Dual D-type flip-flop

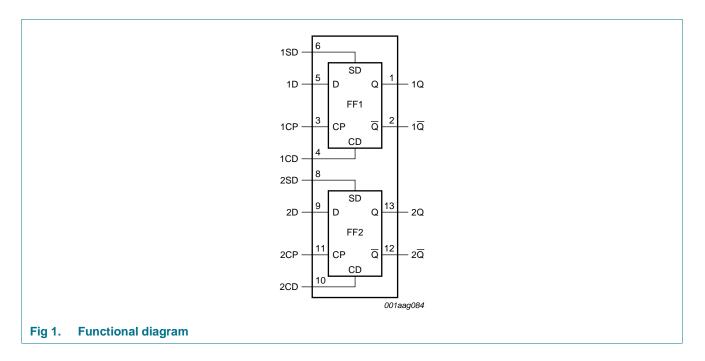
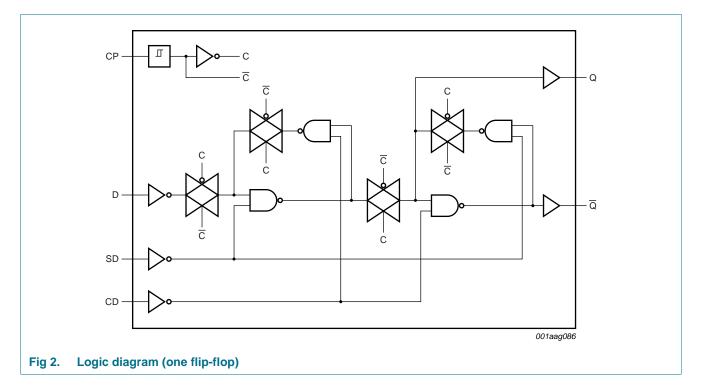

4. Ordering information

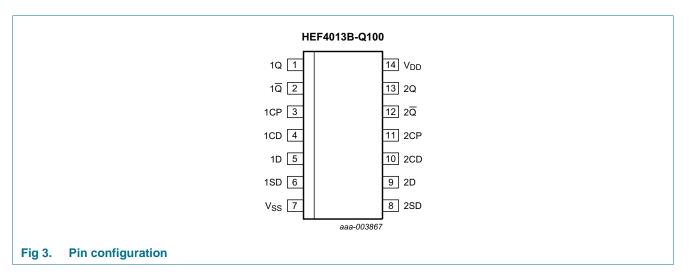
Table 1. Ordering information

All types operate from −40 °C to +125 °C

Type number	Package						
	Name	Description	Version				
HEF4013BP-Q100	DIP14	plastic dual in-line package; 14 leads (300 mil)	SOT27-1				
HEF4013BT-Q100	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1				
HEF4013BTT-Q100	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1				


5. Functional diagram

HEF4013B_Q100


HEF4013B-Q100

Dual D-type flip-flop

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2.	Pin description		
Symbol	Pin	Description	
1Q, 2Q	1, 13	true output	
1 <u>Q</u> , 2 <u>Q</u>	2, 12	complement output	
1CP, 2CP	3, 11	clock input (LOW to HIGH edge-triggered)	
HEF4013B_Q100		All information provided in this document is subject to legal disclaimers.	© NXP B.V. 2013. All rights reserved.
Product dat	ta sheet	Rev. 2 — 20 February 2013	3 of 16

HEF4013B-Q100

Dual D-type flip-flop

Table 2.	Pin descriptioncontinued	
Symbol	Pin	Description
1CD, 2CD	4, 10	asynchronous clear-direct input (active HIGH)
1D, 2D	5, 9	data input
1SD, 2SD	6, 8	asynchronous set-direct input (active HIGH)
V _{SS}	7	ground (0 V)
V _{DD}	14	supply voltage

7. Functional description

Table 3.Function table^[1]

Control			Input	Output	
nSD	nCD	nCP	nD	nQ	nQ
Н	L	Х	Х	Н	L
L	Н	Х	Х	L	Н
Н	Н	Х	Х	Н	Н
L	L	↑	L	L	Н
L	L	↑	Н	Н	L

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; $\uparrow = LOW$ -to-HIGH clock transition.

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{SS} = 0 V$ (ground).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DD}	supply voltage		-0.5	+18	V
I _{IK}	input clamping current	$V_{\rm I} < -0.5$ V or $V_{\rm I} > V_{\rm DD}$ + 0.5 V	-	±10	mA
VI	input voltage		-0.5	$V_{DD} + 0.5$	V
I _{OK}	output clamping current	$V_{\rm O}$ < –0.5 V or $V_{\rm O}$ > $V_{\rm DD}$ + 0.5 V	-	±10	mA
I _{I/O}	input/output current		-	±10	mA
I _{DD}	supply current		-	50	mA
T _{stg}	storage temperature		-65	+150	°C
T _{amb}	ambient temperature		-40	+125	°C
P _{tot}	total power dissipation	T_{amb} = -40 °C to +125 °C			
		DIP14	<u>[1]</u> -	750	mW
		SO14	[2] _	500	mW
		TSSOP14	[3] _	500	mW
Р	power dissipation	per output	-	100	mW

[1] For DIP14 packages: above T_{amb} = 70 °C, P_{tot} derates linearly with 12 mW/K.

[2] For SO14 packages: above $T_{amb} = 70 \text{ °C}$, P_{tot} derates linearly with 8 mW/K.

[3] For TSSOP14 packages: above T_{amb} = 60 °C, P_{tot} derates linearly with 5.5 mW/K.

9. Recommended operating conditions

Table 5.	Recommended operating condition	IS			
Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		3	15	V
VI	input voltage		0	V_{DD}	V
T _{amb}	ambient temperature		-40	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	$V_{DD} = 5 V$	-	3.75	μs/V
		V _{DD} = 10 V	-	0.5	μs/V
		V _{DD} = 15 V	-	0.08	μs/V

10. Static characteristics

Table 6. Static characteristics

 $V_{SS} = 0$ V; $V_{I} = V_{SS}$ or V_{DD} ; unless otherwise specified.

Symbol	Parameter	Conditions	V _{DD}	T _{amb} =	–40 °C	T _{amb} =	+25 °C	T _{amb} =	+85 °C	T _{amb} = -	-125 °C	Unit
				Min	Мах	Min	Мах	Min	Max	Min	Max	
	HIGH-level	I _O < 1 μA	5 V	3.5	-	3.5	-	3.5	-	3.5	-	V
	input voltage		10 V	7.0	-	7.0	-	7.0	-	7.0	-	V
			15 V	11.0	-	11.0	-	11.0	-	11.0	-	V
V _{IL}	LOW-level	$ I_0 < 1 \ \mu A$	5 V	-	1.5	-	1.5	-	1.5	-	1.5	V
	input voltage		10 V	-	3.0	-	3.0	-	3.0	-	3.0	V
			15 V	-	4.0	-	4.0	-	4.0	-	4.0	V
V _{OH}	HIGH-level	$ I_0 < 1 \ \mu A$	5 V	4.95	-	4.95	-	4.95	-	4.95	-	V
	output voltage		10 V	9.95	-	9.95	-	9.95	-	9.95	-	V
			15 V	14.95	-	14.95	-	14.95	-	14.95	-	V
V _{OL}	LOW-level	$ I_0 < 1 \ \mu A$	5 V	-	0.05	-	0.05	-	0.05	-	0.05	V
	output voltage		10 V	-	0.05	-	0.05	-	0.05	-	0.05	V
			15 V	-	0.05	-	0.05	-	0.05	-	0.05	V
I _{OH}	HIGH-level	$V_{O} = 2.5 V$	5 V	-	-1.7	-	-1.4	-	-1.1	-	-1.1	mA
	output current	$V_{O} = 4.6 V$	5 V	-	-0.64	-	-0.5	-	-0.36	-	-0.36	mΑ
		$V_{O} = 9.5 V$	10 V	-	-1.6	-	-1.3	-	-0.9	-	-0.9	mA
		V _O = 13.5 V	15 V	-	-4.2	-	-3.4	-	-2.4	-	-2.4	mA
I _{OL}	LOW-level	$V_{O} = 0.4 V$	5 V	0.64	-	0.5	-	0.36	-	0.36	-	mA
	output current	$V_{O} = 0.5 V$	10 V	1.6	-	1.3	-	0.9	-	0.9	-	mA
		$V_{O} = 1.5 V$	15 V	4.2	-	3.4	-	2.4	-	2.4	-	mA
I _I	input leakage current		15 V	-	±0.1	-	±0.1	-	±1.0	-	±1.0	μΑ
I _{DD}	supply current	all valid input	5 V	-	1.0	-	1.0	-	30	-	30	μΑ
		combinations;	10 V	-	2.0	-	2.0	-	60	-	60	μΑ
		I _O = 0 A	15 V	-	4.0	-	4.0	-	120	-	120	μΑ
CI	input capacitance		-	-	-	-	7.5	-	-	-	-	pF

HEF4013B_Q100

Downloaded from Arrow.com.

Product data sheet

Dual D-type flip-flop

11. Dynamic characteristics

Table 7. Dynamic characteristics

 $T_{amb} = 25 \ ^{\circ}C$; unless otherwise specified. For test circuit see <u>Figure 6</u>.

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Symbol	Parameter	Conditions	V_{DD}	Extrapolation formula	a Min	Тур	Max	Unit
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	t _{PHL}			5 V	[1] 83 + 0.55 \times C _L	-	110	220	ns
$ \begin{tabular}{ c c c c c c } & SV & U & 73 + 0.55 \times C_{L} & - & 100 & 200 & ns \\ 10 & 29 + 0.23 \times C_{L} & - & 40 & 80 & ns \\ 15 & 22 + 0.16 \times C_{L} & - & 40 & 80 & ns \\ 15 & 22 + 0.16 \times C_{L} & - & 40 & 80 & ns \\ 10 & 29 + 0.23 \times C_{L} & - & 40 & 80 & ns \\ 10 & 29 + 0.23 \times C_{L} & - & 40 & 80 & ns \\ 10 & 29 + 0.23 \times C_{L} & - & 40 & 80 & ns \\ 10 & 29 + 0.23 \times C_{L} & - & 40 & 80 & ns \\ 15 & 22 + 0.16 \times C_{L} & - & 40 & 80 & ns \\ 10 & 29 + 0.23 \times C_{L} & - & 40 & 80 & ns \\ 10 & 29 + 0.23 \times C_{L} & - & 40 & 80 & ns \\ 10 & 29 + 0.23 \times C_{L} & - & 40 & 80 & ns \\ 10 & 29 + 0.23 \times C_{L} & - & 40 & 80 & ns \\ 10 & 29 + 0.23 \times C_{L} & - & 40 & 80 & ns \\ 10 & 29 + 0.23 \times C_{L} & - & 30 & 60 & ns \\ 10 & 24 + 0.23 \times C_{L} & - & 30 & 60 & ns \\ 10 & 24 + 0.23 \times C_{L} & - & 30 & 60 & ns \\ 10 & 24 + 0.23 \times C_{L} & - & 30 & 60 & ns \\ 10 & 24 + 0.23 \times C_{L} & - & 30 & 60 & ns \\ 10 & 10 + 10 \times C_{L} & - & 30 & 60 & ns \\ 10 & 10 + 10 \times C_{L} & - & 30 & 60 & ns \\ 15 & 12 + 0.16 \times C_{L} & - & 30 & 60 & ns \\ 15 & 12 + 0.16 \times C_{L} & - & 30 & 60 & ns \\ 15 & 12 + 0.16 \times C_{L} & - & 30 & 60 & ns \\ 15 & 12 + 0.16 \times C_{L} & - & 30 & 60 & ns \\ 15 & 12 + 0.16 \times C_{L} & - & 30 & 60 & ns \\ 15 & 12 + 0.16 \times C_{L} & - & 30 & 60 & ns \\ 15 & 0 & 10 + 0 + 0.23 \times C_{L} & - & 30 & 60 & ns \\ 15 & 0 & 9 + 0.42 \times C_{L} & - & 30 & 60 & ns \\ 15 & 0 & 9 + 0.42 \times C_{L} & - & 30 & 60 & ns \\ 15 & 0 & 0 & 0 & 1 & ns \\ 15 & 0 & 0 & 0 & 0 & 1 & ns \\ 15 & 0 & 0 & 0 & 0 & 0 & 1 & ns \\ 15 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $		propagation delay	see <u>Figure 4</u>	10 V	$34 \textbf{+} 0.23 \times C_L$	-	45	90	ns
$ \begin{tabular}{ c c c c c } & 10 & 29 + 0.23 & C_L & - & 30 & 60 & ns \\ 15 & 22 + 0.16 & C_L & - & 30 & 60 & ns \\ 16 & 22 + 0.16 & C_L & - & 40 & 80 & ns \\ 10 & 29 + 0.23 & C_L & - & 40 & 80 & ns \\ 10 & 29 + 0.23 & C_L & - & 40 & 80 & ns \\ 15 & 22 + 0.16 & C_L & - & 30 & 60 & ns \\ 15 & 22 + 0.16 & C_L & - & 30 & 60 & ns \\ 15 & 22 + 0.16 & C_L & - & 30 & 60 & ns \\ 15 & 22 + 0.16 & C_L & - & 30 & 60 & ns \\ 10 & 29 + 0.23 & C_L & - & 40 & 80 & ns \\ 10 & 29 + 0.23 & C_L & - & 40 & 80 & ns \\ 10 & 29 + 0.23 & C_L & - & 30 & 60 & ns \\ 15 & 22 + 0.16 & C_L & - & 30 & 60 & ns \\ 15 & 22 + 0.16 & C_L & - & 30 & 60 & ns \\ 15 & 22 + 0.16 & C_L & - & 35 & 70 & ns \\ 15 & 15 & 17 + 0.16 & C_L & - & 35 & 70 & ns \\ 10 & 24 + 0.23 & C_L & - & 30 & 60 & ns \\ 10 & 19 + 0.23 & C_L & - & 30 & 60 & ns \\ 10 & 19 + 0.23 & C_L & - & 30 & 60 & ns \\ 10 & 19 + 0.23 & C_L & - & 30 & 60 & ns \\ 15 & 12 + 0.16 & C_L & - & 30 & 60 & ns \\ 15 & 12 + 0.16 & C_L & - & 30 & 60 & ns \\ 15 & 12 + 0.16 & C_L & - & 30 & 60 & ns \\ 15 & 12 + 0.16 & C_L & - & 30 & 60 & ns \\ 15 & 12 + 0.16 & C_L & - & 30 & 60 & ns \\ 15 & 12 + 0.16 & C_L & - & 30 & 60 & ns \\ 15 & 0 & 9 + 0.42 & C_L & - & 30 & 60 & ns \\ 15 & 0 & 9 + 0.42 & C_L & - & 30 & 60 & ns \\ 15 & 0 & 0 & 0 & 0 & 0 & 0 & ns \\ 15 & 0 & 0 & 0 & 0 & 0 & 0 & ns \\ 15 & 0 & 0 & 0 & 0 & 0 & 0 & ns \\ 15 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ns \\ 15 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ns \\ 15 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ns \\ 15 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & ns \\ 1$				15 V	$22 \textbf{+} 0.16 \times C_L$	-	30	60	ns
$ \begin{tabular}{ c c c c c } \hline 15 \lor & 22 + 0.16 \times C_{L} & - & 30 & 60 & ns \\ \hline 10 \lor & 22 + 0.16 \times C_{L} & - & 40 & 80 & ns \\ \hline 10 \lor & 29 + 0.23 \times C_{L} & - & 40 & 80 & ns \\ \hline 10 \lor & 29 + 0.23 \times C_{L} & - & 30 & 60 & ns \\ \hline 15 \lor & 22 + 0.16 \times C_{L} & - & 30 & 60 & ns \\ \hline 15 \lor & 22 + 0.16 \times C_{L} & - & 95 & 190 & ns \\ \hline 15 \lor & 22 + 0.16 \times C_{L} & - & 40 & 80 & ns \\ \hline 15 \lor & 22 + 0.16 \times C_{L} & - & 40 & 80 & ns \\ \hline 10 \lor & 29 + 0.23 \times C_{L} & - & 40 & 80 & ns \\ \hline 10 \lor & 29 + 0.23 \times C_{L} & - & 40 & 80 & ns \\ \hline 10 \lor & 29 + 0.23 \times C_{L} & - & 40 & 80 & ns \\ \hline 10 \lor & 29 + 0.23 \times C_{L} & - & 40 & 80 & ns \\ \hline 10 \lor & 24 + 0.23 \times C_{L} & - & 35 & 70 & ns \\ \hline 10 \lor & 24 + 0.23 \times C_{L} & - & 35 & 70 & ns \\ \hline 10 \lor & 17 + 0.16 \times C_{L} & - & 25 & 50 & ns \\ \hline 10 \lor & 19 + 0.23 \times C_{L} & - & 30 & 60 & ns \\ \hline 10 \lor & 19 + 0.42 \times C_{L} & - & 30 & 60 & ns \\ \hline 10 \lor & 19 + 0.42 \times C_{L} & - & 30 & 60 & ns \\ \hline 10 \lor & 12 + 0.16 \times C_{L} & - & 20 & 40 & ns \\ \hline 10 \lor & 12 + 0.16 \times C_{L} & - & 20 & 40 & ns \\ \hline 10 \lor & 12 + 0.16 \times C_{L} & - & 20 & 40 & ns \\ \hline 10 \lor & 12 + 0.16 \times C_{L} & - & 20 & 40 & ns \\ \hline 10 \lor & 12 + 0.16 \times C_{L} & - & 20 & 40 & ns \\ \hline 10 \lor & 12 + 0.16 \times C_{L} & - & 20 & 40 & ns \\ \hline 10 \lor & 12 + 0.16 \times C_{L} & - & 20 & 40 & ns \\ \hline 10 \lor & 12 + 0.16 \times C_{L} & - & 20 & 40 & ns \\ \hline 10 \lor & 12 + 0.16 \times C_{L} & - & 20 & 40 & ns \\ \hline 10 \lor & 10 + 10 \lor C_{L} & - & 20 & 40 & ns \\ \hline 10 \lor & 10 + 10 \lor C_{L} & - & 20 & 40 & ns \\ \hline 10 \lor & 10 + 10 \lor C_{L} & - & 20 & 40 & ns \\ \hline 10 \lor & 10 + 10 \lor C_{L} & - & 10 & - & ns \\ \hline 10 \lor & 10 + 10 \lor C_{L} & - & 10 & - & ns \\ \hline 10 \lor & 10 + 10 \lor C_{L} & - & 10 & - & ns \\ \hline 10 \lor & 10 + 10 \lor & 10 \lor C_{L} & - & 0 & 0 & - & ns \\ \hline 10 \lor & 10 \lor & 10 \lor & 10 \lor C_{L} & - & 0 & 0 & - & ns \\ \hline 10 \lor & - & ns \\ \hline 10 \lor & - & ns \\ \hline 10 \lor & 10 \lor \\ \hline 10 \lor & 10 \lor $			nSD to nQ	5 V	11 73 + 0.55 \times C _L	-	100	200	ns
$ \begin{tabular}{ c c c c } & \ I $				10 V	$29 \textbf{+} 0.23 \times C_L$	-	40	80	ns
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				15 V	$22 \textbf{+} 0.16 \times C_L$	-	30	60	ns
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			nCD to nQ	5 V	11 73 + 0.55 \times C _L	-	100	200	ns
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				10 V	$29 \textbf{+} 0.23 \times C_L$	-	40	80	ns
$ \begin{tabular}{ c c c c c } & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $				15 V	$22 \textbf{+} 0.16 \times C_L$	-	30	60	ns
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PLH			5 V	[1] $68 + 0.55 \times C_L$	-	95	190	ns
$ \begin{tabular}{ c c c c c } & NSD to nQ & $ 5V & $ 11 & 48 + 0.55 \times C_{L} & - & $ 75 & $ 150 & ns \\ $ 10V & $ 24 + 0.23 \times C_{L} & - & $ 35 & $ 70 & ns \\ $ 15V & $ 17 + 0.16 \times C_{L} & - & $ 25 & $ 50 & ns \\ $ 15V & $ 17 + 0.16 \times C_{L} & - & $ 60 & $ 120 & ns \\ $ 10V & $ 19 + 0.23 \times C_{L} & - & $ 30 & $ 60 & $ ns \\ $ 15V & $ 12 + 0.16 \times C_{L} & - & $ 20 & $ 40 & $ ns \\ $ 15V & $ 12 + 0.16 \times C_{L} & - & $ 20 & $ 40 & $ ns \\ $ 15V & $ 12 + 0.16 \times C_{L} & - & $ 60 & $ 120 & $ ns \\ $ 15V & $ 12 + 0.16 \times C_{L} & - & $ 60 & $ 120 & $ ns \\ $ 15V & $ 12 + 0.16 \times C_{L} & - & $ 60 & $ 120 & $ ns \\ $ 15V & $ 12 + 0.16 \times C_{L} & - & $ 60 & $ 120 & $ ns \\ $ 15V & $ 12 + 0.16 \times C_{L} & - & $ 30 & $ 60 & $ ns \\ $ 15V & $ 6 + 0.28 \times C_{L} & - & $ 30 & $ 60 & $ ns \\ $ 15V & $ 6 + 0.28 \times C_{L} & - & $ 20 & $ 40 & $ ns \\ $ 15V & $ 6 + 0.28 \times C_{L} & - & $ 20 & $ 40 & $ ns \\ $ 15V & $ 6 + 0.28 \times C_{L} & - & $ 10 & $ - $ ns \\ $ 15V & $ 15V & $ 15 & $ 5 & $ - $ ns \\ $ 15V & $ 15V & $ 15 & $ 5 & $ - $ ns \\ $ 15V & $ 15V & $ 15 & $ 0 & $ - $ ns \\ $ 15V & $ 15V & $ 15 & $ 0 & $ - $ ns \\ $ 15V & $ 15V & $ 15 & $ 0 & $ - $ ns \\ $ 15V & $ 15V & $ 15 & $ 0 & $ - $ ns \\ $ 15V & $ 15V & $ 15 & $ 0 & $ - $ ns \\ $ 15V & $ 15V & $ 10 & $ - $ ns \\ $ 15V & $ 15V & $ 20 & $ 10 & $ - $ ns \\ $ 15V & $ 15V & $ 20 & $ 10 & $ - $ ns \\ $ 15V & $ 15V & $ 20 & $ 10 & $ - $ ns \\ $ 15V & $ 15V & $ 20 & $ 10 & $ - $ ns \\ $ 15V & $ 15V & $ 20 & $ 10 & $ - $ ns \\ $ 15V & $ 15V & $ 20 & $ 10 & $ - $ ns \\ $ 15V & $ 15V & $ 20 & $ 10 & $ - $ ns \\ $ 15V & $ 15V & $ 20 & $ 10 & $ - $ ns \\ $ 15V & $ 15V & $ 20 & $ 10 & $ - $ ns \\ $ 15V & $ 15V & $ 20 & $ 10 & $ - $ ns \\ $ 15V & $ 15V & $ 20 & $ 10 & $ - $ ns \\ $ 15V & $ 15V & $ 20 & $ 10 & $ - $ ns \\ $ 15V & $ 15V & $ 20 & $ 10 & $ - $ ns \\ $ 15V & $ 15V & $ 20 & $ 10 & $ - $ ns \\ $ 15V & $ 15V & $ 20 & $ 10 & $ - $ ns \\ $ 15V & $ 15V & $ 20 & $ 10 & $ - $ ns \\ $ 15V & $ 15V & $ 20 & $ 10 & $ - $ ns \\ $ 15V & $ $		propagation delay	see <u>Figure 4</u>	10 V	$29 \textbf{+} 0.23 \times C_L$	-	40	80	ns
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				15 V	$22 \textbf{+} 0.16 \times C_L$	-	30	60	ns
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			nSD to nQ	5 V	[1] $48 + 0.55 \times C_L$	-	75	150	ns
$ \frac{1}{10 \text{V}} = \frac{1}{10 $				10 V	$24 \textbf{+} 0.23 \times C_L$	-	35	70	ns
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				15 V	$17 \textbf{+} 0.16 \times C_L$	-	25	50	ns
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			nCD to nQ	5 V	1 33 + 0.55 × C_L	-	60	120	ns
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			10 V	$19 \textbf{+} 0.23 \times C_L$	-	30	60	ns	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				15 V	$12 \textbf{+} 0.16 \times C_L$	-	20	40	ns
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	t	transition time	see Figure 4	5 V	10 + 1.00 × C_L	-	60	120	ns
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				10 V	$9 \textbf{+} 0.42 \times C_L$	-	30	60	ns
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				15 V	$6 \textbf{+} 0.28 \times C_L$	-	20	40	ns
$\frac{10 \text{ V}}{15 \text{ V}} = \frac{23}{10 \text{ V}} = \frac{10 \text{ N}}{10 \text{ V}} = \frac{10 \text{ N}}{10 \text{ V}} = \frac{10 \text{ V}}{15 \text{ V}} = \frac{10 \text{ V}}{10 \text{ V}} = \frac{20}{10 \text{ V}} = \frac{10 \text{ V}}{10 \text{ V}} = \frac{20}{10 \text{ V}} = \frac{10 \text{ V}}{10 \text{ V}} = \frac{10 \text{ V}}{10 \text{ V}} = \frac{10 \text{ V}}{15 \text{ V}} = \frac{10 \text{ V}}{10 \text{ V}} $	su	set-up time		5 V		40	20	-	ns
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			see <u>Figure 4</u>	10 V		25	10	-	ns
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				15 V		15	5	-	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	h	hold time		5 V		20	0	-	ns
$ \begin{tabular}{ c c c c c c c } & & & & & & & & & & & & & & & & & & &$			see Figure 4	10 V		20	0	-	ns
$\frac{\text{see Figure 4}}{\text{in V}} = \frac{10 \text{ V}}{15 \text{ V}} = \frac{30}{10} = \frac{15}{10} = \frac{10}{10} $				15 V		15	0	-	ns
$\frac{10 \text{ V}}{15 \text{ V}} \qquad \begin{array}{c} 30 & 13 & 1 & 18 \\ \hline 30 & 13 & 1 & 18 \\ \hline 30 & 13 & 1 & 18 \\ \hline 10 \text{ V} & 20 & 10 & - & ns \\ \hline 50 & 25 & - & ns \\ \hline 10 \text{ V} & 24 & 12 & - & ns \\ \hline 15 \text{ V} & 20 & 10 & - & ns \\ \hline 15 \text{ V} & 20 & 10 & - & ns \\ \hline 10 \text{ V} & 24 & 12 & - & ns \\ \hline 10 \text{ V} & 24 & 12 & - & ns \\ \hline 10 \text{ V} & 24 & 12 & - & ns \\ \hline \end{array}$	W	pulse width	•	5 V		60	30	-	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			see Figure 4	10 V		30	15	-	ns
see Figure 5 10 V 24 12 - ns 15 V 20 10 - ns nCD input HIGH; see Figure 5 5 V 50 25 - ns 10 V 24 12 - ns				15 V		20	10	-	ns
IOV I				5 V		50	25	-	ns
nCD input HIGH; see Figure 55 V5025-ns10 V2412-ns			see <u>Figure 5</u>	10 V		24	12	-	ns
see <u>Figure 5</u> 10 V 24 12 - ns				15 V		20	10	-	ns
				5 V		50	25	-	ns
15 V 20 10 - ns			see Figure 5	10 V		24	12	-	ns
				15 V		20	10	-	ns

Dual D-type flip-flop

Symbol	Parameter	Conditions	V _{DD}	Extrapolation formula	Min	Тур	Max	Unit
t _{rec} recovery time	nSD input;	5 V		+15	-5	-	ns	
		see <u>Figure 5</u>	10 V		15	0	-	ns
		15 V		15	0	-	ns	
	nCD input;	5 V		40	25	-	ns	
		see Figure 5	10 V		25	10	-	ns
			15 V		25	10	-	ns
f _{clk(max)}	maximum clock	see Figure 4	5 V		7	14	-	MHz
	frequency		10 V		14	28	-	MHz
			15 V		20	40	-	MHz

Table 7. Dynamic characteristics ... continued

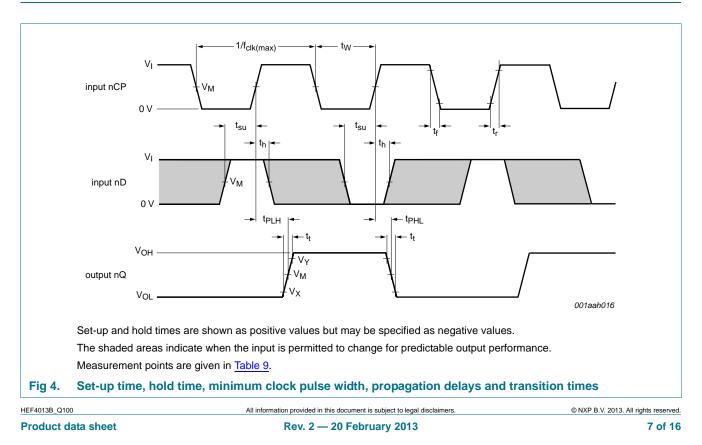
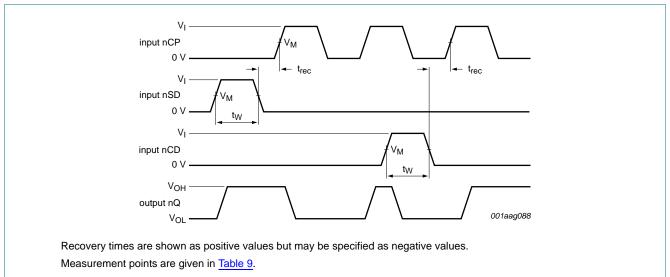

[1] Typical values of the propagation delays and output transition times can be calculated with the extrapolation formulas. CL is given in pF.

Table 8. Dynamic power dissipation

 $V_{SS} = 0 V; t_r = t_f \le 20 ns; T_{amb} = 25 \ ^{\circ}C.$


Symbol	Parameter	V_{DD}	Typical formula	Where
PD	dynamic power dissipation	5 V	$\textbf{P}_{D} = 850 \times f_{i} + \Sigma (f_{o} \times C_{L}) \times V_{DD}^{2} \ \mu W$	f _i = input frequency in MHz;
		10 V	$P_D = 3600 \times f_i + \Sigma(f_o \times C_L) \times V_DD{}^2 \; \muW$	$f_o = output frequency in MHz;$
		15 V	$P_D = 9000 \times f_i + \Sigma (f_o \times C_L) \times V_DD^2 \ \mu W$	C_L = output load capacitance in pF;
				$\Sigma(f_{o} \times C_{L})$ = sum of the outputs;
				V_{DD} = supply voltage in V.

12. Waveforms

HEF4013B-Q100

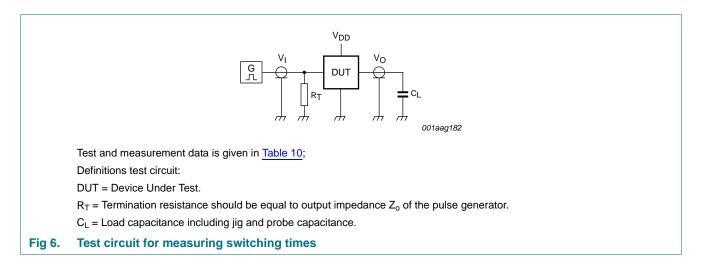
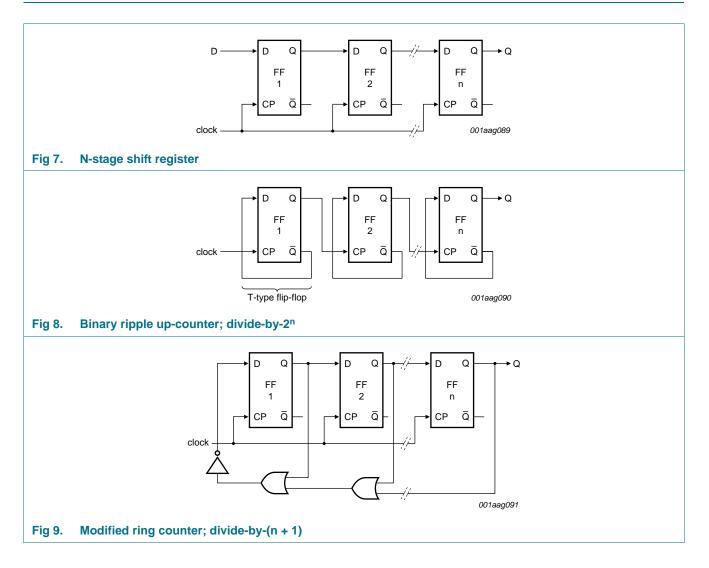

Dual D-type flip-flop

Fig 5. nSD, nCD recovery time and pulse width

Table 9. Measurement points

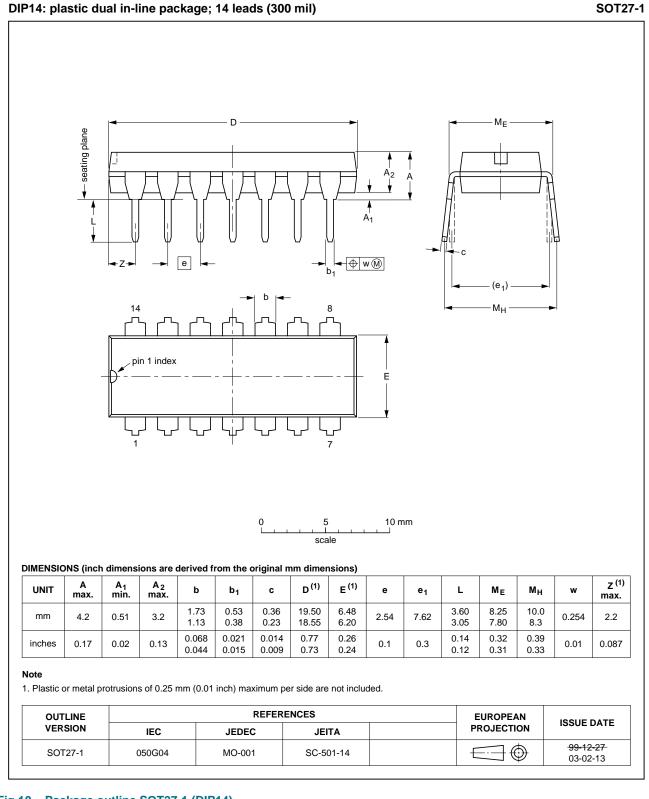
Supply voltage	Input	Output		
V _{DD}	V _M	V _M	V _X	V _Y
5 V to 15 V	0.5V _{DD}	0.5V _{DD}	0.1V _{DD}	0.9V _{DD}


Table 10. Test data

Supply voltage	Input	Load	
V _{DD}	VI	t _r , t _f	CL
5 V to 15 V	V_{SS} or V_{DD}	≤ 20 ns	50 pF

HEF4013B_Q100

Dual D-type flip-flop


13. Application information

HEF4013B_Q100

Dual D-type flip-flop

14. Package outline

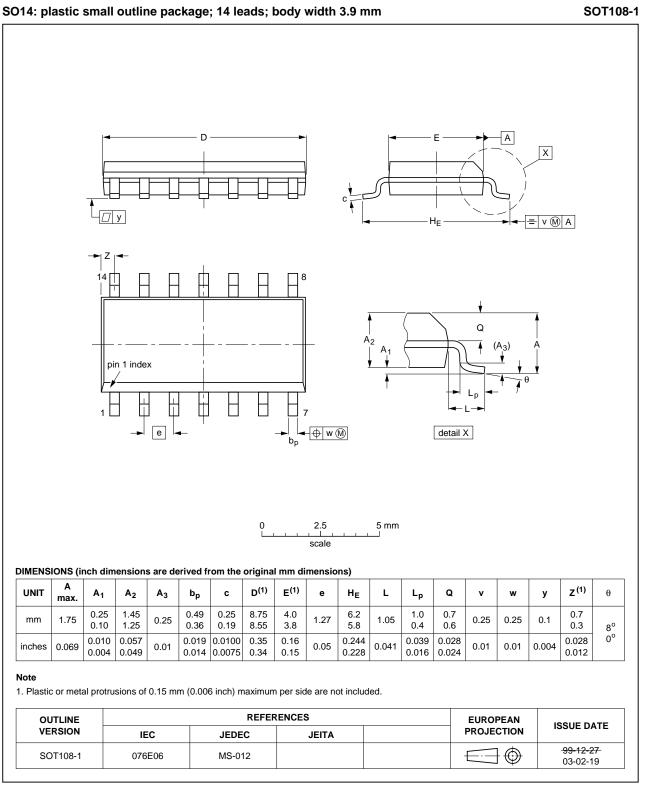


Fig 10. Package outline SOT27-1 (DIP14)

All information provided in this document is subject to legal disclaimers.

HEF4013B_Q100

Dual D-type flip-flop

Fig 11. Package outline SOT108-1 (SO14)

All information provided in this document is subject to legal disclaimers.

Product data sheet

HEF4013B_Q100

Dual D-type flip-flop

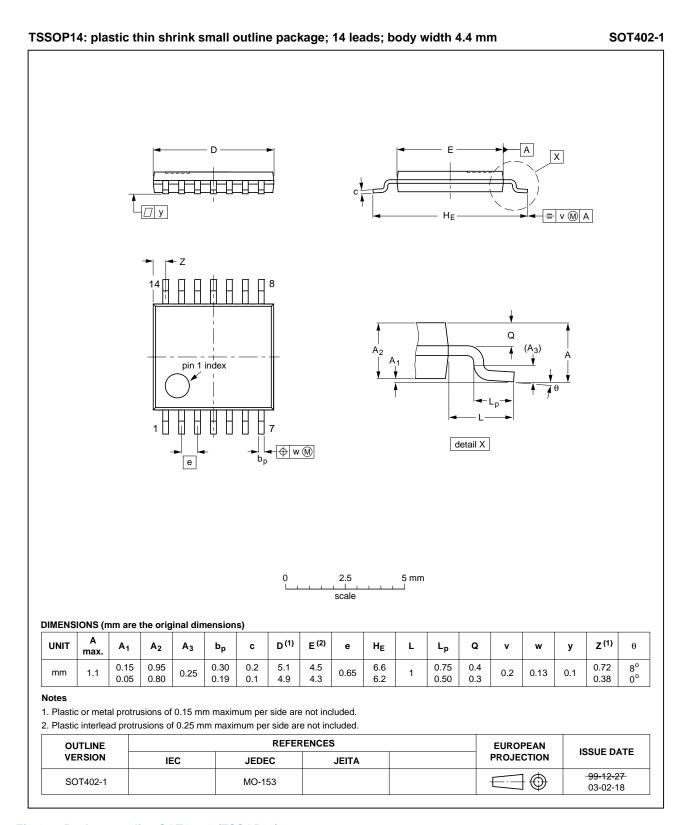


Fig 12. Package outline SOT402-1 (TSSOP14)

All information provided in this document is subject to legal disclaimers.

HEF4013B_Q100

Dual D-type flip-flop

15. Abbreviations

Table 11. Abbreviations			
Acronym	Description		
HBM	Human Body Model		
ESD	ElectroStatic Discharge		
MM	Machine Model		
MIL	Military		

16. Revision history

	Table 12.	Revision	history
--	-----------	----------	---------

Document ID	Release date	Data sheet status	Change notice	Supersedes
HEF4013B_Q100 v.2	20130220	Product data sheet	-	HEF4013B_Q100
Modifications: • HEF4013BP-Q100 (DIP14) added.				
HEF4013B_Q100 v.1	20120807	Product data sheet	-	-

17. Legal information

17.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

17.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications - This NXP

Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product sole and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

HEF4013B-Q100

Dual D-type flip-flop

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

18. Contact information

For more information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, please send an email to: salesaddresses@nxp.com

19. Contents

1	General description 1
2	Features and benefits 1
3	Applications 1
4	Ordering information 2
5	Functional diagram 2
6	Pinning information 3
6.1	Pinning 3
6.2	Pin description 3
7	Functional description 4
8	Limiting values 4
9	Recommended operating conditions 5
10	Static characteristics 5
11	Dynamic characteristics 6
12	Waveforms
13	Application information 9
14	Package outline 10
15	Abbreviations 13
16	Revision history 13
17	Legal information 14
17.1	Data sheet status 14
17.2	Definitions 14
17.3	Disclaimers
17.4	Trademarks 15
18	Contact information 15
19	Contents 16

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2013.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 20 February 2013 Document identifier: HEF4013B_Q100