1 Characteristics

Table 2.Absolute ratings (limiting values, per diode, at T_{amb} = 25 °C unless
otherwise specified)

Symbol	Parameter				Value	Unit
V _{RRM}	Repetitive peak reverse volt	tage			80	V
I _{F(RMS)}	Forward rms current				30	А
	Average forward current,	TO-220AB, I ² PAK, D ² PAK	T _c = 155 °C T _c = 150 °C	Per diode Per device	10 20	٨
I _{F(AV)}	$\delta = 0.5$	TO-220FPAB	$T_c = 130 \ ^\circ C$ $T_c = 100 \ ^\circ C$		10 20	A
I _{FSM}	Surge non repetitive forward current	$t_p = 10 \text{ ms sinusoidal}$ $T_c = 25 \text{ °C}$			220	А
P _{ARM} ⁽¹⁾	Repetitive peak avalanche	power	$T_j = 25 \ ^\circ C, t_p$	= 1 µs	5400	W
V _{ARM} ⁽²⁾	Maximum repetitive peak avalanche voltage	t _p < 1 μs, T _j < 1	t _p < 1 μs, T _j < 150 °C, I _{AR} < 16.2 A			V
V _{ASM} ⁽²⁾	Maximum single pulse peak avalanche voltage	t _p < 1 μs, T _j < 150 °C, I _{AR} < 16.2 A			100	V
T _{stg}	Storage temperature range	range			-65 to +175	°C
Тj	Maximum operating junction	n temperature ⁽³⁾)		175	°C

 For temperature or pulse time duration deratings, please refer to figure 3 and 4. More details regarding the avalanche energy measurements and diode validation in the avalanche are provided in the application notes AN1768 and AN2025.

2. See Figure 13

3. $\frac{dPtot}{dTj} < \frac{1}{Rth(j-a)}$ condition to avoid thermal runaway for a diode on its own heatsink

Table 3.Thermal parameters

Symbol	Parameter			Value	Unit
		TO-220AB	per diode	2.30	
Б	Junction to case	I ² PAK, D ² PAK	total	1.55	°C/W
R _{th(j-c)}	TO-220FPAB		per diode	5.80	C/VV
		IU-220FPAD	total	4.65	
R _{th(c)}	Coupling	TO-220AB I ² PAK, D ² PAK	- -	0.80	°C/W
	TO-220FPA			3.50	

When the two diodes 1 and 2 are used simultaneously:

 ΔT_{j} (diode 1) = P(diode 1) x R_{th(j-c)}(Per diode) + P(diode 2) x R_{th(c)}

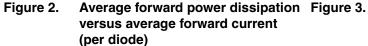

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
ا _B ⁽¹⁾	Reverse leakage current	T _j = 25 °C	V - V	-	5.8	25	μA
'R` ′	$T_j = 125 \text{ °C} \qquad T_R = V_{RRM} - $	$T_j = 125 \text{ °C}$ $V_R = V_{RRM}$	$T_j = 125 \text{ °C}$ $V_R = V_{RRM}$	-	5	15	mA
		T _j = 25 °C	1 - 5 4	-	0.590	0.640	
	√ _F ⁽²⁾ Forward voltage drop	T _j = 125 °C	I _F = 5 A	-	0.515	0.550	
V (2)		T _j = 25 °C	I _F = 10 A	-	0.710	0.780	v
۷F		T _j = 125 °C	F = 10 A	-	0.595	0.650	v
		T _j = 25 °C	L = 20 A	-	0.850	0.945	
		T _i = 125 °C	I _F = 20 A	-	0.690	0.780	

Table 4. Static electrical characteristics (per diode)

1. Pulse test: t_p = 5 ms, δ < 2 %

2. Pulse test: $t_p = 380 \ \mu s, \ \delta < 2 \ \%$

To evaluate the conduction losses use the following equation: P = 0.52 x $I_{F(AV)}$ + 0.013 x ${I_F}^2_{(RMS)}$

Average forward current versus ambient temperature ($\delta = 0.5$, per diode)

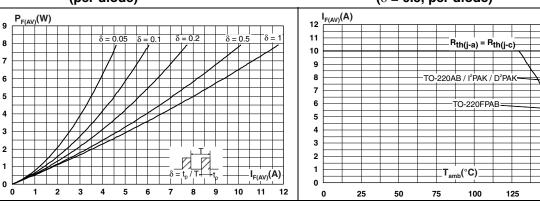
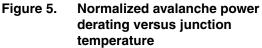
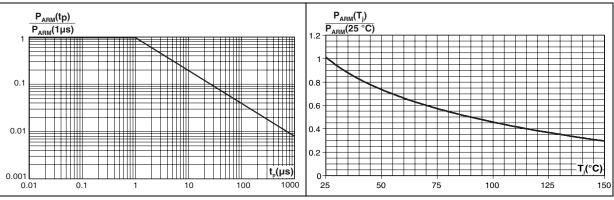
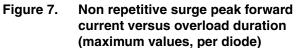
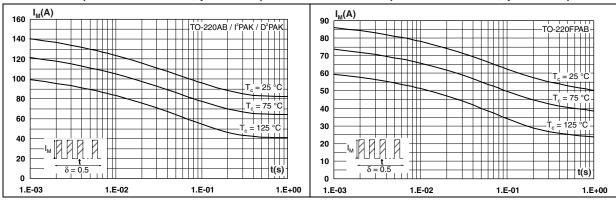
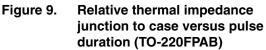




Figure 4. Normalized avalanche power derating versus pulse duration




57

150


175

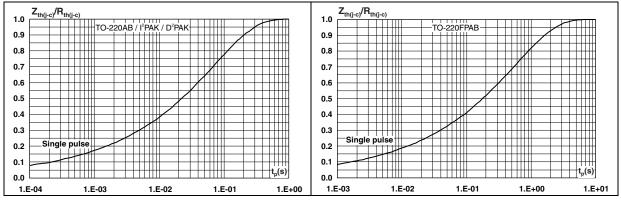
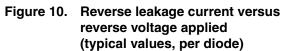
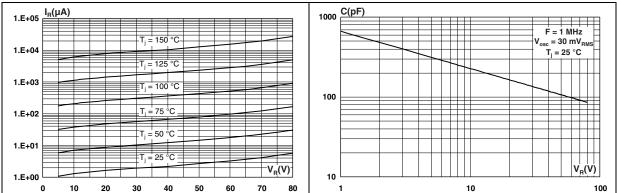
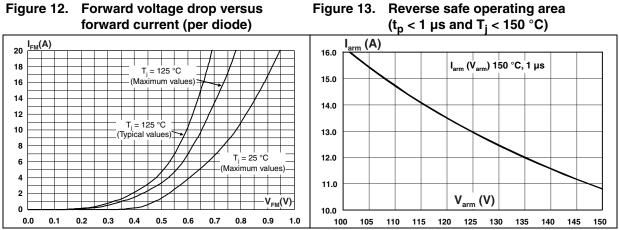

Figure 6. Non repetitive surge peak forward current versus overload duration (maximum values, per diode)

Figure 8. Relative thermal impedance junction to case versus pulse duration

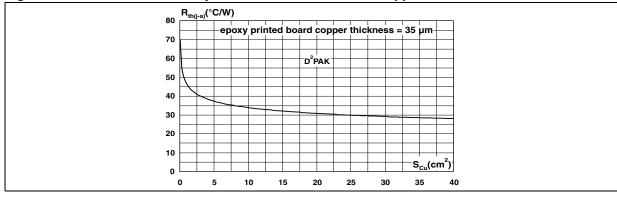

Figure 11. Junction capacitance versus reverse voltage applied (typical values, per diode)

Figure 14. Thermal resistance junction to ambient versus copper surface under tab for D²PAK

2 Package information

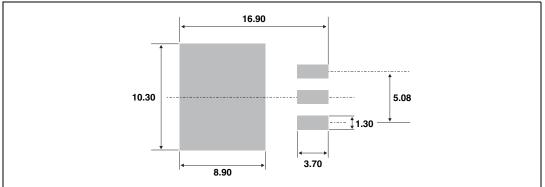
- Epoxy meets UL94, V0
- Cooling method: by conduction (C)
- Recommended torque value: 0.4 to 0.6 N·m

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>. ECOPACK[®] is an ST trademark.

Table 5. TO-220AB dimensions

			Dimer	nsions	
	Ref.	Millin	neters	Inc	hes
		Min.	Max.	Min.	Max.
	А	4.40	4.60	0.173	0.181
	С	1.23	1.32	0.048	0.051
H2 A Dia C.	D	2.40	2.72	0.094	0.107
	E	0.49	0.70	0.019	0.027
	F	0.61	0.88	0.024	0.034
	F1	1.14	1.70	0.044	0.066
	F2	1.14	1.70	0.044	0.066
F2	G	4.95	5.15	0.194	0.202
	G1	2.40	2.70	0.094	0.106
	H2	10	10.40	0.393	0.409
F→ ←	L2	16.4	Тур.	0.645	5 Тур.
	L4	13	14	0.511	0.551
	L5	2.65	2.95	0.104	0.116
G	L6	15.25	15.75	0.600	0.620
	L7	6.20	6.60	0.244	0.259
	L9	3.50	3.93	0.137	0.154
	М	2.6	Тур.	0.102	2 Тур.
	Dia.	3.75	3.85	0.147	0.151

			Dimer	nsions	
	Ref.	Millin	neters	Inc	hes
		Min.	Max.	Min.	Max.
	А	4.4	4.9	0.173	0.192
	В	2.5	2.9	0.098	0.114
	D	2.45	2.75	0.096	0.108
	Е	0.4	0.7	0.016	0.028
	F	0.6	1	0.024	0.039
	F1	1.15	1.7	0.045	0.067
	F2	1.15	1.7	0.045	0.067
	G	4.95	5.2	0.195	0.205
	G1	2.4	2.7	0.094	0.106
	Н	10	10.7	0.394	0.421
	L2	16	Тур.	0.630) Тур.
	L3	28.6	30.6	1.126	1.205
G	L4	9.8	10.7	0.386	0.421
	L6	15.8	16.4	0.622	0.646
	L7	9	9.9	0.354	0.390
	Dia.	2.9	3.5	0.114	0.138


Table 6. TO-220FPAB dimensions

			Dimer	nsions	
	Ref.	Millin	neters	Inc	hes
		Min.	Max.	Min.	Max.
	А	4.40	4.60	0.173	0.181
	→ A1	2.49	2.69	0.098	0.106
	A2	0.03	0.23	0.001	0.009
	В	0.70	0.93	0.027	0.037
	^D B2	1.14	1.70	0.045	0.067
	C	0.45	0.60	0.017	0.024
	C2	1.23	1.36	0.048	0.054
$\begin{array}{c} & & \\$	R D	8.95	9.35	0.352	0.368
G	E	10.00	10.40	0.393	0.409
A2	G	4.88	5.28	0.192	0.208
	L	15.00	15.85	0.590	0.624
M ↓ ★ ↓	L2	1.27	1.40	0.050	0.055
* FLAT ZONE NO LESS	L3	1.40	1.75	0.055	0.069
	M	2.40	3.20	0.094	0.126
	R	0.40) typ.	0.01	6 typ.
	V2	0°	8°	0°	8°

Table 6. I FAR differis				Dimer	sions			
			Ref. Milli	Millin	neters	Inc	hes	
i			Min.	Max.	Min.	Max.		
, È ,		А	4.40	4.60	0.173	0.181		
		A1	2.40	2.72	0.094	0.107		
		b	0.61	0.88	0.024	0.035		
	D	b1	1.14	1.70	0.044	0.067		
		С	0.49	0.70	0.019	0.028		
	A1	c2	1.23	1.32	0.048	0.052		
	★↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	D	8.95	9.35	0.352	0.368		
		е	2.40	2.70	0.094	0.106		
		e1	4.95	5.15	0.195	0.203		
	→ C	E	10	10.40	0.394	0.409		
l e1 →		L	13	14	0.512	0.551		
		L1	3.50	3.93	0.138	0.155		
		L2	1.27	1.40	0.050	0.055		

Table 8.I²PAK dimensions

3 Ordering information

Table 9.Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
STPS20SM80CT	PS20SM80CT	TO-220AB	1.9 g	50	Tube
STPS20SM80CFP	PS20SM80CFP	TO-220FPAB	2.0 g	50	Tube
STPS20SM80CR	PS20SM80CR	I ² PAK	1.49 g	50	Tube
STPS20SM80CG-TR	PS20SM80CG	D ² PAK	1.48 g	1000	Tape and reel

4 Revision history

Table 10.	Revision	history
-----------	----------	---------

Date	Revision	Changes
11-Apr-2011	1	First issue.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 018720 Rev 1