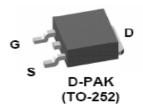


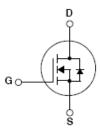
March 2015

FDD8444

N-Channel PowerTrench® MOSFET

40V, 50A, 5.2m Ω


Features


- Typ $r_{DS(on)}$ = 4m Ω at V_{GS} = 10V, I_D = 50A
- Typ $Q_{g(10)}$ = 89nC at V_{GS} = 10V
- Low Miller Charge
- Low Q_{rr} Body Diode
- UIS Capability (Single Pulse/ Repetitive Pulse)
- Qualified to AEC Q101
- RoHS Compliant

Applications

- Automotive Engine Control
- Powertrain Management
- Solenoid and Motor Drivers
- Electronic Transmission
- Distributed Power Architecture and VRMs
- Primary Switch for 12V Systems

MOSFET Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Ratings	Units
V_{DSS}	Drain to Source Voltage	40	V
V_{GS}	Gate to Source Voltage	±20	V
	Drain Current Continuous (V _{GS} = 10V) (Not	e 1) 145	
I_D	Continuous ($V_{GS} = 10V$, with $R_{\theta JA} = 52^{\circ}C/W$)	20	Α
	Pulsed	Figure 4	
E _{AS}	Single Pulse Avalanche Energy (Not	e 2) 535	mJ
ר	Power Dissipation	153	W
P_D	Derate above 25°C	1.02	W/°C
T _J , T _{STG}	Operating and Storage Temperature	-55 to +175	°C

Thermal Characteristics

$R_{\theta JC}$	Thermal Resistance, Junction to Case	0.98	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient TO-252, 1in ² copper pad area	52	°C/W

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDD8444	FDD8444	TO-252AA	13"	16mm	2500 units

Electrical Characteristics T_J = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units	
Off Cha	racteristics						

B _{VDSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} =$	0V	40	-	-	٧
	Zero Gate Voltage Drain Current	$V_{DS} = 32V$		-	-	1	цA
DSS	Zero Gate Voltage Drain Current	$V_{GS} = 0V$	$T_{J} = 150^{\circ}C$	-	-	250	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20V$		-	-	±100	nA

On Characteristics

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	2	2.5	4	V
		$I_D = 50A, V_{GS} = 10V$		4	5.2	
r _{DS(on)}		$I_D = 50A, V_{GS} = 10V,$ $T_J = 175^{\circ}C$	ı	7.2	9.4	mΩ

Dynamic Characteristics

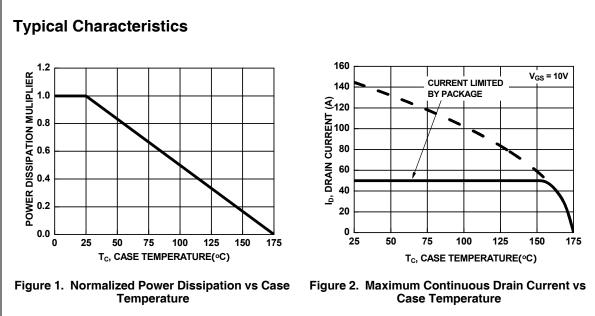
C _{iss}	Input Capacitance	V 05V V	.,		6195	-	pF
C _{oss}	Output Capacitance	¬ v _{DS} = 25v, v _{GS} = 0 −f = 1MHz	$V_{DS} = 25V, V_{GS} = 0V,$	-	585	-	pF
C _{rss}	Reverse Transfer Capacitance	- 1 - 11VII 12	I = IIVIDZ		332	-	pF
R_G	Gate Resistance	f = 1MHz		-	1.9	-	Ω
$Q_{g(TOT)}$	Total Gate Charge at 10V	V _{GS} = 0 to 10V		-	89	116	nC
$Q_{g(5)}$	Total Gate Charge at 5V	$V_{GS} = 0 \text{ to } 5V$],,		43	56	nC
$Q_{g(TH)}$	Threshold Gate Charge	$V_{GS} = 0 \text{ to } 2V$		-	11	14.3	nC
Q_{gs}	Gate to Source Gate Charge		$I_0 = 30A$ $I_0 = 1.0mA$	-	23	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau	ig 1.011	.g	-	11	-	nC
Q_{gd}	Gate to Drain "Miller" Charge			-	20	-	nC

Electrical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units

Switching Characteristics

t _{on}	Turn-On Time		-	-	135	ns
t _{d(on)}	Turn-On Delay Time		-	12	1	ns
t _r	Turn-On Rise Time	V_{DD} = 20V, I_{D} = 50A V_{GS} = 10V, R_{GS} = 2 Ω	-	78	-	ns
t _{d(off)}	Turn-Off Delay Time	V _{GS} - 10V, K _{GS} - 252	-	48	-	ns
t _f	Turn-Off Fall Time		-	15	-	ns
t _{off}	Turn-Off Time		-	-	95	ns


Drain-Source Diode Characteristics

V_{SD}	Source to Drain Diode Voltage	I _{SD} = 50A	-	0.9	1.25	V
		I _{SD} = 25A	1	0.8	1.0	٧
t _{rr}	Reverse Recovery Time	-I _F = 50A, dI _F /dt = 100A/μs	-	39	51	ns
Q _{rr}	Reverse Recovery Charge		-	45	59	nC

Package current limitation is 50A.
 Starting T_J = 25°C, L = 0.67mH, I_{AS} = 40A

This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/
All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.

www.fairchildsemi.com FDD8444 Rev. 1.G 3

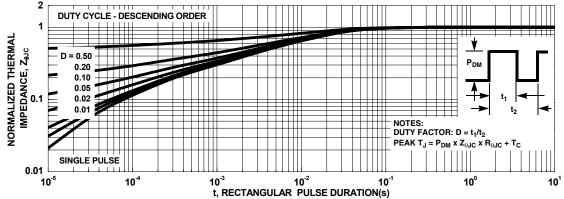


Figure 3. Normalized Maximum Transient Thermal Impedance

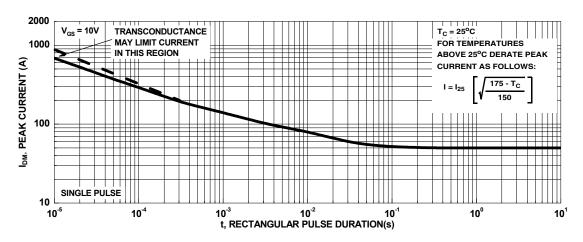
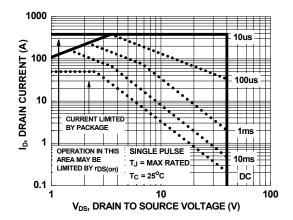



Figure 4. Peak Current Capability

Typical Characteristics

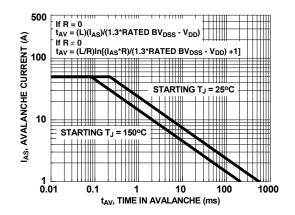
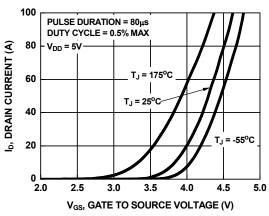



Figure 5. Forward Bias Safe Operating Area

NOTE: Refer to Fairchild Application Notes AN7514 and AN7515

Figure 6. Unclamped Inductive Switching

Capability

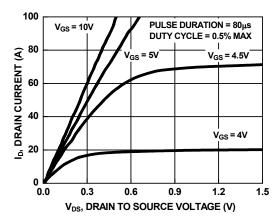
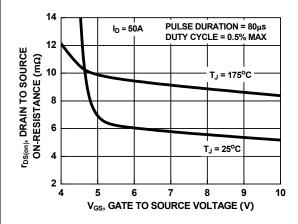



Figure 7. Transfer Characteristics

Figure 8. Saturation Characteristics

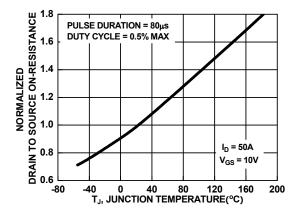


Figure 9. Drain to Source On-Resistance Variation vs Gate to Source Voltage

Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature

FDD8444 Rev. 1.G 5 www.fairchildsemi.com

Typical Characteristics

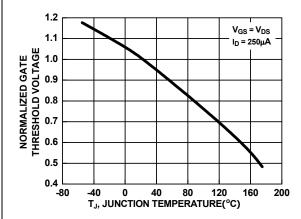


Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature

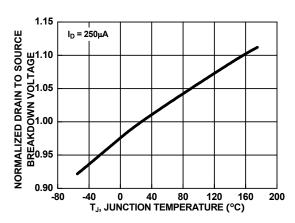


Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature

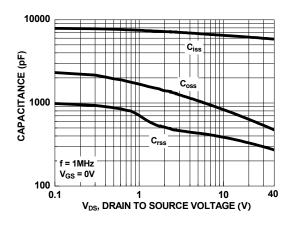


Figure 13. Capacitance vs Drain to Source Voltage

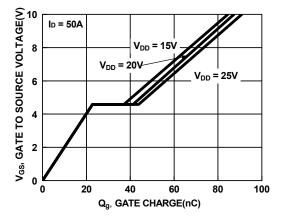
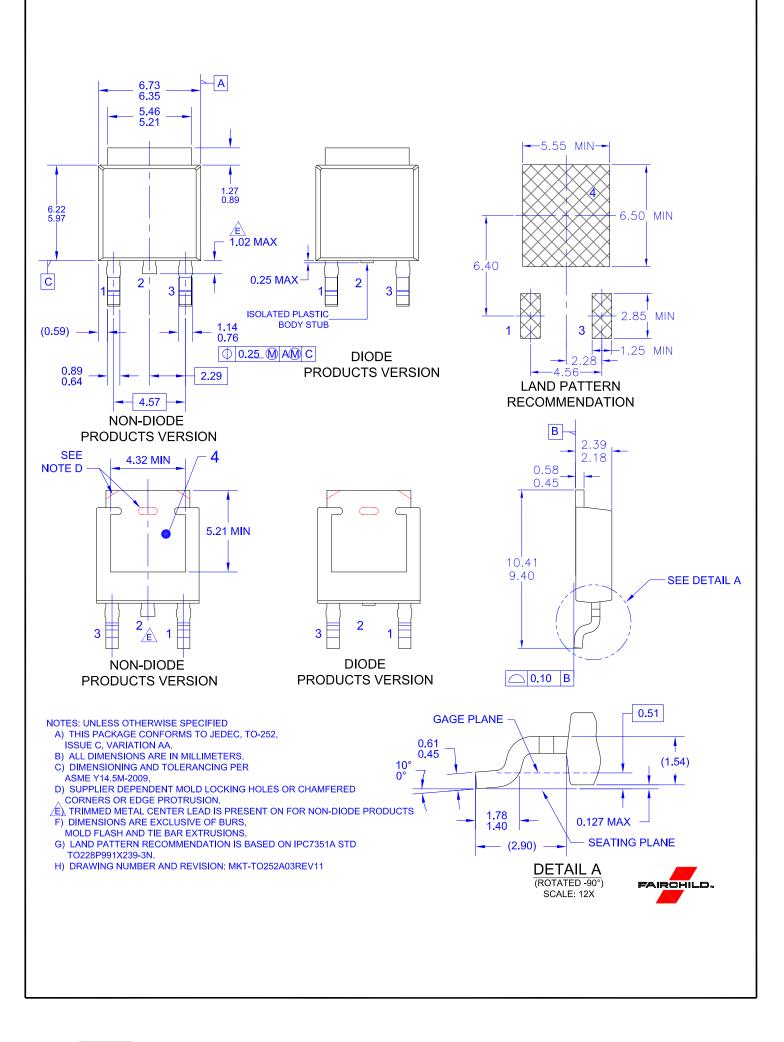



Figure 14. Gate Charge vs Gate to Source Voltage

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative