v02.0207 # CELLULAR HIGH IP3 RFIC DOWNCONVERTER, 0.8 - 1.0 GHz ## Conversion Gain vs. Temperature @ LO= -5 dBm #### Isolation @ LO= -5 dBm #### Conversion Gain vs. LO Drive #### Return Loss @ LO= -5 dBm #### Conversion Gain vs. Vdd @ LO= -5 dBm v02.0207 ## CELLULAR HIGH IP3 RFIC DOWNCONVERTER, 0.8 - 1.0 GHz ## Input P1dB vs. Temperature @ LO= -5 dBm ### Input P1dB vs. Vdd @ LO= -5 dBm ## Input and Output IP3 vs. Temperature @ LO= -5 dBm ## Input and Output IP3 vs. LO Drive ## Input and Output IP3 vs. Vdd @ LO= -5 dBm Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. # **ANALOG**DEVICES ## HMC377QS16G / 377QS16GE v02.0207 ## CELLULAR HIGH IP3 RFIC DOWNCONVERTER, 0.8 - 1.0 GHz ### Noise Figure vs. Temperature, Swept LO, Fixed IF= 70 MHz ### Noise Figure Swept IF, Fixed LO ## IF Return Loss @ Various Tuned IF Frequencies IF Bandwidth @ Various Tuned IF Frequencies ## **MxN Spurious @ IF Port** | mRF 0 1 2 3 4
0 xx 79 95 93 94 | | | | nLO | | | |--|-----|----|----|-----|----|----| | | mRF | 0 | 1 | 2 | 3 | 4 | | 1 04 0 05 05 05 | 0 | xx | 79 | 95 | 93 | 94 | | 1 94 0 95 95 95 | 1 | 94 | 0 | 95 | 95 | 95 | | 2 95 95 44 95 95 | 2 | 95 | 95 | 44 | 95 | 95 | | 3 95 95 95 84 95 | 3 | 95 | 95 | 95 | 84 | 95 | | 4 94 94 95 94 | 4 | 94 | 94 | 94 | 95 | 94 | RF Freq.= 0.9 GHz @ -10 dBm LO Freq.= 0.83 GHz @ -5 dBm All values in dBc relative to the IF power level. #### Harmonics of LO | nLO Spur @ RF Port | | | | |--------------------|----------------------|---|---| | 1 | 2 | 3 | 4 | | 22 | 9 | 34 | 26 | | 26 | 11 | 31 | 30 | | 28 | 13 | 32 | 33 | | 29 | 15 | 32 | 36 | | 29 | 16 | 33 | 49 | | 29 | 17 | 34 | 45 | | | 26
28
29
29 | 1 2
22 9
26 11
28 13
29 15
29 16 | 1 2 3 22 9 34 26 11 31 28 13 32 29 15 32 29 16 33 | LO= -5 dBm Values in dBc below input LO level measured at RF port. Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D ^{*} Refer to HMC420QS16 Application Circuit herein for IF port tuning information. v02.0207 ## **CELLULAR HIGH IP3 RFIC DOWNCONVERTER, 0.8 - 1.0 GHz** ## **Absolute Maximum Ratings** | RF / IF Input (Vdd= +5V) | +13 dBm | |---|-------------------| | LO Drive (Vdd= +5V) | +15 dBm | | Vdd (LO or IF) | +7 Vdc | | Channel Temperature | 150°C | | Continuous Pdiss (T = 85°C)
(derate 17.4 mW/°C above 85°C) | 0.881 W | | Thermal Resistance (R _{TH}) (junction to lead) | 57.3 °C/W | | Storage Temperature | -65 to +150 °C | | Operating Temperature | -40 to +85 deg °C | ### Typical Supply Current vs. Vdd | Vdd (Vdc) (LO & IF) | Idd (mA) | |---------------------|----------| | 4.5 | 115 | | 5.0 | 135 | | 5.5 | 155 | Downconverter will operate over above supply range. ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS ## **Outline Drawing** #### NOTES: - 1. LEADFRAME MATERIAL: COPPER ALLOY - 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]. - DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE. - A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE. - 5. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND. ## Package Information | Part Number | Package Body Material | Lead Finish | MSL Rating | Package Marking [3] | |--------------|--|---------------|------------|---------------------| | HMC377QS16G | Low Stress Injection Molded Plastic | Sn/Pb Solder | MSL1 [1] | HMC377
XXXX | | HMC377QS16GE | RoHS-compliant Low Stress Injection Molded Plastic | 100% matte Sn | MSL1 [2] | HMC377
XXXX | - [1] Max peak reflow temperature of 235 °C - [2] Max peak reflow temperature of 260 °C - [3] 4-Digit lot number XXXX Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D v02.0207 # CELLULAR HIGH IP3 RFIC DOWNCONVERTER, 0.8 - 1.0 GHz ### **Pin Descriptions** | Pin Number | Function | Description | Interface Schematic | |-----------------------|----------|--|---------------------| | 1, 4, 7,
9, 14, 16 | N/C | No Connection. These pins may be connected to RF ground. Performance will not be affected. | | | 2 | LO | This pin is DC coupled and matched to 50 Ohms from 0.8 - 1.0 GHz. An external series capacitor (100 pF) (C9) is required. | Vdd O
LOO | | 3 | Vdd LO 1 | Power Supply for the LO amplifier, An external 56 nH series inductor (L3) with 22 Ohm series bias resistor (R2) and an RF bypass capacitor (C8) are required. | Vdd L010 | | 5 | Vdd LO 2 | Power supply for the LO amplifier. One external RF bypass capacitor (10,000 pF) (C3) is required. | Vdd LO20 | | 6 | Vdd IF | Bias voltage for IF amplifier. One external RF bypass capacitor (10,000 pF) (C2) is required. | Vdd IFO | | 8 | IF Bias | DC bias setting for IF amplifier.
(C1, R1) | Vdd IF | | 10 | IF | Output of IF and bias port for amplifier. A pull up inductor (L1), output matching network (C5, C6, C7, L2, L4), and 10,000 pF bypass capacitor (C4) are required. | OVdd IF | | 11, 12, 13 | GND | Pin must connect to RF ground. Backside of package has exposed metal ground slug that must also be connected to RF/DC ground. | GND
= | | 15 | RF | This pin is DC coupled and matched to 50 Ohms from 0.8 - 1.0 GHz. | RF O | v02.0207 ## **CELLULAR HIGH IP3 RFIC DOWNCONVERTER, 0.8 - 1.0 GHz** #### **Evaluation PCB** ### List of Materials for Evaluation PCB 107360 [1] | Item | Description | | |----------------|-----------------------------------|--| | J1, J2, J3 | PCB Mount SMA RF Connector | | | J4, J5, J6, J7 | DC Pins | | | C1 | 1000 pF Chip Capacitor, 0603 Pkg. | | | C2, C3, C4, C8 | 0.01μF Chip Capacitor, 0603 Pkg. | | | C5 | 82 pF Chip Capacitor, 0402 Pkg. | | | C6, C7 [3] | 33 pF Chip Capacitor, 0603 Pkg. | | | C9 | 100 pF Chip Capacitor, 0602 Pkg. | | | L1 | 150 nH Chip Inductor, 0805 Pkg. | | | L2, L4 | 68 nH Chip Inductor, 0805 Pkg. | | | L3 | 56 nH Inductor, 0805 Pkg. | | | R1 | 3.3 Ohm Resistor, 0603 | | | R2 | 22 Ohm Resistor, 0603 Pkg. | | | U1 | HMC377QS16G / HMC377QS16GE Mixer | | | PCB [2] | 107358 Evaluation Board | | The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request. - [1] Reference this number when ordering complete evaluation PCB - [2] Circuit Board Material: Rogers 4350 - [3] For 70 MHz IF. See Application Circuit for alternate IF frequency tuning. Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D v02.0207 # **CELLULAR HIGH IP3 RFIC DOWNCONVERTER, 0.8 - 1.0 GHz** ### **Application Circuit** Note: Pins 3, 5 and 6 may be connected to a common Vdd Supply. # Selection of C6 & C7 For Various Tuned IF Frequencies | IF . | C6, C7 | |---------|--------| | 70 MHz | 150 pF | | 120 MHz | 56 pF | | 170 MHz | 27 pF | | 247 MHz | 12 pF |