

Pin	Symbol	Function
1	GND	Logic ground
2	IN	Input, activates the power switch in case of logical high signal
3	Vbb	Positive power supply voltage, the tab is shorted to this pin
4	ST	Diagnostic feedback, low on failure
5	OUT (Load, L)	Output to the load

Maximum Ratings at T_j = 25 °C unless otherwise specified

Parameter	Symbol	Values	Unit
Supply voltage (overvoltage protection see page 3)	V _{bb}	63	V
Load dump protection $V_{\text{LoadDump}} = U_{\text{A}} + V_{\text{s}}$, $U_{\text{A}} = 13.5 \text{ V}$ $R_{\text{I}} = 2 \Omega$, $R_{\text{L}} = 1.1 \Omega$, $t_{\text{d}} = 200 \text{ ms}$, IN= low or high	<i>V</i> s ³⁾	66.5	V
Load current (Short-circuit current, see page 4)	IL.	self-limited	Α
Operating temperature range	Tj	-40+150	°C
Storage temperature range	T _{stg}	-55+150	
Power dissipation (DC)	P _{tot}	125	W
Inductive load switch-off energy dissipation, single pulse $T_j=150$ °C:	E _{AS}	1.7	J
Electrostatic discharge capability (ESD) (Human Body Model)	V _{ESD}	2.0	kV
Input voltage (DC)	V _{IN}	-0.5 +6	V
Current through input pin (DC)	/ _{IN}	±5.0	mA
Current through status pin (DC)	I _{ST}	±5.0	
see internal circuit diagrams page 6			
Thermal resistance chip - case:	R _{thJC}	≤ 1	K/W
junction - ambient (free air):	R _{thJA}	≤ 75	
SMD version, device on pcb ⁴):		typ. 33	

Downloaded from Arrow.com.

 $^{^{3)}}$ V_S is setup without DUT connected to the generator per ISO 7637-1 and DIN 40839

Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70μm thick) copper area for V_{bb} connection. PCB is vertical without blown air.

Electrical Characteristics

Parameter and Conditions	Symbol		Values	;	Unit
at T _j = 25 °C, V_{bb} = 12 V unless otherwise specified		min	typ	max	

Load Switching Capabilities and Characteristics

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\frac{T_{j}=150 \text{ °C:}}{T_{j}=150 \text{ °C:}} \qquad \frac{55}{70} \qquad \frac{55}{70} \qquad \frac{1000}{1000} \qquad \frac{1000}{10000} \qquad \frac{1000}{10000} \qquad \frac{1000}{100000} \qquad \frac{1000}{10000000000000000000000000000000$	On-state resistance (pin 3 to 5)					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$I_L = 2 A$ $T_j = 25 °C$: <i>R</i> _{ON}		30	38	mΩ
$\frac{\text{ISO Proposal: } V_{\text{ON}} = 0.5 \text{ V}, \ T_{\text{C}} = 85 \text{ °C}}{\text{Output current (pin 5) while GND disconnected or GND pulled up, V_{\text{IN}} = 0, see diagram page 7, T_{\text{j}} = -40+150 \text{ °C}} \qquad I_{\text{L}(\text{GNDhigh})} \qquad \qquad \qquad 1 \qquad \text{mA}}{\text{mA}}$ $\frac{I_{\text{L}(\text{GNDhigh})}}{\text{Turn-on time}} \qquad to 90\% \ V_{\text{OUT}}: \ t_{\text{on}} \qquad 50 \qquad 160 \qquad 300 \qquad \mu \text{s}}{\text{Turn-off time}} \qquad to 10\% \ V_{\text{OUT}}: \ t_{\text{off}} \qquad 10 \qquad \qquad 80 \qquad 10 \qquad 10 \qquad \text{mA}}{\text{mA}}$ $\frac{I_{\text{L}(\text{GNDhigh})}}{I_{\text{L}} = 12 \ \Omega, \ T_{\text{j}} = -40+150 \text{ °C}} \qquad dV/dt_{\text{on}} \qquad 0.4 \qquad \qquad 2.5 \qquad V/\mu \text{s}}{\text{mA}}$	<i>T</i> j=150 °C	:		55	70	
$ \begin{array}{c c} \hline \text{Output current (pin 5) while GND disconnected or} \\ \text{GND pulled up, V_{IN}= 0, see diagram page 7,} \\ \hline T_{j}=-40+150^{\circ}\text{C} \\ \hline \text{Turn-on time} \\ \text{Turn-of time} \\ \text{Turn-off time} \\ R_{L} = 12 \ \Omega, \ T_{j} = -40+150^{\circ}\text{C} \\ \hline \text{Slew rate on} \\ 10 \ to \ 30\% \ V_{\text{OUT}}, \ R_{L} = 12 \ \Omega, \ T_{j} = -40+150^{\circ}\text{C} \\ \hline \text{Output current (pin 5) while GND disconnected or} \\ \text{GND pulled up, V_{IN}= 0, see diagram page 7,} \\ \hline T_{I}=-40+150^{\circ}\text{C} \\ \hline \text{C} \\ \hline \text{C} \\ \text{C} \hline \text{C} \\ \hline \text{C} \\ \hline \text{C} \hline \hline \text{C} \\ \hline \text{C} \hline \hline \text{C} \\ \hline \text{C} \\ \hline \text{C} \hline \ \text{C} \\ \hline \text{C} \\ \hline \text{C} \hline \hline \text{C} \\ \hline \text{C} \hline \hline \text{C} \\ \hline \text{C} \hline \hline \text{C} \hline $	Nominal load current (pin 3 to 5)	I _{L(ISO)}	9	11		A
GND pulled up, $V_{IN} = 0$, see diagram page 7, $T_j = -40+150^{\circ}C$ Image: Constraint of the second seco	ISO Proposal: $V_{ON} = 0.5 \text{ V}$, $T_C = 85 \text{ °C}$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Output current (pin 5) while GND disconnected or	I _{L(GNDhigh)}			1	mA
Turn-on timeto 90% V_{OUT} : to 10% V_{OUT} : t_{on} 50160300 μs Turn-off timeto 10% V_{OUT} : t_{off} 1080 $R_L = 12 \Omega, T_j = -40+150^{\circ}C$ dV/dt_{on}0.42.5V/ μs 10 to 30% $V_{OUT}, R_L = 12 \Omega, T_j = -40+150^{\circ}C$ dV/dt_{on}0.42.5V/ μs						
Turn-off time to 10% V_{OUT} : to ff 10 80 $R_L = 12 \Omega, T_j = -40 + 150^{\circ}C$ dV/dt_{on} 0.4 2.5 V/µs 10 to 30% $V_{OUT}, R_L = 12 \Omega, T_j = -40 + 150^{\circ}C$ dV/dt_{on} 0.4 2.5 V/µs						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-on time to 90% V _{OUT}	: t _{on}	50	160	300	μs
Slew rate on 10 to 30% V_{OUT} , $R_L = 12 \Omega$, $T_j = -40+150^{\circ}C$ d V/dt_{on} 0.42.5V/µs	Turn-off time to 10% V _{OUT}	: t _{off}	10		80	
10 to 30% V_{OUT} , $R_L = 12 \Omega$, $T_j = -40+150^{\circ}C$	<i>R</i> _L = 12 Ω, <i>T</i> _j =-40+150°C					
	Slew rate on	dV/dt _{on}	0.4		2.5	V/µs
Slew rate off $-d V/dt_{off}$ 1 5 V/us	10 to 30% <i>V</i> _{OUT} , <i>R</i> _L = 12 Ω, <i>T</i> _j =-40+150°C					
		-dV/dt _{off}	1		5	V/µs
70 to 40% V_{OUT} , $R_L = 12 \Omega$, $T_j = -40+150^{\circ}C$	70 to 40% V_{OUT} , $H_L = 12 \Omega$, $T_j = -40+150^{\circ}C$					

Operating Parameters

Operating voltage ⁵⁾	<i>T</i> _j =-40+150°C:	V _{bb(on)}	4.5		42	V
Undervoltage shutdown	<i>T</i> _j =-40+150°C:	V _{bb(under)}	2.4		4.5	V
Undervoltage restart	<i>T</i> _j =-40+150°C:	V _{bb(u rst)}			4.5	V
Undervoltage restart of charge see diagram page 12	pump <i>T</i> j =-40+150°C:	$V_{\rm bb(ucp)}$		6.5	7.5	V
Undervoltage hysteresis $\Delta V_{bb(under)} = V_{bb(u rst)} - V_{bb(under)}$		$\Delta V_{ m bb(under)}$		0.2		V
Overvoltage shutdown	<i>T</i> _j =-40+150°C:	$V_{\rm bb(over)}$	42		52	V
Overvoltage restart	<i>T</i> j =-40+150°C:	V _{bb(o rst)}	42			V
Overvoltage hysteresis	<i>T</i> _j =-40+150°C:	$\Delta V_{\rm bb(over)}$		0.2		V
Overvoltage protection ⁶⁾	<i>T</i> _j =-40°C:	V _{bb(AZ)}	60			V
<i>I</i> _{bb} =40 mA	<i>T</i> _j =25+150°C:		63	67		
Standby current (pin 3)	<i>T</i> _j =-40+25°C:	I _{bb(off)}		12	25	μA
V _{IN} =0	<i>T</i> j=150°C:			18	60	
Leakage output current (included in <i>I</i> _{bb(off)}) VIN=0		I _{L(off)}		6		μA
Operating current (Pin 1) ⁷⁾ , V _{IN} =	=5 V	I _{GND}		1.1		mA

⁵⁾ At supply voltage increase up to V_{bb} = 6.5 V typ without charge pump, $V_{OUT} \approx V_{bb}$ - 2 V

⁶⁾ see also *V*_{ON(CL)} in table of protection functions and circuit diagram page 7. Meassured without load.

⁷⁾ Add I_{ST} , if $I_{\text{ST}} > 0$, add I_{IN} , if $V_{\text{IN}} > 5.5 \text{ V}$

PROFET[®] BTS 432 E2

Parameter and Conditions	Symbol		Values		
at T _j = 25 °C, V_{bb} = 12 V unless otherwise specified		min	typ	max	
Protection Functions ⁸⁾					
Initial peak short circuit current limit (pin 3 to 5) ⁹ , (max 400 μ s if V _{ON} > V _{ON(SC)})	I _{L(SCp)}				
T _j =-40°C: T _j =25°C: T _j =+150°C:		 24	 44 	74 	A
Repetitive short circuit current limit	I _{L(SCr)}				
$T_{\rm j} = T_{\rm jt}$ (see timing diagrams, page 10)		22	35		А
Short circuit shutdown delay after input pos. slope $V_{ON} > V_{ON(SC)}$, $T_j = -40+150^{\circ}C$: min value valid only, if input "low" time exceeds 30 µs	t _{d(SC)}	80		400	μs
Output clamp (inductive load switch off) at $V_{OUT} = V_{bb} - V_{ON(CL)}$, $I_L = 30 \text{ mA}$	V _{ON(CL)}		58		V
Short circuit shutdown detection voltage (pin 3 to 5)	V _{ON(SC)}		8.3		V
Thermal overload trip temperature	T _{jt}	150			°C
Thermal hysteresis	ΔT_{jt}		10		K
Inductive load switch-off energy dissipation ¹⁰⁾ ,	E _{AS}			1.7	J
$T_{j \text{ Start}} = 150 \text{ °C}$, single pulse $V_{bb} = 12 \text{ V}$:	E _{Load12}			1.3	
$V_{\rm bb} = 24$ V:	E_{Load24}			1.0	
Reverse battery (pin 3 to 1) 11)	-V _{bb}			32	V
Integrated resistor in V _{bb} line	R _{bb}		120		Ω

Diagnostic Characteristics

Open load detection current	<i>T</i> _i =-40 °C: <i>I</i> _L	_ (OL)	2	 900	mA
(on-condition)	<i>T</i> j=25150°C:	· · /	2	 750	

- ⁹⁾ Short circuit current limit for max. duration of 400 μ s, prior to shutdown (see t_{d(SC)} page 4)
- ¹⁰⁾ While demagnetizing load inductance, dissipated energy in PROFET is $E_{AS} = \int V_{ON(CL)} * i_{L}(t) dt$, approx.

$$E_{AS} = \frac{1}{2} * L * I_{L}^{2} * \left(\frac{V_{ON(CL)}}{V_{ON(CL)} - V_{bb}}\right), \text{ see diagram page 8.}$$

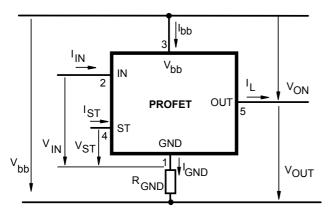
¹¹⁾ Reverse load current (through intrinsic drain-source diode) is normally limited by the connected load. Reverse current I_{GND} of ≈ 0.3 A at V_{bb} = -32 V through the logic heats up the device. Time allowed under these condition is dependent on the size of the heatsink. Reverse I_{GND} can be reduced by an additional external GND-resistor (150 Ω). Input and Status currents have to be limited (see max. ratings page 2 and circuit page 7).

⁸⁾ Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

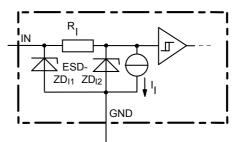
PROFET[®] BTS 432 E2

Parameter and Conditions	Symbol		Values		Unit
at T _j = 25 °C, V_{bb} = 12 V unless otherwise specified		min	typ	max	
Input and Status Feedback ¹²⁾					
Input turn-on threshold voltage $T_j = -40+150^{\circ}C$:	V _{IN(T+)}	1.5		2.4	V
Input turn-off threshold voltage $T_j = -40+150^{\circ}C$:	V _{IN(T-)}	1.0			V
Input threshold hysteresis	$\Delta V_{\rm IN(T)}$		0.5		V
Off state input current (pin 2) $V_{\rm IN} = 0.4$ V:	I _{IN(off)}	1		30	μA
On state input current (pin 2) $V_{\rm IN} = 3.5$ V:	I _{IN(on)}	10	25	50	μA
Status invalid after positive input slope (short circuit) $T_j=-40 \dots +150^{\circ}C$:	t _{d(ST SC)}	80	200	400	μs
Status invalid after positive input slope(open load) T_j =-40 +150°C:	t _{d(ST)}	350		1600	μs
Status output (open drain)					
Zener limit voltage $T_j = -40+150^{\circ}C$, $I_{ST} = +1.6$ mA:	$V_{\rm ST(high)}$	5.4	6.1		V
ST low voltage $T_j = -40+150^{\circ}$ C, $I_{ST} = +1.6$ mA:	V _{ST(low)}			0.4	

 $^{^{\}rm 12)}\,$ If a ground resistor $\rm R_{GND}$ is used, add the voltage drop across this resistor.


Truth Table

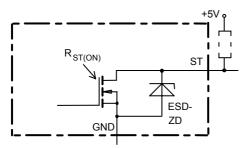
	Input-	Output	Status
	Level	level	432E2
Normal	L	L	Н
operation	н	н	н
Open load	L	13)	Н
	н	н	L
Short circuit	L	L	Н
to GND	Н	L	L
Short circuit	L	Н	Н
to V _{bb}	н	н	H (L ¹⁴)
Overtem-	L	L	L
perature	Н	L	L
Under-	L	L	Н
voltage	Н	L	Н
Overvoltage	L	L	Н
	н	L	н


L = "Low" Level

H = "High" Level

Terms

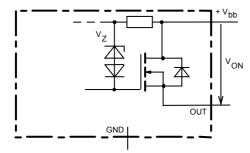
Input circuit (ESD protection)


 ZD_{11} 6.1 V typ., ESD zener diodes are not designed for continuous current

¹³⁾ Power Transistor off, high impedance

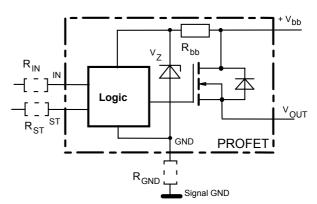
¹⁴⁾ Low resistance short V_{bb} to output may be detected by no-load-detection

Status output


ESD-Zener diode: 6.1 V typ., max 5 mA; RST(ON) < 250 Ω at 1.6 mA, ESD zener diodes are not designed for continuous current

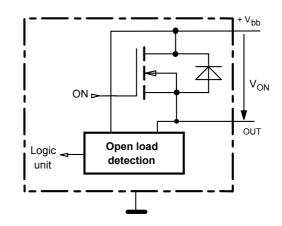
Short Circuit detection

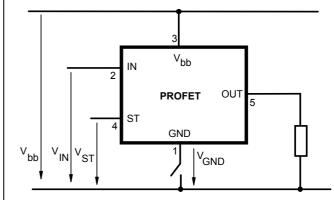
Fault Condition: $V_{ON} > 8.3$ V typ.; IN high



Inductive and overvoltage output clamp

V_{ON} clamped to 58 V typ.


Overvolt. and reverse batt. protection

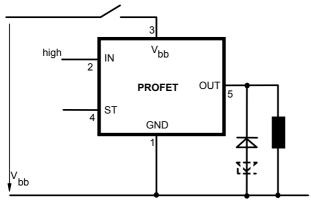

 R_{bb} = 120 Ω typ., V_Z + R_{bb} *40 mA = 67 V typ., add R_{GND}, R_{IN} , R_{ST} for extended protection

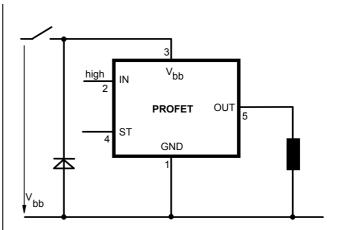
Open-load detection

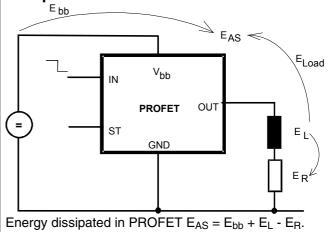
ON-state diagnostic condition: $V_{ON} < R_{ON} * I_{L(OL)}$; IN high


GND disconnect

Any kind of load. In case of Input=high is $V_{OUT}\approx V_{IN}$ - $V_{IN(T+)}$. Due to V_{GND} >0, no V_{ST} = low signal available.




GND disconnect with GND pull up


Any kind of load. If V_{GND} > V_{IN} - $V_{IN(T+)}$ device stays off Due to V_{GND} >0, no V_{ST} = low signal available.

$V_{\mbox{\scriptsize bb}}$ disconnect with charged inductive load

Inductive Load switch-off energy dissipation

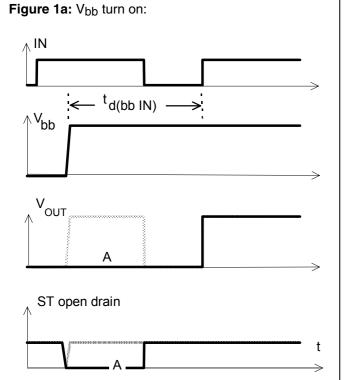
 $E_{\text{Load}} < E_{\text{L}}, E_{\text{L}} = \frac{1}{2} * L * I_{\text{L}}^2$

Options Overview

all versions: High-side switch, Input protection, ESD protection, load dump and reverse battery protection, protection against loss of ground

TypeBTS432E2Logic versionEOvertemperature protectionTj >150 °C, latch function ¹⁵⁾¹⁶)Tj >150 °C, with auto-restart on coolingXShort-circuit to GND protectionswitches off when V _{ON} >8.3 V typ. ¹⁵)(when first turned on after approx. 200 µs)Open load detectionin OFF-state with sensing current 30 µA typ.in ON-state with sensing voltage drop acrosspower transistorUndervoltage shutdown with auto restartXOvervoltage shutdown with auto restartXStatus feedback forovertemperaturexshort circuit to GNDx short to V _{bb} open loadxStatus output typeCMOSOpen drainXOutput negative voltage transient limit (fast inductive load switch off)to Vpb - VON(CL)		
CIOvertemperature protectionTj >150 °C, latch function ¹⁵) ¹⁶)Tj >150 °C, with auto-restart on coolingXShort-circuit to GND protectionswitches off when V _{ON} >8.3 V typ. ¹⁵)Xswitches off when V _{ON} >8.3 V typ. ¹⁵)X(when first turned on after approx. 200 µs)Open load detectionin OFF-state with sensing current 30 µA typ.in ON-state with sensing voltage drop across power transistorXUndervoltage shutdown with auto restartXStatus feedback for×overvoltage shutdown with auto restartXshort circuit to GNDXshort to V _{bb} -17)open loadXundervoltage-overvoltage-Status output type-CMOSOpen drainXOutput negative voltage transient limit (fast inductive load switch off)X	Type BTS	432E2
Tj >150 °C, latch function15)16)TTj >150 °C, with auto-restart on coolingXShort-circuit to GND protectionswitches off when V _{ON} >8.3 V typ.15)X(when first turned on after approx. 200 µs)Open load detectionxIn OFF-state with sensing current 30 µA typ. in ON-state with sensing voltage drop across power transistorxUndervoltage shutdown with auto restart status feedback for overtemperaturexStatus feedback for overtoltage-177)open loadXundervoltage-Status output type-CMOS Open drainXOutput negative voltage transient limit (fast inductive load switch off)X	Logic version	Е
Tj>150 °C, with auto-restart on coolingXShort-circuit to GND protectionswitches off when V _{ON} >8.3 V typ.15)X(when first turned on after approx. 200 µs)Open load detectionxOpen load detectionin OFF-state with sensing current 30 µA typ.xin ON-state with sensing voltage drop across power transistorxUndervoltage shutdown with auto restartxStatus feedback for overtemperaturexshort circuit to GNDxshort to V _{bb} -17)open loadxundervoltage-Status output type-CMOSOpen drainXOutput negative voltage transient limit (fast inductive load switch off)X	Overtemperature protection	
Short-circuit to GND protectionswitches off when V _{ON} >8.3 V typ. ¹⁵⁾ (when first turned on after approx. 200 μs)Open load detectionin OFF-state with sensing current 30 μA typ.in ON-state with sensing voltage drop across power transistorUndervoltage shutdown with auto restartXOvervoltage shutdown with auto restartXStatus feedback for overtemperaturexshort circuit to GNDxshort to V _{bb} open loadxStatus output typecMOSOpen drainXOutput negative voltage transient limit (fast inductive load switch off)	$T_{j} > 150 \text{ °C}$, latch function ¹⁵⁾¹⁶	
switches off when V _{ON} >8.3 V typ.15) (when first turned on after approx. 200 μs)XOpen load detection in OFF-state with sensing current 30 μA typ. in ON-state with sensing voltage drop across power transistorXUndervoltage shutdown with auto restart Status feedback for overtemperatureXStatus feedback for open load-17) Xopen loadXshort circuit to GND open loadXStatus output type CMOS-Open drainXOutput negative voltage transient limit (fast inductive load switch off)X	T_{j} >150 °C, with auto-restart on cooling	Х
(when first turned on after approx. 200 μs)Open load detectionin OFF-state with sensing current 30 μA typ.in ON-state with sensing voltage drop across power transistorUndervoltage shutdown with auto restartXOvervoltage shutdown with auto restartXStatus feedback for overtemperaturexShort circuit to GNDxshort circuit to GNDxundervoltage-overvoltage-Status output typeCMOSOpen drainXOutput negative voltage transient limit (fast inductive load switch off)	Short-circuit to GND protection	
in OFF-state with sensing current 30 μA typ. in ON-state with sensing voltage drop across power transistor X Undervoltage shutdown with auto restart X Overvoltage shutdown with auto restart X Status feedback for overtemperature X short circuit to GND X short to V _{bb} -17) open load X undervoltage - Otervoltage - Status output type CMOS Open drain X Output negative voltage transient limit (fast inductive load switch off)		X
in ON-state with sensing voltage drop across power transistor X Undervoltage shutdown with auto restart X Overvoltage shutdown with auto restart X Status feedback for overtemperature X short circuit to GND X short to V _{bb} -17) open load X undervoltage - Status output type CMOS Open drain X Output negative voltage transient limit (fast inductive load switch off)	Open load detection	
Overvoltage shutdown with auto restartXStatus feedback for overtemperatureXshort circuit to GNDXshort to Vbb-17)open loadXundervoltage-overvoltage-Status output typeCMOSOpen drainXOutput negative voltage transient limit (fast inductive load switch off)	in ON-state with sensing voltage drop across	x
Status feedback for overtemperatureXshort circuit to GNDXshort to Vbb-17)open loadXundervoltage-overvoltage-Status output type-CMOSOpen drainXOutput negative voltage transient limit (fast inductive load switch off)X	Undervoltage shutdown with auto restart	Х
overtemperatureXshort circuit to GNDXshort to Vbb-17)open loadXundervoltage-overvoltage-Status output type-CMOSOpen drainXOutput negative voltage transient limit (fast inductive load switch off)X	Overvoltage shutdown with auto restart	Х
short circuit to GNDXshort to Vbb-17)open loadXundervoltage-overvoltage-Status output type-CMOSCMOSOpen drainXOutput negative voltage transient limit (fast inductive load switch off)	Status feedback for	
short to Vbb-17)open loadXundervoltage-overvoltage-Status output type-CMOSCMOSOpen drainXOutput negative voltage transient limit (fast inductive load switch off)	overtemperature	Х
open loadXundervoltage-overvoltage-Status output type-CMOSOpen drainXOutput negative voltage transient limit (fast inductive load switch off)X	short circuit to GND	Х
undervoltage-overvoltage-Status output type-CMOS-Open drainXOutput negative voltage transient limit (fast inductive load switch off)	short to V _{bb}	_17)
overvoltage-Status output type-CMOS-Open drainXOutput negative voltage transient limit (fast inductive load switch off)	open load	X
Status output type CMOS Open drain X Output negative voltage transient limit (fast inductive load switch off)	undervoltage	-
CMOS Open drain X Output negative voltage transient limit (fast inductive load switch off) Image: Comparison of the second secon	overvoltage	-
Open drain X Output negative voltage transient limit (fast inductive load switch off)	Status output type	
Output negative voltage transient limit (fast inductive load switch off)	CMOS	
(fast inductive load switch off)	Open drain	Х
to Veh - VON(CL)		
	to V _{bb} - V _{ON(CL)}	Х
Load current limit	Load current limit	
high level (can handle loads with high inrush currents) X	high level (can handle loads with high inrush currents)	Х
medium level	medium level	
low level (better protection of application)	low level (better protection of application)	

¹⁵⁾ Latch except when $V_{bb} - V_{OUT} < V_{ON(SC)}$ after shutdown. In most cases $V_{OUT} = 0$ V after shutdown ($V_{OUT} \neq 0$ V only if forced externally). So the device remains latched unless $V_{bb} < V_{ON(SC)}$ (see page 4). No latch between turn on and $t_{d(SC)}$.


Downloaded from Arrow.com.

¹⁶⁾ With latch function. Reseted by a) Input low, b) Undervoltage, c) Overvoltage

¹⁷⁾ Low resistance short V_{bb} to output may be detected by no-load-detection

Timing diagrams

in case of too early VIN=high the device may not turn on (curve A) $t_{\rm d(bb\ IN)}$ approx. 150 μs

Figure 2a: Switching a lamp,

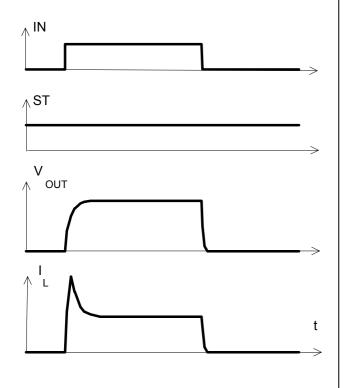
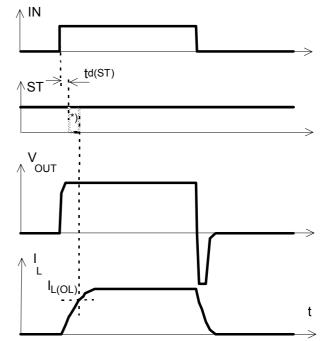
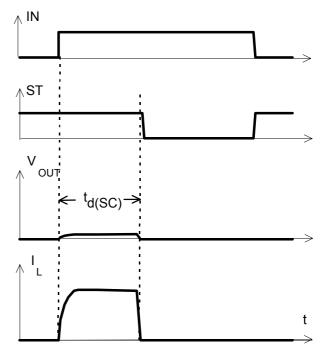




Figure 2b: Switching an inductive load

*) if the time constant of load is too large, open-load-status may occur

Figure 3a: Turn on into short circuit,

 $t_{d(SC)}$ approx. 200 μ s if V_{bb} - V_{OUT} > 8.3 V typ.

Figure 3b: Turn on into overload,

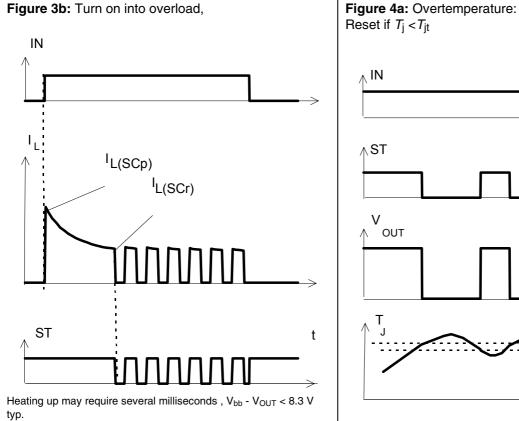
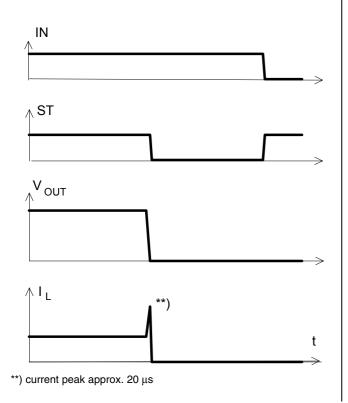



Figure 3c: Short circuit while on:

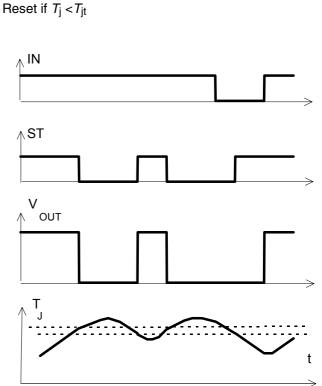
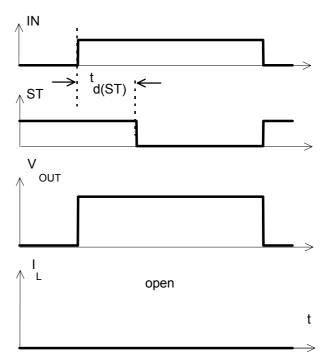
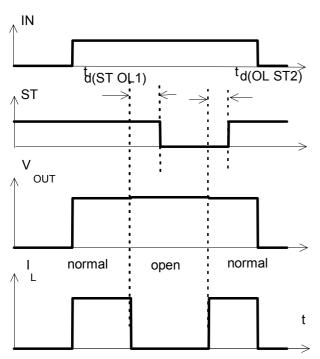
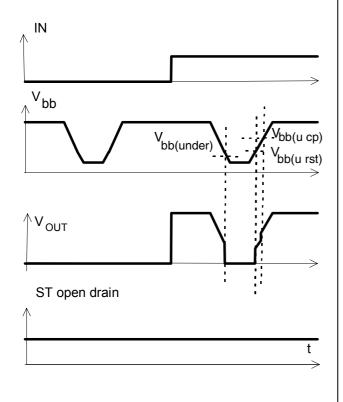
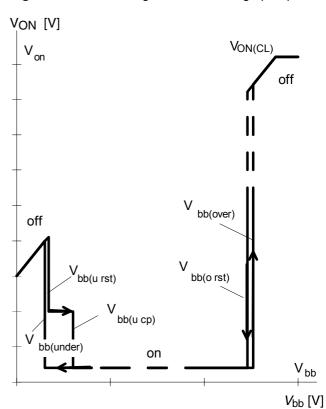


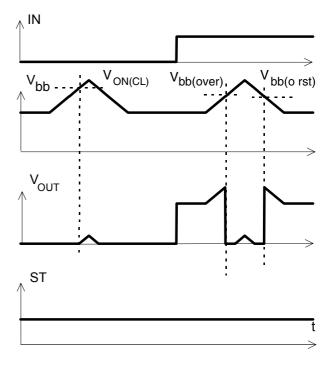
Figure 5a: Open load: detection in ON-state, turn on/off to open load




Figure 5b: Open load: detection in ON-state, open load occurs in on-state

 $t_{d(ST OL1)} = tbd \ \mu s \ typ., \ t_{d(ST OL2)} = tbd \ \mu s \ typ$


Figure 6a: Undervoltage:

charge pump starts at $V_{bb(ucp)}$ =6.5 V typ.

Figure 7a: Overvoltage:

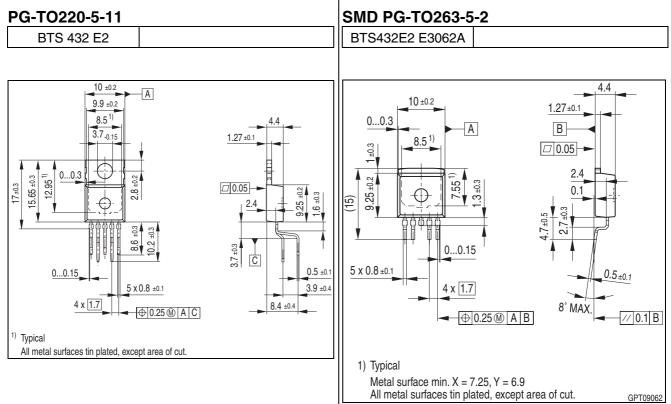

Data Sheet

Figure 6b: Undervoltage restart of charge pump

Package and Ordering Code

All dimensions in mm

Green Product

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

Revision History

Version	Date	Changes
Rev. 1.1	2010-01-26	Page 13: Package drawing for PG-TO220-5-11 corrected.
Rev. 1.0	2009-11-12	RoHS-compliant version of BTS432E2
		Removal of straight lead package variant E3043
		Page 1, page 13: RoHS compliance statement and Green product feature added
		Page 1, page 13: Change to RoHS compliant packages; PG-TO220-5-11 for
		standard (staggered) variant; PG-TO263-5-2 for E3062A variant.
		Page 2: Thermal resistance junction to ambient for SMD version set to typically
		33K/W.
		Page 2: Pin marking removed.
		Page 6, 9: Discontinued variants removed from truth table & options overview.
		Legal disclaimer updated

Published by Infineon Technologies AG 81726 Munich, Germany © 2010 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<u>www.infineon.com</u>).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.