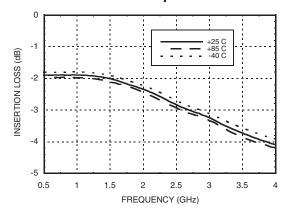
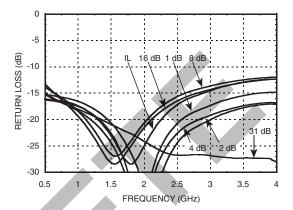
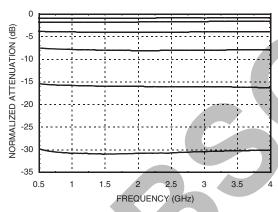
ANALOGDEVICES


HMC273MS10G / 273MS10GE

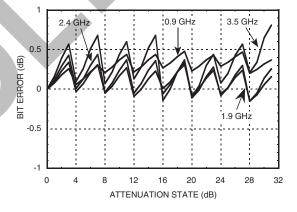
v04.0907


1 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.7 - 3.8 GHz

Insertion Loss vs. Temperature

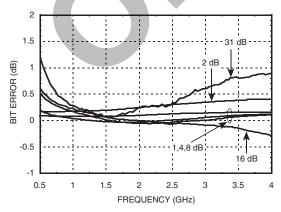

Return Loss RF1, RF2

(Only Major States are Shown)

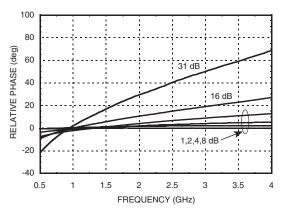


Normalized Attenuation

(Only Major States are Shown)



Bit Error vs. Attenuation State


Bit Error vs. Frequency

(Only Major States are Shown)

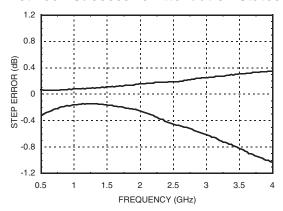
Relative Phase vs. Frequency

(Only Major States are Shown)

Note: All Data Typical Over Voltage (+3V to +5V)

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

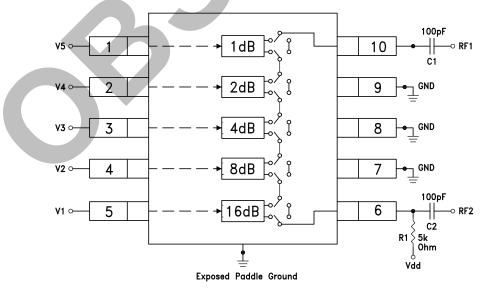


v04.0907

1 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.7 - 3.8 GHz

Worst Case Step Error Between Successive Attenuation States

Truth Table


	Cont	Attenuation				
V1 16 dB	V2 8 dB	V3 4 dB	V4 2 dB	V5 1 dB	Setting RF1 - RF2	
High	High	High	High	High	Reference I.L.	
High	High	High	High	Low	1 dB	
High	High	High	Low	High	2 dB	
High	High	Low	High	High	4 dB	
High	Low	High	High	High	8 dB	
Low	High	High	High	High	16 dB	
Low	Low	Low	Low	Low	31 dB Max. Atten.	

Any combination of the above states will provide an attenuation approximately equal to the sum of the bits selected.

Control Voltages

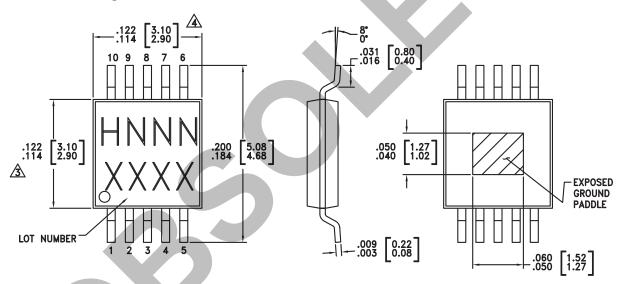
State	Bias Condition	
Low	0 to +0.2 V @ 20 uA Max	
High	Vdd ± 0.2V @ 100 uA Max	
Note: $Vdd = +3V$ to $5V \pm 0.2V$		

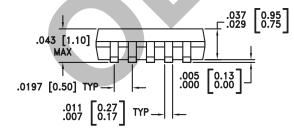
Application Circuit

DC blocking capacitors C1 & C2 are required on RF1 & RF2. Choose C1 = $C2 = 100 \sim 300$ pF to allow lowest customer specific frequency to pass with minimal loss. R1 = 5K Ohm is required to supply voltage to the circuit through either PIN 6 or PIN 10.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v04.0907


1 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.7 - 3.8 GHz


Absolute Maximum Ratings

Control Voltage (V1 - V5)	Vdd + 0.5 Vdc	
Bias Voltage (Vdd)	+8.0 Vdc	
Channel Temperature	150 °C	
Continuous Pdiss (T=85°C) (derate 6mW/°C above 85°C)	0.4 W	
Thermal Resistance	163 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
RF Input Power (0.7 - 3.7 GHz)	+30 dBm	
ESD Sensitivity (HBM)	Class 1A	

Outline Drawing

NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 5. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

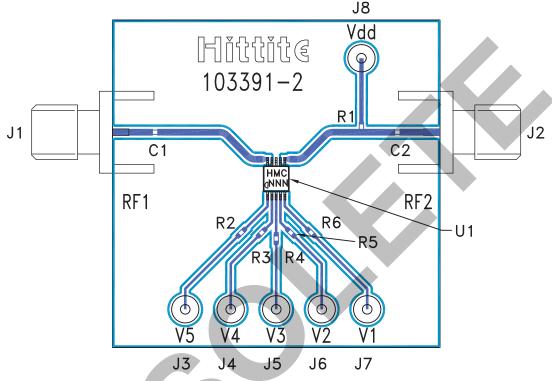
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC273MS10G	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H273 XXXX
HMC273MS10GE RoHS-compliant Low Stress Injection Molded Plastic		100% matte Sn	MSL1 [2]	H273 XXXX

- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D



v04.0907

1 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.7 - 3.8 GHz

Evaluation Circuit Board

* R2 - R6 = 100 Ohm. These resistors are optional and may be used to enhance decoupling of the RF path from the control inputs.

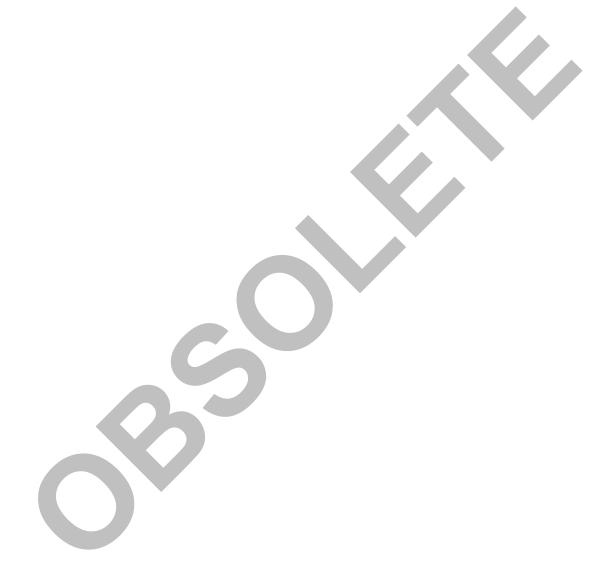
List of Materials for Evaluation PCB 103393 [1]

Item	Description		
J1 - J2	PCB Mount SMA Connector		
J3 - J6	DC Pin		
R1	5k Ohm Resistor, 0402 Chip		
R2, R3, R4	100 Ohm Resistor, 0402 Chip		
C1, C2	0402 Chip Capacitor, Select for Lowest Frequency of Operation		
U1	HMC273MS10G / HMC273MS10GE Digital Attenuator		
PCB [2] 103391 Evaluation PCB 1.5" x 1.5"			

 $\ensuremath{[1]}$ Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed ground paddle should be connected directly to the ground plane similar to that shown below. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board as shown is available from Hittite Microwave Corporation upon request.



v04.0907

Notes:

1 dB LSB GaAs MMIC 5-BIT DIGITAL ATTENUATOR, 0.7 - 3.8 GHz

