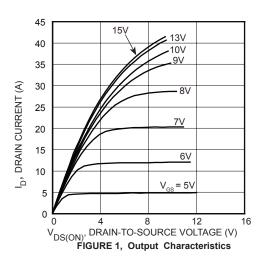
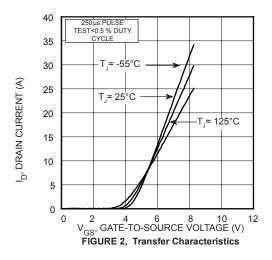
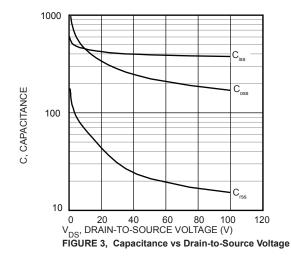
Dynamic Characteristics

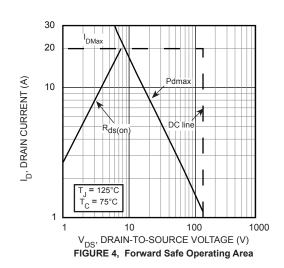
VRF152(MP)

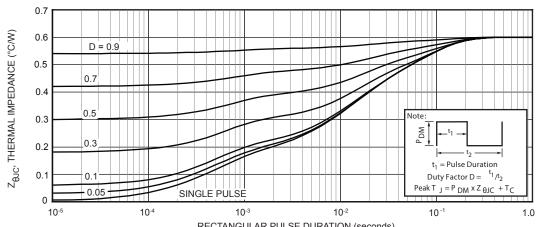
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
C _{ISS}	Input Capacitance	V _{GS} = 0V		383		
C _{oss}	Output Capacitance	V _{DS} = 50V		215		pF
C _{rss}	Reverse Transfer Capacitance	f = 1MHz		20		


Functional Characteristics


Symbol	Parameter	Min	Тур	Max	Unit
G_{PS}	$f_1 = 30MHz, f_2 = 30.001MHz, V_{DD} = 50V, I_{DQ} = 250mA, P_{out} = 150W_{PEP}^{-1}$	18	22		dB
G_{PS}	f = 175MHz, V _{DD} = 50V, I _{DQ} = 250mA, P _{out} = 150W		14		uБ
$\eta_{\scriptscriptstyle D}$	$f_1 = 30MHz, f_2 = 30.001MHz, V_{DD} = 50V, I_{DQ} = 250mA, P_{out} = 150W_{PEP}^{-1}$		50		%
IMD _(d3)	$f_1 = 30MHz, f_2 = 30.001MHz, V_{DD} = 50V, I_{DQ} = 250mA, P_{out} = 150W_{PEP}^{-1}$		-30		dBc
Ψ	$f = 30MHz$, $V_{DD} = 50V$, $I_{DQ} = 250mA$, $P_{out} = 150W$ CW 70:1 VSWR - All Phase Angles, 0.2mSec X 20% Duty Factor	No Degradation in Output Power		Power	


^{1.} To MIL-STD-1311 Version A, test method 2204B, Two Tone, Reference Each Tone


Microsemi reserves the right to change, without notice, the specifications and information contained herein.


Typical Performance Curves

RECTANGULAR PULSE DURATION (seconds)
Figure 5. Maximum Effective Transient Thermal Impedance Junction-to-Case vs Pulse Duration

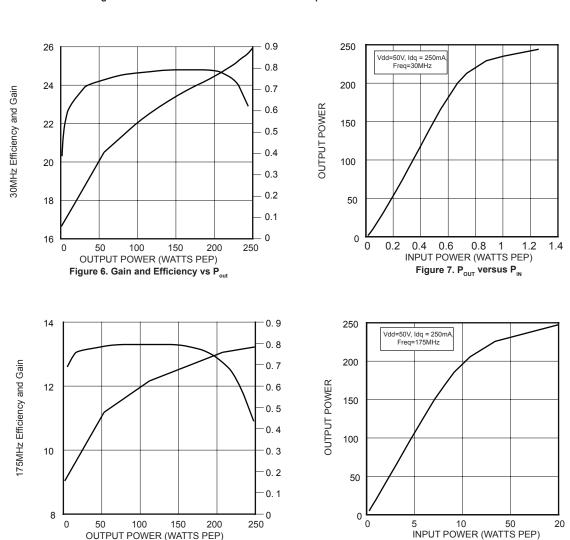
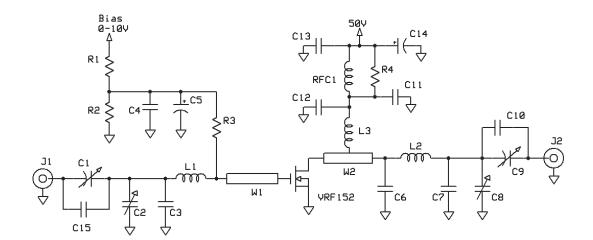
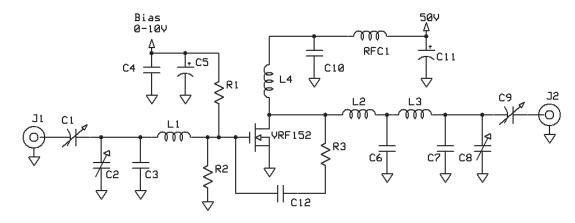



Figure 8. Gain and Efficiency vs Pout

Figure 9. P_{OUT} versus P_{IN}


30 MHz test Circuit

C1,2,8,9 - ARCO 463 20-180pF
C3,7 - 120 pF ATC 100B
C4,11-13 - 0.1uF 100V SMT
C5 - 1 uF 15WV tant
C6, C15 - 47pF ATC 100B
C10 - 150pF ATC 100B
C14 - 15uF 100V Elect
W1 W2 - printed line 0.23"x 0.7"

L1 - 4t #20 ga .25"d x .16"L ~120nH L2 - 5t #14 ga .312" dia x .45" ~135nH L3 -7 turns #16 ga 5/16" [D tight. ~250nH R1 R2 - 2.2k ohm 1/4W R3 - 22 ohm 1W SMT R4 - 2.2 ohm 2W RFC1 Fair-Rite 2961666631 (VK200-4B) PCB = FR-4 fiberglass-epoxy er = 4.6

175 MHz test Circuit

C1 C2 C8 - ARCO 463

C3 C7 - 25 pF ATC 100B

C4 C10 C12 - 0.1uF 100Y SMT

C5 - 1 uF 15WY tant

C6 - 250 pF ATC 100B

C9 - ARCO 462

C11 - 15uF 100Y Elect

L1 - 3/4" #18 ga into Hairpin

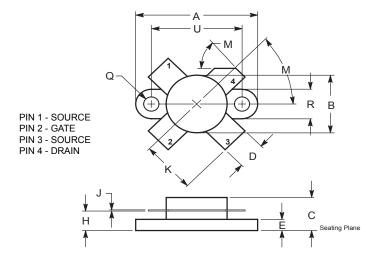
L2 - printed line 0.2"W x 0.5" L

L3 - 1" #16 ga into Hairpin

L4 -2 turns #16 ga. 5/16" ID

R1 R2 - 150 ohm 1W

R3 - 470 ohm 3W, Panasonic ECG


RFC1 Fair-Rite 2961666631 (VK200-4B)

Adding MP at the end of P/N specifies a matched pair where $V_{\text{GS(TH)}}$ is matched between the two parts. V_{TH} values are marked on the devices per the following table.

Code	Vth Range	Code 2	Vth Range
А	2.900 - 2.975	М	3.650 - 3.725
В	2.975 - 3.050	N	3.725 - 3.800
С	3.050 - 3.125	Р	3.800 - 3.875
D	3.125 - 3.200	R	3.875 - 3.950
Е	3.200 - 3.275	S	3.950 - 4.025
F	3.275 - 3.350	Т	4.025 - 4.100
G	3.350 - 3.425	W	4.100 - 4.175
Н	3.425 - 3.500	Х	4.175 - 4.250
J	3.500 - 3.575	Υ	4.250 - 4.325
K	3.575 - 3.650	Z	4.325 - 4.400

 $[{]m V}_{_{
m TH}}$ values are based on Microsemi measurements at datasheet conditions with an accuracy of 1.0%.

.5" SOE Package Outline All Dimensions are ± .005

DIM	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
А	0.096	0.990	24.39	25.14	
В	0.465	0.510	11.82	12.95	
С	0.229	0.275	5.82	6.98	
D	0.216	0.235	5.49	5.96	
Е	0.084	0.110	2.14	2.79	
Н	0.144	0.178	3.66	4.52	
J	0.003	0.007	0.08	0.17	
K	0.435		11.0		
М	45° NOM		45° NOM		
Q	0.115	0.130	2.93	3.30	
R	0.246	0.255	6.25	6.47	
U	0.720	0.730	18.29	18.54	

Disclaimer:

The information contained in the document (unless it is publicly available on the Web without access restrictions) is PROPRIETARY AND CONFIDENTIAL information of Microsemi and cannot be copied, published, uploaded, posted, transmitted, distributed or disclosed or used without the express duly signed written consent of Microsemi. If the recipient of this document has entered into a disclosure agreement with Microsemi, then the terms of such Agreement will also apply. This document and the information contained herein may not be modified, by any person other than authorized personnel of Microsemi. No license under any patent, copyright, trade secret or other intellectual property right is granted to or conferred upon you by disclosure or delivery of the information, either expressly, by implication, inducement, estoppels or otherwise. Any license under such intellectual property rights must be approved by Microsemi in writing signed by an officer of Microsemi.

Microsemi reserves the right to change the configuration, functionality and performance of its products at anytime without any notice. This product has been subject to limited testing and should not be used in conjunction with life-support or other mission-critical equipment or applications. Microsemi assumes no liability whatsoever, and Microsemi disclaims any express or implied warranty, relating to sale and/or use of Microsemi products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Any performance specifications believed to be reliable but are not verified and customer or user must conduct and complete all performance and other testing of this product as well as any user or customers final application. User or customer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the customer's and user's responsibility to independently determine suitability of any Microsemi product and to test and verify the same. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the User. Microsemi specifically disclaims any liability of any kind including for consequential, incidental and punitive damages as well as lost profit. The product is subject to other terms and conditions which can be located on the web at http://www.microsemi.com/legal/tnc.asp