

Electrical Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
V _F	Forward Voltage	1.5 2.0	1.8 2.4	V	$I_F = 10 \text{ A } T_J = 25^{\circ}\text{C}$ $I_F = 10 \text{ A } T_J = 175^{\circ}\text{C}$	Fig. 1
I_R	Reverse Current	12 24	60 220	μΑ	$V_R = 650 \text{ V } T_J = 25^{\circ}\text{C}$ $V_R = 650 \text{ V } T_J = 175^{\circ}\text{C}$	Fig. 2
Q _c	Total Capacitive Charge	24		nC	$V_R = 400 \text{ V, } I_F = 10 \text{ A}$ $di/dt = 500 \text{ A/}\mu\text{s}$ $T_J = 25^{\circ}\text{C}$	Fig. 5
С	Total Capacitance	460.5 44 40		pF	$V_R = 0 \text{ V, } T_J = 25^{\circ}\text{C, } f = 1 \text{ MHz}$ $V_R = 200 \text{ V, } T_J = 25^{\circ}\text{C, } f = 1 \text{ MHz}$ $V_R = 400 \text{ V, } T_J = 25^{\circ}\text{C, } f = 1 \text{ MHz}$	Fig. 6
E _c	Capacitance Stored Energy	3.6		μJ	V _R = 400 V	Fig. 7

Note: This is a majority carrier diode, so there is no reverse recovery charge.

Thermal Characteristics

Symbol	Parameter	Тур.	Unit	Note
$R_{_{ heta JC}}$	Thermal Resistance from Junction to Case	1.0	°C/W	Fig. 9

Typical Performance

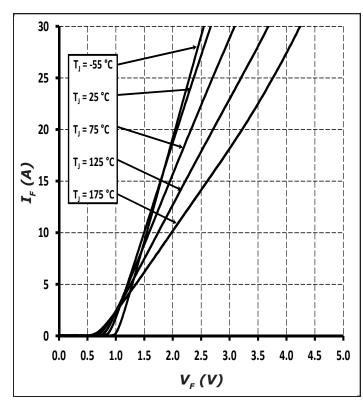


Figure 1. Forward Characteristics

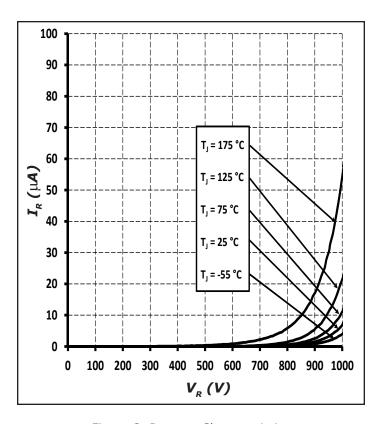
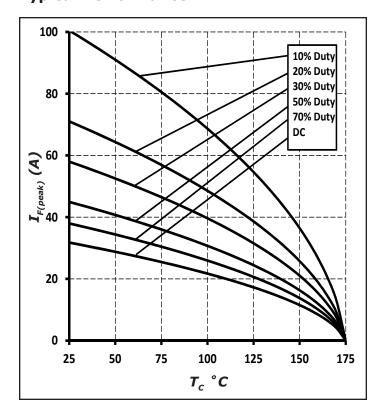



Figure 2. Reverse Characteristics

Typical Performance

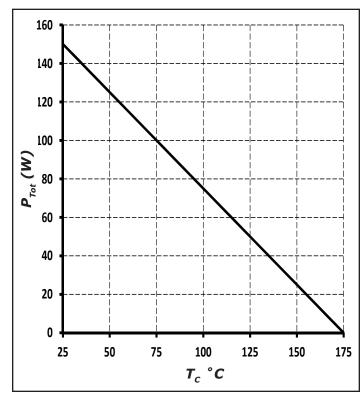


Figure 3. Current Derating

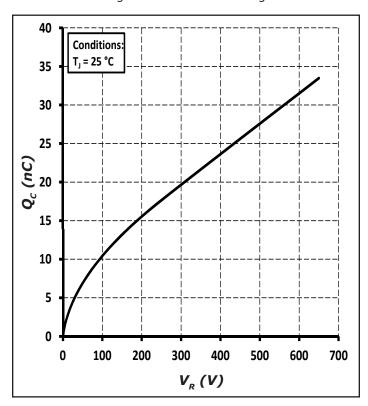


Figure 5. Total Capacitance Charge vs. Reverse Voltage $\,$

Figure 4. Power Derating

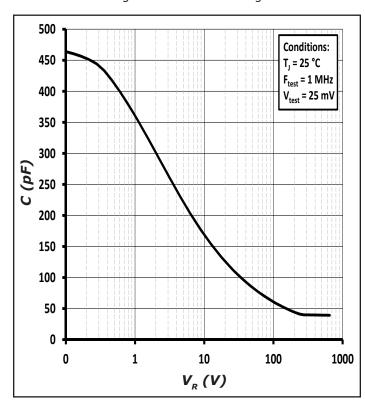


Figure 6. Capacitance vs. Reverse Voltage

Typical Performance

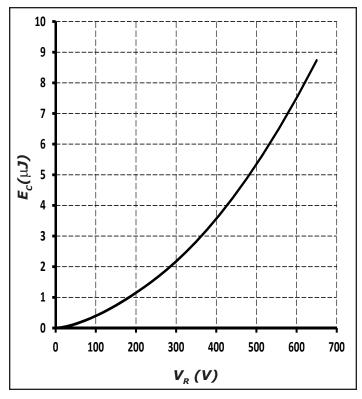


Figure 7. Capacitance Stored Energy

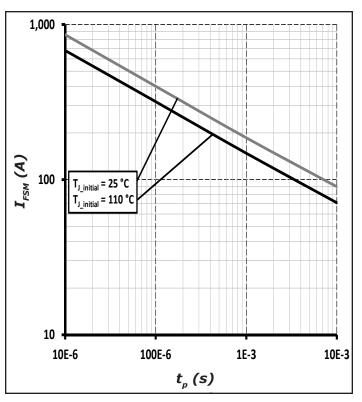


Figure 8. Non-repetitive peak forward surge current versus pulse duration (sinusoidal waveform)

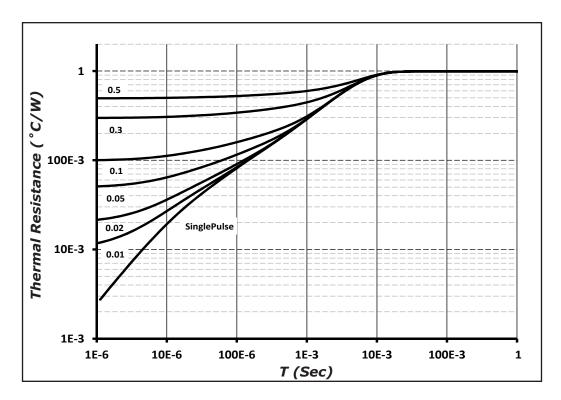
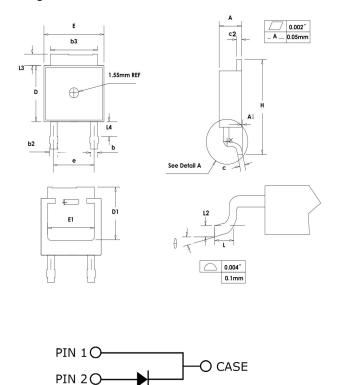
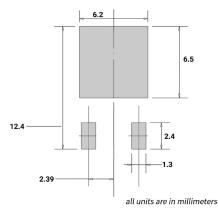



Figure 9. Transient Thermal Impedance


Package Dimensions

Package TO-252-2

SYMBOL	MILLIMETERS			
STIVIDOL	MIN	MAX		
А	2.159	2.413		
A1	0	0.13		
b	0.64	0.89		
b2	0.653	1.143		
b3	5.004	5.6		
С	0.457	0.61		
c2	0.457	0.864		
D	5.867	6.248		
D1	5.21	-		
E	6.35	6.73		
E1	4.32	-		
е	4.58 BSC			
Н	9.65	10.414		
L	1.106	1.78		
L2	0.51 BSC			
L3	0.889	1.27		
L4	0.64	1.01		
θ	0°	8°		

Recommended Solder Pad Layout

TO-252-2

Part Number	Package	Marking		
C3D10065E	TO-252-2	C3D10065		

Note: Recommended soldering profiles can be found in the applications note here: http://www.wolfspeed.com/power_app_notes/soldering

Diode Model

$$\begin{array}{c|c} - & & \\ \hline V_T & R_T \end{array}$$

$$Vf_T = V_T + If * R_T$$

$$V_T = 0.94 + (T_J * -1.3*10^{-3})$$

$$R_T = 0.044 + (T_1 * 4.4*10^{-4})$$

Note: T_j = Diode Junction Temperature In Degrees Celsius, valid from 25°C to 175°C

Notes

• RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Wolfspeed representative or from the Product Ecology section of our website at http://www.wolfspeed.com/power/tools-and-support/product-ecology.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

This product has not been designed or tested for use in, and is not intended for use in, applications implanted into
the human body nor in applications in which failure of the product could lead to death, personal injury or property
damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines,
cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control
systems, or air traffic control systems.

Related Links

- Cree SiC Schottky diode portfolio: http://www.wolfspeed.com/Power/Products#SiCSchottkyDiodes
- Schottky diode Spice models: http://www.wolfspeed.com/power/tools-and-support/DIODE-model-request2
- SiC MOSFET and diode reference designs: http://go.pardot.com/l/101562/2015-07-31/349i

Copyright © 2020 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc.