
BSS64

BSS64

NPN General Purpose Amplifier

This device is designed for general purpose high voltage amplifiers and gas discharge display driving. Sourced from Process 16.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	80	V
V _{CBO}	Collector-Base Voltage	120	V
V _{EBO}	Emitter-Base Voltage	5.0	V
I _C	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

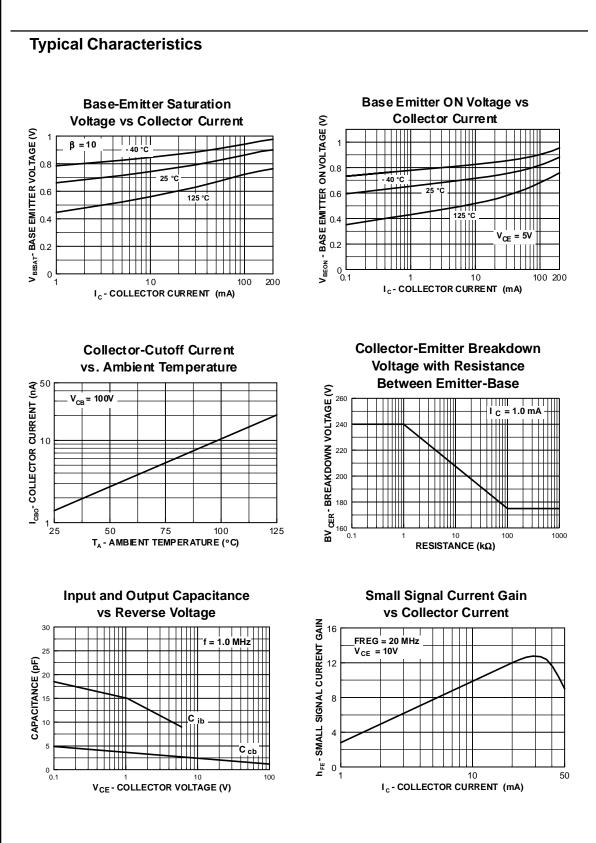
1) These ratings are based on a maximum junction temperature of 150 degrees C.
 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	Мах	Units
		*BSS64	
PD	Total Device Dissipation	350	mW
	Derate above 25°C	2.8	mW/°C
$R_{ extsf{ heta}JA}$	Thermal Resistance, Junction to Ambient	357	°C/W

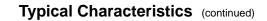
*Device mounted on FR-4 PCB 40 mm X 40 mm X 1.5 mm.

©1997 Fairchild Semiconductor Corporation

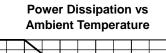

NPN General Purpose Amplifier (continued)

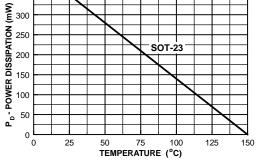
BSS64

OFF CHARACTERISTICS Vignocco Collector-Emitter Breakdown Voltage Ic = 100 µA, Ic = 0 800 µA Vignocco Collector-Cutoff Current Vignocco Sol V, Ic = 0 Sol V, Ic = 0 Sol V, Ic = 0 ON CHARACTERISTICS New Collector-Cutoff Current Vignocco Collector-Emitter Saturation Voltage Ic = 10 mA, Vice = 1.0 V 200 nA ON CHARACTERISTICS New Collector-Emitter Saturation Voltage Ic = 4.0 mA, Ig = 400 µA 1.12 V Spice Model NPN (Is=2.5111 Xita: Summa Collector Current Gain Typical Pulsed Current Gain Vigno Pulsed Current Gain Spice Model NPN (Is=2.5111 Xita: Spice Model Vigno Pulsed Current Gain Vigno Pulsed Current Gain Spice Model Vigno Pulsed Current Gain Vigno Pulsed Current Gain Vigno Pulsed Current Gain <th>Symbol</th> <th>Parameter</th> <th>Test Conditions</th> <th>Min</th> <th>Max</th> <th>Units</th>	Symbol	Parameter	Test Conditions	Min	Max	Units
VIBERCED Collector-Emitter Breakdown Voltage $l_c = 4.0 \text{ mA}, l_b = 0$ 80 V VIBERCED Collector-Cases Breakdown Voltage $l_c = 100 \mu$ A, $l_c = 0$ 120 V VIBERCED Collector-Cutoff Current $V_{cb} = 90 V, l_c = 0$ 5.0 V Lead Collector-Cutoff Current $V_{cb} = 90 V, l_c = 0$ 5.0 V DN CHARACTERISTICS Free DC Current Gain $V_{cb} = 50 \text{ V}, l_c = 0$ 200 nA Negative Collector-Cutoff Current $V_{cb} = 50 \text{ V}, l_c = 0$ 20 nA Vegean Collector-Emitter Saturation Voltage $l_c = 40 \text{ mA}, l_b = 400 \mu$ A 0.15 V Vegean Collector-Emitter Saturation Voltage $l_c = 4.0 \text{ mA}, l_b = 400 \mu$ A 1.2 V State Base-Emitter Saturation Voltage $l_c = 4.0 \text{ mA}, l_b = 400 \mu$ A 1.2 V State State State State State State State Item Callestor Emitter-Saturation Voltage $l_c = 4.0 \text{ mA}, l_b = 400 \mu$ A 1.2 V State Output Capacit						
$V_{BR(ED)} = 0 + 120 +$			· · · · · · · · · · · · · · · · · · ·	n	n	n
$V_{\text{URPERD}} = \text{Emitter-Base Breakdown Voltage} I_{\text{E}} = 100 \mu\text{A}, I_{\text{C}} = 0 5.0 V V \\ V_{\text{CB}} = 90 V_{\text{L}} = 0 T_{\text{C}} = 0, T_{\text{A}} = 150^{\circ}\text{C} 5.0 \mu\text{A} \\ V_{\text{CB}} = 90 V_{\text{L}} = 0 T_{\text{C}} = 0, T_{\text{A}} = 150^{\circ}\text{C} 5.0 \mu\text{A} \\ V_{\text{EB}} = 0 V_{\text{CB}} = 5.0 V, I_{\text{C}} = 0 2.00 n\text{A} \\ \text{ONCHARACTERISTICS} \\ \hline N_{\text{E}} = D C Current Gain I_{\text{C}} = 10 \text{mA}, V_{\text{CE}} = 1.0 V 20 1 V \\ V_{\text{CB}} = 5.0 \text{mA}, I_{\text{B}} = 400 \mu\text{A} 0.15 V \\ V_{\text{C}} = 50 \text{mA}, I_{\text{B}} = 15 \text{mA} 0.2 V \\ \hline V_{\text{CB}(\text{SM})} Collector-Emitter Saturation Voltage I_{\text{C}} = 4.0 \text{mA}, I_{\text{B}} = 400 \mu\text{A} 1.2 V \\ \hline \text{SMALL SIGNAL CHARACTERISTICS} \\ \hline f_{\text{T}} Current Gain - Bandwidth Product I_{\text{C}} = 50 \text{mA}, I_{\text{B}} = 400 \mu\text{A} 1.2 V \\ \hline \text{SMALL SIGNAL CHARACTERISTICS} \\ \hline f_{\text{T}} Current Gain - Bandwidth Product I_{\text{C}} = 3.0 \text{mA}, V_{\text{CE}} = 10, 60 \text{MHz} \\ \hline C_{\text{Ob}} Output Capacitance V_{\text{CB}} = 10 V, f = 1.0 \text{MHz} 5.0 \text{pF} \\ \hline \text{Spice Model} \\ \\ \text{NPN} (Is=2.511f Xti=3 \text{Eg}=1.11 \text{Vaf}=100 \text{Bf}=242.6 \text{Ne}=1.249 \text{Ise}=2.511f \text{Ikf}=.3458 \text{Xtb}=1.5 \text{Br}=3.197 \text{Nc}=2 \text{Isc}=0 \text{K} \\ \text{Kr}=0 \text{Rc}=11 \text{Cic}=4.8838 \text{Mic}=3.047 \text{Vic}=.75 \text{Fc}=5 \text{C} \text{ise}=18.79 \text{M} \text{g}=.3416 \text{V} \text{g}=.75 \text{Tr}=1.202n \text{Tf}=560p \text{If}=50m \text{Vit}=5 \text{Xt}=8 \text{Rb}=10 \\ \hline \text{Typical Pulsed Current Gain} \\ \text{vs Collector Current} \\ \text{vs Collector Current} \\ \hline v$		° .				
$\begin{split} \hline c_{20} & Collector-Cutoff Current & C_{CB} = 90 V, I_E = 0 & 0.1 & \muA \\ \hline V_{CB} = 90 V, I_E = 0, T_A = 150^\circ C & 50 & \muA \\ \hline V_{EB} = 5.0 V, I_E = 0, T_A = 150^\circ C & 200 & nA \\ \hline ON CHARACTERISTICS \\ \hline P_{FE} & DC Current Gain & I_C = 10 mA, V_{CE} = 1.0 V & 20 & 0.15 & V \\ \hline V_{CE(SBD} & Collector-Emitter Saturation Voltage & I_C = 4.0 mA, I_B = 400 \muA & 0.15 & V \\ \hline V_{CE(SBD} & Base-Emitter Saturation Voltage & I_C = 4.0 mA, I_B = 400 \muA & 0.15 & V \\ \hline V_{EE(SBD} & Base-Emitter Saturation Voltage & I_C = 4.0 mA, I_B = 400 \muA & 0.15 & V \\ \hline V_{EE(SBD} & Base-Emitter Saturation Voltage & I_C = 4.0 mA, I_B = 400 \muA & 0.15 & V \\ \hline V_{EE(SBD} & Current Gain - Bandwidth Product & I_C = 4.0 mA, V_{CE} = 10, f = 0.0 & MHz \\ \hline T_T & Current Gain - Bandwidth Product & I_C = 4.0 mA, V_{CE} = 10, f = 0.0 & MHz \\ \hline C_{ab} & Output Capacitance & V_{CB} = 10 V, f = 1.0 \text{ MHz} & 5.0 & pF \\ \hline Spice Model \\ NPN (Is=2.511f XiI=3 Eg=1.11 Vaf=100 Bf=242.6 Ne=1.249 Ise=2.511f Id=-3458 Xtb=1.5 Br=3.197 Nc=2 Isc=0 \\ Ikr=0 Rc=1 C_{iC=4}.883p M_{iC=.3047} V_{iC=.75} Fc=.5 C_{iE=18.79p} M_{iE=.3416} V_{iE=.75} Tr=1.202n Tf=560p Itf=50m \\ VIt=5 XIf=8 Rb=10) \\ \hline Typical Characteristics \\ \hline Typical Pulsed Current Gain \\ vs Collector Current \\ \hline 0.1 & 0.2 & 0.5 & 1.2 & 5.0 & 0.20 & 50 & 10 \\ \hline 0.1 & 0.2 & 0.5 & 1.2 & 5.0 & 0.20 & 50 & 10 \\ \hline 0.1 & 0.2 & 0.5 & 1.2 & 5.0 & 0.20 & 50 & 10 \\ \hline 0.1 & 0.2 & 0.5 & 1.2 & 5.0 & 0.20 & 50 & 10 \\ \hline 0.1 & 0.2 & 0.5 & 1.2 & 5.0 & 0.20 & 50 & 10 \\ \hline 0.1 & 0.2 & 0.5 & 1.2 & 5.0 & 0.20 & 50 & 10 \\ \hline 0.1 & 0.2 & 0.5 & 1.2 & 5.0 & 0.20 & 50 & 10 \\ \hline 0.1 & 0.2 & 0.5 & 1.2 & 5.0 & 0.20 & 50 & 10 \\ \hline 0.1 & 0.2 & 0.5 & 1.2 & 5.0 & 0.20 & 50 & 10 \\ \hline 0.1 & 0.2 & 0.5 & 1.2 & 5.0 & 0.20 & 50 & 10 \\ \hline 0.1 & 0.2 & 0.5 & 1.2 & 5.0 & 0.20 & 50 & 10 \\ \hline 0.1 & 0.2 & 0.5 & 1.2 & 5.0 & 0.20 & 50 & 10 \\ \hline 0.1 & 0.2 & 0.5 & 1.2 & 5.0 & 0.20 & 50 & 10 \\ \hline 0.1 & 0.2 & 0.5 & 1.2 & 5.0 & 0.20 & 50 & 10 \\ \hline 0.1 & 0.2 & 0.5 & 1.2 & 5.0 & 0.20 & 50 & 10 \\ \hline 0.1 & 0.2 & 0.5 & 1.2 & 5.0 & 0.20 & 50 & 10 \\ \hline 0.1 & 0.2 & 0.5 $,				-
$V_{CB} = 90 V, I_{E} = 0, T_{A} = 150^{\circ}C$ 50 µA $V_{EB} = 5.0 V, I_{C} = 0$ 200 nA ON CHARACTERISTICS $\frac{h_{E}}{DC Current Gain} I_{C} = 10 mA, V_{CE} = 1.0 V$ 20 $\frac{h_{C}}{DC} = 4.0 mA, I_{B} = 400 \muA$ 0.2 V $\frac{h_{C}}{V_{CE(SAR)}} O_{A} = 15 mA$ 0.2 V $\frac{h_{C}}{V_{CE(SAR)}} O_{A} = 15 mA$ 0.2 V $\frac{h_{C}}{V_{CE(SAR)}} O_{A} = 10 mA, V_{CE} = 1.0 V$ 20 $\frac{h_{C}}{V_{CE(SAR)}} O_{A} = 10 mA, I_{B} = 400 \muA$ 1.2 V SMALL SIGNAL CHARACTERISTICS $\frac{h_{C}}{V_{CE(SAR)}} O_{A} = 10 mA, V_{CE} = 10, MA, I_{B} = 400 \muA$ 1.2 V SMALL SIGNAL CHARACTERISTICS $\frac{h_{C}}{V_{CE(SAR)}} O_{C} = 10 mA, V_{CE} = 10, MA, V_{CE} = 10, MHZ$ $\frac{h_{C}}{V_{CE}} O_{A} = 35 MHZ$ $C_{ab} O_{A} = 10 V, f = 1.0 MHZ$ $\frac{h_{C}}{V_{CB}} = 10 V, f = 1.0 MHZ$ $\frac{h_{C}}{V_{$		-	-	5.0		-
Image: Second system Verse 5.0 V, I _C = 0 200 nA ON CHARACTERISTICS Image: Second system DC Current Gain Ic = 10 mA, V _{CE} = 1.0 V 20 Image: Second system Version Collector-Emitter Saturation Voltage Ic = 4.0 mA, Ig = 400 µA 0.15 V Version Collector-Emitter Saturation Voltage Ic = 4.0 mA, Ig = 400 µA 0.12 V Small Current Gain - Bandwidth Product Ic = 4.0 mA, V _{CE} = 10, f = 30 MHz 60 MHz Cob Output Capacitance V _{CB} = 10 V, f = 1.0 MHz 5.0 pF Spice Model NPN (Is=2.511f Xti=3 Eg=1.11 Vaf=100 Bf=242.6 Ne=1.249 Ise=2.511f Ikf=.3458 Xtb=1.5 Br=3.197 Nc=2 Isc=0 Ikr=0 Rc=1 Cjc=4.832 Mjc=.3047 Vjc=.75 Fc=.5 Cje=18.79p Mje=.3416 Vje=.75 Tr=1.202n Tf=560p Itf=50m Vt=5 XtH=8 Rb=10) Typical Pulsed Current Gain vs Collector Current Spice Output Collector Current Gain and and and and and and and and and an	I _{CBO}	Collector-Cutoff Current				
$h_{FE} = DC Current Gain l_{C} = 10 mA, V_{CE} = 1.0 V 20 0.15 V 0.15 V 0.2 G 0.16 V 0.2 G 0.16 V 0.2 V 0.2 V 0.2 G 0.16 V 0.2 V 0.2 V 0.2 V 0.2 G 0.16 V 0.2 $	I _{EBO}	Emitter-Cutoff Current	$V_{EB} = 5.0 \text{ V}, I_C = 0$			
$h_{FE} = DC Current Gain l_{C} = 10 mA, V_{CE} = 1.0 V 20 0.15 V 0.15 V 0.2 G 0.16 V 0.2 G 0.16 V 0.2 V 0.2 V 0.2 G 0.16 V 0.2 V 0.2 V 0.2 V 0.2 G 0.16 V 0.2 $						
$V_{CE(sat)} = Collector-Emitter Saturation Voltage l_c = 4.0 mA, l_b = 400 \muA l_c = 50 mA, l_b = 15 mA l_c = 4.0 mA, l_b = 400 \muA l_c = 4.0 mA, l_b = 400 \muA \\ l_c = 4.0 mA, l_b = 400 \muA \\ l_c = 4.0 mA, l_b = 400 \muA \\ l_c = 4.0 mA, l_b = 400 \muA \\ l_c = 4.0 mA, l_b = 400 \muA \\ l_c = 4.0 mA, l_b = 4$					1	1
$I_{0} = 50 \text{ mA}, I_{B} = 15 \text{ mA} \qquad 0.2 \text{ V}$ $I_{C} = 4.0 \text{ mA}, I_{B} = 400 \mu\text{A} \qquad 1.2 \text{ V}$ SMALL SIGNAL CHARACTERISTICS $I_{T} \qquad Current Gain - Bandwidth Product \qquad I_{C} = 4.0 \text{ mA}, I_{B} = 400 \mu\text{A} \qquad 1.2 \text{ V}$ SMALL SIGNAL CHARACTERISTICS $I_{T} \qquad Current Gain - Bandwidth Product \qquad I_{C} = 4.0 \text{ mA}, V_{CE} = 10, \qquad 60 \qquad \text{MHz}$ $C_{ob} \qquad Output Capacitance \qquad V_{CB} = 10 \text{ V}, f = 1.0 \text{ MHz} \qquad 5.0 \text{ pF}$ Spice Model NPN (Is=2.511f Xti=3 Eg=1.11 Vaf=100 Bf=242.6 Ne=1.249 Ise=2.511f Ikf=.3458 Xtb=1.5 Br=3.197 Nc=2 Isc=0 Ikr=0 Rc=1 Cjc=4.883p Mjc=.3047 Vjc=.75 Fc=.5 Cje=18.79p Mje=.3416 Vje=.75 Tr=1.202n Tt=560p Itf=50m Vtf=5 Xtf=8 Rb=10 Typical Characteristics $I_{T} \qquad I_{T} \qquad I_{T$				20	0.15	.,
V_{BE(GBI)} Base-Emitter Saturation Voltage I_C = 4.0 mÅ, I_B = 400 μ Å 1.2 V SMALL SIGNAL CHARACTERISTICS I_C = 4.0 mÅ, I_B = 400 μ Å 1.2 V Small Signal CHARACTERISTICS I_C = 4.0 mÅ, I_B = 400 μ Å 60 MHz Cob Output Capacitance V_{CB} = 10 V, f = 1.0 MHz 50 PF Spice Model NPN (Is=2.511f Xti=3 Eg=1.11 Vaf=100 Bf=242.6 Ne=1.249 Ise=2.511f Ikf=.3458 Xtb=1.5 Br=3.197 Nc=2 Isc=0 Ikr=0 Rc=1 Cjc=4.8329 Mjc=.3047 Vjc=.75 Fc=.5 Cje=18.79p Mje=.3416 Vje=.75 Tr=1.202n Tf=560p Itf=50m Vtf=5 Xtf=8 Rb=10) Typical Characteristics Collector Current Gain vs Collector Current Gain 100 Grad Grad Grad Grad Grad Grad Grad Grad	V _{CE(sat)}	Collector-Emitter Saturation Voltage				
SMALL SIGNAL CHARACTERISTICS $f_{T} \qquad Current Gain - Bandwidth Product \qquad l_{c} = 4.0 mA, V_{CE} = 10, 60 \qquad MHz$ $C_{ob} \qquad Output Capacitance \qquad V_{CB} = 10 V, f = 1.0 MHz \qquad 5.0 pF$ Spice Model NPN (Is=2.511f Xti=3 Eg=1.11 Vaf=100 Bf=242.6 Ne=1.249 Ise=2.511f Ikf=.3458 Xtb=1.5 Br=3.197 Nc=2 Isc=0 Ikr=0 Rc=1 Cjc=4.883p Mjc=.3047 Vjc=.75 Fc=.5 Cje=18.79p Mje=.3416 Vje=.75 Tr=1.202n Tf=560p Itf=50m Vtf=5 Xtf=8 Rb=10) Typical Characteristics	V _{BE(Sat)}	Base-Emitter Saturation Voltage	$I_{\rm C} = 4.0 \text{ mA}, I_{\rm B} = 400 \mu\text{A}$			
$ \frac{f_{T}}{C_{ob}} = \frac{Current Gain - Bandwidth Product}{I_{c}} = 4.0 mA, V_{CE} = 10, 60 MHz 60 MHz C_{ob} = 0 utput Capacitance V_{OB} = 10 V, f = 1.0 MHz 5.0 pF C_{OB} = 10$			· ·	1	1	1
$ \frac{f_{T}}{C_{ob}} = \frac{Current Gain - Bandwidth Product}{I_{c}} = 4.0 mA, V_{CE} = 10, 60 MHz 60 MHz C_{ob} = 0 utput Capacitance V_{OB} = 10 V, f = 1.0 MHz 5.0 pF C_{OB} = 10$	SWALLS	IGNAL CHARACTERISTICS				
$\frac{f = 35 \text{ MHz}}{C_{ob}} \frac{1}{Output Capacitance}} \frac{f = 35 \text{ MHz}}{V_{CB} = 10 \text{ V}, f = 1.0 \text{ MHz}} \frac{1}{5.0 \text{ pF}}$ Spice Model NPN (ls=2.511f Xti=3 Eg=1.11 Vaf=100 Bf=242.6 Ne=1.249 Ise=2.511f Ikf=.3458 Xtb=1.5 Br=3.197 Nc=2 Isc=0 Ikr=0 Rc=1 Cjc=4.883p Mjc=.3047 Vjc=.75 Fc=.5 Cje=18.79p Mje=.3416 Vje=.75 Tr=1.202n Tf=560p Itf=50m Vtf=5 Xtf=8 Rb=10)} Typical Characteristics Typical Pulsed Current Gain vs Collector Current $V_{ce} = 5V$ $V_{ce} = 5V$ $V_{$			$l_{c} = 4.0 \text{ mA}$ $V_{cr} = 10$	60		MH7
Spice Model NPN (Is=2.511f Xti=3 Eg=1.11 Vaf=100 Bf=242.6 Ne=1.249 Is=2.511f Ikf=.3458 Xtb=1.5 Br=3.197 Nc=2 Isc=0 Ikr=0 Rc=1 Cjc=4.883p Mjc=.3047 Vjc=.75 Fc=.5 Cje=18.79p Mje=.3416 Vje=.75 Tr=1.202n Tf=560p Itf=50m Vtf=5 Xtf=8 Rb=10) Typical Characteristics Typical Pulsed Current Gain vs Collector Current vs	· I		f = 35 MHz	00		
NPN (Is=2.511f Xti=3 Eg=1.11 Vaf=100 Bf=242.6 Ne=1.249 Ise=2.511f Ikf=.3458 Xtb=1.5 Br=3.197 Nc=2 Isc=0 Ikr=0 Rc=1 Cjc=4.883p Mjc=.3047 Vjc=.75 Fc=.5 Cje=18.79p Mje=.3416 Vje=.75 Tr=1.202n Tf=560p Itf=50m Vtf=5 Xtf=8 Rb=10) Typical Characteristics Typical Pulsed Current Gain vs Collector Current $v_{cc} = 5v$ $v_{cc} = 5v$ $v_$		Output Consoltoneo	$V_{op} = 10 V f = 1.0 MHz$		5.0	pF
Figure Scale tor Current Gain s Collector Current	Spice	Model 2.511f Xti=3 Eg=1.11 Vaf=100 Bf=242.6	6 Ne=1.249 Ise=2.511f Ikf=.3458			
Figure Scale tor Current Gain s Collector Current	Spice NPN (Is=2 Ikr=0 Rc=	Model 2.511f Xti=3 Eg=1.11 Vaf=100 Bf=242.6 =1 Cjc=4.883p Mjc=.3047 Vjc=.75 Fc=	6 Ne=1.249 Ise=2.511f Ikf=.3458			
Figure Scale tor Current Gain s Collector Current	Spice NPN (Is=2 Ikr=0 Rc=	Model 2.511f Xti=3 Eg=1.11 Vaf=100 Bf=242.6 =1 Cjc=4.883p Mjc=.3047 Vjc=.75 Fc=	6 Ne=1.249 Ise=2.511f Ikf=.3458			
$ \frac{vs \text{ Collector Current}}{vs \text{ collector Current}} \\ \frac{250}{100} \\ \frac{100}{100} \\$	Spice NPN (Is=: Ikr=0 Rc= Vtf=5 Xtf	Model 2.511f Xti=3 Eg=1.11 Vaf=100 Bf=242.6 =1 Cjc=4.883p Mjc=.3047 Vjc=.75 Fc= =8 Rb=10)	6 Ne=1.249 Ise=2.511f Ikf=.3458			
$ \frac{vs \text{ Collector Current}}{vs \text{ collector Current}} \\ \frac{250}{100} \\ \frac{100}{100} \\$	Spice NPN (Is=: Ikr=0 Rc= Vtf=5 Xtf	Model 2.511f Xti=3 Eg=1.11 Vaf=100 Bf=242.6 =1 Cjc=4.883p Mjc=.3047 Vjc=.75 Fc= =8 Rb=10)	6 Ne=1.249 Ise=2.511f Ikf=.3458			
$ \frac{vs \text{ Collector Current}}{vs \text{ collector Current}} \\ \frac{250}{100} \\ \frac{100}{100} \\$	Spice NPN (Is=: Ikr=0 Rc= Vtf=5 Xtf	Model 2.511f Xti=3 Eg=1.11 Vaf=100 Bf=242.6 =1 Cjc=4.883p Mjc=.3047 Vjc=.75 Fc= =8 Rb=10)	6 Ne=1.249 Ise=2.511f Ikf=.3458			
$ \begin{array}{c} \mathbf{y} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf$	Spice NPN (Is=/ Ikr=0 Rc= Vtf=5 Xtf	Model 2.511f Xti=3 Eg=1.11 Vaf=100 Bf=242.6 =1 Cjc=4.883p Mjc=.3047 Vjc=.75 Fc= =8 Rb=10) al Characteristics	5 Ne=1.249 Ise=2.511f Ikf=.3458 5 5 Cje=18.79p Mje=.3416 Vje=.79	5 Tr=1.202	n Tf=560p	ltf=50m
$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$	Spice NPN (Is=2 Ikr=0 Rc= Vtf=5 Xtf	Model 2.511f Xti=3 Eg=1.11 Vaf=100 Bf=242.6 =1 Cjc=4.883p Mjc=.3047 Vjc=.75 Fc= =8 Rb=10) al Characteristics Typical Pulsed Current Gain	5 Ne=1.249 Ise=2.511f Ikf=.3458 5 5 Cje=18.79p Mje=.3416 Vje=.79 Collector-E	5 Tr=1.202	n Tf=560p	ltf=50m
$ \begin{array}{c} \begin{array}{c} 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$	Spice NPN (Is=2 Ikr=0 Rc= Vtf=5 Xtf	Model 2.511f Xti=3 Eg=1.11 Vaf=100 Bf=242.6 =1 Cjc=4.883p Mjc=.3047 Vjc=.75 Fc= =8 Rb=10) al Characteristics Typical Pulsed Current Gain	5 Ne=1.249 Ise=2.511f Ikf=.3458 5 5 Cje=18.79p Mje=.3416 Vje=.79 Collector-E	5 Tr=1.202	n Tf=560p	ltf=50m
$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	Spice NPN (Is=2 Ikr=0 Rc= Vtf=5 Xtf	Model 2.511f Xti=3 Eg=1.11 Vaf=100 Bf=242.6 =1 Cjc=4.883p Mjc=.3047 Vjc=.75 Fc= =8 Rb=10) al Characteristics Typical Pulsed Current Gain vs Collector Current	5 Ne=1.249 Ise=2.511f Ikf=.3458 5 5 Cje=18.79p Mje=.3416 Vje=.79 Collector-E	5 Tr=1.202	n Tf=560p	ltf=50m
$ \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Spice NPN (Is=2 Ikr=0 Rc= Vtf=5 Xtf	Model 2.511f Xti=3 Eg=1.11 Vaf=100 Bf=242.6 =1 Cjc=4.883p Mjc=.3047 Vjc=.75 Fc= =8 Rb=10) al Characteristics Typical Pulsed Current Gain vs Collector Current	5 Ne=1.249 Ise=2.511f Ikf=.3458 5 5 Cje=18.79p Mje=.3416 Vje=.79 Collector-E	5 Tr=1.202	n Tf=560p	ltf=50m
$ \begin{array}{c} \mathbf{P} & 100 \\ \mathbf{V}_{CE} & = 5 \mathbf{V} \\ \mathbf{V}_{CE} & = 5 \mathbf$	Spice NPN (Is=2 Ikr=0 Rc= Vtf=5 Xtf	Model 2.511f Xti=3 Eg=1.11 Vaf=100 Bf=242.6 =1 Cjc=4.883p Mjc=.3047 Vjc=.75 Fc= =8 Rb=10) al Characteristics Typical Pulsed Current Gain vs Collector Current	5 Ne=1.249 Ise=2.511f Ikf=.3458 5 5 Cje=18.79p Mje=.3416 Vje=.79 Collector-E	5 Tr=1.202	aturation r Current	ltf=50m
$ \begin{array}{c} \mathbf{v}_{cE} = 5\mathbf{v} \\ \mathbf{v}_{cE} = $	Spice NPN (Is=2 Ikr=0 Rc= Vtf=5 Xtf	Model 2.511f Xti=3 Eg=1.11 Vaf=100 Bf=242.6 =1 Cjc=4.883p Mjc=.3047 Vjc=.75 Fc= =8 Rb=10) al Characteristics Typical Pulsed Current Gain vs Collector Current	5 Ne=1.249 Ise=2.511f Ikf=.3458 5 5 Cje=18.79p Mje=.3416 Vje=.79 Collector-E	5 Tr=1.202	aturation r Current	ltf=50m
	Spice NPN (Is=2 Ikr=0 Rc= Vtf=5 Xtf	Model 2.511f Xti=3 Eg=1.11 Vaf=100 Bf=242.6 =1 Cjc=4.883p Mjc=.3047 Vjc=.75 Fc= =8 Rb=10) al Characteristics Typical Pulsed Current Gain vs Collector Current	5 Ne=1.249 Ise=2.511f Ikf=.3458 5 5 Cje=18.79p Mje=.3416 Vje=.79 Collector-E	5 Tr=1.202	aturation r Current	ltf=50m
<u><u> </u></u>	Spice NPN (Is=2 Ikr=0 Rc= Vtf=5 Xtf	Model 2.511f Xti=3 Eg=1.11 Vaf=100 Bf=242.6 =1 Cjc=4.883p Mjc=.3047 Vjc=.75 Fc= =8 Rb=10) al Characteristics Typical Pulsed Current Gain vs Collector Current 125 °C -40 °C	5 Ne=1.249 Ise=2.511f Ikf=.3458 5 5 Cje=18.79p Mje=.3416 Vje=.79 Collector-E	5 Tr=1.202	aturation r Current	ltf=50m
	Spice NPN (Is=2 Ikr=0 Rc= Vtf=5 Xtf	Model 2.511f Xti=3 Eg=1.11 Vaf=100 Bf=242.6 =1 Cjc=4.883p Mjc=.3047 Vjc=.75 Fc= =8 Rb=10) al Characteristics Typical Pulsed Current Gain vs Collector Current 125 °C -40 °C	5 Ne=1.249 Ise=2.511f Ikf=.3458 5 5 Cje=18.79p Mje=.3416 Vje=.79 Collector-E	5 Tr=1.202	aturation r Current	ltf=50m
I_c - COLLECTOR CURRENT (mA) \rightarrow I_c - COLLECTOR CURRENT (mA)	Spice NPN (Is=2 Ikr=0 Rc= Vtf=5 Xtf	Model 2.511f Xti=3 Eg=1.11 Vaf=100 Bf=242.6 =1 Cjc=4.883p Mjc=.3047 Vjc=.75 Fc= =8 Rb=10) al Characteristics Typical Pulsed Current Gain vs Collector Current -125 °C -40 °C ce = 5V	5 Ne=1.249 Ise=2.511f Ikf=.3458 5 Cje=18.79p Mje=.3416 Vje=.79 Collector-F Voltage vs 0.5 0.4 $\beta = 10$ $\beta = $	Emitter Sa Collector	a turation r Current	ltf=50m


BSS64

NPN General Purpose Amplifier (continued)





350

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM $CROSSVOLT^{TM}$ DOMETM E²CMOSTM EnSignaTM FACTTM FACT Quiet SeriesTM FAST ® FASTr[™] GlobalOptoisolator[™] GTO[™] HiSeC[™] ISOPLANAR[™] MICROWIRE[™] OPTOLOGIC[™] OPTOPLANAR[™] PACMAN[™] POP[™] PowerTrench® QFET™ QS™ QT Optoelectronics™ Quiet Series™ SILENT SWITCHER® SMART START™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET[™] TinyLogic[™] UHC[™] VCX[™]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	In Design First Production Full Production

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com