ADCMP670* PRODUCT PAGE QUICK LINKS

Last Content Update: 12/18/2017

COMPARABLE PARTS -

View a parametric search of comparable parts.

DOCUMENTATION

Data Sheet

 ADCMP670: Dual Low Power 1.5% Comparator With 400 mV Reference Data Sheet

REFERENCE DESIGNS \Box

- CN0190
- CN0343

REFERENCE MATERIALS \Box

Product Selection Guide

Comparators Product Brochure 2007

DESIGN RESOURCES

- ADCMP670 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADCMP670 EngineerZone Discussions.

SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

TECHNICAL SUPPORT 🖳

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

ADCMP670* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS -

View a parametric search of comparable parts.

DOCUMENTATION

Data Sheet

 ADCMP670: Dual Low Power 1.5% Comparator With 400 mV Reference Data Sheet

REFERENCE DESIGNS \Box

- CN0190
- CN0343

REFERENCE MATERIALS \Box

Product Selection Guide

Comparators Product Brochure 2007

DESIGN RESOURCES

- · ADCMP670 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADCMP670 EngineerZone Discussions.

SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

TECHNICAL SUPPORT 🖳

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

TABLE OF CONTENTS

Applications 1 Functional Block Diagram 1 General Description 1 Revision History 2 Specifications 3 Absolute Maximum Ratings 6 Thermal Resistance 6 ESD Caution 6 Pin Configuration and Function Descriptions 7	Features	1
General Description 1 Revision History 2 Specifications 3 Absolute Maximum Ratings 6 Thermal Resistance 6 ESD Caution 6	Applications	1
Revision History 2 Specifications 3 Absolute Maximum Ratings 6 Thermal Resistance 6 ESD Caution 6	Functional Block Diagram	1
Specifications	General Description	1
Absolute Maximum Ratings	Revision History	2
Thermal Resistance ESD Caution 6	Specifications	3
ESD Caution	Absolute Maximum Ratings	6
	Thermal Resistance	6
Pin Configuration and Function Descriptions	ESD Caution	6
	Pin Configuration and Function Descriptions	7

Typical Performance Characteristics	8
Application Information	13
Comparators and Internal Reference	13
Power Supply	13
Inputs	13
Outputs	13
Adding Hysteresis	13
Outline Dimensions	14
Ordering Guide	1/

REVISION HISTORY

7/09—Rev. 0 to Rev. A	
Changes to Figure 12	9

2/07—Revision 0: Initial Version

SPECIFICATIONS

 $V_{\rm DD}$ = 1.7 V to 5.5 V, $T_{\rm A}$ = 25°C, unless otherwise noted.

Table 1.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
THRESHOLDS ¹					
Rising Input Threshold Voltage	394	400	406	mV	$V_{DD} = 1.7 \text{ V}$
	395	400	405	mV	$V_{DD} = 5.5 \text{ V}$
Falling Input Threshold Voltage	386	391.1	401	mV	$V_{DD} = 1.7 \text{ V}$
	387	391.1	400	mV	$V_{DD} = 5.5 \text{ V}$
$Hysteresis = V_{TH(R)} - V_{TH(F)}$	7	8.9	11	mV	
INPUT CHARACTERISTICS					
Input Bias Current		0.01	10	nA	$V_{DD} = 1.7 \text{ V}, V_{IN} = V_{DD}$
		4	10	nA	$V_{DD} = 1.7 \text{ V}, V_{IN} = 0.1 \text{ V}$
OPEN-DRAN OUTPUTS					
Output Low Voltage ²		140	200	mV	$V_{DD} = 1.7 \text{ V, } I_{OUT} = 3 \text{ mA}$
		130	200	mV	$V_{DD} = 5.5 \text{ V, } I_{OUT} = 5 \text{ mA}$
Output Leakage Current ³		0.01	0.8	μΑ	$V_{DD} = 1.7 \text{ V}, V_{OUT} = V_{DD}$
		0.01	0.8	μΑ	$V_{DD} = 1.7 \text{ V}, V_{OUT} = 5.5 \text{ V}$
DYNAMIC PERFORMANCE ^{2, 4}					
High-to-Low Propagation Delay		10		μs	$V_{DD} = 5.5 \text{ V}, V_{OL} = 400 \text{ mV}$
Low-to-High Propagation Delay		8		μs	$V_{DD} = 5.5 \text{ V}, V_{OH} = 0.9 \times V_{DD}$
Output Rise Time		0.5		μs	$V_{DD} = 5.5 \text{ V}, V_{O} = (0.1 \text{ to } 0.9) \times V_{DD}$
Output Fall Time		0.07		μs	$V_{DD} = 5.5 \text{ V}, V_{O} = (0.1 \text{ to } 0.9) \times V_{DD}$
POWER SUPPLY					
Supply Current⁵		5.7	10	μΑ	$V_{DD} = 1.7 \text{ V}$
		6.5	11	μA	$V_{DD} = 5.5 \text{ V}$

 $^{^1}$ R_L = 100 kΩ, V_O = 2 V swing. 2 10 mV input overdrive. 3 V_{IN} = 40 mV overdrive. 4 R_L = 10 kΩ.

⁵ No load current.

 V_{DD} = 1.7 V to 5.5 V, 0°C \leq $T_A \leq$ 70°C, unless otherwise noted.

Table 2.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
THRESHOLDS ¹					
Rising Input Threshold Voltage	391		409	mV	$V_{DD} = 1.7 \text{ V}$
	392.5		407.5	mV	$V_{DD} = 5.5 \text{ V}$
Falling Input Threshold Voltage	383.5		403.5	mV	$V_{DD} = 1.7 \text{ V}$
	384.5		402.5	mV	$V_{DD} = 5.5 \text{ V}$
$Hysteresis = V_{TH(R)} - V_{TH(F)}$	6.5		12.5	mV	
INPUT CHARACTERISTICS					
Input Bias Current			15	nA	$V_{DD} = 1.7 \text{ V, } V_{IN} = V_{DD}$
			15	nA	$V_{DD} = 1.7 \text{ V}, V_{IN} = 0.1 \text{ V}$
OPEN-DRAIN OUTPUTS					
Output Low Voltage ²			250	mV	$V_{DD} = 1.7 \text{ V, } I_{OUT} = 3 \text{ mA}$
			250	mV	$V_{DD} = 5.5 \text{ V, } I_{OUT} = 5 \text{ mA}$
Output Leakage Current ³			1	μΑ	$V_{DD} = 1.7 \text{ V, } V_{OUT} = V_{DD}$
			1	μΑ	$V_{DD} = 1.7 \text{ V}, V_{OUT} = 5.5 \text{ V}$
POWER SUPPLY					
Supply Current⁴			13	μΑ	$V_{DD} = 1.7 \text{ V}$
			14	μΑ	$V_{DD} = 5.5 V$

 $^{^{1}}$ R_L = 100 k Ω , V_O = 2 V swing.

 $V_{DD} = 1.7 \text{ V to } 5.5 \text{ V}, -40^{\circ}\text{C} \le T_{A} \le 85^{\circ}\text{C}, \text{ unless otherwise noted.}$

Table 3.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
THRESHOLDS ¹					
Rising Input Threshold Voltage	390		410	mV	$V_{DD} = 1.7 V$
	392		408	mV	$V_{DD} = 5.5 \text{ V}$
Falling Input Threshold Voltage	382.5		404.5	mV	$V_{DD} = 1.7 V$
	383.5		403.5	mV	$V_{DD} = 5.5 \text{ V}$
$Hysteresis = V_{TH(R)} - V_{TH(F)}$	5.5		13.0	mV	
INPUT CHARACTERISTICS					
Input Bias Current			15	nA	$V_{DD} = 1.7 \text{ V}, V_{IN} = V_{DD}$
			15	nA	$V_{DD} = 1.7 \text{ V}, V_{IN} = 0.1 \text{ V}$
OPEN-DRAIN OUTPUTS					
Output Low Voltage ²			250	mV	$V_{DD} = 1.7 \text{ V, } I_{OUT} = 3 \text{ mA}$
			250	mV	$V_{DD} = 5.5 \text{ V}, I_{OUT} = 5 \text{ mA}$
Output Leakage Current ³			1	μΑ	$V_{DD} = 1.7 \text{ V, } V_{OUT} = V_{DD}$
			1	μΑ	$V_{DD} = 1.7 \text{ V}, V_{OUT} = 5.5 \text{ V}$
POWER SUPPLY					
Supply Current⁴			14	μΑ	$V_{DD} = 1.7 V$
			15	μΑ	$V_{DD} = 5.5 \text{ V}$

 $^{^{1}}$ R_L = 100 k Ω , V_O = 2 V swing.

 $^{^{2}}$ 10 mV input overdrive. 3 V_{IN} = 40 mV overdrive.

⁴ No load.

² 10 mV input overdrive.

 $^{^{3}}$ V_{IN} = 40 mV overdrive.

⁴ No load.

 $V_{\rm DD}$ = 1.7 V to 5.5 V, $-40^{\circ}C \leq T_{\rm A} \leq 125^{\circ}C$, unless otherwise noted.

Table 4.

Parameter	Min	Тур	Max	Unit	Test Conditions/Comments
THRESHOLDS ¹					
Rising Input Threshold Voltage	390		411	mV	$V_{DD} = 1.7 \text{ V}$
	392		410	mV	$V_{DD} = 5.5 \text{ V}$
Falling Input Threshold Voltage	381.5		405.5	mV	$V_{DD} = 1.7 V$
	381.05		404.5	mV	$V_{DD} = 5.5 \text{ V}$
$Hysteresis = V_{TH(R)} - V_{TH(F)}$	2		13.5	mV	
INPUT CHARACTERISTICS					
Input Bias Current			45	nA	$V_{DD}=1.7\ V,V_{IN}=V_{DD}$
			45	nA	$V_{DD} = 1.7 \text{ V}, V_{IN} = 0.1 \text{ V}$
OPEN-DRAIN OUTPUTS					
Output Low Voltage ²			250	mV	$V_{DD} = 1.7 \text{ V, } I_{OUT} = 3 \text{ mA}$
			250	mV	$V_{DD} = 5.5 \text{ V, } I_{OUT} = 5 \text{ mA}$
Output Leakage Current ³			1	μΑ	$V_{DD} = 1.7 \text{ V, } V_{OUT} = V_{DD}$
			1	μΑ	$V_{DD} = 1.7 \text{ V, } V_{OUT} = 5.5 \text{ V}$
POWER SUPPLY					
Supply Current⁴			16	μΑ	$V_{DD} = 1.7 \text{ V}$
			17	μΑ	V_{DD} = 5.5 V

 $^{^1}$ R_L = 100 k Ω , V_O = 2 V swing. 2 10 mV input overdrive. 3 V_{IN} = 40 mV overdrive.

⁴ No load.

ABSOLUTE MAXIMUM RATINGS

Table 5.

Parameter	Range		
V _{DD}	-0.3 V to +6 V		
+INA, -INB	-0.3 V to +6 V		
OUTA, OUTB	-0.3 V to +6 V		
Output Short Circuit Duration ¹	Indefinite		
Input Current	−10 mA		
Operating Temperature Range	-40°C to +125°C		
Storage Temperature Range	−65°C to +150°C		
Lead Temperature			
Soldering (10 sec)	300°C		
Vapor Phase (60 sec)	215°C		
Infrared (15 sec)	220°C		

¹ When the output is shorted indefinitely, the use of a heat sink may be required to keep the junction temperature within the absolute maximum ratings.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 6. Thermal Resistance

Package Type	θ _{JA}	Unit
6-Lead TSOT	200	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

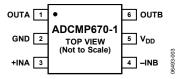


Figure 3. Pin Configuration

Table 7. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	OUTA	Open-Drain Output for Comparator A.
2	GND	Ground.
3	+INA	Monitors analog input voltage on Comparator A. Connected to noninverting input. The other input of Comparator A is connected to a 400 mV reference.
4	-INB	Monitors analog input voltage on Comparator B. Connected to inverting input. The other input of Comparator B is connected to a 400 mV reference.
5	V_{DD}	Power Supply Pin.
6	OUTB	Open-Drain Output for Comparator B.

TYPICAL PERFORMANCE CHARACTERISTICS

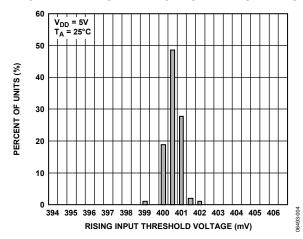


Figure 4. Distribution of Rising Input Threshold Voltage

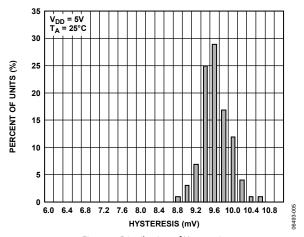


Figure 5. Distribution of Hysteresis

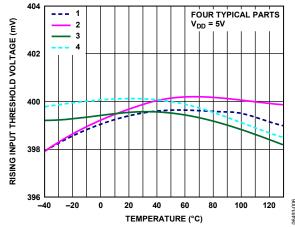


Figure 6. Rising Input Threshold Voltage vs. Temperature

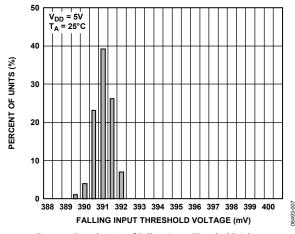


Figure 7. Distribution of Falling Input Threshold Voltage

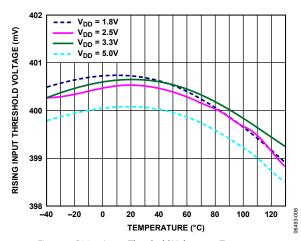


Figure 8. Rising Input Threshold Voltage vs. Temperature

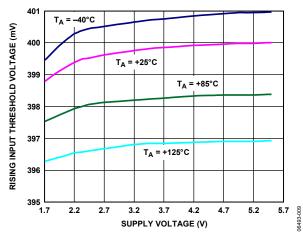


Figure 9. Rising Input Threshold Voltage vs. Supply Voltage

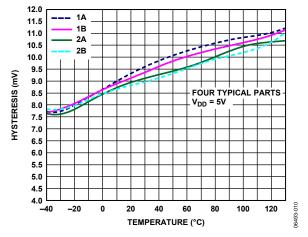


Figure 10. Hysteresis vs. Temperature

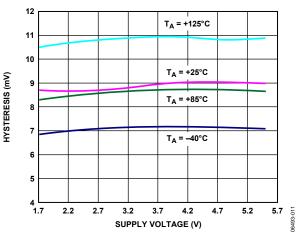


Figure 11. Hysteresis vs. Supply Voltage

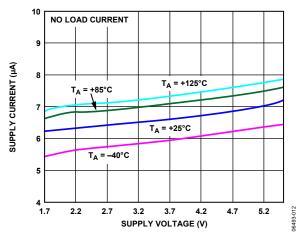


Figure 12. Quiescent Supply Current vs. Supply Voltage

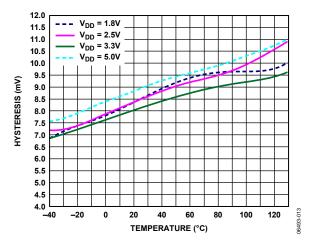


Figure 13. Hysteresis vs. Temperature

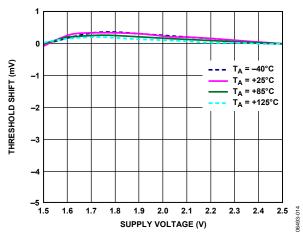


Figure 14. Minimum Supply Voltage

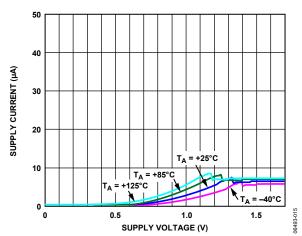


Figure 15. Startup Supply Current

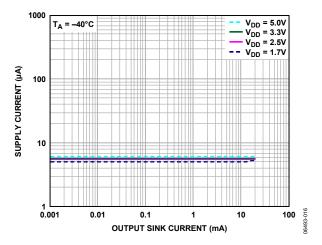


Figure 16. Supply Current vs. Output Sink Current

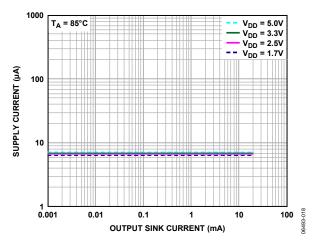


Figure 17. Supply Current vs. Output Sink Current

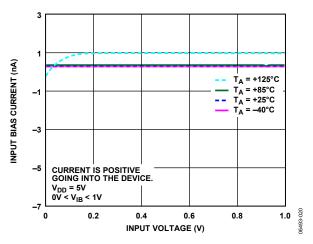


Figure 18. Low Level Input Bias Current

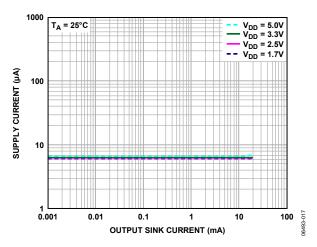


Figure 19. Supply Current vs. Output Sink Current

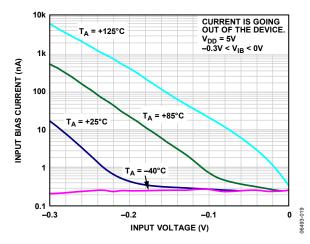


Figure 20. Below Ground Input Bias Current

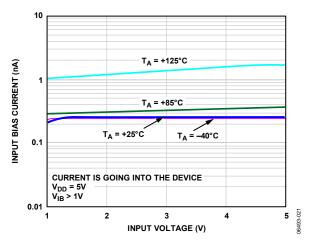


Figure 21. High Level Input Bias Current

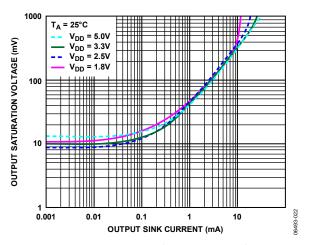


Figure 22. Output Saturation Voltage vs. Output Sink Current

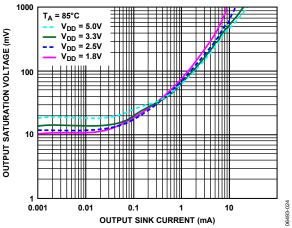


Figure 23. Output Saturation Voltage vs. Output Sink Current

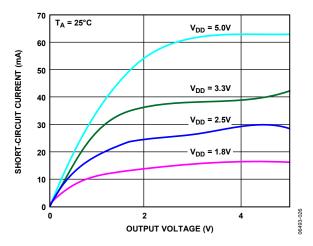


Figure 24. Output Short-Circuit Current

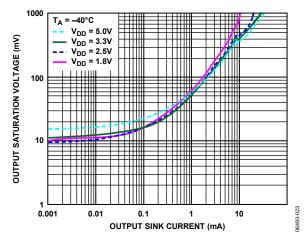


Figure 25. Output Saturation Voltage vs. Output Sink Current

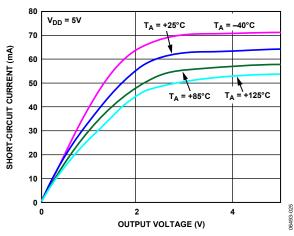


Figure 26. Output Short-Circuit Current

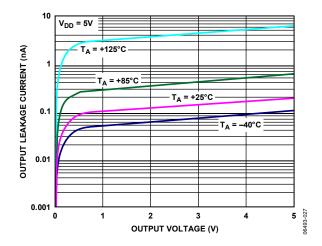


Figure 27. Output Leakage Current

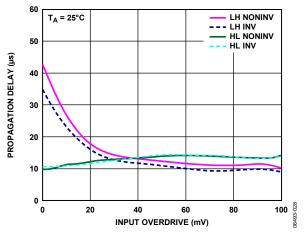


Figure 28. Propagation Delay vs. Input Overdrive

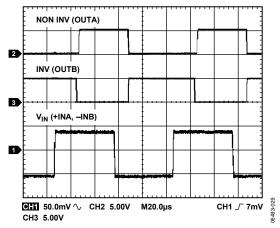


Figure 29. Noninverting and Inverting Comparators Propagation Delay

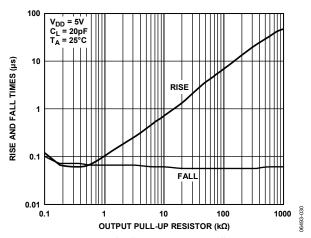


Figure 30. Rise and Fall Times vs. Output Pull-Up Resistor

APPLICATION INFORMATION

The ADCMP670 is a dual low power comparator with a built-in 400 mV reference that operates from 1.7 V to 5.5 V. The comparator is 1.5% accurate with a built-in hysteresis of 8.9 mV. The outputs are open-drain, capable of sinking 40 mA.

COMPARATORS AND INTERNAL REFERENCE

Each comparator has one input available externally. Comparator A has a noninverting input and Comparator B has an inverting input available. The other comparator inputs are connected internally to the 400 mV reference. The rising input threshold voltage of the comparators is designed to be equal to that of the reference.

POWER SUPPLY

The ADCMP670 is designed to operate from 1.7 V to 5.5 V. A 0.1 μF decoupling capacitor is recommended between $V_{\rm DD}$ and GND.

INPUTS

The comparator inputs are limited to the maximum $V_{\rm DD}$ voltage range. The voltage on these inputs can be above $V_{\rm DD}$ but never above the maximum allowed $V_{\rm DD}$ voltage. When adding a resistor string to the input, care must be taken when choosing resistor values. This is due to the fact that the input bias current will be in parallel with the bottom resistor of the string. This bottom resistor must therefore be chosen first to control the error introduced by this bias current.

OUTPUTS

The comparator outputs are open-drain and are also limited to the maximum specified $V_{\rm DD}$ voltage range, regardless of the $V_{\rm DD}$ voltage. These outputs are capable of sinking up to 40 mA. Outputs can be tied together to provide a window comparator with a single output.

ADDING HYSTERESIS

To prevent oscillations at the output caused by noise or slowly moving signals passing the switching threshold, each comparator has built-in hysteresis of approximately 8.9 mV. Positive feedback can be used to increase hysteresis to the noninverting comparator.

OUTLINE DIMENSIONS

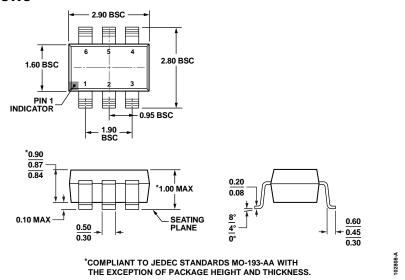


Figure 31.. 6-Lead Thin Small Outline Transistor Package [TSOT] (UJ-6) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding
ADCMP670-1YUJZ-RL7 ¹	-40°C to +125°C	6-Lead Thin Small Outline Transistor Package [TSOT]	UJ-6	M97

¹ Z = RoHS Compliant Part.

NOTES

AD	CN	ЛP	67	0
----	----	----	----	---

NOTES

