Model Selection Chart

Model Number	Nominal Input Voltage	Input Range	Compatible DC-DC Converter	Converter
VI-A11-CU/VE-A11-CU	24V _{DC}	21 – 32V _{DC}	VI-21x-Cx and VI-J1x-Cx	C–grade
VI-AWW-CU/VE-AWW-CU	24V _{DC}	18 – 36V _{DC}	VI-2Wx-Cx and VI-JWx-Cx	C–grade
VI-A33-CQ/VE-A33-CQ	48V _{DC}	42 – 60V _{DC}	VI-23x-Cx and VI-J3x-Cx	C–grade
VI-ANN-CQ/VE-ANN-CQ	48V _{DC}	36 – 76V _{DC}	VI-2Nx-Cx and VI-JNx-Cx	C–grade
VI-A66-CQ/VE-A66-CQ	300V _{DC}	$200 - 400V_{DC}$	VI-26x-Cx and VI-J6x-Cx	C–grade

Note: For alternative product grades change the "C" in the part number to "E", "I", or "M".

Specifications

(typical at $T_{BP} = 25$ °C, nominal line and 75% load, unless otherwise specified)

OUTPUT CHARACTERISTICS

Parameter		Min	Тур	Max	Units	Test Conditions/Notes
Clamp voltage						
24V _{DC} input		36.0		44.0	V_{DC}	–A11– models
24VDC 111Pat		40.5		50.0	V_{DC}	–AWW– models
48V _{DC} input		62.0		71	V_{DC}	–A33– models
40 ADC 111bar		80.0		90.0	V_{DC}	–ANN– models
300V _{DC} input		400		435	V_{DC}	–A66– models
Output power						
24V models				250	Watts	Output of IAM
48V models				510	Watts	Output of IAM
300V models				510	Watts	Output of IAM
nternal voltage drop)					
$24V_{DC}$		0.6		0.85	V_{DC}	
48V _{DC}		0.6		0.95	V_{DC}	
300V _{DC}		1.7		3.5	V_{DC}	
Overload protection						
24V _{DC} input	-AWW-	20			Amps	
Z-VDC IIIput	-A11-	15			Amps	Calaba al Manada al II. auta na access
48V _{DC} input	-ANN-	20			Amps	Foldback threshold; auto recovery with latched shut down after 2ms
40 ADC Hibat	-A33-	15			Amps	
300V _{DC} input	-A66-	4			Amps	

Specifications (Cont.)

ISOLATION CHARACTERISTICS

Parameter	Min	Тур	Max	Units	Test Conditions
Input to base		1,500		V_{RMS}	1 minute
Output to base		1,500		V_{RMS}	1 minute

THERMAL CHARACTERISTICS

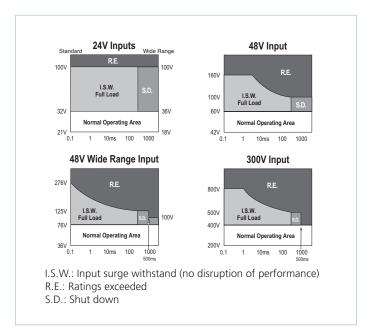
Parameter	Min	Тур	Max	Units	Test Conditions
Efficiency		97		%	
Baseplate to sink		0.14		°C/Watt	
Operating temperature, baseplate			100	°C	See product grade specifications
Storage temperature			125	°C	See product grade specifications

MECHANICAL SPECIFICATIONS

Parameter	Min	Тур	Max	Units	Test Conditions
Weight		3.0 (85)		ounces (grams)	

PRODUCT GRADE SPECIFICATIONS

Parameter	E	С	I	M	
Storage Temp. (Baseplate)	−20°C to +105°C	−40°C to +105°C	−55°C to +105°C	−65°C to +105°C	
Operating Temp. (Baseplate)	−10°C to +100°C	−25°C to +100°C	−40°C to +100°C	−55°C to +100°C	


EMI CHARACTERISTICS

EMI/RFI (conducted emissions)	Meets Bellcore TR-TSY-000513, Issue 2, Rev. 1 (24 and 48V Input);
	British Telecom BTR 2511, Issue 2 (24 and 48V Input);
	FCC Part 15, Class A, EN55022 Class B

TRANSIENT PROTECTION

Meets Bellcore TA-TSY-001003, Issue 1, 9/89
British Telecom BTR 2511, IEC61000-4-5 Level 2 (VI-A66 only)

Figure 1 — Safe operating area based on input voltage of IAM (1% duty cycle max., $Zs=0.5\Omega$, for short duration transient capability refer to specifications.)

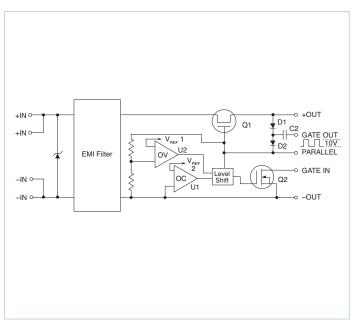
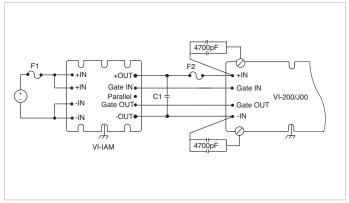



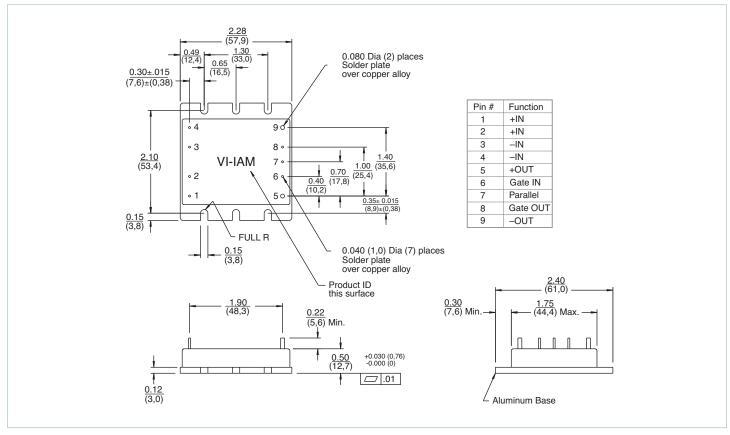
Figure 2 — Block diagram of Input Attenuator Module (IAM)

Figure 3 — Typical connection diagram. For recommended fuse (F2) see VI-200 / VI-J00 application manual.

Input Voltage	Recommended Fuse
24V	20A / 32V (AGC-20)
24V "W"	20A / 36V (AGC-20)
/8//	20A / 60V (3AB-20)
40 V	ZUA / 00V (SAB-ZU)
48V "N"	20A / 80V (3AB-20)
300V	5A / 250V Bussman PC-Tron

Table 1 — Recommended F1 fusing based on input voltage (see Figure 3)

Input Voltage	Maximum Capacitance ^[a]
24V _{DC} (21 – 32V)	470μF
24V _{DC} (18 – 36V)	470μF
48V _{DC} (42 – 60V)	220µF
48V _{DC} (36 – 76V)	120µF
300V _{DC} (200 – 400V)	27μF
^[a] Capacitance should be DC-DC converter. (C1, I	distributed across the input of each Figure 3)


Table 2 — Recommended distributed capacitance on input of DC-DC converter(s)

Storage

Vicor products, when not installed in customer units, should be stored in ESD safe packaging in accordance with ANSI/ESD S20.20, "Protection of Electrical and Electronic Parts, Assemblies and Equipment" and should be maintained in a temperature controlled factory/ warehouse environment not exposed to outside elements controlled between the temperature ranges of 15°C and 38°C. Humidity shall not be condensing, no minimum humidity when stored in an ESD compliant package.

MECHANICAL DRAWING

Note: For alternate packaging options refer to the mechanical drawing page of vicorpower.com

Vicor's comprehensive line of power solutions includes high density AC-DC and DC-DC modules and accessory components, fully configurable AC-DC and DC-DC power supplies, and complete custom power systems.

Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for its use. Vicor makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication. Vicor reserves the right to make changes to any products, specifications, and product descriptions at any time without notice. Information published by Vicor has been checked and is believed to be accurate at the time it was printed; however, Vicor assumes no responsibility for inaccuracies. Testing and other quality controls are used to the extent Vicor deems necessary to support Vicor's product warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

Specifications are subject to change without notice.

Visit http://www.vicorpower.com/dc-dc-filters/iam for the latest product information.

Vicor's Standard Terms and Conditions and Product Warranty

All sales are subject to Vicor's Standard Terms and Conditions of Sale, and Product Warranty which are available on Vicor's webpage (http://www.vicorpower.com/termsconditionswarranty) or upon request.

Life Support Policy

VICOR'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF VICOR CORPORATION. As used herein, life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. Per Vicor Terms and Conditions of Sale, the user of Vicor products and components in life support applications assumes all risks of such use and indemnifies Vicor against all liability and damages.

Intellectual Property Notice

Vicor and its subsidiaries own Intellectual Property (including issued U.S. and Foreign Patents and pending patent applications) relating to the products described in this data sheet. No license, whether express, implied, or arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Interested parties should contact Vicor's Intellectual Property Department.

Vicor Corporation

25 Frontage Road Andover, MA, USA 01810 Tel: 800-735-6200 Fax: 978-475-6715

email

Customer Service: <u>custserv@vicorpower.com</u> Technical Support: <u>apps@vicorpower.com</u>

