BCP68T1

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristics	Symbol	Min	Tun	Max	Unit
Characteristics	Symbol	IVIIII	Тур	IVIAX	Unit
OFF CHARACTERISTICS					
Collector–Emitter Breakdown Voltage ($I_C = 100 \ \mu Adc, I_E = 0$)	V _{(BR)CES}	25	-	-	Vdc
Collector–Emitter Breakdown Voltage ($I_C = 1.0 \text{ mAdc}, I_B = 0$)	V _{(BR)CEO}	20	-	-	Vdc
Emitter–Base Breakdown Voltage ($I_E = 10 \ \mu Adc$, $I_C = 0$)	V _{(BR)EBO}	5.0	-	-	Vdc
Collector–Base Cutoff Current (V_{CB} = 25 Vdc, I _E = 0)	I _{CBO}	-	-	10	μAdc
Emitter–Base Cutoff Current ($V_{EB} = 5.0 \text{ Vdc}, I_C = 0$)	I _{EBO}	-	-	10	μAdc
ON CHARACTERISTICS		·	•		
$ \begin{array}{l} \text{DC Current Gain} \\ (I_{C} = 5.0 \text{ mAdc}, \text{ V}_{CE} = 10 \text{ Vdc}) \\ (I_{C} = 500 \text{ mAdc}, \text{ V}_{CE} = 1.0 \text{ Vdc}) \\ (I_{C} = 1.0 \text{ Adc}, \text{ V}_{CE} = 1.0 \text{ Vdc}) \end{array} $	h _{FE}	50 85 60		- 375 -	-
Collector–Emitter Saturation Voltage ($I_C = 1.0 \text{ Adc}$, $I_B = 100 \text{ mAdc}$)	V _{CE(sat)}	-	-	0.5	Vdc
Base-Emitter On Voltage (I _C = 1.0 Adc, V_{CE} = 1.0 Vdc)	V _{BE(on)}	-	-	1.0	Vdc
DYNAMIC CHARACTERISTICS					
Current–Gain – Bandwidth Product ($I_c = 10 \text{ mAdc}, V_{cE} = 5.0 \text{ Vdc}$)	f _T	-	60	-	MHz

TYPICAL ELECTRICAL CHARACTERISTICS

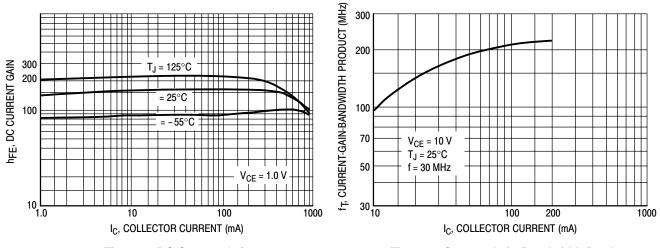
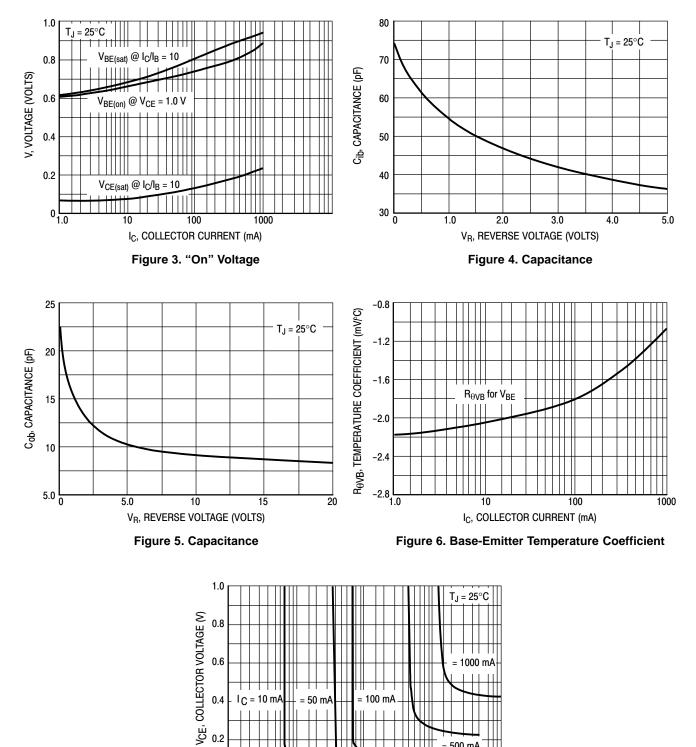



Figure 1. DC Current Gain

Figure 2. Current-Gain-Bandwidth Product

BCP68T1

TYPICAL ELECTRICAL CHARACTERISTICS

1.0

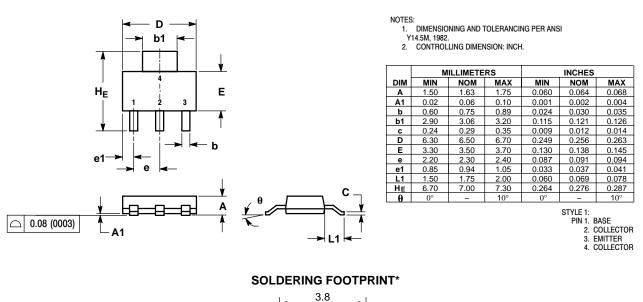
IB, BASE CURRENT (mA) Figure 7. Saturation Region

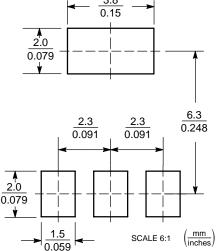
0 L 0.01

0.1

= 500 mA

100


Ш


10

BCP68T1

PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04 ISSUE L

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personal ingent to subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.