PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM

Pin No.	Pin Name
1	INPUT
2	GND
3	Vcont
4	Vcc
5	NC
6	OUTPUT

Remark Exposed pad : GND

TRUTH TABLE

Vcont	Gain	Mode
Н	High	LNA-mode
L	Low	Bypass-mode

 $\textbf{Remark} \quad \text{``H''} = V_{cont (H)}, \text{``L''} = V_{cont (L)}$

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Test Conditions	Ratings	Unit
Supply Voltage	Vcc	TA = +25°C	3.6	V
Mode Control Voltage	Vcont	TA = +25°C	3.6	V
Total Power Dissipation	Ptot		150	mW
Operating Ambient Temperature	TA		-40 to +85	°C
Storage Temperature	Tstg		-55 to +150	°C
Input Power	Pin		+33	dBm

RECOMMENDED OPERATING RANGE

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply Voltage	Vcc	2.3	2.8	3.3	V
Mode Control Voltage (H)	Vcont (H)	1.0	-	Vcc	V
Mode Control Voltage (L)	Vcont (L)	0	_	0.5	٧
Operating Frequency	f	50	-	1 800	MHz
Operating Ambient Temperature	TA	-40	+25	+85	°C
Input Power (LNA-mode)	Pin	_	_	+7	dBm
Input Power (Bypass-mode)	Pin	-	-	+15	dBm

ELECTRICAL CHARACTERISTICS 1 (DC Characteristics)

(TA = +25°C, Vcc = 2.8 V, unless otherwise specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current 1	Icc1	V _{cont} = 2.8 V, No Signal (LNA-mode)	3.8	5.0	6.5	mA
Circuit Current 2	Icc2	V _{cont} = 0 V, No Signal (Bypass-mode)	-	-	1	μΑ
Mode Control Current 1	Icont1	V _{cont} = 2.8 V, No Signal (LNA-mode)	-	40	100	μΑ
Mode Control Current 2	Icont2	V _{cont} = 0 V, No Signal (Bypass-mode)	-	-	1	μΑ

ELECTRICAL CHARACTERISTICS 2 (LNA-mode)

(TA = +25°C, Vcc = Vcont = 2.8 V, unless otherwise specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Power Gain 1	G _P 1	f = 470 MHz, Pin = -30 dBm	13.0	15.0	17.0	dB
Power Gain 2	G _P 2	f = 770 MHz, Pin = -30 dBm	11.5	13.5	15.5	dB
Noise Figure 1	NF1	f = 470 MHz, excluded PCB and connector losses Note		1.5	2.0	dB
Noise Figure 2	NF2	f = 770 MHz, excluded PCB and connector losses Note	_	1.5	2.0	dB
Input Return Loss 1	RLin1	f = 470 MHz, Pin = -30 dBm	7	12	1	dB
Input Return Loss 2	RLin2	f = 770 MHz, Pin = -30 dBm	7	10	ı	dB
Output Return Loss 1	RLout1	f = 470 MHz, Pin = -30 dBm	7	14	1	dB
Output Return Loss 2	RLout1	f = 770 MHz, Pin = -30 dBm	7	11	-	dB
Input 3rd Order Intercept Point 1	IIP₃1	f1 = 470 MHz, f2 = 471 MHz, Pin = -30 dBm	-4.0	-1.0	-	dBm
Input 3rd Order Intercept Point 2	IIP ₃ 2	f1 = 770 MHz, f2 = 771 MHz, Pin = -30 dBm	-1.0	+2.0	1	dBm

Note Input PCB and connector losses: 0.05 dB (at 470 MHz), 0.08 dB (at 770 MHz)

ELECTRICAL CHARACTERISTICS 3 (Bypass-mode)

(TA = +25°C, Vcc = 2.8 V, unless otherwise specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Insertion Loss 1	Lins1	f = 470 MHz, P _{in} = -10 dBm, excluded PCB and connector losses Note	-	1.1	2	dB
Insertion Loss 2	Lins2	f = 770 MHz, P _{in} = -10 dBm, excluded PCB and connector losses Note	I	1.3	2	dB
Input Return Loss 1	RLin1	f = 470 MHz, Pin = -10 dBm	10	20		dB
Input Return Loss 2	RLin2	f = 770 MHz, Pin = -10 dBm	10	17	-	dB
Output Return Loss 1	RLout1	f = 470 MHz, Pin = -10 dBm	10	20		dB
Output Return Loss 2	RLout1	f = 770 MHz, Pin = -10 dBm	10	17	-	dB
Input 3rd Order Intercept Point	IIP3	f1 = 770 MHz, f2 = 771 MHz, Pin = -2.5 dBm	+20	+30	-	dBm

Note Input-output PCB and connector losses: 0.10 dB (at 470 MHz), 0.16 dB (at 770 MHz)

STANDARD CHARACTERISTICS FOR REFERENCE 1 (LNA-mode)

(TA = +25°C, Vcc = Vcont = 2.8 V, unless otherwise specified)

Parameter	Symbol	Test Conditions	Reference	Unit
Isolation 1	ISL1	f = 470 MHz, Pin = -30 dBm	20	dB
Isolation 2	ISL2	f = 770 MHz, Pin = -30 dBm	20	dB
Gain 1 dB Compression Output Power 1	Po (1 dB) 1	f = 470 MHz	-5.5	dBm
Gain 1 dB Compression Output Power 2	Po (1 dB) 2	f = 770 MHz	-5.0	dBm

STANDARD CHARACTERISTICS FOR REFERENCE 2 (Bypass-mode)

(TA = +25°C, Vcc = 2.8 V, Vcont = 0 V, unless otherwise specified)

Parameter	Symbol	Test Conditions	Reference	Unit
Gain 1 dB Compression Output	Po (1 dB)	f = 770 MHz	+8	dBm
Power				

TEST CIRCUIT

TYPICAL CHARACTERISTICS 1 (DC Characteristics) (TA = +25°C, unless otherwise specified)

CIRCUIT CURRENT vs. MODE CONTROL VOLTAGE

Remark The graphs indicate nominal characteristics.

CIRCUIT CURRENT vs. OPERATING AMBIENT TEMPERATURE

MODE CONTROL CURRENT vs. OPERATING AMBIENT TEMPERATURE

MODE CONTROL CURRENT vs. MODE CONTROL VOLTAGE

remark The graphs indicate nominal chara

TYPICAL CHARACTERISTICS 2 (LNA-mode) (T_A = +25°C, unless otherwise specified)

Remark The graphs indicate nominal characteristics.

Remark The graphs indicate nominal characteristics.

Remark The graphs indicate nominal characteristics.

Remark The graphs indicate nominal characteristics.

S-PARAMETERS 1 (LNA-mode) (T_A = +25°C, V_{CC} = V_{cont} = 2.8 V, monitored at connector on board)

S₁₁-FREQUENCY

S22-FREQUENCY

Remark The graphs indicate nominal characteristics.

TYPICAL CHARACTERISTICS 3 (Bypass-mode) (TA = +25°C, unless otherwise specified)

OUTPUT RETURN LOSS vs. FREQUENCY

OUTPUT RETURN LOSS vs. FREQUENCY

Remark The graphs indicate nominal characteristics.

Remark The graphs indicate nominal characteristics.

Remark The graphs indicate nominal characteristics.

Remark The graphs indicate nominal characteristics.

S-PARAMETERS 2 (Bypass-mode)

(TA = +25°C, Vcc = 2.8 V, Vcont = 0 V, monitored at connector on board)

S₁₁-FREQUENCY

S22-FREQUENCY

Remark The graphs indicate nominal characteristics.

PACKAGE DIMENSIONS

6-PIN PLASTIC TSON (T6N) (UNIT: mm)

NOTES ON CORRECT USE

- (1) Observe precautions for handling because of electro-static sensitive devices.
- (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation). All the ground terminals must be connected together with wide ground pattern to decrease impedance difference.
- (3) The bypass capacitor should be attached to Vcc line.
- (4) Do not supply DC voltage to INPUT pin.
- (5) Pin 5 (NC) should be connected to the ground pattern.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
Partial Heating	Peak temperature (terminal temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	H\$350

Caution Do not use different soldering methods together (except for partial heating).

