Contents TDA7419

Contents

1	Bloc	k diagram	6
2	Pin	lescription	7
3	Elec	rical specifications	9
	3.1	Supply	9
	3.2	Thermal data	9
	3.3	Absolute maximum ratings	9
	3.4	Electrical characteristics	10
4	Des	ription of the audio processor	. 14
	4.1	Audio processor features	14
	4.2	Input stages	15
		4.2.1 Quasi-differential stereo input (QD)	15
		4.2.2 Single-ended stereo input (SE1, SE2, SE3/AC2IN)	15
	4.3	AutoZero	16
		4.3.1 AutoZero remain	16
	4.4	Loudness	16
		4.4.1 Attenuation	16
		4.4.2 Peak frequency	17
		4.4.3 Low and high frequency boost	18
		4.4.4 Flat mode	18
	4.5	Soft-mute	18
		4.5.1 Soft-step volume	19
	4.6	Bass	19
		4.6.1 Attenuation	20
		4.6.2 Center frequency	
		4.6.3 Quality factors	21
		4.6.4 DC mode	22
	4.7	Middle	22
		4.7.1 Attenuation	22
		4.7.2 Center frequency	23
		4.7.3 Quality factors	23

	4.8	Treble	24
		4.8.1 Attenuation	24
		4.8.2 Center frequency	24
	4.9	Subwoofer filter	25
	4.10	Spectrum analyzer	25
	4.11	AC coupling	26
	4.12	HPF applications	27
	4.13	Output selector and mixing	27
	4.14	Audioprocessor testing	28
	4.15	Test circuit	28
5	l ² C b	us specification	29
	5.1	Interface protocol	29
		5.1.1 Receive mode	29
		5.1.2 Transmission mode	29
		5.1.3 Reset condition	29
	5.2	Subaddress (receive mode)	30
	5.3	Data byte specification	31
6	Pack	age information	38
7		sion history	

List of tables TDA7419

List of tables

Table 1.	Device summary	1
Table 2.	Pin description	
Table 3.	Supply	
Table 4.	Thermal data	9
Table 5.	Absolute maximum ratings	9
Table 6.	Electrical characteristics	10
Table 7.	Subaddress (receive mode	30
Table 8.	Main selector (0)	31
Table 9.	Main loudness (1)	31
Table 10.	Soft-mute / clock generator (2)	
Table 11.	Volume / speaker / mixing / subwoofer attenuation (3, 10-15)	32
Table 12.	Treble filter (4)	33
Table 13.	Middle filter (5)	33
Table 14.	Bass filter (6)	34
Table 15.	Second source selector (7)	34
Table 16.	Subwoofer /middle / bass (8)	35
Table 17.	Mixing / gain effect (9)	36
Table 18.	Spectrum analyzer / clock source / AC mode (16)	36
Table 19.	Testing audio processor (17)	
Table 20	Document revision history	30

TDA7419 List of figures

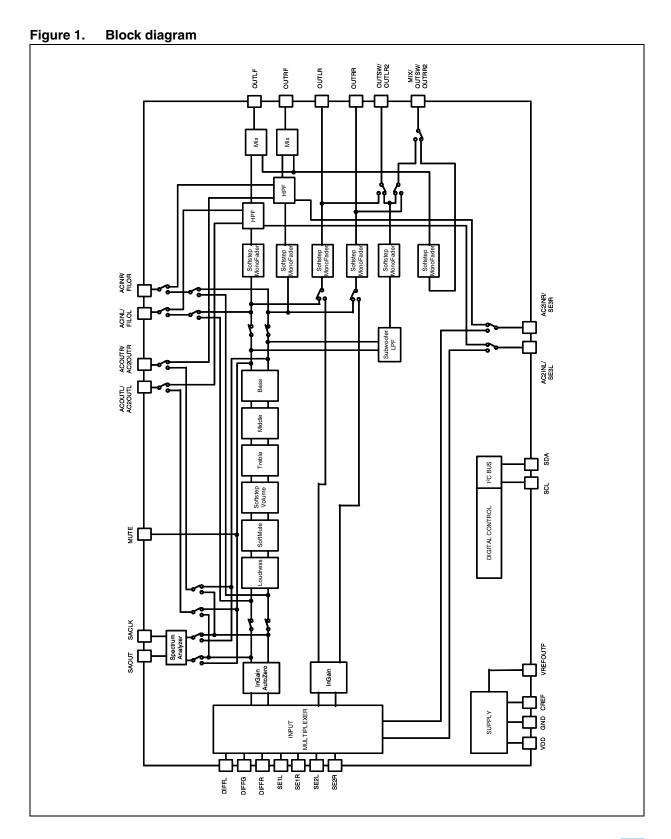

List of figures

Figure 1.	Block diagram	6
Figure 2.	Pin connection (top view)	7
Figure 3.	Input stage	. 16
Figure 4.	Loudness attenuation @ fP = 400 Hz	. 17
Figure 5.	Loudness center frequencies @ Attn. = 15 dB	. 17
Figure 6.	Loudness attenuation, fC = 2.4 kHz	. 18
Figure 7.	Soft-mute timing	. 19
Figure 8.	Soft-step timing	. 19
Figure 9.	Bass control @ fC = 80 Hz, Q = 1	. 20
Figure 10.	Bass center frequencies @ gain = 15 dB, Q = 1	. 21
Figure 11.	Bass quality factors @ gain = 14 dB, fC = 80 Hz	. 21
Figure 12.	Bass normal and DC mode @ gain = 14 dB, fC = 80 Hz	. 22
Figure 13.	Middle control @ fC = 1 kHz, Q = 1	
Figure 14.	Middle center frequencies @ gain = 14 dB, Q = 1	. 23
Figure 15.	Middle quality factors @ gain = 14 dB, fc = 1 kHz	. 23
Figure 16.	Treble control @ fC = 17.5 kHz	. 24
Figure 17.	Treble center frequencies @ gain = 15 dB	. 24
Figure 18.	Subwoofer control	. 25
Figure 19.	Spectrum analyzer block diagram	
Figure 20.	Timing of the spectrum analyzer	. 26
Figure 21.	Diagram of AC coupling	. 26
Figure 22.	HPF diagram	. 27
Figure 23.	Output selector	. 27
Figure 24.	Test circuit	. 28
Figure 25.	SO-28 mechanical data and package dimensions	. 38

Block diagram TDA7419

1 Block diagram

TDA7419 Pin description

2 Pin description

Figure 2. Pin connection (top view)

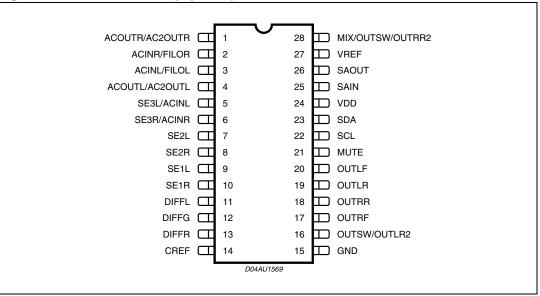


Table 2. Pin description

Pin N#	Pin name	Function	I/O
1	ACOUTR / AC2OUTR	AC coupling right output / HPF filter AC2OUT right channel	0
2	ACINR / FILOR	AC coupling right input / HPF filter FILO right channel	I/O
3	ACINL / FILOL	AC coupling left input / HPF filter FILO left channel	I/O
4	ACOUTL / AC2OUTL	AC coupling left output / HPF filter AC2OUT left channel	0
5	SE3L / ACINL	Single-ended input 3 left channel / AC coupling left input	I
6	SE3R / ACINR	Single-ended input 3 right channel / AC coupling right input	I
7	SE2L	Single-ended input 2 left channel	I
8	SE2R	Single-ended input 2 right channel	I
9	SE1L	Single-ended input 1 left channel	I
10	SE1R	Single-ended input 1 Right channel	I
11	DIFFL	Pseudo differential stereo input left	I
12	DIFFG	Pseudo differential stereo input common	I
13	DIFFR	Pseudo differential stereo input right	I
14	CREF	Reference capacitor	0
15	GND	Ground	S
16	OUTSW / OUTLR2	Subwoofer output / 2 nd rear left output	0
17	OUTRF	Front right output	0

Pin description TDA7419

Table 2. Pin description (continued)

Pin N#	Pin name	Function	I/O
18	OUTRR	Rear right output	0
19	OUTLR	Rear left output	0
20	OUTLF	Front left output	0
21	MUTE	External mute pin	I
22	SCL	I2C bus clock	I
23	SDA	I2C bus data	I/O
24	VDD	Supply	S
25	SAIN	Spectrum analyzer clock input	I
26	SAOUT	Spectrum analyzer output	0
27	VREF	Vref output	0
28	MIX / OUTSW / OUTRR2	Mix input / Additional subwoofer output / 2 nd rear right output	I/O

3 Electrical specifications

3.1 Supply

Table 3. Supply

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _s	Supply voltage		8.0	8.5	10	V
Is	Supply current	V _s = 8.5 V	30	35	40	mA
SVRR	Ripple rejection @ 1 kHz	Audioprocessor (all Filters flat)	60			dB

3.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Value	Unit
R _{Th j-pins}	Thermal resistance junction to pinsmax	85	°C/W

3.3 Absolute maximum ratings

Table 5. Absolute maximum ratings

Symbol	Paramet	ter	Value	Unit
V _s	Operating supply voltage		10.5	V
T _{amb}	Operating temperature range		-40 to 85	°C
T _{stg}	Storage temperature range		-55 to +150	°C
		Human body model	≥±1750	
V _{ESD}	ESD withstand voltage	Machine model	≥±150	V
		Charged device model	≥±1500	

3.4 Electrical characteristics

Table 6. Electrical characteristics $V_S = 8.5 V; \ T_{amb} = 25 ^{\circ} C; \ R_L = 10 k\Omega; \ all \ gains = 0 \ dB; \ f = 1 \ kHz; \ unless \ otherwise \ specified$

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Supply			•			
Vs	Supply voltage		8	8.5	10	V
I _S	Supply current		27	37	47	mA
Input sel	ector					
R _{in}	Input resistance	All single ended inputs	70	100	130	kΩ
	Clipping level	All Input	1.8	2		V _{RMS}
V_{CL}	Clipping level	QD input	1.7	2		V _{RMS}
S _{IN}	Input separation		80	100		dB
G _{IN MIN}	Min. input gain		-1	0	1	dB
G _{IN MAX}	Max. input gain		13	15	17	dB
G _{STEP}	Step resolution		0.5	1	1.5	dB
V .	DC stone	Adjacent gain steps	-5	1	5	mV
V_{DC}	DC steps	G _{MIN} to G _{MAX}	-20	4	20	mV
V _{offset}	Remaining offset with AutoZero			0.5		mV
Different	al stereo inputs		·			
R _{in}	Input resistance	Differential	70	100	130	ΚΩ
CMDD	Common mode rejection ratio	V _{CM} =1 VRMS @ 1 kHz	46	70		dB
CMRR	Common mode rejection ratio	V _{CM} =1 VRMS @ 10 kHz	46	60		dB
e _{No}	Output noise @ speaker outputs	20 Hz to 20 kHz, flat; all stages 0 dB		12		μV
Mixing co	ontrol		·			
M _{LEVEL}	Mixing ratio	Main / mix source		-6/-6		dB
G _{MAX}	Max gain		13	15	17	dB
A _{MAX}	Max attenuation		-83	-79	-75	dB
A _{STEP}	Step resolution		0.5	1	1.5	dB
Loudnes	s control					
A _{MAX}	Max attenuation		-17	-15	-13	dB
A _{STEP}	Step resolution		0.5	1	1.5	dB
		f _{P1}	360	400	440	Hz
f_{Peak}	Peak frequency	f _{P2}	720	800	880	Hz
		f _{P3}	2200	2400	2600	Hz

Table 6.

Electrical characteristics (continued) $V_S=8.5V;\, T_{amb}=25^{\circ}C;\, R_L=10k\Omega;\, all\,\, gains=0\,\, dB;\, f=1\,\, kHz;\, unless\,\, otherwise\,\, specified$

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Volume c	ontrol	•	•			
G _{MAX}	Max gain		13	15	17	dB
A _{MAX}	Max attenuation		-83	-79	-75	dB
A _{STEP}	Step resolution		0.5	1	1.5	dB
	Attenuation set error	G = -20 to +20 dB	-0.75	0	+0.75	dB
E _A	Alternation set error	G = -79 to -20 dB	-4	0	3	dB
E _T	Tracking error				2	dB
V_{DC}	DC steps	Adjacent attenuation steps	-3	0.1	3	mV
		From 0dB to G _{MIN}	-5	0.5	5	mV
Soft-mute	9					
A _{MUTE}	Mute attenuation		80	100		dB
		T1		0.48	1	ms
T_D	Delay time	T2		0.96	2	ms
		Т3	70	123	170	ms
V _{TH Low}	Low threshold for SM pin				1	V
V _{TH High}	High threshold for SM pin		2.5			V
R _{PU}	Internal pull-up resistor		32	45	58	kΩ
V_{PU}	Internal pull-up voltage			3.3		٧
Bass con	itrol					
		f _{C1}	54	60	66	Hz
Fc	Contar fraguency	f_{C2}	72	80	88	Hz
FC	Center frequency	f _{C3}	90	100	110	Hz
		f _{C4}	180	200	220	Hz
		Q ₁	0.9	1	1.1	
0	Quality factor	Q_2	1.1	1.25	1.4	
Q_{BASS}	Quality lactor	Q_3	1.3	1.5	1.7	
		Q_4	1.8	2	2.2	
C _{RANGE}	Control range		±14	±15	±16	dB
A _{STEP}	Step resolution		0.5	1	1.5	dB
		DC = off	-1	0	+1	dB
DC _{GAIN}	Bass-DC-gain	DC = on (shelving filter, use for cut only)		-4.4		dB

Table 6.

Electrical characteristics (continued) $V_S=8.5V;\, T_{amb}=25^{\circ}C;\, R_L=10k\Omega;\, all\,\, gains=0\,\, dB;\, f=1\,\, kHz;\, unless\,\, otherwise\,\, specified$

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Middle co	ontrol		•	•	•	•
C _{RANGE}	Control range		±14	±15	±16	dB
A _{STEP}	Step resolution		0.5	1	1.5	dB
0121		f _{C1}	400	500	600	Hz
£	Cantar fraguancy	f _{C2}	0.8	1	1.2	kHz
I _C	Center frequency	f _{C3}	1.2	1.5	1.8	kHz
	Manage Control range	3	kHz			
		Q ₁	0.45	0.5	0.55	
Q_{BASS}	Quality factor	Q_2	0.65	0.75	0.85	
QBASS	Quality factor	Q_3	0.9	1	1.1	
		Q_4	1.1	1.25	1.4	
Treble co	entrol					
C _{RANGE}	Clipping level		±14	±15	±16	dB
A _{STEP}	Step resolution		0.5	1	1.5	dB
	Center frequency	f _{C1}	8	10	12	kHz
		f_{C2}	10	12.5	15	kHz
		f _{C3}	12	15	18	kHz
		f_{C4}	14	17.5	21	kHz
Speaker	attenuators					
G _{MAX}	Max gain		14	15	16	dB
A _{MAX}	Max attenuation		-83	-79	-75	dB
A _{STEP}	Step resolution		0.5	1	1.5	dB
A _{MUTE}	Mute attenuation		80	90		dB
E _E	Attenuation set error				2	dB
V_{DC}	DC steps	Adjacent attenuation steps	-5	0.1	5	mV
AUdio ou	itputs					
V _{CL}	Clipping level		1.8	2		V _{RMS}
R _{OUT}	Output impedance			30	100	W
R_{L}	Output load resistance	d = 0.3%	2			kΩ
C _L	Output load capacitor				10	nF
V _{DC}	DC voltage level		3.8	4.0	4.2	V
	er attenuator		•	•	•	•
G _{MAX}	Max gain		14	15	16	dB
A _{MAX}	Max attenuation		-83	-79	-75	dB
		1	1	1	1	1

Table 6.

Electrical characteristics (continued) $V_S=8.5V;\, T_{amb}=25^{\circ}C;\, R_L=10k\Omega;\, all\,\, gains=0\,\, dB;\, f=1\,\, kHz;\, unless\,\, otherwise\,\, specified$

Symbol	Parameter Parameter	Test condition	Min.	Тур.	Max.	Unit
A _{STEP}	Step resolution		0.5	1	1.5	dB
A _{MUTE}	Mute attenuation		80	90		dB
E _E	Attenuation set error				2	dB
V _{DC}	DC steps	Adjacent attenuation steps	-5	1	5	mV
Subwoof	er lowpass					
		f _{LP1}	72	80	88	Hz
f_{LP}	Lowpass corner frequency	f_{LP2}	108	120	132	Hz
		f_{LP3}	144	160	176	Hz
HPF effec	et		•			•
G _{MAX}	Max gain		21	22	23	dB
G _{MIN}	Min gain		3	4	5	dB
A _{STEP}	Step resolution		1.5	2	2.5	dB
Spectrun	n analyzer control		•	•		l
V _{SAOut}	Output voltage range		0		3.3	V
f _{C1}	Center frequency band 1		5.5	62	69	Hz
f _{C2}	Center frequency band 2		141	157	173	Hz
f _{C3}	Center frequency band 3		356	392	436	Hz
f _{C4}	Center frequency band 4		0.9	1	1.1	kHz
f _{C5}	Center frequency band 5		2.26	2.51	2.76	kHz
f _{C6}	Center frequency band 6		5.70	6.34	6.98	kHz
f _{C7}	Center frequency band 7		14.4	16	17.6	kHz
0	Quality factor	Q1	1.62	1.8	1.98	
Q	Quality factor	Q2	3.15	3.5	3.85	
f _{SACIk}	Clock frequency		3		100	kHz
t _{Sadel}	Analog output delay time		2			μS
t _{repeat}	Spectrum analyzer repeat time		50			ms
t _{intres}	Internal reset time			4.5		ms
General						
Ο	Output noise	BW = 20 Hz to 20 kHz all gain = 0dB		12	20	μV
e _{NO}	Output Holse	BW = 20 Hz to 20 kHz output muted		6	15	μV
S/N	Signal to noise ratio	all gain = 0 dB flat; $V_0 = 2 V_{RMS}$		100		dB
D	Distortion	V _{IN} = 1 V _{RMS} ; all stages 0 dB		0.01	0.1	%
S _C	Channel separation left/right		80	90		dB

577

4 Description of the audio processor

4.1 Audio processor features

- Input Multiplexer
 - QD / SE: quasi-differential stereo inputs, with selectable single-ended mode
 - SE1: stereo single-ended input
 - SE2: stereo single-ended input
 - SE3 / AC2IN: stereo single-ended input / HPF filter input
 - In-Gain 0 to 15dB, 1dB steps
 - internal offset-cancellation (AutoZero)
 - separate second source-selector
- Mixing stage
 - mixable to front speaker-outputs
- Loudness
 - 2nd order frequency response
 - programmable center frequency (400Hz/800Hz/2400Hz)
 - 15 dB with 1 dB steps
 - selectable low and high frequency boost
 - selectable flat-mode (constant attenuation)
- Volume
 - +15 dB to -79 dB with 1 dB step resolution
 - soft-step control with programmable blend times
- Bass
 - 2nd order frequency response
 - center frequency programmable in 4 steps (60 Hz/80 Hz/100 Hz/200 Hz)
 - Q programmable 1.0/1.25/1.5/2.0
 - DC gain programmable
 - -15 to 15 dB range with 1 dB resolution
- Middle
 - 2nd order frequency response
 - center frequency programmable in 4 steps (500Hz/1KHz/1.5KHz/2.5KHz)
 - Q programmable 0.5/0.75/1.0/1.25
 - DC gain programmable
 - -15 to 15dB range with 1dB resolution
- Treble
 - 2nd order frequency response
 - center frequency programmable in 4 steps (10KHz/12.5KHz/15KHz/17.5KHz)
 - -15 to 15dB range with 1dB resolution
- Spectrum analyzer
 - seven bandpass filters
 - 2nd order frequency response

5

- programmable Q factor for different visual appearance
- analog output
- controlled by external serial clock

Speaker

- 4 independent soft-step speaker controls, +15dB to -79dB with 1dB steps
- Independent programmable mix input with 50% mixing ratio for front speakers
- direct mute

Subwoofer

- 2nd order low pass filter with programmable cut off frequency
- single-ended mono output independent soft-step level control, +15dB to -79dB with 1dB steps

Mute functions

- direct mute
- digitally controlled Soft-mute with 3 programmable mutetimes(0.48ms/0.96ms/123ms)

Effect

gain effect, or high pass effect with fixed external components

4.2 Input stages

In the basic configuration, one stereo quasi-differential and three (two in case of HPS applications) single ended stereo inputs are available.

4.2.1 Quasi-differential stereo input (QD)

The QD input is implemented as a buffered quasi-differential stereo stage with 100 k Ω input-impedance at each input. The attenuation is fixed to -3 dB in order to adapt the incoming signal level.

4.2.2 Single-ended stereo input (SE1, SE2, SE3/AC2IN)

The input impedance at each input is 100 k Ω and the attenuation is fixed to -3dB for incoming signals. The input for SE3 is also configurable as part of the interface for external filters in HPS applications (AC2IN)

QD Main QD Source In Gain o-WI-b SE1_L SE₁ SE SE1_R SE2_L SE₂ SE2_R AC2IN_L/SE3L SE3 AC2IN_R/SE3R Second Source Output Stage

Figure 3. Input stage

4.3 AutoZero

The AutoZero allows a reduction of the number of pins as well as external components by canceling any offset generated by or before the In-Gain-stage (Please notice that externally generated offsets, e.g. generated through the leakage current of the coupling capacitors, are not canceled).

The auto-zeroing is started every time the input source is changed and needs max. 0.3ms for the alignment. To avoid audible clicks the Audio processor is muted before the loudness stage during this time. The AutoZero feature is only present in the main signal-path.

4.3.1 AutoZero remain

In some cases, for example if the μP is executing a refresh cycle of the I^2C bus programming, it is not useful to start a new AutoZero action because no new source is selected and an undesired mute would appear at the outputs. For such applications, it can be switched in the AutoZero remain mode (bit 6 of the subaddress byte). If this bit is set to high, the AutoZero will not be invoked and the old adjustment-value remains.

4.4 Loudness

There are four parameters programmable in the loudness stage:

4.4.1 Attenuation

Figure 4 shows the attenuation as a function of frequency at $f_P = 400 \text{ Hz}$

577

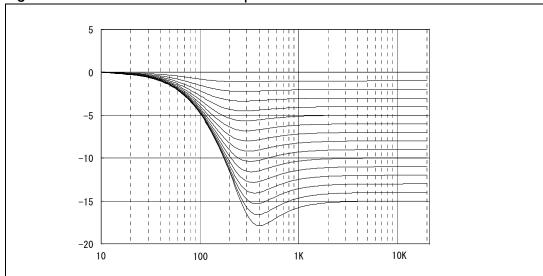
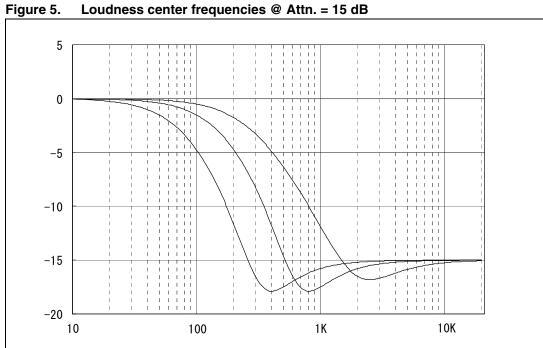



Figure 4. Loudness attenuation @ f_P = 400 Hz.

4.4.2 **Peak frequency**

Figure 5 shows the three possible peak frequencies 400 Hz, 800 Hz and 2.4 kHz.

4.4.3 Low and high frequency boost

Figure 6 shows the different loudness shapes in low and high frequency boost.

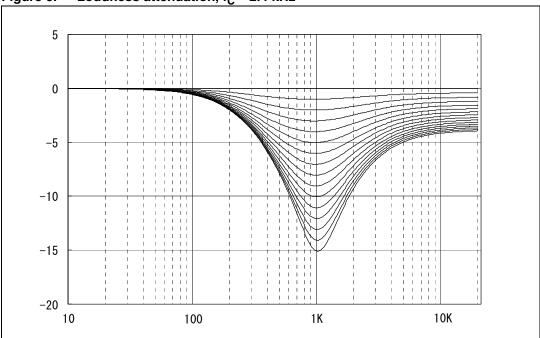


Figure 6. Loudness attenuation, f_C = 2.4 kHz

4.4.4 Flat mode

In flat mode the loudness stage works as a 0 dB to -15 dB attenuator.

4.5 Soft-mute

The digitally controlled soft-mute stage allows muting/demuting the signal with a I^2C bus programmable slope. The mute process can either be activated by the soft-mute pin or by the I^2C bus. This slope is realized in a special S-shaped curve to mute slow in the critical regions (see *Figure 7*).

For timing purposes the bit 0 of the I²C bus output register is set to 1 from the start of muting until the end of demuting.

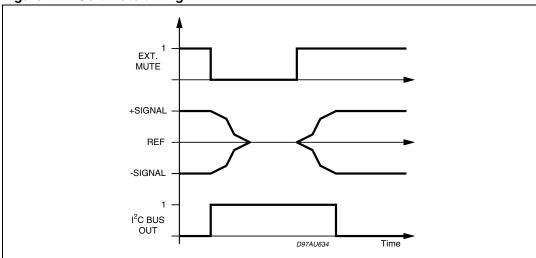


Figure 7. Soft-mute timing

Please notice that a started mute-action is always terminated and could not be interrupted by a change of the mute -signal

4.5.1 Soft-step volume

When the volume level is changed audible clicks could appear at the output. The root cause of those clicks

could either be a DC-Offset before the volume-stage or the sudden change of the envelope of the audiosignal. With the soft-step feature both kinds of clicks could be reduced to a minimum and are no more audible. The blend-time from one step to the next is programmable in four steps.

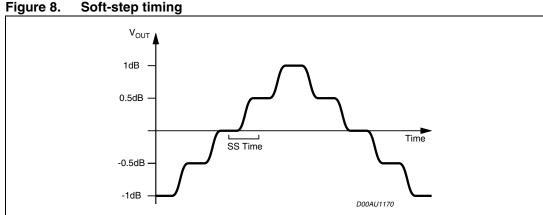
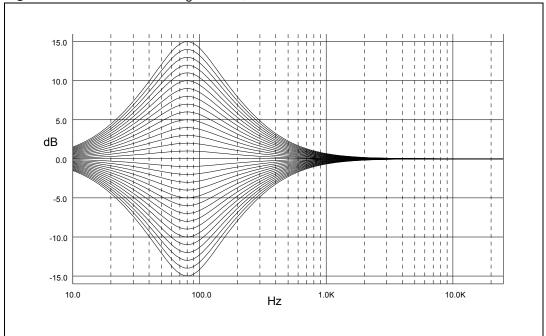


Figure 8.

For steps more than 0.5dB the Soft-step mode should be deactivated because it could generate a hard 1dB step during the blend-time.

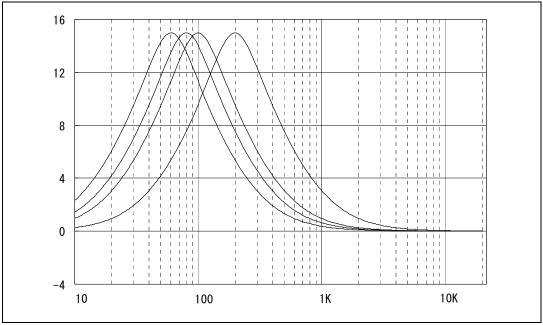
4.6 **Bass**


There are four parameters programmable in the bass stage:

577

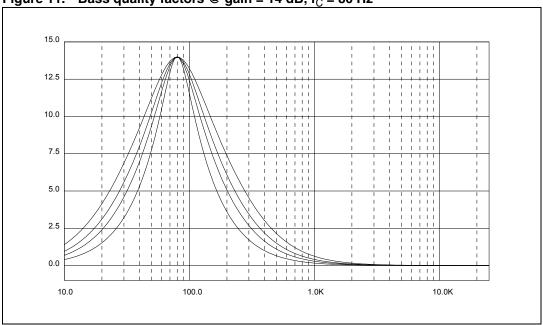
4.6.1 Attenuation

Figure 9 shows the attenuation as a function of frequency at a center frequency of 80 Hz.


Figure 9. Bass control @ $f_C = 80$ Hz, Q = 1

4.6.2 Center frequency

Figure 10 shows the four possible center frequencies 60, 80, 100 and 200 Hz.


Figure 10. Bass center frequencies @ gain = 15 dB, Q = 1

4.6.3 Quality factors

Figure 11 shows the four possible quality factors 1, 1.25, 1.5 and 2.

4.6.4 DC mode

It is used for cut only for shelving filter. In this mode the DC gain is increased by 4.4 dB. In addition the programmed center frequency and quality factor is decreased by 25 % which can be used to reach alternative center frequencies or quality factors.

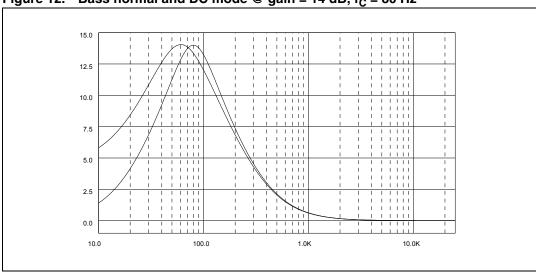
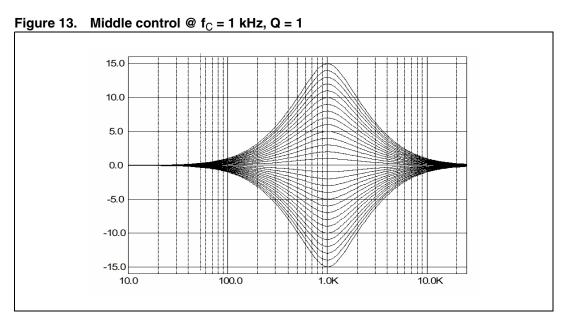


Figure 12. Bass normal and DC mode @ gain = 14 dB, f_C = 80 Hz


1. The center frequency, Q and DC-mode can be set fully independently.

4.7 Middle

There are three parameters programmable in the middle stage:

4.7.1 Attenuation

Figure 13 shows the attenuation as a function of frequency at a center frequency of 1 kHz.

57

Center frequency 4.7.2

Figure 14 shows the four possible center frequencies 500 Hz, 1 kHz, 1.5 kHz and 2.5 kHz.

15 10 Ð 100 $1 \cdot 10^{3}$ 1.104 1.10 Нz

Figure 14. Middle center frequencies @ gain = 14 dB, Q = 1

Quality factors 4.7.3

Figure 15 shows the four possible quality factors 0.5, 0.75, 1 and 1.25.

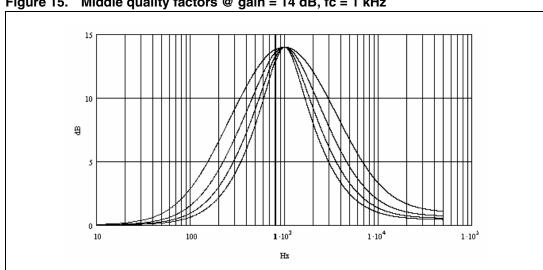
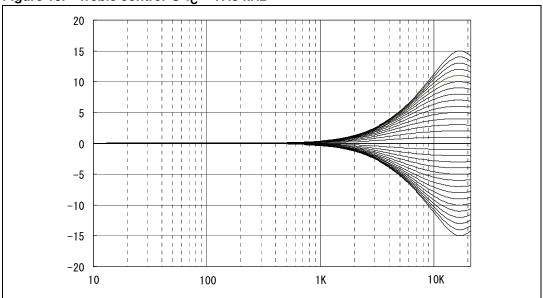


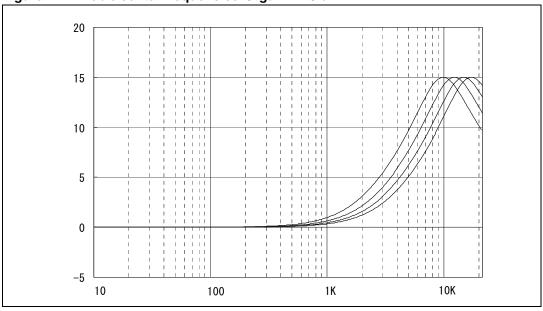
Figure 15. Middle quality factors @ gain = 14 dB, fc = 1 kHz


4.8 Treble

There are two parameters programmable in the treble stage:

4.8.1 Attenuation

Figure 16 shows the attenuation as a function of frequency at a center frequency of 17.5 kHz.


Figure 16. Treble control @ f_C = 17.5 kHz

4.8.2 Center frequency

Figure 17 shows the four possible center frequencies 10k, 12.5k, 15k and 17.5 kHz.

Figure 17. Treble center frequencies @ gain = 15 dB

577

4.9 Subwoofer filter

The subwoofer lowpass filter has butterworth characteristics with programmable cut-off frequency (80/120/160 Hz)

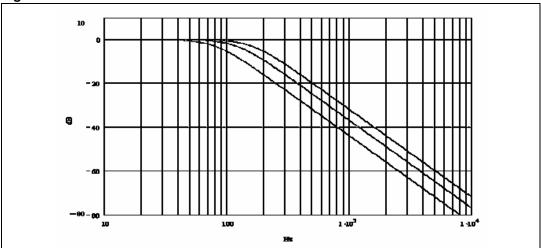
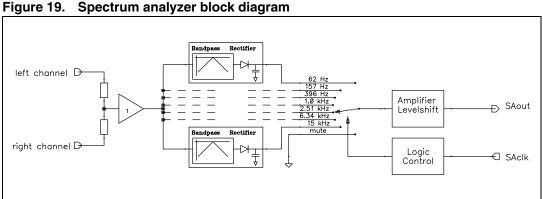



Figure 18. Subwoofer control

4.10 Spectrum analyzer

A fully integrated seven-band spectrum analyzer with programmable quality factor is present. The spectrum analyzer consists of seven band pass filters with rectifier and sample capacitor that stores the maximum peak signal level since the last read cycle. This peak signal level can be read by a microprocessor at the SAout pin. To allow easy interfacing to an analog port of the microprocessor, the output voltage at this pin is referred to device ground.

The microprocessor starts a read cycle with the negative going clock edge at the SAclk input. On the following positive clock edges, the peak signal level for the band pass filters is subsequently switched to SAout. Each analog output data is valid after the time t_{Sadel}. A reset of the sample capacitors is induced whenever SAclk remains high for the time t_{intres}. Note that a proper reset requires the clock signal SAcIk to be held at high potential. Figure 20 shows the block diagram and figure 21 illustrates the read cycle timing of the spectrum analyzer.

577

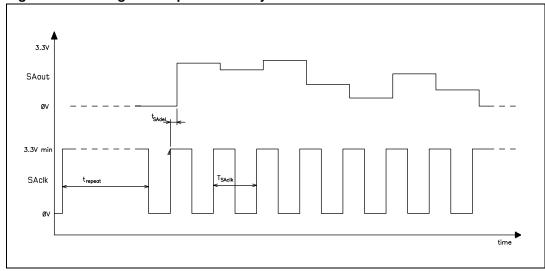


Figure 20. Timing of the spectrum analyzer

4.11 AC coupling

In some applications additional signal manipulations are desired, such as additional band equalizations. For this purpose, an AC coupling can be placed before the loudness attenuator or speaker-attenuators, which can be activated or internally shorted by I^2C bus. In short condition, the input-signal of the speaker-attenuator is available at the AC outputs. The input-impedance of this AC inputs is 50 $k\Omega$.

ACOUTL ACOUTR ACINL ACINL From Input MUX

From Ingain

Filters

Speakers

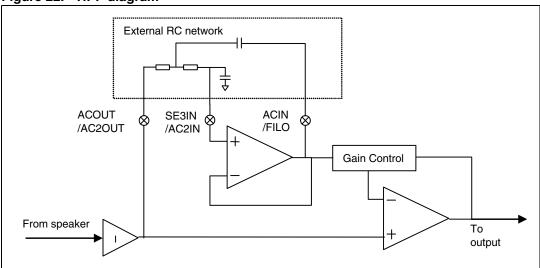

To Output

Figure 21. Diagram of AC coupling

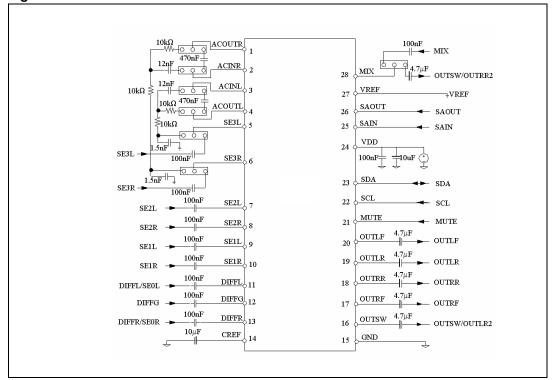
HPF applications 4.12

For HPF applications, HPF filter is available for additional processing after the speaker control. It is a 2nd order butterworth highpass filter with selectable flat mode. Figure 22 shows the diagram of the HPF that includes an external RC network.

Figure 22. HPF diagram

4.13 **Output selector and mixing**

The output-selector allows the front and rear speakers to connect to different sources. The setup of the output selector is shown in Figure 24. A Mixing-stage is placed after the front speaker-attenuator and can be set to mixing-mode. Having a full volume-attenuator for the mix-signal, the stage offers a wide flexibility to adapt the mixing levels.


Figure 23. Output selector Mix_in Attenuator Front Main Attenuator Rear Second Attenuator Subwoofer BassL+BassR Subwoofer output Attenuator

4.14 Audioprocessor testing

In the test mode, which can be activated by setting bit D7 of the IIC subaddress byte and bit D0 of the testing audioprocessor byte, several internal signals are available at the SE1R pin. In this mode, the input resistance of 100kOhm is disconnected from the pin. Internal signals available for testing are listed in the data-byte specification.

4.15 Test circuit

Figure 24. Test circuit

TDA7419 I²C bus specification

5 I²C bus specification

5.1 Interface protocol

The interface protocol comprises:

- a start condition (S)
- a chip address byte (the LSB determines read/write transmission)
- a subaddress byte
- a sequence of data (N-bytes + acknowledge)
- a stop condition (P)
- the max. clock speed is 500 kbits/s
- 3.3 V logic compatible

5.1.1 Receive mode

S = Start

 $R/W = "0" -> Receive Mode (Chip can be programmed by <math>\mu P$)

"1" -> Transmission Mode (Data could be received by μP)

ACK = Acknowledge

P = Stop

TS = Testing mode

AZ = AutoZero remain

AI = Auto increment

5.1.2 Transmission mode

	S	1	0	0	0	1	0	0	R/W	ACK	Х	Х	Χ	Х	Χ	Х	Χ	SM	ACK	Р
--	---	---	---	---	---	---	---	---	-----	-----	---	---	---	---	---	---	---	----	-----	---

SM = Soft-mute activated for main channel

X = Not Used

The transmitted data is automatic updated after each ACK. Transmission can be repeated without new chip address.

5.1.3 Reset condition

A Power on reset is invoked if the supply voltage is below than 3.5 V. After that the following data is written automatically into the registers of all subaddresses:

MSB							LSB
1	1	1	1	1	1	1	0

577

5.2 Subaddress (receive mode)

Table 7. Subaddress (receive mode

MSB							LSB	Firmation
12	l1	10	A 4	А3	A2	A 1	Α0	Function
0								Testing mode Off
1								On
								AutoZero remain
	0							Off On
								Auto increment mode
		0						Off On
			0	0	0	0	0	Main source selector
			0	0	0	0	1	Main loudness
			0	0	0	1	0	Soft-mute / clock generator
			0	0	0	1	1	Volume
			0	0	1	0	0	Treble
			0	0	1	0	1	Middle
			0	0	1	1	0	Bass
			0	0	1	1	1	Second source selector
			0	1	0	0	0	Subwoofer / middle / bass
			0	1	0	0	1	Mixing / gain effect
			0	1	0	1	0	Speaker attenuator left front
			0	1	0	1	1	Speaker attenuator right front
			0	1	1	0	0	Speaker attenuator left rear
			0	1	1	0	1	Speaker attenuator right rear
			0	1	1	1	0	Mixing level control
			0	1	1	1	1	Subwoofer attenuator
			1	0	0	0	0	Spectrum analyzer / clock source / AC mode
			1	0	0	0	1	Testing audio processor

5.3 Data byte specification

Table 8. Main selector (0)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Source selector
					0	0	0	QD/SE: QD
					0	0	1	SE1
					0	1	0	SE2
					0	1	1	SE3
					1	0	0	QD/SE: SE
					1	0	1	mute
					1	1	x	mute
								Input gain
	0	0	0	0				0 dB
	0	0	0	1				1 dB
	:	:	:	:				:
	1	1	1	0				14 dB
	1	1	1	1				15 dB
								AutoZero
0								on
1								off

Table 9. Main loudness (1)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Attenuation
				0	0	0	0	0 dB
				0	0	0	1	-1 dB
				:	:	:	:	:
				1	1	1	0	-14 dB
				1	1	1	1	-1 5dB
								Center frequency
		0	0					Flat
		0	1					400 Hz
		1	0					800 Hz
		1	1					2400 Hz
								High boost
	0							on
	1							off
								Loudness soft-step
0								on
1								off

Table 10. Soft-mute / clock generator (2)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Soft-mute
							0	on
							1	off
								Pin influence for mute
						0		Pin and IIC
						1		IIC
								Soft-mute time
				0	0			0.48 ms
				0	1			0.96 ms
				1	х			123 ms
								Soft-step time
	0	0	0					0.160 ms
	0	0	1					0.321 ms
	0	1	0					0. 642 ms
	0	1	1					1.2 8ms
	1	0	0					2.56 ms
	1	0	1					5.12 ms
	1	1	0					10.24 ms
	1	1	1					20.48 ms
								Clock fast mode
0								on
1								off

Table 11. Volume / speaker / mixing / subwoofer attenuation (3, 10-15)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	runction
								Gain/attenuation
	0	0	0	0	0	0	0	+0 dB
	0	0	0	0	0	0	1	+1 dB
	:	:	:	:	:	:	:	:
	0	0	0	1	1	1	1	+15 dB
	0	0	1	0	0	0	0	-0 dB
	0	0	1	0	0	0	1	-1 dB
	:	:	:	:	:	:	:	:
	1	0	1	1	1	1	0	-78 dB
	1	0	1	1	1	1	1	-79 dB
	1	1	х	x	х	х	х	mute
								Soft-step
0								on
1								off

I²C bus specification

Table 12. Treble filter (4)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Gain/attenuation
			0	1	1	1	1	-15 dB
			0	1	1	1	0	-14 dB
			:	:	:	:	:	:
			0	0	0	0	1	-1 dB
			0	0	0	0	0	0 dB
			1	0	0	0	0	0 dB
			1	0	0	0	1	+1 dB
			:	:	:	:	:	:
			1	1	1	1	0	+14 dB
			1	1	1	1	1	+15 dB
								Treble center frequency
	0	0						10.0 kHz
	0	1						12.5 kHz
	1	0						15.0 kHz
	1	1						17.5 kHz
								Reference output select
0								External Vref (4 V)
1								Internal Vref (3.3 V)

Table 13. Middle filter (5)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Gain/attenuation
			0	1	1	1	1	-15dB
			0	1	1	1	0	-14dB
			:	:	:	:	:	:
			0	0	0	0	1	-1dB
			0	0	0	0	0	0dB
			1	0	0	0	0	0dB
			1	0	0	0	1	+1dB
			:	:	:	:	:	:
			1	1	1	1	0	+14dB
			1	1	1	1	1	+15dB
								Middle Q factor
	0	0						0.5
	0	1						0.75
	1	0						1
	1	1						1.25
								Middle soft-step
0								on
1								off

Table 14. Bass filter (6)

MSB							LSB	Function		
D7	D6	D5	D4	D3	D2	D1	D0	runction		
								Gain/attenuation		
			0	1	1	1	1	-15 dB		
			0	1	1	1	0	-14 dB		
			:	:	:	:	:	:		
			0	0	0	0	1	-1 dB		
			0	0	0	0	0	0 dB		
			1	0	0	0	0	0 dB		
			1	0	0	0	1	+1 dB		
			:	:	:	:	:	:		
			1	1	1	1	0	+14 dB		
			1	1	1	1	1	+15 dB		
								Bass Q factor		
	0	0						1.0		
	0	1						1.25		
	1	0						1.5		
	1	1						2.0		
								Bass soft-step		
0								on		
1								off		

Table 15. Second source selector (7)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Source selector
					0	0	0	QD/SE: QD
					0	0	1	SE1
					0	1	0	SE2
					0	1	1	SE3
					1	0	0	QD/SE: SE
					1	0	1	mute
					1	1	x	mute
								Input Gain
	0	0	0	0				0dB
	0	0	0	1				1dB
	:	:	:	:				:
	1	1	1	0				14dB
	1	1	1	1				15dB
								Rear Speaker Source
0								main source
1								second source

I²C bus specification

Table 16. Subwoofer /middle / bass (8)

MSB							LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	- Function
								Subwoofer cut-off frequency
						0	0	flat
						0	1	80 Hz
						1	0	120 Hz
						1	1	160 Hz
								Middle center frequency
				0	0			500 Hz
				0	1			1000 Hz
				1	0			1500 Hz
				1	1			2500 Hz
								Bass center frequency
		0	0					60 Hz
		0	1					80 Hz
		1	0					100 Hz
		1	1					200 Hz
								Bass DC mode
	0							on
	1							off
								Smoothing filter
0								on
1								off (bypass)

Table 17. Mixing / gain effect (9)

MSB		9, 94					LSB	Function
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Mixing to left front speaker
							0	on
							1	off
								Mixing to right front speaker
						0		on
						1		off
								Mixing enable
					0			on
					1			off
								Subwoofer enable (OUTLR2 & OUTRR2)
				0				on
				1				off
								Gain effect for HPF filter
0	0	0	0					4 dB
0	0	0	1					6 dB
:	:	:	:					:
1	0	0	0					20 dB
1	0	0	1					22 dB
1	0	1	х					0 dB
1	1	х	х					0 dB

Table 18. Spectrum analyzer / clock source / AC mode (16)

ISB				Function				
D7	D6	D5	D4	D3	D2	D1	D0	- Function
								Spectrum analyzer filter Q factor
							0	3.5
							1	1.75
								Reset mode
						0		IIC
						1		Auto
								Spectrum analyzer source
					0			Bass
					1			In gain
								Spectrum analyzer run
				0				on
				1				off
								Reset
			0					on
			1					off

577

I²C bus specification

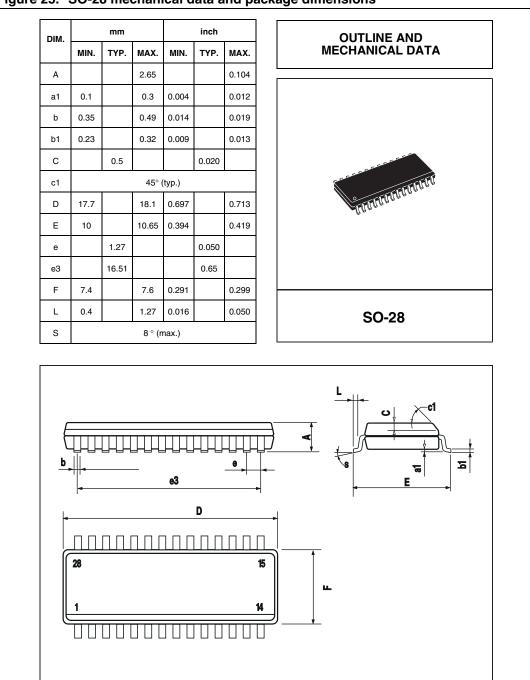
Table 18. Spectrum analyzer / clock source / AC mode (16) (continued)

	•		•				, , ,	•
MSB				Eurotion				
D7	D6	D5	D4	D3	D2	D1	D0	Function
		_						Clock source
		0						internal
		1						external
								Coupling mode
0	0							DC Coupling (without HPF)
0	1							AC coupling after In gain
1	0							DC Coupling (with HPF)
1	1							AC coupling after Bass

Table 19. Testing audio processor (17)

TDA7419

MSB		sting aut	<u> </u>		·		LSB	
D7	D6	D5	D4	D3	D2	D1	D0	Function
								Audio processor testing mode
							0	off
							1	on
								Test multiplexer
		0	0	0	0	0		Left In gain
		0	0	0	0	1		Left In gain
		0	0	0	1	0		Left Loudness
		0	0	0	1	1		Left Loudness
		0	0	1	0	0		Left Volume
		0	0	1	0	1		Left Volume
		0	0	1	1	0		Left Treble
		0	0	1	1	1		Left Treble
		0	1	0	0	0		Left Middle
		0	1	0	0	1		SMCLK
		0	1	0	1	0		Left Bass
		0	1	0	1	1		VrefSCR
		0	1	1	0	0		VGB1.26
		0	1	1	0	1		SSCLK
		0	1	1	1	0		Clock200
		0	1	1	1	1		Mon
		1	0	0	0	х		Ref5V5
		1	0	0	1	х		BPout<1>
		1	0	1	0	х		BPout<2>
		1	0	1	1	х		BPout<3>
		1	1	0	0	х		BPout<4>
		1	1	0	1	х		BPout<5>
		1	1	1	0	х		BPout<6>
		1	1	1	1	Х		BPout<7>
Х	х							Not used


Package information TDA7419

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>.

ECOPACK® is an ST trademark.

Figure 25. SO-28 mechanical data and package dimensions

577

TDA7419 Revision history

7 Revision history

Table 20. Document revision history

Date	Revision	Changes
20-Nov-2004	1	Initial release.
16-Mar-2005	2	Inserted new values in electrical characteristics table.
10-Jun-2005	3	Modified the figure 2 block diagram.
08-Oct-2005	4	Minor correction
13-Dec-2005	5	Updated "Absolute maximum ratings" table 3 and "Supply" table 2.
13-Feb-2009	6	Document reformatted. Updated Section 6: Package information on page 38.
24-Sep-2013	7	Updated disclaimer.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

577