

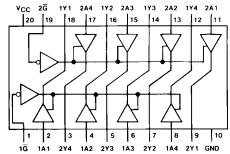
September 1986 Revised February 2000

DM74ALS244A Octal 3-STATE Bus Driver

General Description

This octal 3-STATE bus driver is designed to provide the designer with flexibility in implementing a bus interface with memory, microprocessor, or communication systems. This device offers 64-extended temperature Grade product guaranteeing performance from -40°C to $+85^{\circ}\text{C}$. The output 3-STATE gating control is organized into two separate groups of four buffers, and both control inputs enable the respective outputs when set logic LOW. The 3-STATE circuitry contains a feature that maintains the buffer outputs in 3-STATE (high impedance state) during power supply ramp-up or ramp-down. This eliminates bus glitching problems that arise during power-up and power-down.

Features

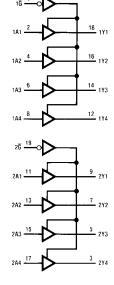

- Advanced low power oxide-isolated ion-implanted Schottky TTL process
- Functional and pin compatible with the 74LS counterpart
- Improved switching performance with less power dissipation compared with the 74LS counterpart
- \blacksquare Switching response specified into 500 $\!\Omega$ and 50 pF load
- Switching response specifications guaranteed over full temperature and V_{CC} supply range
- PNP input design reduces input loading

Ordering Code:

Order Number	Package Number	Package Description				
DM74ALS244AWM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide				
DM74ALS244ASJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide				
DM74ALS244AMSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide				
DM74ALS244AN	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide				

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram



Function Table

Inp	out	Output
G	Α	Y
L	L	L
L	Н	Н
Н	X	Z

- H = HIGH Level Logic State
- L = LOW Level Logic State
- X = Don't Care (Either LOW or HIGH Level Logic State)
- Z = High Impedance (OFF) State

Logic Diagram

© 2000 Fairchild Semiconductor Corporation

DS006212

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Supply Voltage, V_{CC} 7V Input Voltage Voltage Applied to Disabled Output 5.5V Operating Free Air Temperature Range 0°C to +70°C

Storage Temperature Range -65°C to +150°C

Typical θ_{JA}

N Package 60.5°C/W 79.8°C/W M Package

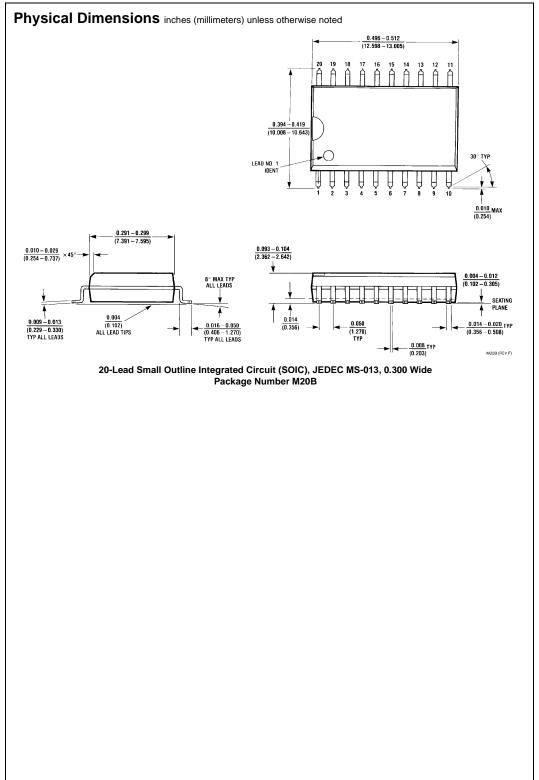
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

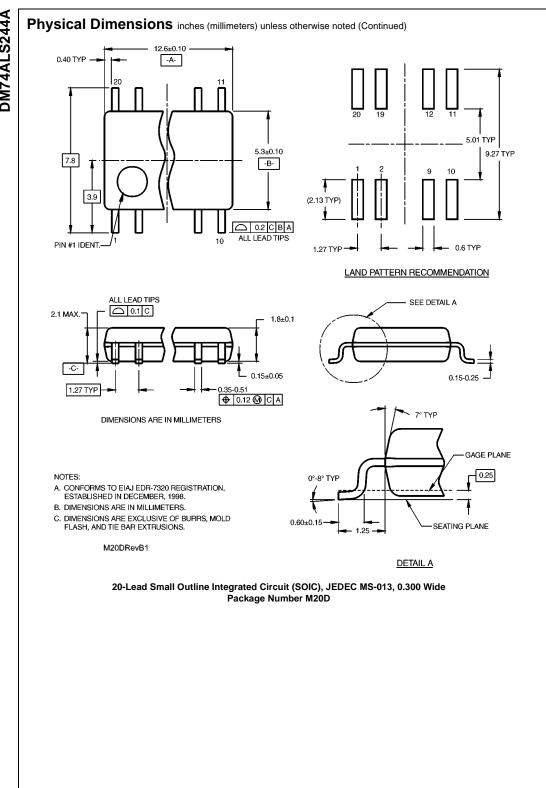
Recommended Operating Conditions

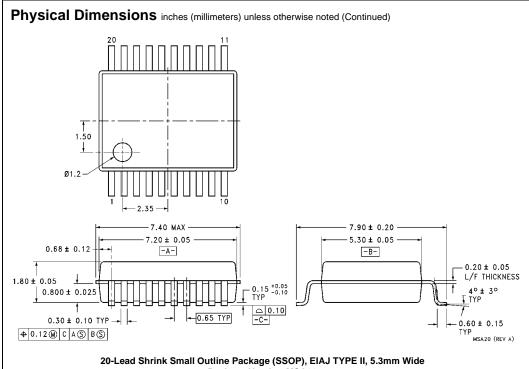
Symbol	Parameter	Min	Тур	Max	Units
V _{CC}	Supply Voltage	4.5	5	5.5	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
Гон	HIGH Level Output Current			-15	mA
I _{OL}	LOW Level Output Current			24	mA
T _A	Operating Free-Air Temperature	0		70	°C

7V

Electrical Characteristics

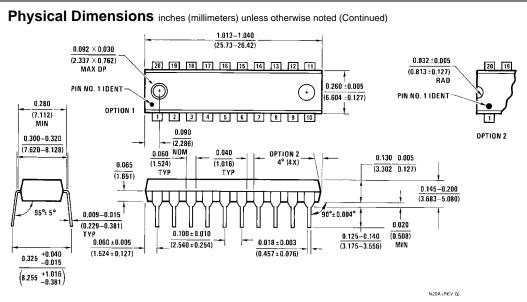

over recommended operating free air temperature (unless otherwise specified)


Symbol	Parameter	Conditions		Min	Тур	Max	Units
V _{IK}	Input Clamp Voltage	$V_{CC} = 4.5V, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	HIGH Level	V _{CC} = 4.5V to 5.5V	$I_{OH} = -0.4 \text{ mA}$	V _{CC} -2			V
	Output Voltage	V _{CC} = 4.5V	$I_{OH} = -3 \text{ mA}$	2.4			V
			I _{OH} = Max	2			V
V _{OL}	LOW Level	V _{CC} = 4.5V			0.05	0.5	V
	Output Voltage	$I_{OL} = 24 \text{ mA}$			0.35	0.5	V
II	Input Current at Maximum Input Voltage	$V_{CC} = 5.5V, V_I = 7V$				0.1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = 5.5V, V_I = 2.7V$				20	μΑ
I _{IL}	LOW Level Input Current	$V_{CC} = 5.5V, V_{IL} = 0.4V$				-0.1	mA
Io	Output Drive Current	$V_{CC} = 5.5V, V_{O} = 2.25V$		-30		-112	mA
I _{OZH}	HIGH Level 3-STATE Output Current	$V_{CC} = 5.5V, V_{O} = 2.7V$				20	μΑ
I _{OZL}	LOW Level 3-STATE Output Current	$V_{CC} = 5.5V, V_{O} = 0.4V$				-20	μΑ
Icc	Supply Current	V _{CC} = 5.5V			9	15	mA
		Outputs HIGH			9	15	mA
		Outputs LOW			15	24	mA
		Outputs 3-STATE			17	27	mA


Switching Characteristics

Symbol	Parameter	Conditions	From (Input)	To (Output)	Min	Max	Units
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	$V_{CC} = 4.5V \text{ to } 5.5V,$ $C_{L} = 50 \text{ pF},$	А	Y	3	10	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	$R1 = 500\Omega,$ $R2 = 500\Omega,$	А	Y	3	10	ns
t _{PZH}	Output Enable Time to HIGH Level Output	T _A = Min to Max	G	Υ	3	20	ns
t _{PZL}	Output Enable Time to LOW Level Output		G	Y	3	20	ns
t _{PHZ}	Output Disable Time from HIGH Level Output		G	Y	2	10	ns
t _{PLZ}	Output Disable Time from LOW Level Output		G	Y	1	13	ns

www.fairchildsemi.com



Package Number MSA20

5

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

www.fairchildsemi.com

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative