

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
STATIC PARAMETERS							
BV _{DSS}	Drain-Source Breakdown Voltage	I_D =250 μ A, V_{GS} =0 V		60			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =60V, V _{GS} =0V				1	μA
			T _J =55°C			5	μΛ
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±20V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS,}I_{D}=250\mu A$		1.4	1.9	2.5	V
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =10V, I_D =12A			9.2	11	mΩ
			T _J =125°C		15.6	19	
		V _{GS} =4.5V, I _D =10A			10.8	13.5	mΩ
g FS	Forward Transconductance	V_{DS} =5V, I_D =12A			50		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.72	1	V
Is	Maximum Body-Diode Continuous Cur	ent				4	Α
DYNAMIC PARAMETERS							
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =30V, f=1MHz			2007		pF
C _{oss}	Output Capacitance				177		pF
C _{rss}	Reverse Transfer Capacitance				12.5		pF
R_g	Gate resistance	f=1MHz		0.6	1.2	1.8	Ω
SWITCHING PARAMETERS							
Q _g (10V)	Total Gate Charge	V _{GS} =10V, V _{DS} =30V, I _D =12A			25.5	40	nC
Q _g (4.5V)	Total Gate Charge				11	20	nC
Q_{gs}	Gate Source Charge				5.5		nC
Q_{gd}	Gate Drain Charge				2.5		nC
$t_{D(on)}$	Turn-On DelayTime				8.5		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =1.25 Ω , R_{GEN} =3 Ω			3.5		ns
t _{D(off)}	Turn-Off DelayTime				27		ns
t _f	Turn-Off Fall Time				3	_	ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =12A, dI/dt=500A/μs			15		ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =12A, dI/dt=500A/μs			55		nC

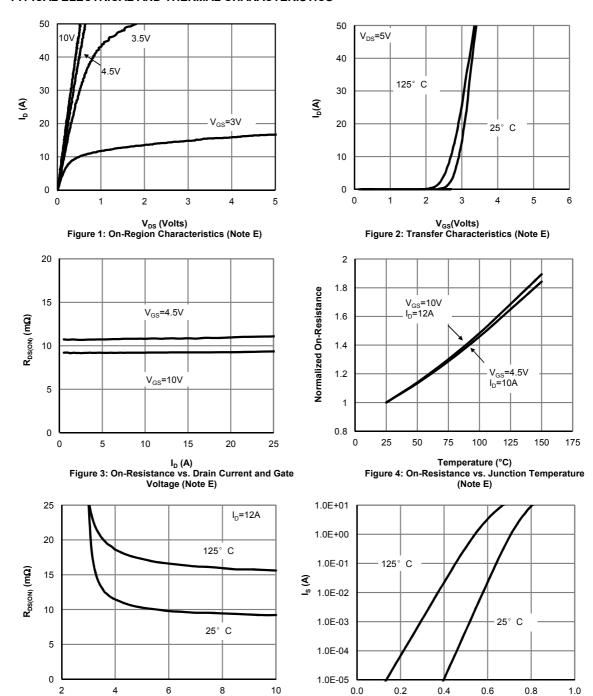
A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The value in any given application depends on the user's specific board design.

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150° C, using \leq 10s junction-to-ambient thermal resistance.

C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}$ =150° C. Ratings are based on low frequency and duty cycles to keep

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

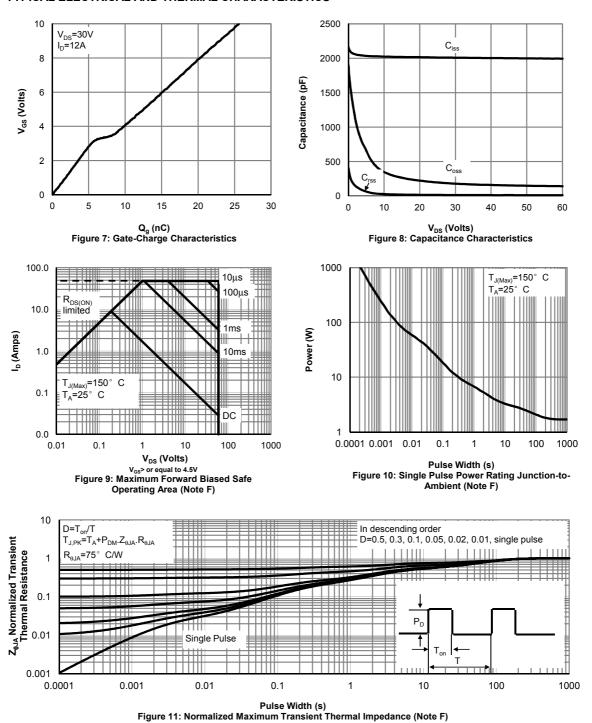
initialT_J=25° C.


D. The $R_{\theta JA}$ is the sum of the thermal impedance from junction to lead $R_{\theta JL}$ and lead to ambient. E. The static characteristics in Figures 1 to 6 are obtained using <300 μ s pulses, duty cycle 0.5% max. F. These curves are based on the junction-to-ambient thermal impedance which is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, assuming a maximum junction temperature of T_{J(MAX)}=150° C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

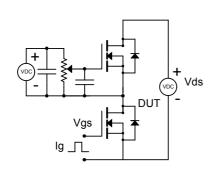
V_{GS} (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage

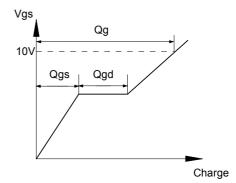
(Note E)



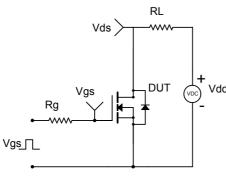
Rev.1.0: March 2014 www.aosmd.com Page 3 of 5

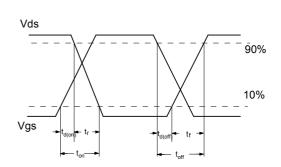
V_{SD} (Volts) Figure 6: Body-Diode Characteristics (Note E)

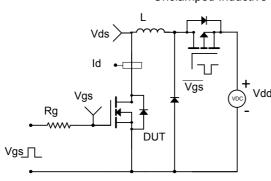

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

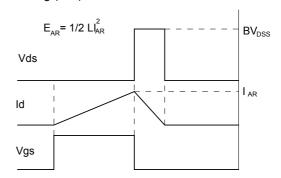


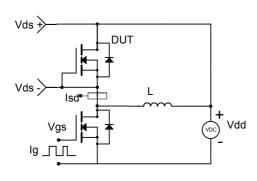
Page 4 of 5 Rev.1.0: March 2014 www.aosmd.com

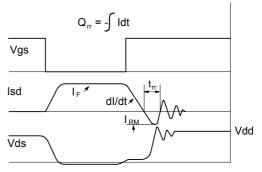



Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Rev.1.0: March 2014 www.aosmd.com Page 5 of 5