C DEVICES

Register Name: EXT_SLV_SENS_DATA_03

Register Type: READ

Register Address: 76 (Decimal); 4C (Hex)

BIT	NAME	FUNCTION
[7:0]	EXT_SLV_SENS_DATA_ 03	Sensor data read from external I ² C devices via the I ² C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and
		I2C_SLV(0-4)_CTRL registers

12.53 REGISTER 77 – SENSOR DATA FROM EXTERNAL I²C DEVICES

Register Name: EXT_SLV_SENS_DATA_04

Register Type: READ

Register Address: 77 (Decimal); 4D (Hex)

BIT	NAME	FUNCTION
[7:0]	EXT_SLV_SENS_DATA_	Sensor data read from external I ² C devices via the I ² C master interface. The
	04	data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and
		I2C_SLV(0-4)_CTRL registers

12.54 REGISTER 78 – SENSOR DATA FROM EXTERNAL I²C DEVICES

Register Name: EXT_SLV_SENS_DATA_05

Register Type: READ

Register Address: 78 (Decimal); 4E (Hex)

BIT	NAME	FUNCTION
[7:0]	EXT_SLV_SENS_DATA_	Sensor data read from external I ² C devices via the I ² C master interface. The
	05	data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and
		I2C_SLV(0-4)_CTRL registers

12.55 REGISTER 79 – SENSOR DATA FROM EXTERNAL I²C DEVICES

Register Name: EXT_SLV_SENS_DATA_06

Register Type: READ

Register Address: 79 (Decimal); 4F (Hex)

BIT	NAME	FUNCTION
[7:0]	EXT_SLV_SENS_DATA_ 06	Sensor data read from external I ² C devices via the I ² C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers

12.56 REGISTER 80 – SENSOR DATA FROM EXTERNAL I²C DEVICES

Register Name: EXT_SLV_SENS_DATA_07

Register Type: READ

Register Address: 80 (Decimal); 50 (Hex)

BIT	NAME	FUNCTION
[7:0]	EXT_SLV_SENS_DATA_ 07	Sensor data read from external I ² C devices via the I ² C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers

Page 61 of 76

12.57 REGISTER 81 – SENSOR DATA FROM EXTERNAL I²C DEVICES

Register Name: EXT_SLV_SENS_DATA_08

Register Type: READ

Register Address: 81 (Decimal); 51 (Hex)

BIT	NAME	FUNCTION
[7:0]	EXT_SLV_SENS_DATA_08	Sensor data read from external I ² C devices via the I ² C master interface. The
		data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and
		I2C_SLV(0-4)_CTRL registers

12.58 REGISTER 82 – SENSOR DATA FROM EXTERNAL I²C DEVICES

Register Name: EXT_SLV_SENS_DATA_09

Register Type: READ

Register Address: 82 (Decimal); 52 (Hex)

BIT	NAME	FUNCTION
[7:0]	EXT_SLV_SENS_DATA_09	Sensor data read from external I ² C devices via the I ² C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and I2C_SLV(0-4)_CTRL registers

12.59 REGISTER 83 – SENSOR DATA FROM EXTERNAL I²C DEVICES

Register Name: EXT_SLV_SENS_DATA_10

Register Type: READ

Register Address: 83 (Decimal); 53 (Hex)

BIT	NAME	FUNCTION
[7:0]	EXT_SLV_SENS_DATA_10	Sensor data read from external I ² C devices via the I ² C master interface. The data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and
		I2C_SLV(0-4)_CTRL registers

12.60 REGISTER 84 – SENSOR DATA FROM EXTERNAL I²C DEVICES

Register Name: EXT_SLV_SENS_DATA_11

Register Type: READ

Register Address: 84 (Decimal); 54 (Hex)

BIT	NAME	FUNCTION
[7:0]	EXT_SLV_SENS_DATA_11	Sensor data read from external I ² C devices via the I ² C master interface. The
		data stored is controlled by the I2C_SLV(0-4)_ADDR, I2C_SLV(0-4)_REG, and
		I2C_SLV(0-4)_CTRL registers

Page 62 of 76

12.61 REGISTER 95 - FSYNC ODR DELAY COUNTER HIGH BYTE

Register Name: ODR_DLY_CNT_HI
Register Type: READ/WRITE

Register Address: 95 (Decimal); 5F (Hex)

BIT	NAME	FUNCTION
[7:0]	ODR_DLY_TIME_CNT[15:8]	High byte of FSYNC ODR delay counter.

12.62 REGISTER 96 - FSYNC ODR DELAY COUNTER LOW BYTE

Register Name: ODR_DLY_CNT_LO Register Type: READ/WRITE

Register Address: 96 (Decimal); 60 (Hex)

BIT	NAME	FUNCTION
[7:0]	ODR_DLY_TIME_CNT[7:0]	Low byte of FSYNC ODR delay counter.

12.63 REGISTER 97 – FIFO WATERMARK THRESHOLD IN NUMBER OF BYTES

Register Name: FIFO_WM_TH Register Type: READ/WRITE

Register Address: 97 (Decimal); 61 (Hex)

BIT	NAME	FUNCTION
[7:0]	FIFO_WM_TH	FIFO watermark threshold in number of bytes. If zero then watermark
		interrupt is disabled.

12.64 REGISTER 99 – SLAVE 0 DATA OUT

Register Name: I2C_SLV0_DO Register Type: READ/WRITE

Register Address: 99 (Decimal); 63 (Hex)

BIT	NAME	FUNCTION
[7:0]	I2C_SLV0_DO	Data out when slave 0 is set to write.

12.65 REGISTER 100 - SLAVE 1 DATA OUT

Register Name: I2C_SLV1_DO Register Type: READ/WRITE

Register Address: 100 (Decimal); 64 (Hex)

BIT	NAME	FUNCTION
[7:0]	I2C_SLV1_DO	Data out when slave 1 is set to write.

Page 63 of 76

12.66 REGISTER 101 – SLAVE 2 DATA OUT

Register Name: I2C_SLV2_DO Register Type: READ/WRITE

Register Address: 101 (Decimal); 65 (Hex)

BIT	NAME	FUNCTION
[7:0]	I2C_SLV2_DO	Data out when slave 2 is set to write.

12.67 REGISTER 103 - I2C MASTER DELAY CONTROL

Register Name: I2C_MST_DELAY_CTRL

Register Type: READ/WRITE

Register Address: 103 (Decimal); 67 (Hex)

BIT	NAME	FUNCTION
[7]	DELAY_ES_SHADOW	Delays shadowing of external sensor data until all data is received.
[6:3]	-	Reserved
[2]	I2C_SLV2_DELAY_EN	When enabled, slave 2 will only be accessed 1/(1+I2C_SLC4_DLY) samples as
		determined by I2C_MST_ODR_CONFIG.
[1]	I2C_SLV1_DELAY_EN	When enabled, slave 1 will only be accessed 1/(1+I2C_SLC4_DLY) samples as
		determined by I2C_MST_ODR_CONFIG.
[0]	I2C_SLVO_DELAY_EN	When enabled, slave 0 will only be accessed 1/(1+I2C_SLC4_DLY) samples as
		determined by I2C_MST_ODR_CONFIG

12.68 REGISTER 104 – SIGNAL PATH RESET

Register Name: SIGNAL_PATH_RESET

Register Type: READ/WRITE

Register Address: 104 (Decimal); 68 (Hex)

BIT	NAME	FUNCTION
		OIS Path Gyro Full Scale Select:
		000 = ±250 dps
		001 = ±500 dps
[7:5]	FS SEL OIS	010 = ±1000 dps
[7.5]	F3_3EL_OI3	011 = ±2000 dps
		101 = ±31.25 dps
		110 = ±62.5 dps
		111 = ±125 dps
[4:3]	FCHOICE_OIS_B	Used for OIS path gyroscope DLPF configuration as shown in the table below.
		Reset gyroscope digital signal path.
[2]	GYRO_RST	Note: Sensor registers are not cleared. Use SIG_COND_RST to clear sensor
		registers.
		Reset accelerometer digital signal path.
[1]	ACCEL_RST	Note: Sensor registers are not cleared. Use SIG_COND_RST to clear sensor
		registers.
		Reset temperature sensor digital signal path.
[0]	TEMP_RST	Note: Sensor registers are not cleared. Use SIG_COND_RST to clear sensor
		registers.

Page 64 of 76

FCHOICE_OIS_B	FCHOICE_B	DLPF_CFG	Filter BW (Hz)	Filter Delay (ms)	ODR (kHz)
11	XX	х	8800	0.064	32
10	10	х	3600	0.11	32
10	00	х	3600	0.17	8
01	00	х	250	0.97	8
00	00	1	184	2.9	1/(1+SMPLRT_DIV)
00	00	2	92	3.9	1/(1+SMPLRT_DIV)
00	00	3	41	5.9	1/(1+SMPLRT_DIV)
00	00	4	20	9.9	1/(1+SMPLRT_DIV)
00	00	5	10	17.85	1/(1+SMPLRT_DIV)
00	00	6	5	33.48	1/(1+SMPLRT_DIV)

12.69 REGISTER 105 – ACCELEROMETER INTELLIGENCE CONTROL

Register Name: ACCEL_INTEL_CTRL
Register Type: READ/WRITE

Register Address: 105 (Decimal); 69 (Hex)

BIT	NAME	FUNCTION
[7]	ACCEL_INTEL_EN	This bit enables the Wake-on-Motion detection logic.
[6]	ACCEL INTEL MODE	0 – Do not use.
[0]	ACCEL_INTEL_INIODE	1 – Compare the current sample with the previous sample,
[5:4]	ACCEL_FCHOICE_OIS_B	Used for OIS path accelerometer DLPF configuration as shown in the table
[3.4]		below.
[3:1]	-	Reserved
		0 – Set WoM interrupt on the OR of all enabled accelerometer thresholds.
[0]	WOM_INT_MODE	1 – Set WoM interrupt on the AND of all enabled accelerometer threshold.
		Default setting is 0

ACCEL_FCHOICE_OIS_B	ACCEL_FCHOICE_B	A_DLPF_CFG	Filter BW (Hz)	Filter Delay (ms)	ODR (kHz)
11	Х	Х	1046.00	0.50	4
10	0	Х	420.00	1.38	1
01	0	0	218.10	1.88	1/(1+SMPLRT_DIV)
01	0	1	218.10	1.88	1/(1+SMPLRT_DIV)
01	0	2	99.00	2.88	1/(1+SMPLRT_DIV)
01	0	3	44.80	4.88	1/(1+SMPLRT_DIV)
01	0	4	21.20	8.87	1/(1+SMPLRT_DIV)
01	0	5	10.20	16.80	1/(1+SMPLRT_DIV)
01	0	6	5.05	32.50	1/(1+SMPLRT_DIV)

12.70 REGISTER 106 – USER CONTROL

Register Name: USER_CTRL Register Type: READ/WRITE

Register Address: 106 (Decimal); 6A (Hex)

BIT	NAME	FUNCTION	
[7]	-	Reserved	
[6]	I FIFO FN	1 – Enable FIFO operation mode.	
		0 – Disable FIFO access from serial interface.	

Page 65 of 76

BIT	NAME	FUNCTION
		1 – Enable the I ² C master interface module: Pins AUX_DA and AUX_CL are
[6]	I2C MST EN	isolated from pins AP_SDA/AP_SDI and AP_SCL/AP_SCLK.
[5]	IZC_IVIST_EIN	0 – Disable the I ² C master interface module: Pins AUX_DA and AUX_CL are
		driven by pins AP_SDA/AP_SDI and AP_SCL/AP_SCLK.
[4]	I2C_IF_DIS	Disable I2C slave interface to host and put the interface in SPI mode.
[3]	-	Reserved
[2]	FIFO_RST	1 – Reset FIFO module. Reset is asynchronous. This bit auto clears after one
[2]		clock cycle of the internal 20MHz clock.
[1]	-	Reserved
		1 – Reset gyroscope digital signal path, accelerometer digital signal path, and
[0]	SIG_COND_RST	temperature sensor digital signal path. This bit also clears all the sensor
		registers.

12.71 REGISTER 107 – POWER MANAGEMENT 1

Register Name: PWR_MGMT_1
Register Type: READ/WRITE

Register Address: 107 (Decimal); 6B (Hex)

BIT	NAME	FUNCTION		
[7]	DEVICE RESET	1 – Reset the internal registers and restores the default settings. The bit		
[7]	DEVICE_RESET	automatically clears to 0 once the reset is done.		
[6]	SLEEP	When set to 1, the chip is set to sleep mode.		
		When set to 1, and SLEEP and GYRO_STANDBY are not set to 1, the chip will		
		cycle between sleep and taking a single accelerometer sample at a rate		
[5]	CYCLE	determined by SMPLRT_DIV.		
[2]	CICLE	NOTE: When all accelerometer axes are disabled via PWR_MGMT_2 register		
		bits and cycle is enabled, the chip will wake up at the rate determined by the		
		respective registers above, but will not take any samples.		
[4]	GYRO STANDBY	When set, the gyro drive and PLL circuitry are enabled, but the sense paths are		
[4]	GINO_STANDBI	disabled. This is a low power mode that allows quick enabling of the gyros.		
[3]	TEMP_DIS	When set to 1, this bit disables the temperature sensor.		
		Code Clock Source		
		0 Internal 20 MHz oscillator		
		1 Auto selects the best available clock source – PLL if ready, else use		
		the Internal oscillator		
		2 Auto selects the best available clock source – PLL if ready, else use		
		the Internal oscillator		
[2:0]	CLKSEL[2:0]	3 Auto selects the best available clock source – PLL if ready, else use		
[2.0]		the Internal oscillator		
		4 Auto selects the best available clock source – PLL if ready, else use		
		the Internal oscillator		
		5 Auto selects the best available clock source – PLL if ready, else use		
		the Internal oscillator		
		6 Internal 20MHz oscillator		
		7 Stops the clock and keeps timing generator in reset		

Page 66 of 76

12.72 REGISTER 108 – POWER MANAGEMENT 2

Register Name: PWR_MGMT_2 Register Type: READ/WRITE

Register Address: 108 (Decimal); 6C (Hex)

BIT	NAME	FUNCTION
[7]	LP_DIS	When gyroscope is disabled, this bit controls accelerometer duty cycling operation mode. 1 – System will not enter sleep when gyroscope is disabled and accelerometer is off while duty cycling. 0 - System will enter sleep when gyroscope is disabled and accelerometer is off while duty cycling. This bit should be set to 1 when reading from SRAM/FIFO.
[6]	_	Reserved
[5]	STBY_XA	1 – X accelerometer is disabled. 0 – X accelerometer is on.
[4]	STBY_YA	1 – Y accelerometer is disabled. 0 – Y accelerometer is on.
[3]	STBY_ZA	1 – Z accelerometer is disabled. 0 – Z accelerometer is on.
[2]	STBY_XG	1 – X gyro is disabled. 0 – X gyro is on.
[1]	STBY_YG	1 – Y gyro is disabled. 0 – Y gyro is on.
[0]	STBY_ZG	1 – Z gyro is disabled. 0 – Z gyro is on.

12.73 REGISTER 112 - OIS ENABLE

Register Name: OIS_ENABLE Register Type: READ/WRITE

Register Address: 112 (Decimal); 70 (Hex)

BIT	NAME	FUNCTION
[7:2]	-	Reserved
[1]	OIS_ENABLE	1 - Configures auxiliary interface as SPI slave (for connection to OIS controller). 0 - Configures auxiliary interface as I2C master (for connection to external sensors).
[0]	-	Reserved

Page 67 of 76

12.74 REGISTERS 114 AND 115 - FIFO COUNT REGISTERS

Register Name: FIFO_COUNTH

Register Type: READ

Register Address: 114 (Decimal); 72 (Hex)

BIT	NAME	FUNCTION
[7:0]	FIFO_COUNT[15:8]	High Bits, count indicates the number of written bytes in the FIFO.
		Reading this byte latches the data for both FIFO_COUNTH, and FIFO_COUNTL.

Register Name: FIFO_COUNTL

Register Type: READ

Register Address: 115 (Decimal); 73 (Hex)

BIT	NAME	FUNCTION
		Low Bits, count indicates the number of written bytes in the FIFO.
[7:0]	FIFO_COUNT[7:0]	Note: Must read FIFO_COUNTL to latch new data for both FIFO_COUNTH and
		FIFO_COUNTL.

12.75 REGISTER 116 - FIFO READ WRITE

Register Name: FIFO_R_W Register Type: READ/WRITE

Register Address: 116 (Decimal); 74 (Hex)

BIT	NAME	FUNCTION
[7:0]	FIFO_DATA	Read/Write command provides Read or Write operation for the FIFO.

Description:

This register is used to read and write data from the FIFO buffer.

Data is written to the FIFO in order of register number (from lowest to highest). If all the FIFO enable flags (see below) are enabled, the contents of registers 59 through 72 will be written in order at the Sample Rate.

The contents of the sensor data registers (registers 59 to 72) are written into the FIFO buffer when their corresponding FIFO enable flags are set to 1 in FIFO_EN (Register 35).

If the FIFO buffer has overflowed, the status bit FIFO_OFLOW_INT is automatically set to 1. This bit is located in INT_STATUS (Register 58). When the FIFO buffer has overflowed, the oldest data will be lost and new data will be written to the FIFO unless register 26 CONFIG, bit[6] FIFO_MODE = 1.

If the FIFO buffer is empty, reading register FIFO_DATA will return a unique value of 0xFF until new data is available. Normal data is precluded from ever indicating 0xFF, so 0xFF gives a trustworthy indication of FIFO empty.

Page 68 of 76

12.76 **REGISTER 117 – WHO AM I**

Register Name: WHO_AM_I

Register Type: READ

Register Address: 117 (Decimal); 75 (Hex)

BIT	NAME	FUNCTION
[7:0]	WHOAMI	Register to indicate to user which device is being accessed.

Description:

This register is used to verify the identity of the device. The contents of WHOAMI is an 8-bit device ID. The default value of the register is 0x20. This is different from the I^2C address of the device as seen on the slave I^2C controller by the applications processor. The I^2C address of the ICM-20690 is 0x68 or 0x69 depending upon the value driven on ADO pin.

Document Number: DS-000178

Revision: 1.0

12.77 REGISTER 119 TO 126 – ACCELEROMETER OFFSET REGISTERS

Register Name: XA_OFFSET_H Register Type: READ/WRITE

Register Address: 119 (Decimal); 77 (Hex)

BIT	NAME	FUNCTION
[7:0]	XA_OFFS[14:7]	Upper bits of the X accelerometer offset cancellation. +/- 16g Offset cancellation in all Full Scale modes, 15 bit 0.98-mg steps.

Register Name: XA_OFFSET_L Register Type: READ/WRITE

Register Address: 120 (Decimal); 78 (Hex)

BIT	NAME	FUNCTION
[7:1]	XA_OFFS[6:0]	Lower bits of the X accelerometer offset cancellation. +/- 16g Offset cancellation in all Full Scale modes, 15 bit 0.98-mg steps.
[0]	-	Reserved

Register Name: YA_OFFSET_H Register Type: READ/WRITE

Register Address: 122 (Decimal); 7A (Hex)

BIT	NAME	FUNCTION
[7:0]	YA_OFFS[14:7]	Upper bits of the Y accelerometer offset cancellation. +/- 16g Offset
		cancellation in all Full Scale modes, 15 bit 0.98-mg steps.

Register Name: YA_OFFSET_L Register Type: READ/WRITE

Register Address: 123 (Decimal); 7B (Hex)

BIT	NAME	FUNCTION
[7:1]	YA OFFS[6:0]	Lower bits of the Y accelerometer offset cancellation. +/- 16g Offset
	= 1 1	cancellation in all Full Scale modes, 15 bit 0.98-mg steps.
[0]	-	Reserved

Register Name: ZA_OFFSET_H Register Type: READ/WRITE

Register Address: 125 (Decimal); 7D (Hex)

BIT	NAME	FUNCTION
[7:0]	ZA_OFFS[14:7]	Upper bits of the Z accelerometer offset cancellation. +/- 16g Offset
		cancellation in all Full Scale modes, 15 bit 0.98-mg steps.

Register Name: ZA_OFFSET_L Register Type: READ/WRITE

Register Address: 126 (Decimal); 7E (Hex)

BIT	NAME	FUNCTION
[7:1]	ZA_OFFS[6:0]	Lower bits of the Z accelerometer offset cancellation. +/- 16g Offset cancellation in all Full Scale modes, 15 bit 0.98-mg steps.
[0]	-	Reserved

Page 70 of 76

13 DESCRIPTION OF REGISTERS SPECIFIC TO SECONDARY INTERFACE IN OIS MODE

The following registers are accessible from the secondary interface in OIS mode only. OIS controller should only read this data in SPI burst mode to avoid OIS sensor data update during reading. SPI single byte read mode should not be used.

13.1 REGISTER 0 – HIGH BYTE OF ACCELEROMETER X-AXIS OIS DATA

Register Name: ACCEL_XOUT_OIS_H

Register Type: READ

Register Address: 00 (Decimal); 00 (Hex)

BIT	NAME	FUNCTION
[7:0]	ACCEL_XOUT_OIS[15:8]	High byte of accelerometer x-axis OIS data.

13.2 REGISTER 1 – LOW BYTE OF ACCELEROMETER X-AXIS OIS DATA

Register Name: ACCEL_XOUT_OIS_L

Register Type: READ

Register Address: 01 (Decimal); 01 (Hex)

BIT	NAME	FUNCTION
[7:0]	ACCEL XOUT OIS[7:0]	Low byte of accelerometer x-axis OIS data.

13.3 REGISTER 2 – HIGH BYTE OF ACCELEROMETER Y-AXIS OIS DATA

Register Name: ACCEL_YOUT_OIS_H

Register Type: READ

Register Address: 02 (Decimal); 02 (Hex)

BIT	NAME	FUNCTION
[7:0]	ACCEL_YOUT_OIS[15:8]	High byte of accelerometer y-axis OIS data.

13.4 REGISTER 3 – LOW BYTE OF ACCELEROMETER Y-AXIS OIS DATA

Register Name: ACCEL_YOUT_OIS_L

Register Type: READ

Register Address: 03 (Decimal); 03 (Hex)

BIT	NAME	FUNCTION
[7:0]	ACCEL_YOUT_OIS[7:0]	Low byte of accelerometer y-axis OIS data.

13.5 REGISTER 4 – HIGH BYTE OF ACCELEROMETER Z-AXIS OIS DATA

Register Name: ACCEL_ZOUT_OIS_H

Register Type: READ

Register Address: 04 (Decimal); 04 (Hex)

BIT	NAME	FUNCTION
[7:0]	ACCEL_ZOUT_OIS[15:8]	High byte of accelerometer z-axis OIS data.

Page 71 of 76

Document Number: DS-000178

Revision: 1.0

13.6 REGISTER 5 – LOW BYTE OF ACCELEROMETER Z-AXIS OIS DATA

Register Name: ACCEL_ZOUT_OIS_L

Register Type: READ

Register Address: 05 (Decimal); 05 (Hex)

BIT	NAME	FUNCTION
[7:0]	ACCEL_ZOUT_OIS[7:0]	Low byte of accelerometer z-axis OIS data.

13.7 REGISTER 6 – HIGH BYTE OF TEMPERATURE SENSOR OIS DATA

Register Name: TEMP_OUT_OIS_H

Register Type: READ

Register Address: 06 (Decimal); 06 (Hex)

BIT	NAME	FUNCTION
[7:0]	TEMP_OUT_OIS[15:8]	High byte of temperature sensor OIS data.

13.8 REGISTER 7 – LOW BYTE OF TEMPERATURE SENSOR OIS DATA

Register Name: TEMP_OUT_OIS_L

Register Type: READ

Register Address: 07 (Decimal); 07 (Hex)

BIT	NAME	FUNCTION
[7:0]	TEMP_OUT_OIS[7:0]	Low byte of temperature sensor OIS data.

13.9 REGISTER 8 – HIGH BYTE OF GYROSCOPE X-AXIS OIS DATA

Register Name: GYRO_XOUT_OIS_H

Register Type: READ

Register Address: 08 (Decimal); 08 (Hex)

BIT	NAME	FUNCTION
[7:0]	GYRO_XOUT_OIS[15:8]	High byte of gyroscope x-axis OIS data.

13.10 REGISTER 9 – LOW BYTE OF GYROSCOPE X-AXIS OIS DATA

Register Name: GYRO_XOUT_OIS_L

Register Type: READ

Register Address: 09 (Decimal); 09 (Hex)

BIT	NAME	FUNCTION
[7:0]	GYRO_XOUT_OIS[7:0]	Low byte of gyroscope x-axis OIS data.

Page 72 of 76

13.11 REGISTER 10 - HIGH BYTE OF GYROSCOPE Y-AXIS OIS DATA

Register Name: GYRO_YOUT_OIS_H

Register Type: READ

Register Address: 10 (Decimal); 0A (Hex)

BIT	NAME	FUNCTION
[7:0]	GYRO_YOUT_OIS[15:8]	High byte of gyroscope y-axis OIS data.

13.12 REGISTER 11 – LOW BYTE OF GYROSCOPE Y-AXIS OIS DATA

Register Name: GYRO_YOUT_OIS_L

Register Type: READ

Register Address: 11 (Decimal); 0B (Hex)

BIT	NAME	FUNCTION
[7:0]	GYRO_YOUT_OIS[7:0]	Low byte of gyroscope y-axis OIS data.

13.13 REGISTER 12 - HIGH BYTE OF GYROSCOPE Z-AXIS OIS DATA

Register Name: GYRO_ZOUT_OIS_H

Register Type: READ

Register Address: 12 (Decimal); 0C (Hex)

BIT	NAME	FUNCTION
[7:0]	GYRO_ZOUT_OIS[15:8]	High byte of gyroscope z-axis OIS data.

13.14 REGISTER 13 – LOW BYTE OF GYROSCOPE Z-AXIS OIS DATA

Register Name: GYRO_ZOUT_OIS_L

Register Type: READ

Register Address: 13 (Decimal); 0D (Hex)

BIT	NAME	FUNCTION
[7:0]	GYRO_ZOUT_OIS[7:0]	Low byte of gyroscope z-axis OIS data.

Page 73 of 76

14 REFERENCE

Please refer to "InvenSense MEMS Handling Application Note (AN-IVS-0002A-00)" for the following information:

- Manufacturing Recommendations
 - o Assembly Guidelines and Recommendations
 - o PCB Design Guidelines and Recommendations
 - o MEMS Handling Instructions
 - o ESD Considerations
 - o Reflow Specification
 - Storage Specifications
 - o Package Marking Specification
 - o Tape & Reel Specification
 - o Reel & Pizza Box Label
 - o Packaging
 - o Representative Shipping Carton Label
- Compliance
 - o Environmental Compliance
 - o DRC Compliance
 - o Compliance Declaration Disclaimer

Page 74 of 76

15 DOCUMENT INFORMATION

15.1 REVISION HISTORY

Revision Date	Revision	Description
10/11/2016	1.0	Initial Release

Page 75 of 76

This information furnished by InvenSense is believed to be accurate and reliable. However, no responsibility is assumed by InvenSense for its use, or for any infringements of patents or other rights of third parties that may result from its use. Specifications are subject to change without notice. InvenSense reserves the right to make changes to this product, including its circuits and software, in order to improve its design and/or performance, without prior notice. InvenSense makes no warranties, neither expressed nor implied, regarding the information and specifications contained in this document. InvenSense assumes no responsibility for any claims or damages arising from information contained in this document, or from the use of products and services detailed therein. This includes, but is not limited to, claims or damages based on the infringement of patents, copyrights, mask work and/or other intellectual property rights.

Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by implication or otherwise under any patent or patent rights of InvenSense. This publication supersedes and replaces all information previously supplied. Trademarks that are registered trademarks are the property of their respective companies. InvenSense sensors should not be used or sold in the development, storage, production or utilization of any conventional or mass-destructive weapons or for any other weapons or life threatening applications, as well as in any other life critical applications such as medical equipment, transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, disaster prevention and crime prevention equipment.

©2016 InvenSense, Inc. All rights reserved. InvenSense, MotionTracking, MotionProcessing, MotionProcessor, MotionFusion, MotionApps, Digital Motion Processor, AAR, and the InvenSense logo are trademarks of InvenSense, Inc. Other company and product names may be trademarks of the respective companies with which they are associated.

©2016 InvenSense, Inc. All rights reserved.

Page 76 of 76