STW20NM50

THERMAL DATA

Rt	hj-case	Thermal Resistance Junction-case	Max	0.585	°C/W
Rt	thj-amb	Thermal Resistance Junction-ambient	Max	30	°C/W
	T_I	Maximum Lead Temperature For Soldering	g Purpose	300	°C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T _j max)	10	А
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = 5$ A, $V_{DD} = 35$ V)	650	mJ

ELECTRICAL CHARACTERISTICS (T_{CASE} = 25 °C UNLESS OTHERWISE SPECIFIED)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$	500	*00	5	V
I _{DSS}	Zero Gate Voltage	V _{DS} = Max Rating			1	μA
	Drain Current (V _{GS} = 0)	$V_{DS} = Max Rating, T_C = 125 °C$	40,		100	μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 30V$	6/		±100	nA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	3	4	5	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V, I _D = 10A		0.20	0.25	Ω

DYNAMIC

	Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
	g _{fs} (1)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max},$ $I_{D} = 10A$		10		S
	C _{iss}	Input Capacitance	$V_{DS} = 25V$, $f = 1$ MHz, $V_{GS} = 0$		1480		pF
X	Coss	Output Capacitance			285		pF
	C _{rss}	Reverse Transfer Capacitance			34		pF
	Coss eq. (2)	Equivalent Output Capacitance	$V_{GS} = 0V$, $V_{DS} = 0V$ to 400V		130		pF
	R_G	Gate Input Resistance	f=1 MHz Gate DC Bias = 0 Test Signal Level = 20mV Open Drain		1.6		Ω

47/₃ 2/8

Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.
C_{oss eq.} is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSs}.

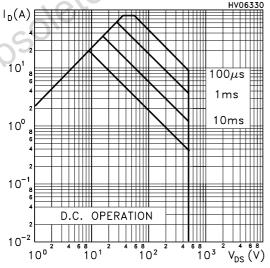
ELECTRICAL CHARACTERISTICS (CONTINUED)

SWITCHING ON

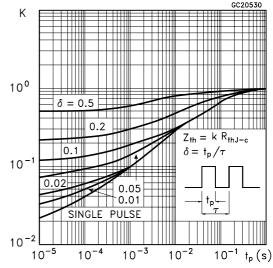
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	V _{DD} = 250V, I _D = 10 A		24		ns
t _r	Rise Time	$R_G = 4.7\Omega V_{GS} = 10 V$ (see test circuit, Figure 3)		16		ns
Qg	Total Gate Charge	V _{DD} = 400 V, I _D = 20 A,		40	56	nC
Q_{gs}	Gate-Source Charge	V _{GS} = 10 V		13		nC
Q_{gd}	Gate-Drain Charge			19		nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$t_{r(Voff)}$	Off-voltage Rise Time	$V_{DD} = 400 \text{ V}, I_D = 20 \text{ A},$		9		ns
t _f	Fall Time	$R_G = 4.7\Omega$, $V_{GS} = 10 \text{ V}$ (see test circuit, Figure 5)		8.5	70.	ns
t _c	Cross-over Time	(See test sheart, Figure 6)		23		ns

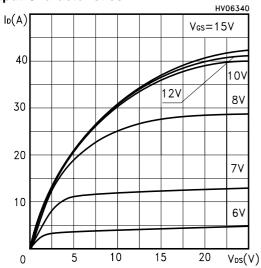

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current				20	Α
I _{SDM} (2)	Source-drain Current (pulsed)	1250.			80	Α
V _{SD} (1)	Forward On Voltage	$I_{SD} = 20 \text{ A}, V_{GS} = 0$			1.5	V
t _{rr} Q _{rr} I _{rrm}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} = 20 A, di/dt = 100 A/ μ s, V_{DD} = 100 V, T_j = 25°C (see test circuit, Figure 5)		350 4.6 26		ns µC A
t _{rr} Q _{rr} I _{rrm}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} = 20 A, di/dt = 100 A/µs, V_{DD} = 100 V, T_j = 150°C (see test circuit, Figure 5)		435 5.9 27		ns µC A

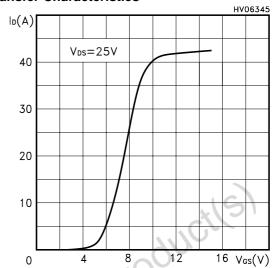

Note: 1. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %.

Pulse width limited by safe operating area.

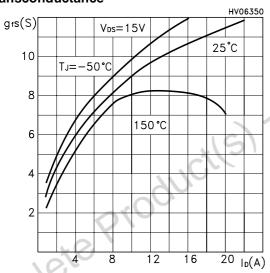
Safe Operating Area

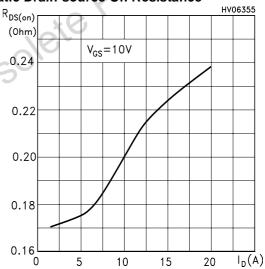


Thermal Impedance

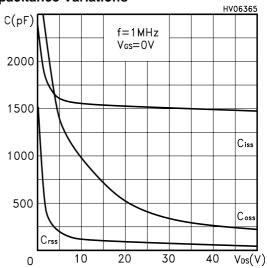


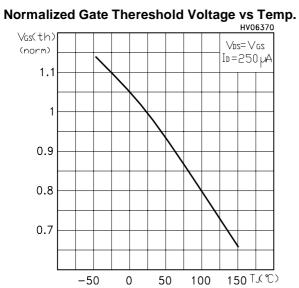
A7/.

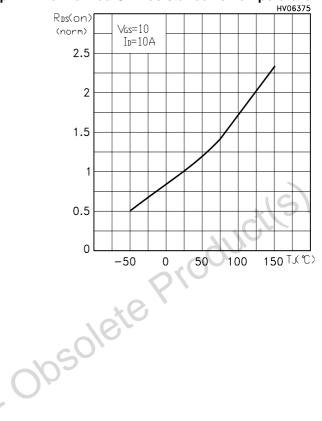

Output Characteristics

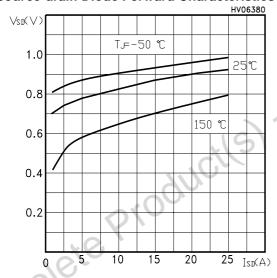

Transfer Characteristics

Transconductance


Static Drain-source On Resistance


Gate Charge vs Gate-source Voltage


Capacitance Variations


4/8

Normalized On Resistance vs Temperature

Source-drain Diode Forward Characteristics

A7/.

Fig. 1: Unclamped Inductive Load Test Circuit

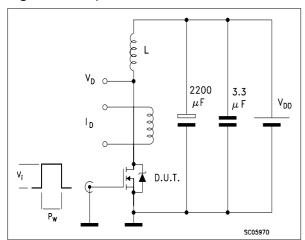


Fig. 3: Switching Times Test Circuit For Resistive Load

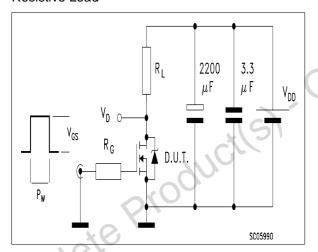


Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

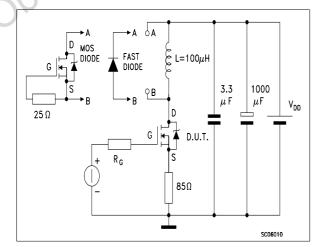


Fig. 2: Unclamped Inductive Waveform

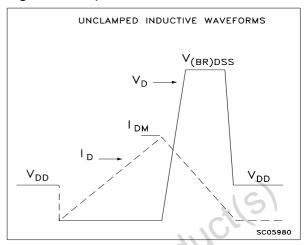
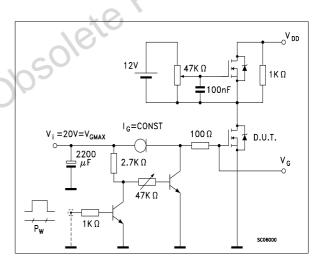
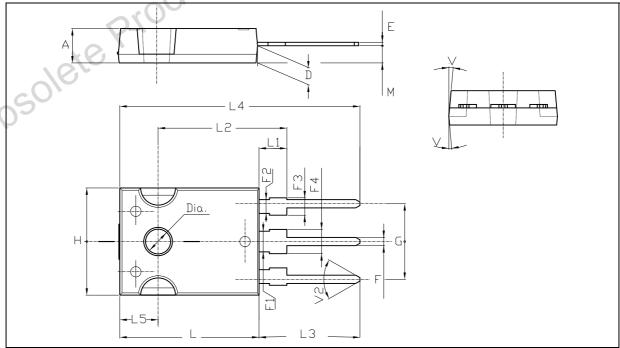



Fig. 4: Gate Charge test Circuit



6/8

Downloaded from Arrow.com.

TO-247 MECHANICAL DATA

DIM.		mm.		inch			
DIW.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α	4.85		5.15	0.19		0.20	
D	2.20		2.60	0.08		0.10	
Е	0.40		0.80	0.015		0.03	
F	1		1.40	0.04		0.05	
F1		3			0.11		
F2		2			0.07	16	
F3	2		2.40	0.07		0.09	
F4	3		3.40	0.11	1.10	0.13	
G		10.90			0.43		
Н	15.45		15.75	0.60	10	0.62	
L	19.85		20.15	0.78		0.79	
L1	3.70		4.30	0.14		0.17	
L2		18.50		78,	0.72		
L3	14.20		14.80	0.56		0.58	
L4		34.60			1.36		
L5		5.50	O,		0.21		
М	2		3	0.07		0.11	
V		5°			5°		
V2		60°			60°		
Dia	3.55	10	3.65	0.14		0.143	

7/8

Obsolete Product(s) - Obsolete Product(s)

its use. No license is granted by implication or otherwise under any patent or patent of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com

477. 8/8