Contents VN808-32-E

Contents

1	Maximum ratings	3
2	Electrical characteristics	4
3	Pin connections	6
4	Current, voltage conventions and internal diagram	8
5	Switching time waveforms	0
6	Reverse polarity protection	3
7	Package mechanical data 1	4
	7.1 Footprint recommended data 1	6
	7.2 Tube shipment information	7
	7.3 Tape and reel shipment information	8
8	Ordering information	20
9	Revision history	21

VN808-32-E Maximum ratings

1 Maximum ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	DC supply voltage	45	V
-I _{GND}	DC ground pin reverse current TRAN ground pin reverse current (pulse duration < 1 ms)	-250 -6	mA A
I _{OUT}	DC output current	Internally limited	Α
-l _{OUT}	Reverse DC output current	-2	Α
I _{IN}	DC Input current	± 10	mA
V _{IN}	Input voltage range	-3/+V _{CC}	V
V _{ESD}	Electrostatic discharge (R = 1.5 kΩ; C = 100 pF)	2000	V
P _{TOT}	Power dissipation at T _c = 25 °C	96	W
EAS	Single pulse avalanche energy per channel 8 channels driven simultaneously (T _{AMB} = 125 °C, I _{OUT} = 0.6 A per channel)	1.15	J
T _J	Junction operating temperature	Internally limited	°C
T _C	Case operating temperature	Internally limited	°C
T _{STG}	Storage temperature	-40 to 150	°C

Table 2. Thermal data

Symbol	ol Parameter		Value	Unit
R _{th(JC)}	Thermal resistance junction-case	Max.	1.3	°C/W
R _{th(JA)}	Thermal resistance junction-ambient (1)	Max.	50	°C/W

When mounted on FR4 printed circuit board with 0.5 cm² of copper area (at least 35 μm think) connected to all TAB pins.

Electrical characteristics VN808-32-E

2 Electrical characteristics

(10.5 V < V_{CC} < 32 V; - 40 °C < T_{J} < 125 °C; unless otherwise specified)

Table 3. Power section

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC}	Operating supply voltage		10.5		45	V
V _{USD}	Undervoltage shutdown		7		10.5	V
R _{ON}	On state resistance	I _{OUT} = 0.5 A; T _J = 25 °C I _{OUT} = 0.5 A; T _J = 125 °C		150	185 280	mΩ
I _S	Supply current	OFF state; V _{CC} = 24 V T _{CASE} = 25 °C ON state (all channels ON)			150	μА
		V _{CC} = 24 V, T _{CASE} = 100 °C			12	mA
I _{LGND}	Output current at turn-off	$V_{CC} = V_{STAT} = V_{IN} = V_{GND} =$ 24 V $V_{OUT} = 0 V$			1	mA
I _{L(off)}	OFF state output current	V _{IN} = V _{OUT =} 0 V	0		5	μА
V _{OUT(off)}	OFF state output voltage	V _{IN} = 0 V, I _{OUT} = 0 A			3	V
t _{d(Vccon)}	Power-on delay time from V _{CC} rising edge	see Figure 7		1		ms

Table 4. Switching $(V_{CC} = 24 V)$

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{ON}	Turn-on time	$R_L = 48 \Omega \text{ from } 80\%$ $V_{OUT} \text{ (see } Figure 6\text{)}$		50	100	μs
t _{OFF}	Turn-off time	$R_L = 48 \Omega \text{ to } 10\% \text{ V}_{OUT}$ (see <i>Figure 6</i>)		75	150	μs
dVOUT/dt(on)	Turn-on voltage slope	$R_L = 48 \Omega$ from $V_{OUT} = 2.4 V$ to $V_{OUT} = 19.2 V$ (see <i>Figure 6</i>)		0.7		V/μs
dVOUT/dt(off)	Turn-off voltage slope	$R_L = 48 \Omega$ from $V_{OUT} = 21.6 V$ to $V_{OUT} = 2.4 V$ (see <i>Figure 6</i>)		1.5		V/µs

Table 5. Input pin

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{INL}	Input low level				V _{CC} /2-1	V
I _{INL}	Low level input current	V _{IN} = V _{CC} / 2 - 1 V	80		650	μΑ
V _{INH}	Input high level		V _{CC} /2+1			V
I _{INH}	High level input current	V _{IN} = V _{CC} / 2 + 1 V		150	260	μА
V _{I(HYST)}	Input hysteresis voltage			0.6		V
I _{IN}	Input current	V _{IN} = V _{CC} = 32 V			300	μΑ

Table 6. Protection

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
T _{CSD}	Case shutdown temperature		125	130	135	°C
T _{CR}	Case reset temperature		110			°C
T _{CHYST}	Case thermal hysteresis		7	15		°C
T _{TSD}	Junction shutdown temperature		150	175	200	°C
T _R	Junction reset temperature		135			°C
T _{HYST}	Junction thermal hysteresis		7	15		°C
I _{lim}	DC short-circuit current	V_{CC} = 24 V; R_{LOAD} = 10 m Ω	1		1.7	Α
V _{demag}	Turn-off output clamp voltage	I _{OUT} = 0.5 A; L = 6 mH	V _{CC} -57	V _{CC} -52	V _{CC} -47	V

Table 7. Status pin

Symbol Parameter Test conditions		Min.	Тур.	Max.	Unit	
I _{HSTAT}	High level output current	V_{CC} = 1832 V; R_{STAT} = 1 kΩ (fault condition)	2	3	4	mA
I _{LSTAT}	Leakage current	Normal operation; V _{CC} = 32 V			0.1	μΑ
V _{CLSTAT}	Clamp voltage	I _{STAT} = 1 mA I _{STAT} = -1 mA	6.0	6.8 -0.7	8.0	> >

Pin connections VN808-32-E

3 Pin connections

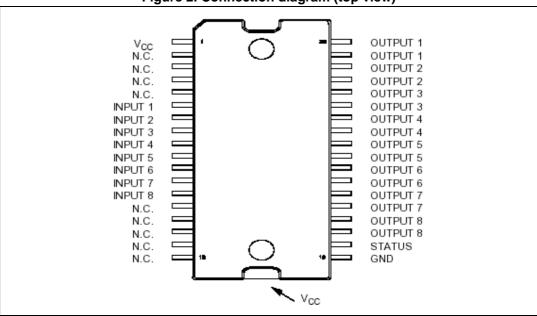


Figure 2. Connection diagram (top view)

Table 8. Pin functions

Pin N°	Symbol	Function
TAB	V _{CC}	Positive power supply voltage
1	V _{CC}	Positive power supply voltage
2,3,4,5	NC	Not connected
6	Input 1	Input of channel 1
7	Input 2	Input of channel 2
8	Input 3	Input of channel 3
9	Input 4	Input of channel 4
10	Input 5	Input of channel 5
11	Input 6	Input of channel 6
12	Input 7	Input of channel 7
13	Input 8	Input of channel 8
14,15,16,17,18	NC	Not connected
19	GND	Logic ground
20	STATUS	Common open source diagnostic for overtemperature
21,22	Output 8	High-side output of channel 8
23,24	Output 7	High-side output of channel 7
25,26	Output 6	High-side output of channel 6

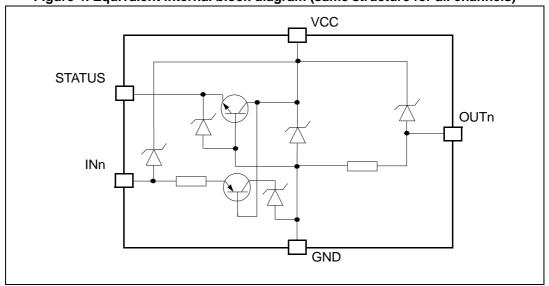
VN808-32-E Pin connections

Table 8. Pin functions (continued)

Pin N°	Symbol	Function
27.28	Output 5	High-side output of channel 5
29,30	Output 4	High-side output of channel 4
31,32	Output 3	High-side output of channel 3
33,34	Output 2	High-side output of channel 2
35,36	Output 1	High-side output of channel 1

 V_{INn}

 V_{STAT}


4 Current, voltage conventions and internal diagram

INPUTN VCC OUTPUTN Voutn VCC STATUS GND

Figure 3. Current and voltage conventions

Figure 4. Equivalent internal block diagram (same structure for all channels)

IGND

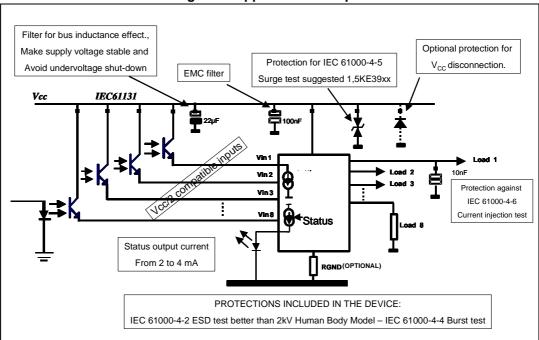


Figure 5. Application example

Table 9. Truth table

Conditions	INPUTn	OUTPUTn	STATUS			
Normal operation	L	L	L			
	H	H	L			
Current limitation	L	L	L			
	H	X	L			
Overtemperature (see waveforms 3, 4 <i>Figure 8</i>) -> T _J > T _{TSD}	L	L	L			
	H	L	H			
Undervoltage	L	L	X			
	H	L	X			

5 Switching time waveforms

Figure 6. Turn-on and turn-off

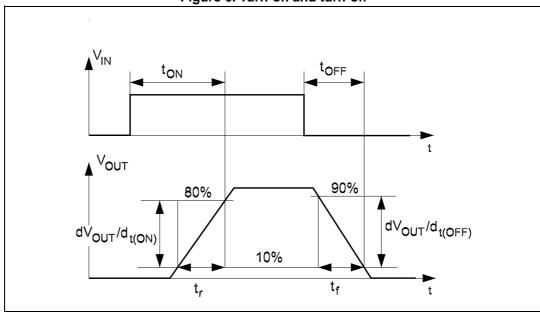
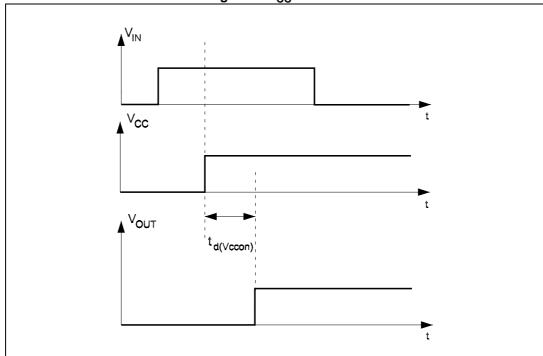
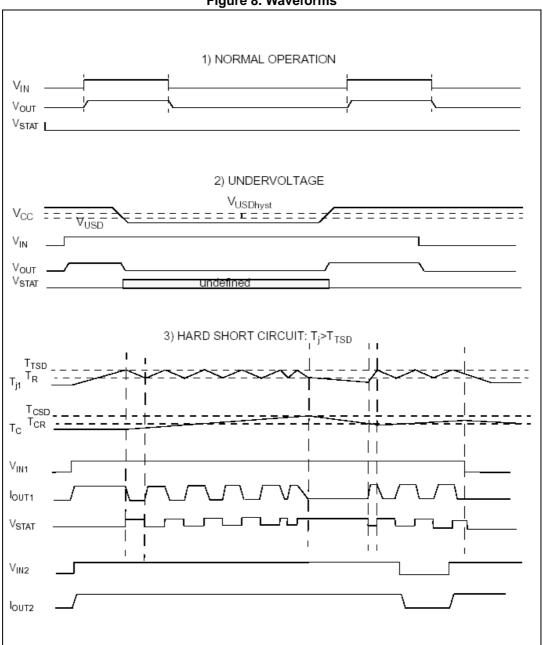




Figure 7. V_{CC} turn-on

47/

Figure 8. Waveforms

47/

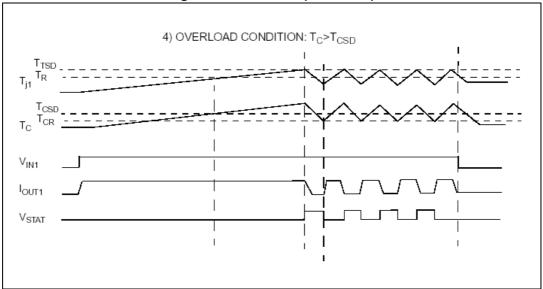


Figure 9. Waveforms (continued)

6 Reverse polarity protection

Reverse polarity protection can be implemented on board using two different solutions:

- Placing a resistor (R_{GND}) between IC GND pin and load GND
- 2. Placing a diode between IC GND pin and load GND

If option 1 is selected, the minimum resistance value has to be selected according to the following equation:

Equation 1

where I_{GND} is the DC reverse ground pin current and can be found in *Section 1: Maximum ratings* of this datasheet.

Power dissipated by R_{GND} (when $V_{CC} < 0$: during reverse polarity situations) is:

Equation 2

$$P_D = (V_{CC})^2 / R_{GND}$$

If option 2 is selected, the diode has to be chosen by taking into account VRRM $>|V_{cc}|$ and its power dissipation capability:

Equation 3

$$P_D \ge I_S^*V_f$$

Note:

In normal conditions (no reverse polarity) due to the diode, there is a voltage drop between GND of the device and GND of the system.

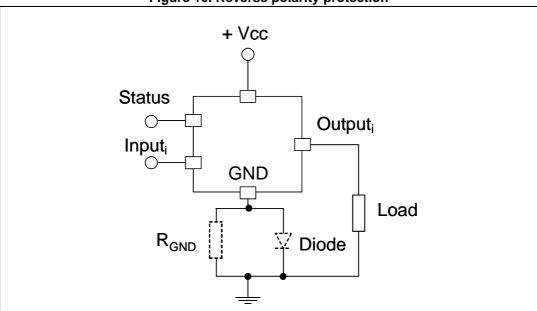


Figure 10. Reverse polarity protection

This schematic can be used with any kind of load.

47/

DocID14352 Rev 8

13/22

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

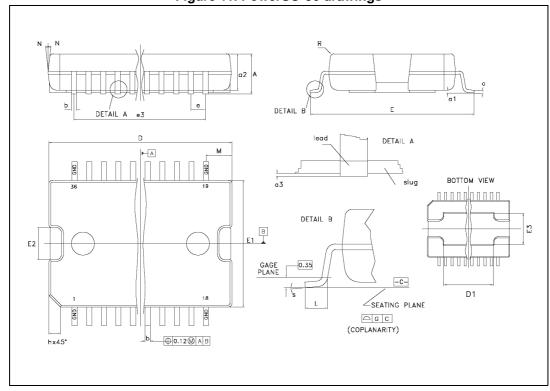


Figure 11. PowerSO-36 drawings

Table 10. PowerSO-36 mechanical data

Dise		mm	
Dim.	Min.	Тур.	Max.
Α			3.60
a1	0.10		0.30
a2			3.30
a3	0		0.10
b	0.22		0.38
С	0.23		0.32
D (1)	15.80		16.00
D1	9.40		9.80
E	13.90		14.50
E1 (1)	10.90		11.10
E2			2.90
E3	5.8		6.2
е		0.65	
e3		11.05	
G	0		0.10
Н	15.50		15.90
h			1.10
L	0.80		1.10
N			10°
S	0°		8°

7.1 Footprint recommended data

Figure 12. Footprint recommended data

Table 11. Footprint data

Dim.	mm	
A	9.5	
В	14.7-15.0	
С	12.5-12.7	
D	6.3	
Е	0.42	
G	0.65	

7.2 Tube shipment information

Figure 13. Tube shipment information

Table 12. Tube mechanical data

Dim.	mm	
A	18.80	
В	17.2 ±0.2	
С	8.20 ±0.2	
D	10.90 ±0.2	
E	2.90 ±0.2	
F	0.40	
G	0.80	
Н	6.30	
I	4.30 ±0.2	
J	3.7 ±0.2	
К	9.4	
L	0.40	
M	0.80	
N	N 3.50 ±0.2	

Base quantity 31 pcs

Bulk quantity 310 pcs

7.3 Tape and reel shipment information

- Ko D W Bending radius Αo User direction of feed 0 0 0 0 0 0 0 0 0

Figure 14. Tape specifications

Table 13. Tape mechanical data

User direction of feed

Dim.	mm	
D	1.50 +0.1/0	
E	1.75 ±0.1	
Po	4.00 ±0.1	
T max.	0.40	
D1 min.	1.50	
F	F 11.5 ±0.05	
K max.	6.50	
P2	2.00 ±0.1	
R	50	
W	W 24.00 ±0.30	
P1	P1 24.00	
Ao, Bo, Ko	0.05 min to 1.0 max.	

Base quantity 600 pcs Bulk quantity 600 pcs

18/22 DocID14352 Rev 8

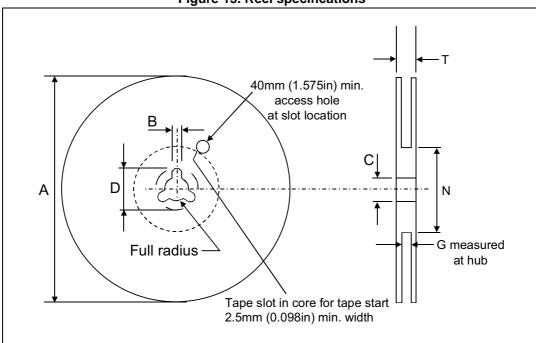


Figure 15. Reel specifications

Table 14. Reel mechanical data

Dim.	mm
Tape size	24.0 ±0.30
A max.	330.0
B min.	1.5
С	13.0 ±0.20
D min.	20.2
N min.	60
G	24.4 +2/-0
T max.	30.4

Ordering information VN808-32-E

8 Ordering information

Table 15. Order code

Order code	Package	Packaging
VN808-32-E	PowerSO-36	Tube
VN808TR-32-E	PowerSO-36	Tape and reel

VN808-32-E Revision history

9 Revision history

Table 16. Document revision history

Date	Revision	Changes	
25-Jan-2008	1	Initial release	
07-Jul-2008	2	Added Section 6 on page 13	
04-Aug-2008	3	Added: Figure 12: Footprint recommended data	
25-Aug-2009	4	Updated Section 6: Reverse polarity protection	
24-Feb-2010	5	Updated Section 7: Package mechanical data	
07-Dec-2012	6	Added max. value to I _{INL} parameter in <i>Table 5</i> . Minor text changes.	
01-Jul-2013	7	Updated Section 7.1: Footprint recommended data.	
19-Dec-2013	8	Replaced L_{MAX} parameter by EAS parameter in <i>Table 1</i> . Added T_{J} condition to <i>Table 3</i> . Updated <i>Section 6</i> .	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Downloaded from Arrow.com.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

22/22 DocID14352 Rev 8

