Characteristics TS1220-6FP

1 Characteristics

Table 2: Absolute maximum ratings (limiting values), $T_j = 25$ °C unless otherwise specified

Symbol	Parameter			Value	Unit
I _{T(RMS)}	RMS on-state current (180 ° conduction angle)		T _c = 76 °C	12	А
I _{T(AV)}	Average on-state current (180 ° conduction angle)		T _c = 73 °C	8	А
l=a	Non repetitive surge peak on-state current		$t_p = 8.3 \text{ ms}$	120	
Ітѕм	$(T_j initial = 25 °C)$		t _p = 10 ms	110	A
l ² t	I ² t value for fusing		t _p = 10 ms	60.5	A ² s
dl/dt	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, tr $\leq 100 \text{ ns}$		f = 60 Hz	100	A/µs
V _{DRM} /V _{RRM}	Repetitive peak off-state voltage		T _j = 125 °C	600	V
Ідм	Peak gate current	t _p = 20 μs	T _j = 125 °C	4	Α
P _{G(AV)}	Average gate power dissipation $T_j = 125 \text{ °C}$			1	W
V _{RGM}	Maximum peak reverse gate voltage			5	V
T _{stg}	Storage junction temperature range			-40 to +150	°C
Tj	Operating junction temperature range			-40 to +125	°C
TL	Maximum lead temperature for soldering during 10 s			260	°C
VINS(RMS)	Insulation RMS voltage, 60 seconds			2000	V

Table 3: Electrical characteristics ($T_j = 25$ °C unless otherwise specified)

Symbol	Test conditions			Value	Unit
lgт	V 40 V D 440 O		Max.	200	μΑ
V _G T	$V_D = 12 \text{ V}, R_L = 140 \Omega$		Max.	0.8	V
V_{GD}	$V_D = V_{DRM}, R_L = 3.3 \text{ k}\Omega, R_{GK} = 220 \Omega$ $T_j = 125 \text{ °C}$		Min.	0.1	V
V_{RG}	I _{RG} = 10 μA		Min.	8	V
Ін	I_T = 50 mA, R_{GK} = 1 K Ω		Max.	5	mA
IL	$I_G = 1 \text{ mA}, R_{GK} = 1 \text{ K}\Omega$		Max.	6	mA
dV/dt	$V_D = 402 \text{ V}, \text{ R}_{GK} = 220 \Omega$ $T_j = 125 \text{ °C}$		Min.	5	V/µs
t _{gt}	$I_{TM} = 24 \text{ A}, V_D = 402 \text{ V}, I_G = 10 \text{ mA}, (dI_G/dt) \text{ max} = 0.2 \text{ A/}\mu\text{s}$		Тур.	1.9	μs
tq	$I_{TM} = 12 \text{ A}, V_D = 402 \text{ V}, (d_I/dt) \text{off} = 10 \text{ A/}\mu\text{s}, V_R = 25 \text{ V}, dV_D/dt = 1 \text{ V/}\mu\text{s}, R_{GK} = 220 \Omega$	T _j = 110 °C	Тур.	200	μs

TS1220-6FP Characteristics

Table 4: Static characteristics

Symbol	Test conditions			Value	Unit
V _{TM}	I _{TM} = 24 A, t _p = 380 μs	T _j = 25 °C	Max.	1.6	1/
V _{TO}	Threshold voltage	T _j = 125 °C	Max.	x. 0.85	
R_D	Dynamic resistance	T _j = 125 °C	Max.	30	mΩ
	V V V B = 220.0	T _j = 25 °C	Max.	5	μΑ
I_{DRM} , I_{RRM}	$V_D = V_{DRM}, V_R = V_{RRM}, R_{GK} = 220 \Omega$	T _j = 125 °C	iviax.	2	mA

Table 5: Thermal parameters

Symbol	Parameter		Value	Unit
R _{th(j-c)}	Junction to case (DC)	Max.	4.5	۸۸۸)
R _{th(j-a)}	Junction to ambient (DC)	Тур.	60	°C/W

Characteristics TS1220-6FP

360°

1.1 Characteristics (curves)

 $I_{T(AV)}(A)$

Figure 2: Average and DC on-state current versus case temperature $I_{T(AV)}(A)$ 14

12

10

8

6

4

2

0

0

25

50

75

100

125

Figure 3: Average and D.C. on state current versus ambient temperature

1.5

1.6

1.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.5

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

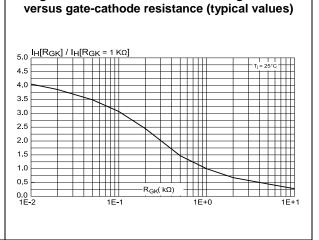
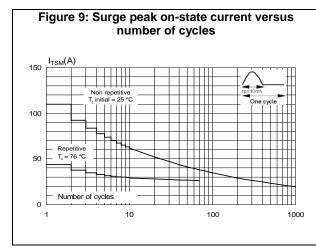
0.0

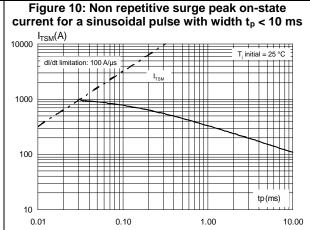
Figure 4: Relative variation of thermal impedance junction to case and junction to ambient versus pulse duration

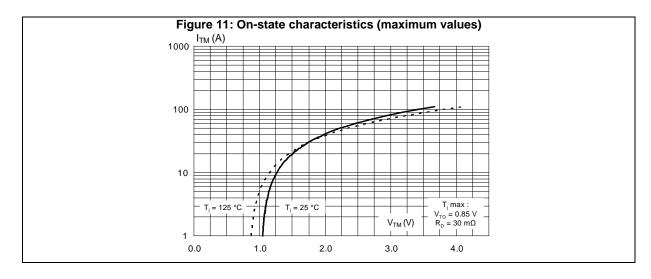
1.0E+00

| The column | The column

Figure 5: Relative variation of gate trigger and holding current versus junction temperature $l_{\text{GT},l_{\text{H}},l_{\text{L}}[T_j]} \, / \, l_{\text{GT},l_{\text{H}},l_{\text{L}}[T_j=25^{\circ}\text{C}]}$ 2.0 1.8 1.6 1.4 1.2 1.0 I_H & I_L I_{GK} = 1kΩ 0.8 0.6 0.4 0.2 T_j(°C) 0.0

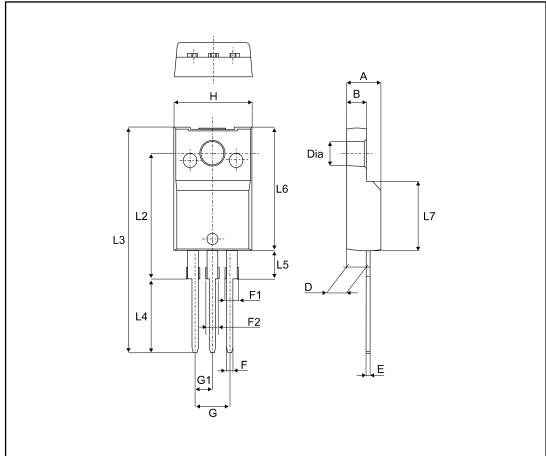

Figure 6: Relative variation of holding current


4/9 DocID030749 Rev 1

TS1220-6FP Characteristics

Figure 8: Relative variation of dV/dt immunity current versus gate-cathode capacitance (typical values) $4.0 \frac{\text{dV/dt}[C_{GK}] / \text{dV/dt}[R_{GK} = 220 \Omega]}{\text{dV/dt}[R_{GK} = 220 \Omega]}$ T_{j} = 125 °C V_{D} = 67% V_{DRM} R_{GK} = 220 Ω 3.5 3.0 2.5 2.0 1.0 0.5 CGK (nF) 25 75 100 125 150

Package information TS1220-6FP


2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

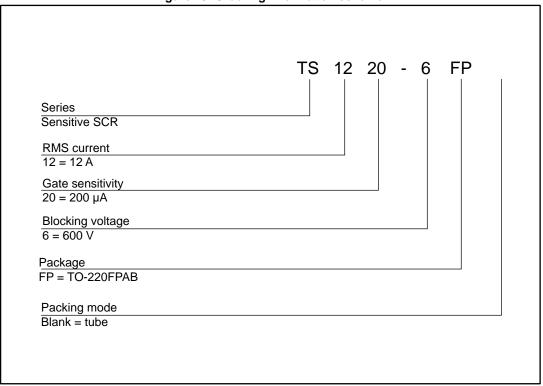
- Epoxy meets UL94, V0
- Lead-free, halogen-free package
- Recommended torque value (TO-220FPAB): 0.4 to 0.6 N.m.

2.1 TO-220AB package information

Figure 12: TO-220FPAB package outline

TS1220-6FP Package information

Table 6: TO-220FPAB package mechanical data


	Dimensions			
Ref.	Millin	neters	Inc	hes
	Min.	Max.	Min.	Max.
А	4.40	4.60	0.1739	0.1818
В	2.5	2.7	0.0988	0.1067
D	2.50	2.75	0.0988	0.1087
E	0.45	0.70	0.0178	0.0277
F	0.75	1.0	0.0296	0.0395
F1	1.15	1.70	0.0455	0.0672
F2	1.15	1.70	0.0455	0.0672
G	4.95	5.20	0.1957	0.2055
G1	2.40	2.70	0.0949	0.1067
Н	10.00	10.40	0.3953	0.4111
L2	16.00	0 typ.	0.632	4 typ.
L3	28.60	30.60	1.1304	1.2095
L4	9.80	10.6	0.3874	0.4190
L5	2.90	3.60	0.1146	0.1423
L6	15.90	16.40	0.6285	0.6482
L7	9.00	9.30	0.3557	0.3676
Dia	3.0	3.20	0.1186	0.1265

Ordering information TS1220-6FP

3 Ordering information

Figure 13: Ordering information scheme

Table 7: Ordering information

<u> </u>					
Order code	Marking	Package	Weight	Base qty.	Delivery mode
TS1220-6FP	TS1220-6	TO-220FPAB	2.0 g	50	Tube

4 Revision history

Table 8: Document revision history

Date	Revision	Changes
31-Aug-2017	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

