
Functional Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Supply Voltage+22V
Input Voltage, IN A or IN B
(V _{DD} + 0.3V) to (GND – 5V)
Package Power Dissipation ($T_A \le 70^{\circ}C$)
DFN Note 3
MSOP
PDIP
SOIC470 mW
Storage Temperature Range65°C to +150°C
Maximum Junction Temperature+150°C
† Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These

Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

PIN FUNCTION TABLE

Name	Function			
NC	No Connection			
IN A	Input A			
GND	Ground			
IN B	Input B			
OUT B	Output B			
V _{DD}	Supply Input			
OUT A	Output A			
NC	No Connection			

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, $T_A = +25^{\circ}C$ with 4.5V $\leq V_{DD} \leq 18V$.									
Parameters	Sym	Min	Тур	Max	Units	Conditions			
Input	-					·			
Logic '1', High Input Voltage	V _{IH}	2.4	_		V	Note 2			
Logic '0', Low Input Voltage	VIL	—	_	0.8	V				
Input Current	I _{IN}	-1.0	_	+1.0	μΑ	$0V \le V_{IN} \le V_{DD}$			
Output									
High Output Voltage	V _{OH}	V _{DD} - 0.025	—		V	DC Test			
Low Output Voltage	V _{OL}	—	_	0.025	V	DC Test			
Output Resistance	R _O	—	7	10	Ω	I _{OUT} = 10 mA, V _{DD} = 18V			
Peak Output Current	I _{PK}	—	1.5		Α	V _{DD} = 18V			
Latch-Up Protection Withstand Reverse Current	I _{REV}	—	> 0.5	—	A	Duty cycle \leq 2%, t \leq 300 µs V _{DD} = 18V			
Switching Time (Note 1)									
Rise Time	t _R	_	19	30	ns	Figure 4-1			
Fall Time	t _F	_	19	30	ns	Figure 4-1			
Delay Time	t _{D1}		20	30	ns	Figure 4-1			
Delay Time	t _{D2}	_	40	50	ns	Figure 4-1			
Power Supply	•	•		•		•			
Power Supply Current	۱ _S	_	_	4.5 0.4	mA	$V_{IN} = 3V$ (Both inputs) $V_{IN} = 0V$ (Both inputs)			

Note 1: Switching times ensured by design.

- 2: For V temperature range devices, the V_{IH} (Min) limit is 2.0V.
- 3: Package power dissipation is dependent on the copper pad area on the PCB.

DC CHARACTERISTICS (OVER OPERATING TEMPERATURE RANGE)

Electrical Specifications: Unless otherwise noted, over operating temperature range with $4.5V \le V_{DD} \le 18V$.								
Parameters	Sym	Min	Тур	Max	Units	Conditions		
Input								
Logic '1', High Input Voltage	V _{IH}	2.4	_	—	V	Note 2		
Logic '0', Low Input Voltage	V _{IL}	—	_	0.8	V			
Input Current	I _{IN}	-10	_	+10	μΑ	$0V \le V_{IN} \le V_{DD}$		
Output								
High Output Voltage	V _{OH}	$V_{DD} - 0.025$	_		V	DC Test		
Low Output Voltage	V _{OL}	—	_	0.025	V	DC Test		
Output Resistance	R _O	—	9	12	Ω	I _{OUT} = 10 mA, V _{DD} = 18V		
Peak Output Current	I _{PK}	—	1.5		Α	V _{DD} = 18V		
Latch-Up Protection Withstand Reverse Current	I _{REV}	—	>0.5	—	A	Duty cycle \leq 2%, t \leq 300 µs V _{DD} = 18V		
Switching Time (Note 1)								
Rise Time	t _R	—	_	40	ns	Figure 4-1		
Fall Time	t _F	—	_	40	ns	Figure 4-1		
Delay Time	t _{D1}	—		40	ns	Figure 4-1		
Delay Time	t _{D2}	—	_	60	ns	Figure 4-1		
Power Supply				•				
Power Supply Current	۱ _S	_		8.0 0.6	mA	V _{IN} = 3V (Both inputs) V _{IN} = 0V (Both inputs)		

Note 1: Switching times ensured by design.

2: For V temperature range devices, the V_{IH} (Min) limit is 2.0V.

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, all parameters apply with $4.5V \le V_{DD} \le 18V$.										
Parameters	Sym	Min	Тур	Max	Units	Conditions				
Temperature Ranges										
Specified Temperature Range (C)	T _A	0	—	+70	°C					
Specified Temperature Range (E)	T _A	-40	—	+85	°C					
Specified Temperature Range (V)	T _A	-40	—	+125	°C					
Maximum Junction Temperature	TJ	_	—	+150	°C					
Storage Temperature Range	T _A	-65	—	+150	°C					
Package Thermal Resistances										
Thermal Resistance, 8L-6x5 DFN	θ_{JA}	_	33.2	—	°C/W					
Thermal Resistance, 8L-MSOP	θ_{JA}	_	206	—	°C/W					
Thermal Resistance, 8L-PDIP	θ _{JA}	—	125	—	°C/W					
Thermal Resistance, 8L-SOIC	θ_{JA}		155	_	°C/W					

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$ with $4.5V \le V_{DD} \le 18V$.

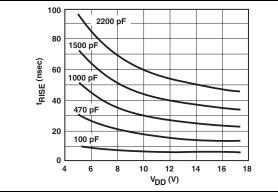


FIGURE 2-1: Rise Time vs. Supply Voltage.

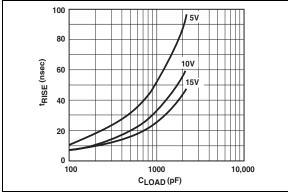


FIGURE 2-2: Rise Time vs. Capacitive Load.

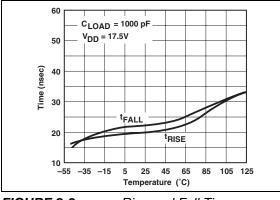


FIGURE 2-3: Temperature.

Rise and Fall Times vs.

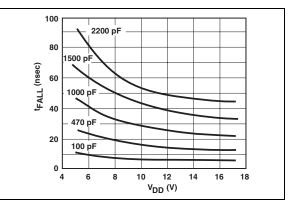


FIGURE 2-4: Fall Time vs. Supply Voltage.

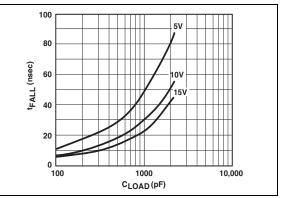


FIGURE 2-5: Fall Time vs. Capacitive Load.

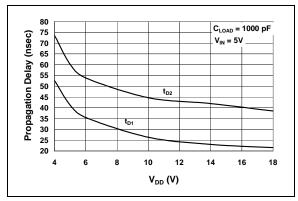


FIGURE 2-6: Supply Voltage.

Propagation Delay Time vs.

Note: Unless otherwise indicated, $T_A = +25^{\circ}C$ with $4.5V \leq V_{DD} \leq 18V$.

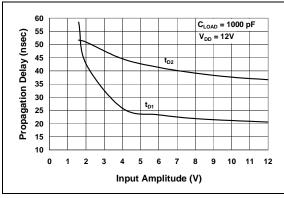


FIGURE 2-7: Propagation Delay Time vs. Input Amplitude.

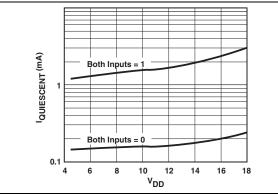


FIGURE 2-8: Supply Current vs. Supply Voltage.

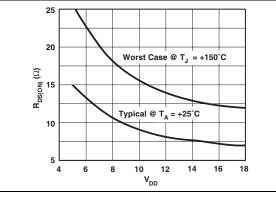
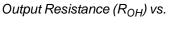



FIGURE 2-9: Supply Voltage.

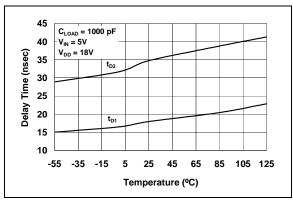
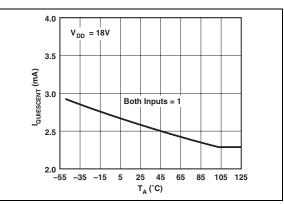
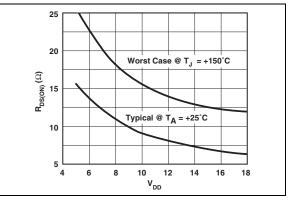
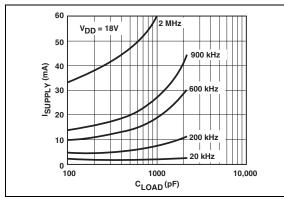
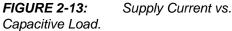


FIGURE 2-10: Propagation Delay Time vs. Temperature.


FIGURE 2-11: Supply Current vs. Temperature.

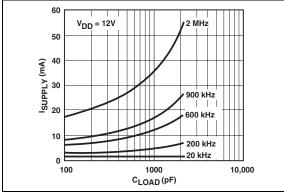


FIGURE 2-12: Output Resistance (R_{OL}) vs. Supply Voltage.

Note: Unless otherwise indicated, T_A = +25°C with 4.5V $\,\leq V_{DD} \leq$ 18V.

FIGURE 2-14: Supply Current vs. Capacitive Load.

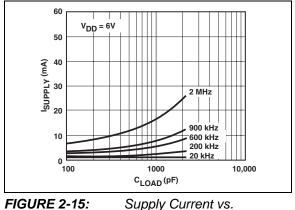


FIGURE 2-15: Capacitive Load.

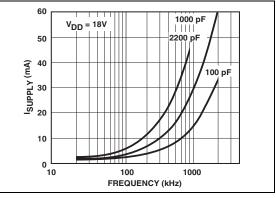
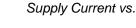



FIGURE 2-16: Frequency.

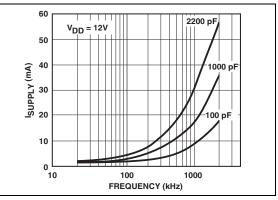


FIGURE 2-17: Supply Current vs. Frequency.

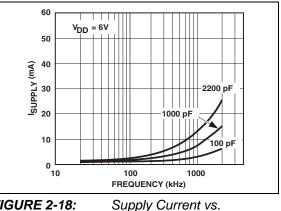


FIGURE 2-18: Frequency.

© 2006 Microchip Technology Inc.

Note: Unless otherwise indicated, T_A = +25°C with 4.5V $\,\leq V_{DD} \leq$ 18V.

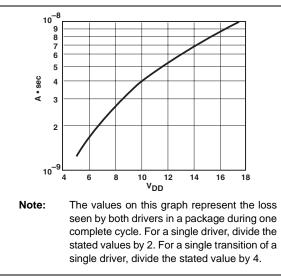


FIGURE 2-19: Crossover Energy vs. Supply Voltage.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1:		TION TABLE '	,
8-Pin PDIP/ MSOP/SOIC	8-Pin DFN	Symbol	Description
1	1	NC	No connection
2	2	IN A	Input A
3	3	GND	Ground
4	4	IN B	Input B
5	5	OUT B	Output B
6	6	V _{DD}	Supply input
7	7	OUT A	Output A
8	8	NC	No connection
	PAD	NC	Exposed Metal Pad

TABLE 3-1: PIN FUNCTION TABLE ⁽¹⁾

Note 1: Duplicate pins must be connected for proper operation.

3.1 Inputs A and B

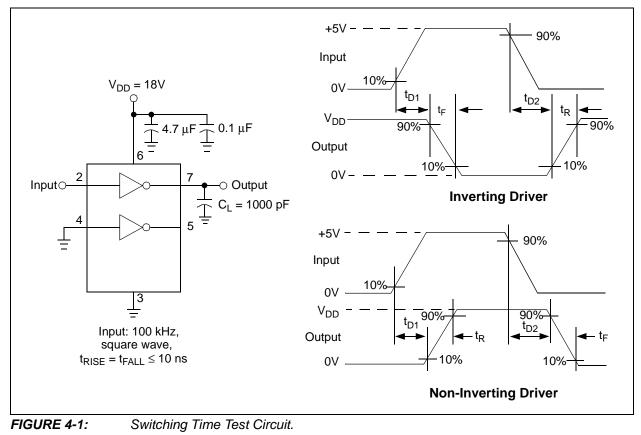
MOSFET driver inputs A and B are high-impedance, TTL/CMOS compatible inputs. These inputs also have 300 mV of hysteresis between the high and low thresholds that prevents output glitching even when the rise and fall time of the input signal is very slow.

3.2 Ground (GND)

Ground is the device return pin. The ground pin(s) should have a low-impedance connection to the bias supply source return. High peak currents will flow out the ground pin(s) when the capacitive load is being discharged.

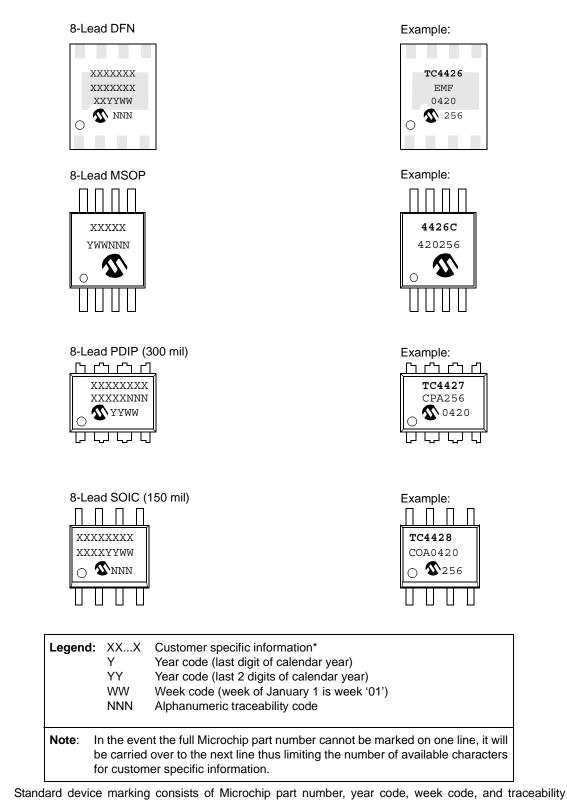
3.3 Output A and B

MOSFET driver outputs A and B are low-impedance, CMOS push-pull style outputs. The pull-down and pullup devices are of equal strength, making the rise and fall times equivalent.

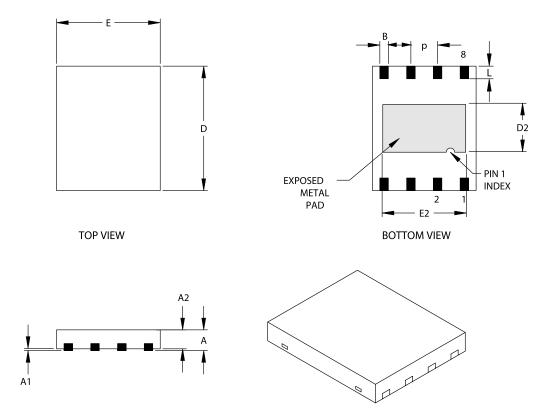

3.4 Supply Input (V_{DD})

The V_{DD} input is the bias supply for the MOSFET driver and is rated for 4.5V to 18V with respect to the ground pin. The V_{DD} input should be bypassed with local ceramic capacitors. The value of these capacitors should be chosen based on the capacitive load that is being driven. A value of 1.0 μ F is suggested.

3.5 Exposed Metal Pad


The exposed metal pad of the 6x5 DFN package is not internally connected to any potential. Therefore, this pad can be connected to a ground plane or other copper plane on a printed circuit board, to aid in heat removal from the package.

4.0 APPLICATIONS INFORMATION

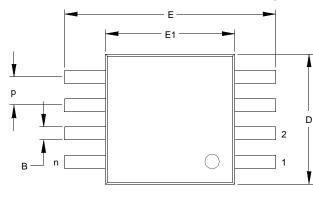

5.0 PACKAGING INFORMATION

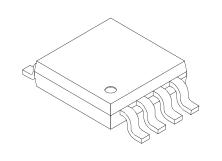
5.1 Package Marking Information

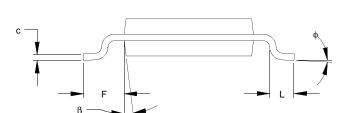
code.

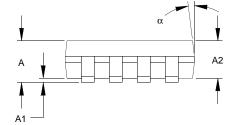
8-Lead Plastic Dual Flat No Lead Package (MF) 6x5 mm Body (DFN-S) – Saw Singulated

	Units	INCHES			MILLIMETERS*		
Dimension Li	nits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.050 BSC			1.27 BSC	
Overall Height	A	.033	.035	.037	0.85	0.90	0.95
Package Thickness	A2	.031	.035	.037	0.80	0.89	0.95
Standoff	A1	.000	.0004	.002	0.00	0.01	0.05
Base Thickness	A3	.007	.008	.009	0.17	0.20	0.23
Overall Length	E	.195	.197	.199	4.95	5.00	5.05
Exposed Pad Length	E2	.152	.157	.163	3.85	4.00	4.15
Overall Width	D	.234	.236	.238	5.95	6.00	6.05
Exposed Pad Width	D2	.089	.091	.093	2.25	2.30	2.35
Lead Width	В	.014	.016	.019	0.35	0.40	0.47
Lead Length	L	.024		.026	0.60		0.65


Notes:


JEDEC equivalent: MO-220


Drawing No. C04-122


Revised 11/3/03

8-Lead Plastic Micro Small Outline Package (MS) (MSOP)

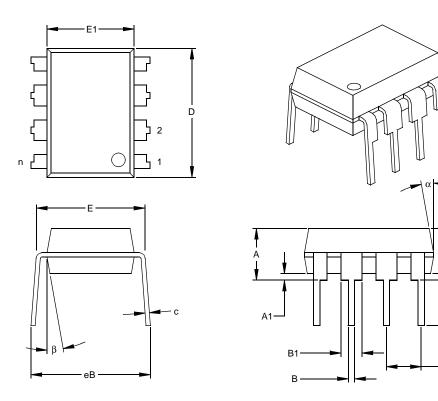
	Units	INCHES			MILLIMETERS*		
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.026 BSC		(0.65 BSC	
Overall Height	А	-	-	.043	-	-	1.10
Molded Package Thickness	A2	.030	.033	.037	0.75	0.85	0.95
Standoff	A1	.000	-	.006	0.00	-	0.15
Overall Width	E		.193 BSC		4.90 BSC		
Molded Package Width	E1		.118 BSC		3.00 BSC		
Overall Length	D		.118 BSC		3.00 BSC		
Foot Length	L	.016	.024	.031	0.40	0.60	0.80
Footprint (Reference)	F		.037 REF		0.95 REF		
Foot Angle	φ	0°	-	8°	0°	-	8°
Lead Thickness	С	.003	.006	.009	0.08	-	0.23
Lead Width	В	.009	.012	.016	0.22	-	0.40
Mold Draft Angle Top	α	5°	-	15°	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°	5°	-	15°

* Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. BSC: Basic Dimension. Theoretically exact value shown without tolerances.

See ASME Y14.5M


REF: Reference Dimension, usually without tolerance, for information purposes only.

See ASME Y14.5M JEDEC Equivalent: MO-187

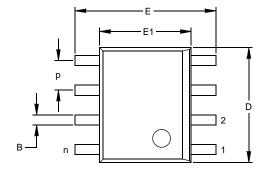
Drawing No. C04-111

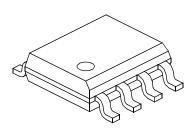
Revised 07-21-05

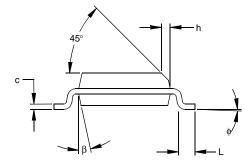
8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

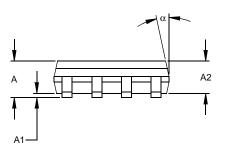
	Units	INCHES*			MILLIMETERS		
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.360	.373	.385	9.14	9.46	9.78
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic


Notes:


Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-018


A2


p

8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)

	Units	INCHES*			MILLIMETERS		
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		8			8	
Pitch	р		.050			1.27	
Overall Height	Α	.053	.061	.069	1.35	1.55	1.75
Molded Package Thickness	A2	.052	.056	.061	1.32	1.42	1.55
Standoff §	A1	.004	.007	.010	0.10	0.18	0.25
Overall Width	E	.228	.237	.244	5.79	6.02	6.20
Molded Package Width	E1	.146	.154	.157	3.71	3.91	3.99
Overall Length	D	.189	.193	.197	4.80	4.90	5.00
Chamfer Distance	h	.010	.015	.020	0.25	0.38	0.51
Foot Length	L	.019	.025	.030	0.48	0.62	0.76
Foot Angle	φ	0	4	8	0	4	8
Lead Thickness	С	.008	.009	.010	0.20	0.23	0.25
Lead Width	В	.013	.017	.020	0.33	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter

§ Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-012

Drawing No. C04-057

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. X	<u>XX XXX X</u>	Ex	amples:	
Device Tempe Ran	o 1	a)	TC4426COA:	1.5A Dual Inverting MOSFET driver, 0°C to +70°C SOIC package.
Device:	TC4426:1.5A Dual MOSFET Driver, InvertingTC4427:1.5A Dual MOSFET Driver, Non-InvertingTC4428:1.5A Dual MOSFET Driver, Complement		TC4426EUA:	1.5A Dual Inverting MOSFET driver, -40°C to +85°C. MSOP package.
Temperature Range:	C = 0°C to +70°C (PDIP and SOIC only) E = -40°C to +85°C V = -40°C to +125°C	c)	TC4426EMF:	1.5A Dual Inverting MOSFET driver, -40°C to +85°C, DFN package.
Package:	MF = Dual, Flat, No-Lead (6X5 mm Body), 8-le MF713 = Dual, Flat, No-Lead (6X5 mm Body), 8-le (Tape and Reel) OA = Plastic SOIC, (150 mil Body), 8-lead OA713 = Plastic SOIC, (150 mil Body), 8-lead		TC4427CPA:	1.5A Dual Non-Inverting MOSFET driver, 0°C to +70°C PDIP package.
	(Tape and Reel) PA = Plastic DIP (300 mil Body), 8-lead UA = Plastic Micro Small Outline (MSOP), 8-lead UA713 = Plastic Micro Small Outline (MSOP), 8-lead (Tape and Reel)		TC4427EPA:	1.5A Dual Non-Inverting MOSFET driver, -40°C to +85°C PDIP package.
		a)	TC4428COA713	::1.5A Dual Complementary MOSFET driver, 0°C to +70°C, SOIC package, Tape and Reel.
		b)	TC4428EMF:	1.5A Dual Complementary, MOSFET driver, -40°C to +85°C DFN package.

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- The Microchip Worldwide Site (www.microchip.com) 3.

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

Customer Notification System Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

NOTES:

Note the following details of the code protection feature on Microchip devices:

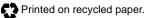
- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY. PERFORMANCE. MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Linear Active Thermistor, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, Real ICE, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel, Total Endurance, UNI/O, WiperLock and Zena are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2006, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEEL00® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

© 2006 Microchip Technology Inc.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Alpharetta, GA Tel: 770-640-0034 Fax: 770-640-0307

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

San Jose Mountain View, CA Tel: 650-215-1444 Fax: 650-961-0286

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8676-6200 Fax: 86-28-8676-6599

China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7250 Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore Tel: 91-80-2229-0061 Fax: 91-80-2229-0062

India - New Delhi Tel: 91-11-5160-8631 Fax: 91-11-5160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Gumi Tel: 82-54-473-4301 Fax: 82-54-473-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang Tel: 60-4-646-8870 Fax: 60-4-646-5086

Philippines - Manila Tel: 63-2-634-9065

Fax: 63-2-634-9069 **Singapore** Tel: 65-6334-8870

Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-399 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

10/31/05