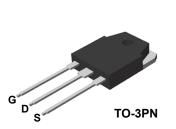
ON Semiconductor®

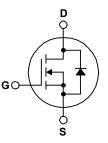
Sept 2017

FCA47N60F N-Channel SuperFET[®] FRFET[®] MOSFET

600 V, 47 A, 73 m Ω

Features


- 650 V @ T_J = 150 °C
- Typ. R_{DS(on)} = 62 mΩ
- Fast Recovery Time (Typ. T_{rr} = 240 ns)
- Ultra Low Gate Charge (Typ. Q_g = 210 nC)
- Low Effective Output Capacitance (Typ. Coss(eff.) = 420 pF)
- 100% Avalanche Tested
- RoHS Compliant


Applications

- Solar Inverter
- AC-DC Power Supply

Description

SuperFET[®] MOSFET is ON Semiconductor's first generation of high voltage super-junction (SJ) MOSFET family that is utilizing charge balance technology for outstanding low onresistance and lower gate charge performance. This technology is tailored to minimize conduction loss, provide superior switching performance, dv/dt rate and higher avalanche energy. Consequently, SuperFET MOSFET is very suitable for the switching power applications such as PFC, server/telecom power, FPD TV power, ATX power and industrial power applications. Super-FET FRFET[®] MOSFET's optimized body diode reverse recovery performance can remove additional component and improve system reliability.

Absolute Maximum Ratings T_C = 25°C unless otherwise noted.

Symbol	Parameter			FCA47N60F	Unit	
V _{DSS}	Drain-Source Voltage			600	V	
ID	Drain Current	- Continuous (T _C = 25°C) - Continuous (T _C = 100°C)		47 29.7	A A	
I _{DM}	Drain Current	- Pulsed	(Note 1)	141	A	
V _{GSS}	Gate-Source voltage	ge		± 30	V	
E _{AS}	Single Pulsed Avalanche Energy		(Note 2)	1800	mJ	
I _{AR}	Avalanche Current		(Note 1)	47	A	
E _{AR}	Repetitive Avalanche Energy		(Note 1)	41.7	mJ	
dv/dt	Peak Diode Recovery dv/dt		(Note 3)	50	V/ns	
P _D	Power Dissipation	(T _C = 25°C) - Derate Above 25°C		417 3.33	W W/°C	
T _{J,} T _{STG}	Operating and Sto	rage Temperature Range		-55 to +150	°C	
Τ _L	Maximum Lead Te 1/8" from Case for	mperature for Soldering, 5 Seconds		300	°C	

Thermal Characteristics

Symbol	Parameter	FCA47N60F	Unit	
$R_{ extsf{ heta}JC}$	Thermal Resistance, Junction-to-Case, Max.	0.3	°C/W	
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction-to-Ambient, Max.	41.7	°C/W	

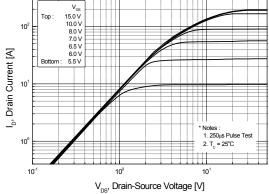
1

©2007 Semiconductor Components Industries, LLC. FCA47N60F Rev. 1

FCA
47N
60F -
 Z
l-Chanr
lel S
SuperFE
ET®
FRFET®
MOSFET

Part Number Top Mark F		Package	Package Packing Method Reel Size		Та	pe Width	Qu	antity		
FCA4			TO-3PN	Tube	N/A		N/A	30	30 units	
Electric	al Chara	acteristics T _C = 25°C	unless otherwise	noted						
Symbol	I Parameter			Conditions			Тур.	Max.	Unit	
Off Charac	teristics									
BV _{DSS}	V _{DSS} Drain-Source Breakdown Voltage		$V_{GS} = 0$	V_{GS} = 0 V, I _D = 250 µA, T _J = 25°C					V	
			$V_{GS} = 0$	V_{GS} = 0 V, I _D = 250 µA, T _J = 150°C			650		V	
ΔΒV _{DSS} / ΔΤ _J	Breakdowr Coefficient	N Voltage Temperature	I _D = 250	I_D = 250 µA, Referenced to 25°C			0.6		V/°C	
BV _{DS}	Drain to So Voltage	ource Avalanche Breakdow	n V _{GS} = 0	V _{GS} = 0 V, I _D = 47 A			700		V	
I _{DSS}	Zero Gate	Voltage Drain Current		V_{DS} = 600 V, V_{GS} = 0 V, V_{DS} = 480 V, T_{C} = 125°C				10 100	μΑ μΑ	
I _{GSSF}	Gate-Body Leakage Current, Forward V_{GS} = 3			: 30 V, V _{DS} = 0 V				100	nA	
I _{GSSR}	Gate-Body Leakage Current, Reverse			V_{GS} = -30 V, V_{DS} = 0 V				-100	nA	
On Charac	teristics									
V _{GS(th)}	Gate Three	shold Voltage	$V_{DS} = V$	V_{DS} = V_{GS} , I_D = 250 μ A				5.0	V	
R _{DS(on)}	Static Drain On-Resista		V _{GS} = 1	V _{GS} = 10 V, I _D = 23.5 A			0.062	0.073	Ω	
9 _{FS}	Forward Transconductance		V _{DS} = 2	V _{DS} = 20 V, I _D = 23.5 A			40		S	
Dynamic C	haracterist	ics								
C _{iss}	Input Capa	icitance		V _{DS} = 25 V, V _{GS} = 0 V, f = 1 MHz			5900	8000	pF	
C _{oss}	Output Cap	pacitance	t = 1 MH				3200	4200	pF	
C _{rss}	Reverse T	ransfer Capacitance					250		pF	
C _{oss}	Output Cap	pacitance	V _{DS} = 4	V_{DS} = 480 V, V_{GS} = 0 V, f = 1 MHz			160		pF	
Coss(eff.)	Effective C	output Capacitance	$V_{DS} = 0$	V_{DS} = 0 V to 400 V, V_{GS} = 0 V			420		pF	
Switching	Characteris	tics								
t _{d(on)}	Turn-On D	elay Time		V_{DD} = 300 V, I _D = 47 A, V _{GS} = 10 V, R _G = 25 Ω			185	430	ns	
t _r	Turn-On R	ise Time	V _{GS} = 1				210	450	ns	
t _{d(off)}	Turn-Off D	elay Time					520	1100	ns	
t _f	Turn-Off Fa	all Time			(Note 4)		75	160	ns	
Qg	Total Gate	Charge		V_{DS} = 480 V, I _D = 47 A, V _{GS} = 10 V			210	270	nC	
Q _{gs}	Gate-Sour	ce Charge	V _{GS} = 1				38		nC	
Q _{gd}	Gate-Drain	1 Charge			(Note 4)		110		nC	
Drain-Sou	rce Diode C	haracteristics and Maxim	um Ratings	; ;						
I _S	Maximum Continuous Drain-Source Diode Forward Current			rd Current				47	А	
I _{SM}	Maximum Pulsed Drain-Source Diode Fo			prward Current				141	А	
V _{SD}	Drain-Sour	ce Diode Forward Voltage	$V_{GS} = 0$	V _{GS} = 0 V, I _S = 47 A				1.4	V	
t _{rr}	Reverse R	ecovery Time		$V_{GS} = 0 V, I_S = 47 A,$ $dI_F/dt = 100 A/\mu s$			240		ns	
Q _{rr}	Reverse R	ecovery Charge	dl _F /dt =				2.04		μC	

Notes:

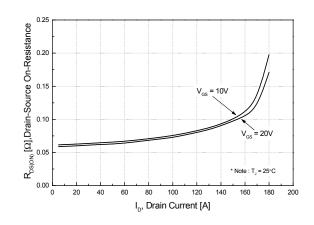
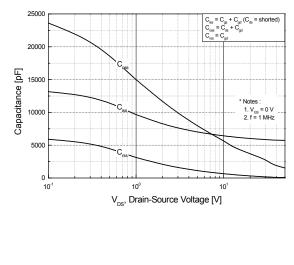
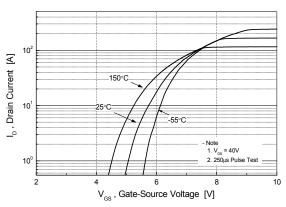

1. Repetitive rating: pulse-width limited by maximum junction temperature.

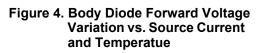
2. I_{AS} = 18 A, V_{DD} = 50 V, R_G = 25 Ω , starting T_J = 25°C.

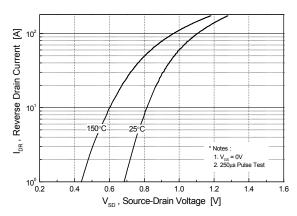
3. I_{SD} \leq 47 A, di/dt \leq 1200 A/µs, V_{DD} \leq BV_{DSS}, starting T_J = 25°C.

4. Essentially independent of operating temperature typical characteristics.

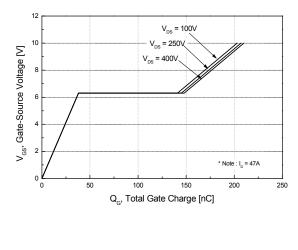
Typical Performance Characteristics Figure 1. On-Region Characteristics Figure 1. On-Region Characteristics

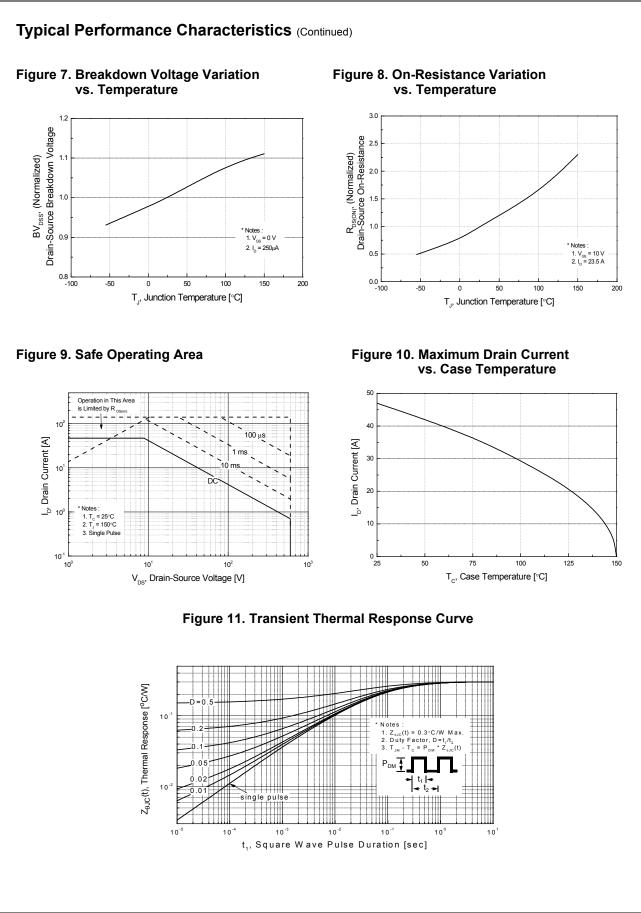




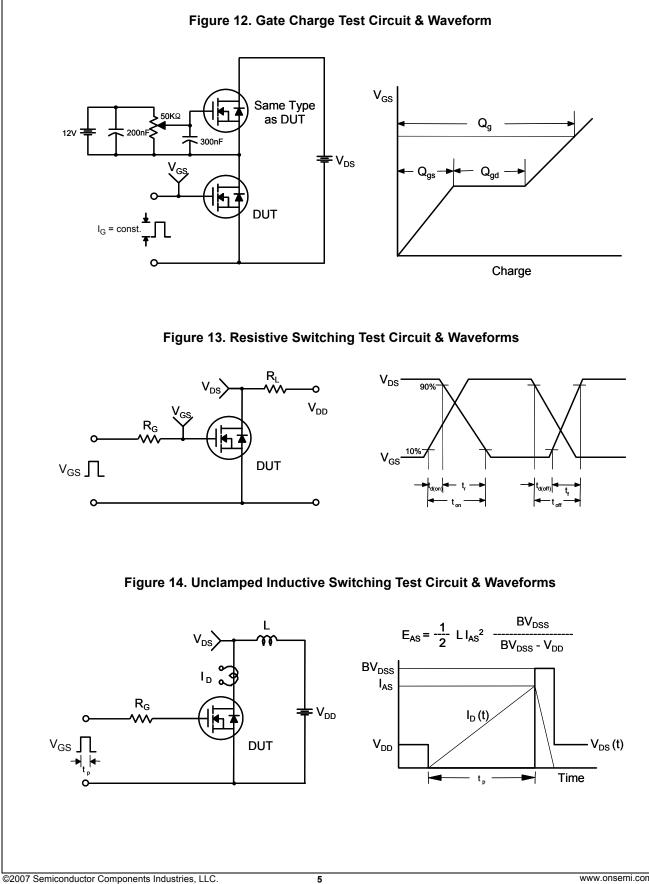

Figure 5. Capacitance Characteristics

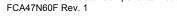


©2007 Semiconductor Components Industries, LLC. FCA47N60F Rev. 1

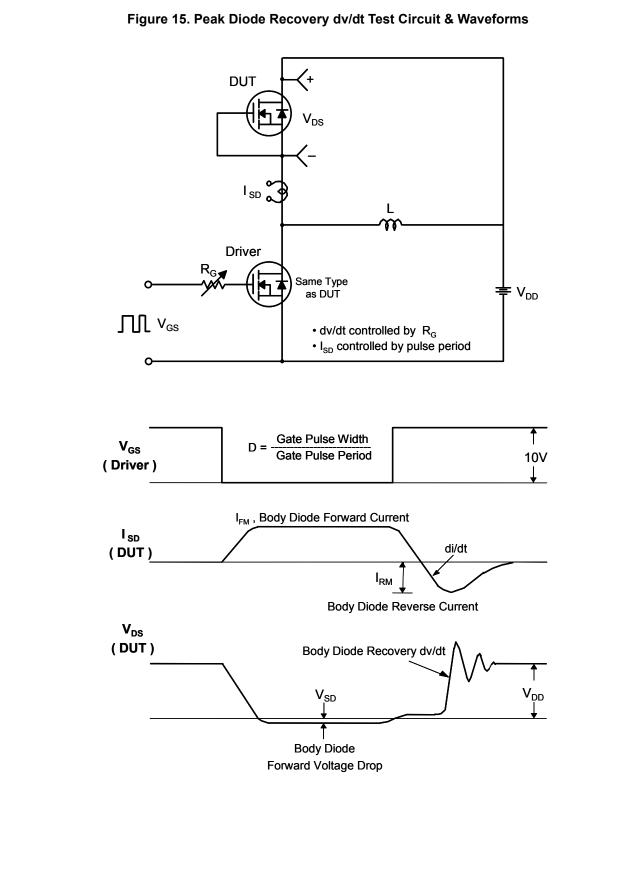

Figure 2. Transfer Characteristics

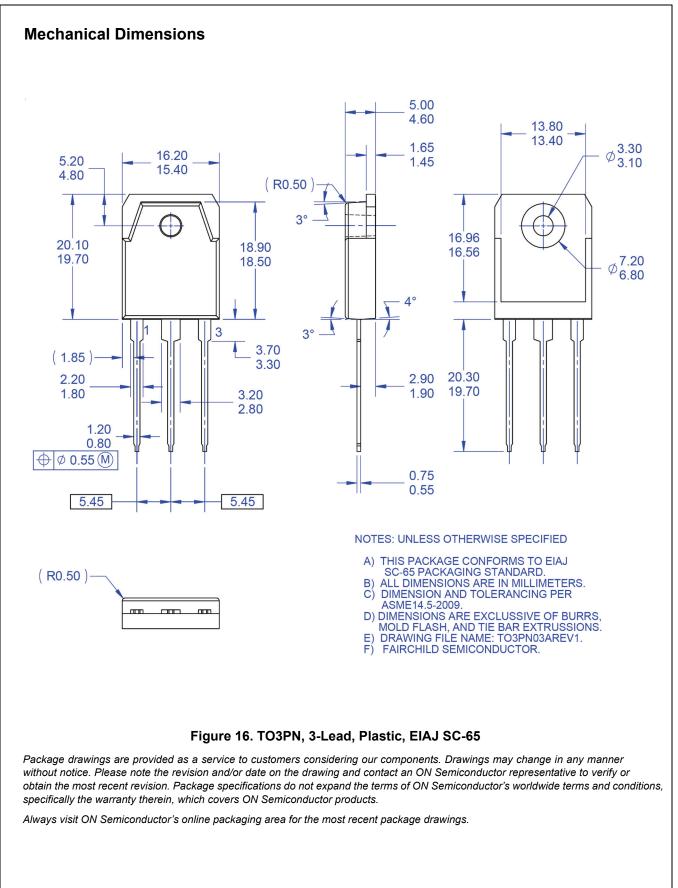






©2007 Semiconductor Components Industries, LLC. FCA47N60F Rev. 1


www.onsemi.com



www.onsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdi/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor hard use, exert applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated wi

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050

For additional information, please contact your local Sales Representative