Contents

1	Overv	iew9			
2	Pin de	escriptio	n	10	
3	Electr	ical spe	cifications	13	
	3.1	Absolute	maximum ratings	13	
	3.2	Recomm	ended operating conditions	13	
	3.3	Electrica	I characteristics	14	
	3.4	Embedde	ed crystal oscillator	17	
	3.5	Embedde	ed DC regulator	19	
4	Power	r-up and	power-down sequences	20	
	4.1	Device p	ower-up	20	
	4.2	Software	power-down mode	21	
		4.2.1	Configuration example	22	
	4.3		e power-down mode		
			Mild power-down		
		4.3.2	Full power-down	27	
5	Clock	manage	ement	29	
	5.1	System of	block	30	
		5.1.1	Configuration example	30	
	5.2	Periphera	al clock manager	31	
	5.3	Fractiona	al PLL	31	
		5.3.1	PLL block description	31	
		5.3.2	Output frequency computation	32	
6	Digita	I proces	sing stage	34	
	6.1	Signal pr	ocessing flow	34	
	6.2	Sampling	g rate converter	35	
	6.3	Pre-EQ r	nix 1 and post-EQ mix	36	
		6.3.1	Presets	37	
	6.4	Pre scaler			

	6.4.1	Presets	 37
6.5	Equaliza	ation, tone control and effects	 . 37
6.6	Biquads	3	 . 39
	6.6.1	Presets	 39
6.7	High-pa	ss filter	 . 39
6.8	Deemph	nasis filter	 . 40
6.9	Bass an	d treble control	 . 41
	6.9.1	Configuration example	 42
6.10	Program	nmable delay	 . 42
	6.10.1	Presets	 42
6.11	Volume	and mute control	 . 42
6.12	Limiter ((clamping)	 . 43
6.13	FFX cha	annel re-mapping	 . 43
6.14	Memory	v programming	 . 44
	6.14.1	Writing one coefficient/location to RAM	 44
	6.14.2	Writing a set of five coefficients/locations to RAM	 45
	6.14.3	Reading a set of five coefficients/locations from RAM	
	6.14.4	RAM mapping	 47
FFX			 . 52
7.1	Functior	nal description	 . 52
7.2	Modulat	tion schemes	 . 52
7.3	PWM sł	nift feature	 . 55
7.4	Ternary	mode	 . 56
7.5	Minimur	n pulse limitation	 . 56
7.6	Headph	one modulation	 . 57
7.7	pfStart™	^M operation	 . 58
7.8	PWM00	output	 . 59
СМО	S power	stage	 . 60
Fault	detectio	on and recovery	 . 63
9.1	Externa	l amplifier	 . 63
9.2	CMOS	bridge	 . 63

8

9

7

10	ADC.		4
	10.1	Description	4
	10.2	Application schematic	5
		10.2.1 Configuration example	5
11	Serial	audio interface	5
	11.1	Master mode	6
	11.2	Slave mode	7
	11.3	Serial formats	В
		11.3.1 Right justified	8
		11.3.2 Left justified	8
		11.3.3 DSP	9
		11.3.4 l ² S	9
		11.3.5 PCM/IF (non-delayed mode)	9
		11.3.6 PCM/IF (delayed mode)	0
	11.4	Invalid detection	1
12	Head	phone detection	2
	12.1	Applications circuits	3
	12.2	Configuration example	4
13	I ² C in	terface	5
	13.1	Communication protocol	5
		13.1.1 Data transition and change	5
		13.1.2 Start condition	5
		13.1.3 Stop condition	5
		13.1.4 Data input	5
		13.1.5 Device addressing	5
		13.1.6 Write operation	
		13.1.7 Read operation	6
14	Regis	ter description	7
15	I ² C disabled (microless) mode		
16	Package mechanical data 152		

Doc ID 15351 Rev 3

4/157

17	Glossary	154
18	Trademarks and other acknowledgements	155
19	Revision history	156

List of tables

Table 1.	Device summary
Table 2.	Pin list
Table 3.	Power supply pin list
Table 4.	Absolute maximum ratings
Table 5.	Recommended operating conditions
Table 6.	Electrical specifications
Table 7.	Oscillator specifications
Table 8.	Power-up signal description
Table 9.	Startup timings
Table 10.	Configuration example
Table 11.	Registers for power-down
Table 12.	Example configurations for power-down
Table 13.	Frequently used signals
Table 14.	Clock control registers
Table 15.	Clock characteristics
Table 16.	Register setup to provide sys_clk from MCLK to PLL
Table 17.	Input division factor (IDF)
Table 18.	Loop division factor (LDF)
Table 19.	Channel mapping
Table 20.	EQ control signals
Table 21.	Selecting EQ curves
Table 22.	RAM mapping for processing stage
Table 23.	Modulation type with register programming54
Table 24.	CMOS bridge signal descriptions
Table 25.	Power output (at 1% THD) in headphone mode61
Table 26.	Logic circuit at bridge input
Table 27.	Example register settings for ADC
Table 28.	Timing parameters for master mode
Table 29.	Timing parameters for slave mode
Table 30.	Headphone 1 detector
Table 31.	Headphone 2 detector
Table 32.	Headphone detection configuration sequence for binary SE74
Table 33.	Headphone detection configuration sequence for binary headphone74
Table 34.	Register summary
Table 35.	Bass/treble filter gains used in register addresses 0x78 - 0x7F
Table 36.	LQFP-64L EPD dimensions 153
Table 37.	Document revision history

List of figures

Figure 1.	STA321 block diagram	. 9
Figure 2.	Pin out	10
Figure 3.	Test circuit	17
Figure 4.	Oscillator configuration	17
Figure 5.	Equivalent circuit of crystal and external components	18
Figure 6.	Embedded DC regulator scheme	
Figure 7.	Startup sequence	
Figure 8.	Hardware power-done sequence	
Figure 9.	Hardware powerdown sequence (mild mode)	
Figure 10.	Hardware power-down sequence (full mode)	
Figure 11.	Clock management scheme	
Figure 12.	PLL block diagram	
Figure 13.	Processing flow	
Figure 14.	Processing data multiplexer	
Figure 15.	SAI_out data multiplexer	
Figure 16.	Sample rate converter block diagram	
-	Mixers block diagram	
Figure 17.		
Figure 18.	EQ/tone block diagram	
Figure 19.	Biquad coefficient selection	
Figure 20.	Biquad filter	
Figure 21.	High-pass filter frequency response	
Figure 22.	Deemphasis filter frequency response	
Figure 23.	Frequency responses of treble control at 1-dB gain steps	
Figure 24.	Frequency responses of bass control at 1-dB gain steps	
Figure 25.	FFX re-mapping	
Figure 26.	Writing RAM location	
Figure 27.	Writing five contiguous RAM locations	
Figure 28.	Reading five contiguous RAM locations	46
Figure 29.	FFX processing schematic	52
Figure 30.	PWM modes for outputs A and B	53
Figure 31.	Modulation waveforms corresponding to Table 23	54
Figure 32.	New phase shift modulation with shift feature	55
Figure 33.	Ternary modulation	56
Figure 34.	Modulation for headphones	57
Figure 35.	Digital pop-free ramp implementation	58
Figure 36.	CMOS half bridge block diagram	
Figure 37.	Analog pop-free schematic	
Figure 38.	Analog pop-free start-up and switch-off sequence	
Figure 39.	ADC front-end block diagram	
Figure 40.	Typical connections for power supplies and inputs	
Figure 41.	SAI typical sampling rates	
Figure 42.	Timing diagram for master mode	
Figure 43.	Timing diagram for slave mode	
Figure 44.	Right justified serial format	
Figure 45.	Left justified serial format	
Figure 46.	DSP serial format	
Figure 47.	I ² S serial format	
Figure 48.	PCM (non-delayed) serial format	
- iguio 1 0.	i on the delayed conditionnal	50

Figure 49.	PCM (delayed) serial format)
Figure 50.	Invalid input detection schematic	1
Figure 51.	Headphone detection circuit for single-ended configuration	3
Figure 52.	Headphone detection circuit for binary HP configuration	3
Figure 53.	I ² C write operations	3
Figure 54.	I ² C read operations	3
Figure 55.	Microless mode block diagram)
Figure 56.	LQFP-64L EPD outline drawing	2

1 Overview

The STA321 is a single chip solution for digital audio processing applications of up to 4.0 channels.

The STA321 is part of the Sound Terminal[™] family that together with the digital power stage provides full digital audio streaming to the speaker, offering cost effectiveness, low energy dissipation and sound enrichment.

The STA321 input section consists of two multiplexed stereo analog inputs, a 16-bit ADC and two independent digital input interfaces. The serial audio data input interface accepts all possible formats, including the popular I²S format. There is also a digital output interface fed by the ADC or by the digitally processed signals.

The device has a full assortment of digital processing features. This includes sample rate converter, pre and post mixing, up to 13 programmable 28-bit biquads (EQ) per channel, bass/treble tone control and DRC. The embedded headphone detector indicates when headphone jack is inserted.

The STA321 provides four independent channels of FFX[™] output capabilities. In conjunction with a power device, it provides high-quality, high-efficiency, all digital amplification.

The embedded CMOS bridge supplies up to 0.5 W into an 8- Ω load and 70 mW into a 16- Ω load for the headphones output.

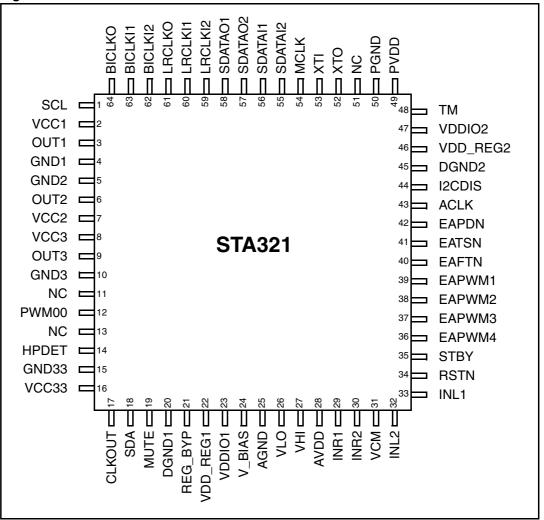


Figure 1. STA321 block diagram

2 Pin description

Table 2. Pin list

Pin	Pull	Name	Туре	Description
1	-	SCL	In (digital), schmitt tr I ² C serial clock, schmitt trigger input	
3	-	OUT1	Out (analog)	HP/line-out PWM 1
6	-	OUT2	Out (analog)	HP/line-out PWM 2
9	-	OUT3	Out (analog)	HP/line-out PWM 3
11	-	NC	- Not connected	
12	-	PWM00	Out (digital)	Auxiliary PWM
13	-	NC	-	Not connected
14	-	HPDET	In (analog)	Headphone detection

1: regulator bypassed24BIASIn/Out (analog)ADC microphone bias voltage26VLOIn (analog)ADC low reference voltage27VHIIn (analog)ADC right channel line input130INR1In/Out (analog)ADC right channel line input231VCMIn/Out (analog)ADC common mode voltage32INL2In (analog)ADC left channel line input2 or micro33INL1In (analog)ADC left channel line input2 or micro34HRSTNIn (digital)ADC reset state 1: normal operation35STBYIn (digital)External amplifier PWM 4B37EAPWM3Out (digital)External amplifier PWM 4B38EAPWM2Out (digital)External amplifier PWM 3B39AEAPWM1Out (digital)External amplifier PWM 3A40HEAFTNOut (digital)External amplifier pWM 3A41-EAFTNOut (digital)External amplifier pWM 4A43-EAPWM1Out (digital)External amplifier pWM 4A44-EAFTNOut (digital)External amplifier pWM 4A45-EAPWM2Out (digital)External amplifier pWM 4A46-EAPWM1Out (digital)External amplifier pWM 4A47-EAFTNOut (digital)External amplifier pWM 4A48-EAPWM1Out (digital)External amplifier pWM 4A40HEAFTNOut (digital)Extern	Table 2. Pin list (continued)			1
18-SDAIn/Out (digital) l^2C serial data19HMUTEIn (digital)Mute (active high)21-REG_BYPASSIn (analog)DC regulator bypass: 0: normal operation, regulator enab 1: regulator bypassed24-BIASIn/Out (analog)ADC microphone bias voltage26-VLOIn (analog)ADC low reference voltage27-VHIIn (analog)ADC right channel line input130-INR1In/Out (analog)ADC right channel line input231-VCMIn/Out (analog)ADC common mode voltage32-INL2In (analog)ADC left channel line input2 or micro33-INL1In (digital)C: reset state 1: normal operation34HRSTNIn (digital)External amplifier PWM 4B37-EAPWM4Out (digital)External amplifier PWM 4A38-EAPWM1Out (digital)External amplifier PWM 3A39-EAPWM1Out (digital)External amplifier PWM 3A40HEAFTNOut (digital)External amplifier outrol: 0: raut 1: normal operational mode41-EATSNOut (digital)External amplifier powerdown (active 1: 3-state42-EAPDNOut (digital)External amplifier outrol: 0: active 1: 3-state43-ACLKIn (digital), schmitt trReserved pin, connect to ground	n Pull	Name	Туре	Description
19HMUTEIn (digital)Mute (active high)21-REG_BYPASSIn (analog)DC regulator bypass: 0: normal operation, regulator enab 1: regulator bypassed24-BIASIn/Out (analog)ADC microphone bias voltage26-VLOIn (analog)ADC low reference voltage27-VHIIn (analog)ADC right channel line input130-INR1In/Out (analog)ADC right channel line input231-VCMIn/Out (analog)ADC common mode voltage32-INL2In (analog)ADC left channel line input2 or micr33-INL1In (analog)ADC left channel line input2 or micr34HRSTNIn (digital)Reset: 0: reset state 1: normal operation35-STBYIn (digital)External amplifier PWM 4B37-EAPWM4Out (digital)External amplifier PWM 4B38-EAPWM3Out (digital)External amplifier PWM 3A39-EAPWM1Out (digital)External amplifier PWM 3A40HEAFTNOut (digital)External amplifier powerdown (active 1: normal operational mode41-EATSNOut (digital)External amplifier powerdown (active 1: 3-state42-EAPDNOut (digital)External amplifier powerdown (active 1: 3-state43-ACLKIn (digital), schmitt trReserved pin, connect to ground	- (CLKOUT	Out (digital)	Buffered clock output
21 - REG_BYPASS In (analog) DC regulator bypass: 0: normal operation, regulator enab 1: regulator bypassed 24 - BIAS In/Out (analog) ADC microphone bias voltage 26 - VLO In (analog) ADC low reference voltage 27 - VHI In (analog) ADC right channel line input1 30 - INR1 In/Out (analog) ADC right channel line input2 31 - VCM In/Out (analog) ADC common mode voltage 32 - INL2 In (analog) ADC left channel line input2 or micro 33 - INL1 In (analog) ADC left channel line input1 or micro 34 H RSTN In (digital) C: normal operation 35 - STBY In (digital) External amplifier PWM 4B 37 - EAPWM4 Out (digital) External amplifier PWM 3B 39 - EAPWM1 Out (digital) External amplifier PWM 3A 40 H EAFTN Out (digital) External amplifier PWM 3A 41 - EAFDN Out (d	- 5	SDA	In/Out (digital)	I ² C serial data
21-REG_BYPASSIn (analog)0: normal operation, regulator enables is regulator bypassed24-BIASIn/Out (analog)ADC microphone bias voltage26-VLOIn (analog)ADC low reference voltage27-VHIIn (analog)ADC right channel line input130-INR2In/Out (analog)ADC right channel line input231-VCMIn/Out (analog)ADC common mode voltage32-INL2In (analog)ADC left channel line input2 or micro33-INL1In (analog)ADC left channel line input2 or micro34HRSTNIn (digital)Reset: 0: reset state 1: normal operation35-STBYIn (digital)Standby mode: 0: normal operation36-EAPWM4Out (digital)External amplifier PWM 4B37-EAPWM3Out (digital)External amplifier PWM 4A38-EAPWM1Out (digital)External amplifier PWM 3A40HEAFTNOut (digital)External amplifier PWM 3A41-EATSNOut (digital)External amplifier power fault signal: 0: fault 1: normal operational mode42-EAPDNOut (digital)External amplifier powerdown (active 1: 3-state43-ACLKIn (digital), schmitt tr44-EAPDNOut (digital)External amplifier powerdown (active 1: 3-state	ΗI	MUTE	In (digital)	Mute (active high)
26 - VLO In (analog) ADC low reference voltage 27 - VHI In (analog) ADC high reference voltage 29 - INR1 In/Out (analog) ADC right channel line input1 30 - INR2 In/Out (analog) ADC cright channel line input2 31 - VCM In/Out (analog) ADC left channel line input2 or micro 33 - INL2 In (analog) ADC left channel line input2 or micro 33 - INL1 In (analog) ADC left channel line input2 or micro 34 H RSTN In (digital) Reset: 0: reset state 35 - STBY In (digital) Standby mode: 0: normal operation 36 - EAPWM4 Out (digital) External amplifier PWM 4B 37 - EAPWM3 Out (digital) External amplifier PWM 4B 38 - EAPWM1 Out (digital) External amplifier PWM 3A 39 - EAPWM1 Out (digital) External amplifier PWM 3A 40 H EAFTN Out (d	- F	REG_BYPASS	In (analog)	0: normal operation, regulator enabled
27-VHIIn (analog)ADC high reference voltage29-INR1In/Out (analog)ADC right channel line input130-INR2In/Out (analog)ADC right channel line input231-VCMIn/Out (analog)ADC common mode voltage32-INL2In (analog)ADC left channel line input2 or micro33-INL1In (analog)ADC left channel line input1 or micro34HRSTNIn (digital)Reset: 0: reset state 1: normal operation35-STBYIn (digital)Standby mode: 0: normal operation36-EAPWM4Out (digital)External amplifier PWM 4B37-EAPWM3Out (digital)External amplifier PWM 4A38-EAPWM1Out (digital)External amplifier PWM 3B39-EAPWM1Out (digital)External amplifier PWM 3A40HEAFTNOut (digital)External amplifier control: 0: fault 1: normal operational mode41-EATSNOut (digital)External amplifier control: 0: active 1: 3-state42-EAPDNOut (digital)External amplifier powerdown (active 1: 3-state43-ACLKIn (digital), schmitt tr44-ACLKIn (digital), schmitt tr45-CACLKIn (digital), schmitt tr46-EAPDNOut (digital)External amplifier powerdown (active 1: 3-state	- E	BIAS	In/Out (analog)	ADC microphone bias voltage
29-INR1In/Out (analog)ADC right channel line input130-INR2In/Out (analog)ADC right channel line input231-VCMIn/Out (analog)ADC common mode voltage32-INL2In (analog)ADC left channel line input2 or micro33-INL1In (analog)ADC left channel line input1 or micro34HRSTNIn (digital)Reset: 0: reset state 1: normal operation35-STBYIn (digital)Standby mode: 0: normal operation 1: power-down36-EAPWM4Out (digital)External amplifier PWM 4B37-EAPWM3Out (digital)External amplifier PWM 4B39-EAPWM1Out (digital)External amplifier PWM 3A40HEAFTNOut (digital)External amplifier Owm 3A41-EATSNOut (digital)External amplifier control: 0: active 1: 3-state41-EAPDNOut (digital)External amplifier control: 0: active 1: 3-state42-EAPDNOut (digital), schmitt trReserved pin, connect to ground43-ACLKIn (digital), schmitt trReserved pin, connect to ground	- \	VLO	In (analog)	ADC low reference voltage
30-INR2In/Out (analog)ADC right channel line input231-VCMIn/Out (analog)ADC common mode voltage32-INL2In (analog)ADC left channel line input2 or micro33-INL1In (analog)ADC left channel line input1 or micro34HRSTNIn (digital)Reset: 0: reset state 1: normal operation35-STBYIn (digital)Standby mode: 0: normal operation 1: power-down36-EAPWM4Out (digital)External amplifier PWM 4B37-EAPWM3Out (digital)External amplifier PWM 4A38-EAPWM1Out (digital)External amplifier PWM 3B39-EAPWM1Out (digital)External amplifier PWM 3A40HEAFTNOut (digital)External amplifier control: 0: fault 1: normal operational mode41-EATSNOut (digital)External amplifier control: 0: fault 1: 3-state42-EAPDNOut (digital)External amplifier powerdown (activ 1: 3-state43-ACLKIn (digital), schmitt trReserved pin, connect to ground	- \	VHI	In (analog)	ADC high reference voltage
31 - VCM In/Out (analog) ADC common mode voltage 32 - INL2 In (analog) ADC left channel line input2 or micro 33 - INL1 In (analog) ADC left channel line input1 or micro 34 H RSTN In (digital) Reset: 0: reset state 35 - STBY In (digital) Standby mode: 0: normal operation 36 - EAPWM4 Out (digital) External amplifier PWM 4B 37 - EAPWM3 Out (digital) External amplifier PWM 4B 38 - EAPWM1 Out (digital) External amplifier PWM 4A 38 - EAPWM1 Out (digital) External amplifier PWM 3B 39 - EAPWM1 Out (digital) External amplifier PWM 3A 40 H EAFTN Out (digital) External amplifier control: 41 - EATSN Out (digital) Cative 42 - EAPDN Out (digital) External amplifier powerdown (active 43 - ACLK In (digital), schmitt tr	-	INR1	In/Out (analog)	ADC right channel line input1
32 - INL2 In (analog) ADC left channel line input2 or micro 33 - INL1 In (analog) ADC left channel line input1 or micro 34 H RSTN In (digital) Reset: 0: reset state 1: normal operation 35 - STBY In (digital) Standby mode: 0: normal operation 1: power-down 36 - EAPWM4 Out (digital) External amplifier PWM 4B 37 - EAPWM3 Out (digital) External amplifier PWM 4B 38 - EAPWM2 Out (digital) External amplifier PWM 3B 39 - EAPWM1 Out (digital) External amplifier PWM 3A 40 H EAFTN Out (digital) External amplifier PWM 3A 41 - EATSN Out (digital) External amplifier control: 0: active 1: 3-state 42 - EAPDN Out (digital) External amplifier powerdown (activ 43 - ACLK In (digital), schmitt tr Reserved pin, connect to ground	- 1	INR2	In/Out (analog)	ADC right channel line input2
33-INL1In (analog)ADC left channel line input1 or micro34HRSTNIn (digital)Reset: 0: reset state 1: normal operation35-STBYIn (digital)Standby mode: 0: normal operation 1: power-down36-EAPWM4Out (digital)External amplifier PWM 4B37-EAPWM3Out (digital)External amplifier PWM 4A38-EAPWM2Out (digital)External amplifier PWM 3B39-EAPWM1Out (digital)External amplifier PWM 3A40HEAFTNOut (digital)External amplifier control: 0: fault 1: normal operational mode41-EATSNOut (digital)External amplifier control: 0: active 1: 3-state42-EAPDNOut (digital)External amplifier powerdown (active 1: 3-state43-ACLKIn (digital), schmitt trReserved pin, connect to ground	- \	VCM	In/Out (analog)	ADC common mode voltage
34HRSTNIn (digital)Reset: 0: reset state 1: normal operation35-STBYIn (digital)Standby mode: 0: normal operation 1: power-down36-EAPWM4Out (digital)External amplifier PWM 4B37-EAPWM3Out (digital)External amplifier PWM 4A38-EAPWM2Out (digital)External amplifier PWM 3B39-EAPWM1Out (digital)External amplifier PWM 3A40HEAFTNOut (digital)External amplifier PWM 3A41-EAFTNOut (digital)External amplifier control: 0: fault 1: normal operational mode41-EAPDNOut (digital)External amplifier control: 0: fault 1: normal operational mode42-EAPDNOut (digital)External amplifier powerdown (active 1: 3-state42-EAPDNOut (digital), schmitt trReserved pin, connect to ground43-ACLKIn (digital), schmitt trReserved pin, connect to ground	- 1	INL2	In (analog)	ADC left channel line input2 or microphone input2
34HRSTNIn (digital)0: reset state 1: normal operation35-STBYIn (digital)Standby mode: 0: normal operation 1: power-down36-EAPWM4Out (digital)External amplifier PWM 4B37-EAPWM3Out (digital)External amplifier PWM 4A38-EAPWM2Out (digital)External amplifier PWM 3B39-EAPWM1Out (digital)External amplifier PWM 3A40HEAFTNOut (digital)External operational mode41-EATSNOut (digital)External amplifier control: 0: active 1: 3-state42-EAPDNOut (digital), schmitt trReserved pin, connect to ground43-ACLKIn (digital), schmitt trReserved pin, connect to ground	- 1	INL1	In (analog)	ADC left channel line input1 or microphone input1
35-STBYIn (digital)0: normal operation 1: power-down36-EAPWM4Out (digital)External amplifier PWM 4B37-EAPWM3Out (digital)External amplifier PWM 4A38-EAPWM2Out (digital)External amplifier PWM 3B39-EAPWM1Out (digital)External amplifier PWM 3A40HEAFTNOut (digital)External power fault signal: 0: fault 1: normal operational mode41-EATSNOut (digital)External amplifier control: 0: active 1: 3-state42-EAPDNOut (digital)External amplifier powerdown (activ 4343-ACLKIn (digital), schmitt trReserved pin, connect to ground I²C disable:	HF	RSTN	In (digital)	0: reset state
37-EAPWM3Out (digital)External amplifier PWM 4A38-EAPWM2Out (digital)External amplifier PWM 3B39-EAPWM1Out (digital)External amplifier PWM 3A40HEAFTNOut (digital)External power fault signal: 0: fault 1: normal operational mode41-EATSNOut (digital)External amplifier control: 0: active 1: 3-state42-EAPDNOut (digital)External amplifier powerdown (active 1: 3-state43-ACLKIn (digital), schmitt trReserved pin, connect to ground I ² C disable:	- 8	STBY	In (digital)	0: normal operation
38 - EAPWM2 Out (digital) External amplifier PWM 3B 39 - EAPWM1 Out (digital) External amplifier PWM 3A 40 H EAFTN Out (digital) External power fault signal: 0: fault 1: normal operational mode 41 - EATSN Out (digital) External amplifier control: 0: active 1: 3-state 42 - EAPDN Out (digital) External amplifier powerdown (active 1: 3-state 43 - ACLK In (digital), schmitt tr Reserved pin, connect to ground	- E	EAPWM4	Out (digital)	External amplifier PWM 4B
39 - EAPWM1 Out (digital) External amplifier PWM 3A 40 H EAFTN Out (digital) External power fault signal: 0: fault 1: normal operational mode 41 - EATSN Out (digital) External amplifier control: 0: active 1: 3-state 42 - EAPDN Out (digital) External amplifier powerdown (active 1: 3-state 43 - ACLK In (digital), schmitt tr Reserved pin, connect to ground	- E	EAPWM3	Out (digital)	External amplifier PWM 4A
40 H EAFTN Out (digital) External power fault signal: 0: fault 1: normal operational mode 41 - EATSN Out (digital) External amplifier control: 0: active 1: 3-state 42 - EAPDN Out (digital) External amplifier powerdown (active 1: 3-state 43 - ACLK In (digital), schmitt tr Reserved pin, connect to ground	- E	EAPWM2	Out (digital)	External amplifier PWM 3B
40 H EAFTN Out (digital) 0: fault 1: normal operational mode 41 - EATSN Out (digital) External amplifier control: 0: active 1: 3-state 42 - EAPDN Out (digital) External amplifier powerdown (active 1: 3-state 43 - ACLK In (digital), schmitt tr Reserved pin, connect to ground I ² C disable: I I I I	- E	EAPWM1	Out (digital)	External amplifier PWM 3A
41 - EATSN Out (digital) 0: active 1: 3-state 42 - EAPDN Out (digital) External amplifier powerdown (active 1) 43 - ACLK In (digital), schmitt tr Reserved pin, connect to ground 12 - In (digital), schmitt tr Reserved pin, connect to ground	H E	EAFTN	Out (digital)	0: fault
43 - ACLK In (digital), schmitt tr Reserved pin, connect to ground Image: Reserved pin and the second	- E	EATSN	Out (digital)	0: active
I ² C disable:	- E	EAPDN	Out (digital)	External amplifier powerdown (active low)
	- /	ACLK	In (digital), schmitt tr	Reserved pin, connect to ground
1: I ² C disabled	LI	I2CDIS	In (digital)	0: I ² C enabled
48 L TM In (digital) Test mode: 0: normal operation	L 1	ТМ	In (digital)	
51 - NC - Not connected	- 1	NC	-	Not connected

Table 2. Pin list (continued)

Table 2. Finnist (continued)				
Pin	Pull	Name	Туре	Description
52	-	хто	Out (digital), 1.8 V	Crystal output
53	-	ХТІ	In (digital), 1.8 V	Crystal input or master clock input
54	-	MCLK	In (digital), schmitt tr	Master clock input 3.3-V compatible, schmitt input
55	-	SDATAI2	In (digital)	Input serial audio interface data
56	-	SDATAI1	In (digital)	Input serial audio interface data
57	-	SDATAO2	Out (digital)	Output serial audio interface data
58	-	SDATAO1	Out (digital)	Output serial audio interface data
59	-	LRCLKI2	In/Out (digital)	Input serial audio interface L/R-clock
60	-	LRCLKI1	In/Out (digital)	Input serial audio interface L/R-clock
61	-	LRCLKO	In/Out (digital)	Output serial audio interface L/R-clock (volume DOWN when I2CDIS=1)
62	-	BICLKI2	In/Out (digital)	Input serial audio interface bit clock
63	-	BICLKI1	In/Out (digital)	Input serial audio interface bit clock
64	-	BICLKO	In/Out (digital)	Output serial audio interface bit clock (volume UP when I2CDIS=1)

 Table 2.
 Pin list (continued)

Table 3.Power supply pin list

Number	Name	Туре	Description
2	VCC1	Supply	CMOS bridge channel 1 supply
4	GND1	Ground	CMOS bridge channel 1 ground
5	GND2	Ground	CMOS bridge channel 2 ground
7	VCC2	Supply	CMOS bridge channel 2 supply
8	VCC3	Supply	CMOS bridge channel 3 supply
10	GND3	Ground	CMOS bridge channel 3 ground
15	GND33	Ground	CMOS bridge level shifter ground
16	VCC33	Supply	CMOS bridge level shifter supply
20	DGND1	Ground	Digital ground
22	VDD_REG1	Supply	DC regulator unit supply
23	VDDIO1	Supply	3.3-V IO supply
25	AGND	Ground	ADC analog ground
28	AVDD	Supply	ADC analog supply
45	DGND2	Ground	Digital ground
46	VDD_REG2	Supply	DC regulator unit supply
47	VDDIO2	Supply	3.3-V IO supply
49	PVDD	Supply	PLL analog supply
50	PGND	Ground	PLL analog ground

3 Electrical specifications

3.1 Absolute maximum ratings

Pin name/Symbol	Parameter	Negative	Positive	Unit
VDD_REG1, VDD_REG2	Digital supply voltage	-0.3	4.0	V
VDDIO1, VDDIO2	Digital IO supply voltage	-0.3	4.0	V
PVDD	PLL analog supply voltage	-0.3	4.0	V
AVDD	ADC analog supply voltage	-0.3	4.0	V
VCC1, VCC2, VCC3	CMOS bridge supply voltage	-0.3	4.0	V
VCC33	CMOS bridge level shifter power supply	-0.3	4.0	V
T _{STG}	Storage temperature	-40	150	°C
T _{OP}	Operating junction temperature	-20	125	°C

Note: All grounds must always be within 0.3 V of each other.

3.2 Recommended operating conditions

Symbol	Parameter	Min	Тур	Max	Unit
V _{VDD_REG1} , V _{VDD_REG2} Digital supply voltage		2.5	3.3	3.6	v
V _{PVDD}	PLL analog supply voltage	2.5	3.3	3.6	V
V _{AVDD}	ADC analog supply voltage	1.8	3.3	3.6	V
$V_{VCC1}, V_{VCC2}, V_{VCC3}$	CMOS bridge supply voltage	1.55	-	3.3	v
V _{VCC33}	CMOS bridge level shifter power supply. Ensure that $V_{VCC33} \le V_{VCCx}$ always		-	3.3	v
V _{VDDIO1} , V _{VDDIO2} 3.3-V IO supply		2.7	3.3	3.6	V
M	High input voltage, 1.8-V pads	1.3	-	-	v
V _{IH}	High input voltage, 3.3-V pads	2.0	-	-	ľ
N.	Low input voltage, 1.8-V pads	-	-	0.6	v
V _{IL}	Low input voltage, 3.3-V pads	-	-	0.8	 ^v
T _{amb}	Ambient temperature	0	-	70	°C

Table 5. Recommended operating conditions

3.3 Electrical characteristics

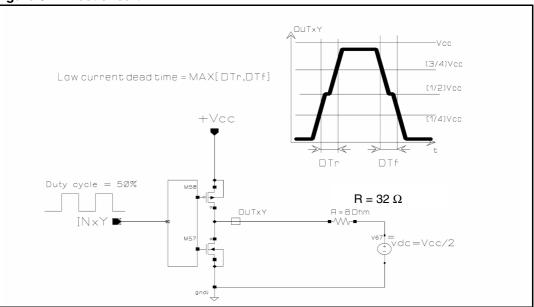
Unless otherwise specified, the results in *Table 6* below are given for the operating conditions V_{CC} = 3.3 V, R_L = 32 Ω , f_{MCLK} = 12.288 MHz, Tamb = 25 °C and with the PLL set to default conditions.

Symbol	Parameter	Test conditions	Min	Тур	Мах	Unit
General						<u>, de esta de la constana de la cons</u>
	High output voltage, 1.8-V pads	-	1.4	-	-	
V _{OH}	High output voltage, 3.3-V pads	-	V _{VDDIO} - 0.15	-	-	V
V	Low output voltage, 1.8-V pads	I _{OL} = 2 mA	-	-	0.15	v
V _{OL}	Low output voltage, 3.3-V pads	I _{OL} = 2 mA	-	-	0.15	_
V _{hys}	Schmitt trigger hysteresis, 3.3-V IO	-	-	0.4	-	V
R _{UP}	Pull-up resistance	-	-	50	-	kΩ
R _{DN}	Pull-down resistance	-	-	50	-	kΩ
I _{STBYIO} Standby current, pins VDDIO1,2		Pin STBY = 3.3 V CLKOUT disabled	-	450	-	μA
I _{DDIO}	Operating current, pins VDDIO1,2	-	-	3	-	mA
I _{STBYL0}	Standby current, pins VDD_REG1,2	Deep power-down, V _{VDD_REG1,2} = 3.3 V	-	450	-	μA
I _{STBYL1}	Standby current, pins VDD_REG1,2	Mild power-down, V _{VDD_REG1,2} = 3.3 V	-	2	-	mA
Operating current, pins VDD_REG1,2		$\label{eq:mclk} \begin{array}{l} f_{MCLK} = 12.288 \mbox{ MHz}, \mbox{ Play} \\ from SAI to CMOS bridge \\ and EAPWM, f_{ADC} = 48 kHz \\ on SAI_out, V_{AVDD} = 3.3 V \\ V_{VDD_REG1,2} = 3.3 V \end{array}$	-	45	-	mA
I _{STBYPD}	Pre-drive supply current in standby, pin VCC33	-	-	4.7	-	μA

 Table 6.
 Electrical specifications

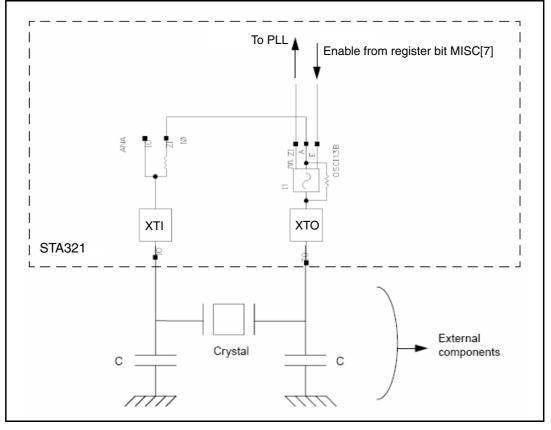
Symbol	Parameter	Test conditions		Min	Тур	Max	Unit
Amplifier (CM	/OS bridge)			1			
η	Output power efficiency	-		-	90	-	%
D	Output power in HP mode with THD = 1%	3.3-V supply $R_L = 32 \Omega$ -		-	41	-	m)//
P _{HPOUT}	Output power in HP mode with THD = 10%	3.3-V supply	R _L = 32 Ω	-	53	-	mW
SNR	Signal to noise ratio	20 Hz to 20 k	Hz	-	75	-	dB
THD + N	Total harmonic distortion plus noise	RL = 32 Ω,	0 dBFs In	-	0.3	-	%
		HP mode	-6 dBFs In	-	0.05	-	
DR	Dynamic range	A-weighted		-	80	-	dB
I _{STBYP}	Current in standby, pins VCCx	-		-	2	-	μA
I _{DDP}	Operating current, pins VCCx	No LC filter, n PWM at 50%		-	1	-	mA
I _{DDPD}	Pre-drive supply current in operation, pin VCC33	No load, PWM at 50%	duty-cycle	-	250	350	μA
t _R	Driver rise time, pins OUT1-3	Resistive load	l, see <i>Figure 3</i>	-	5	-	ns
t _F	Driver fall time, pins OUT1-3	Resistive load	l, see <i>Figure 3</i>	-	5	-	ns
R _{DSON}	Headphone output stage N/P MOS on-resistance	-		-	500	700	mΩ
I _{OCH}	Over-current limit for OUT1-3 to VCCx short circuit	-		-	1.88	-	A
I _{OCL}	Over-current limit for OUT1-3 to ground short circuit	-		-	1.72	-	A
PLL							
ISTDBYPLL	PLL supply current in standby	-		-	20	-	μA
I _{DDPLL}	PLL supply current in operation	-		-	0.4	1.0	mA
f _{CLKIN_Range}	Input clock frequency range	-		2.048	-	49.152	MHz
Duty _{CLKIN}	Input clock duty cycle	-		40	-	60	%
t _{CLKIN_RF}	Input clock rise/fall time	-		-	-	0.2	ns
f _{F_INT}	PFD input clock frequency	PLL_FR_CTRL = 1		2.048	-	12.288	MHz
f _{VCO_Range}	Clock out range	-		65.536	-	98.304	MHz
Duty _{VCO}	Clock out duty cycle	-		35	-	65	%
T _{LOCK}	Lock time	-		-	-	200	μs


Table 6. Electrical specifications (continued)



Symbol	Parameter	Test conditions	Min	Тур	Max	Unit	
ADC					<u> </u>		
I _{DDA}	Supply current in operating mode	$V_{AVDD} = 3.3V$	-	10	15	mA	
ISTDBYA	AVDD supply current in standby	$V_{AVDD} = 3.3V$	-	2	-	μA	
DR	Dynamic range	1 kHz, A-weigthed $V_{AVDD} = 3.3 V$	-	90	-	dB	
SNR _{ADC}	Signal to noise ratio	1 kHz, A-weighted V _{AVDD} = 3.3 V	-	92	-	dB	
THD _{ADC}	Total harmonic distortion	1 kHz, -1dB V _{AVDD} = 3.3 V	-	85	-	dB	
СТ	Channel cross talk	V _{AVDD} = 3.3 V	-	80	-	dB	
		Fs mode (f _S = 32 kHz)	-	0.4	-		
-	Group delay	Fs_by_2 mode (f _S = 16 kHz)	-	0.7	-	ms	
		Fs_by_4 mode (f _S = 8 kHz)	-	1.4	-		
-	Pass band	-	-	0.4535	-	Fs	
	Pass band ripple	Fs mode (f _S = 44.1 kHz)	-	0.08	-		
-		Fs_by_2 mode (f _S = 22.05 kHz)	-	0.08	-	dB	
		Fs_by_4 mode (f _S = 11.025 kHz)	-	0.08	-		
		Fs mode (f _S = 44.1 kHz)	-	45	-		
-	Stop band attenuation	Fs_by_2 mode (f _S = 22.05 kHz)	-	45	-	dB	
		Fs_by_4 mode (f _S = 11.025 kHz)	-	45	-		
		-3 dB	-	7	-	Hz	
-	Frequency response	-0.08 dB	-	50	-	Hz	
-	Linear phase deviation	at 20 Hz	-	19.35	-	deg	
-	Pass-band ripple	-	-	0.08	-	dB	
Headphone of	detector threshold limits						
	HP low threshold	-	-	2.34	-	V	
E_HP1	HP high threshold	-	-	2.52	-	V	
	HP low threshold	-	-	0.7	-		
E_HP2	HP high threshold	-	-	0.9	-	V	

 Table 6.
 Electrical specifications (continued)



3.4 Embedded crystal oscillator

Figure 4. Oscillator configuration

The STA321 has an integrated oscillator between pins XTI and XTO.

The architecture is a single-stage oscillator with an inverter working as an amplifier. The oscillator stage is biased by an internal resistor (of about 500 k Ω), and requires an external PI network consisting of a crystal and two capacitors as shown in *Figure 4* below. An enable feature is provided in bit 7 of register MISC (address 0xC8) to stop the oscillator and thereby to reduce power consumption.

Not all crystals operate satisfactorily with the type of oscillator used in the STA321. To find out if a crystal is suitable for this device the following transconductance formula must be evaluated and compared to the critical transconductance for the embedded oscillator:

 $Gm = Rm * \omega^2 * (C + 2 * Co)^2 < Gm_{CRITICAL} / 3$

where ω is the crystal operating frequency, C = CA = CB, Co and Rm are shown in *Figure 5* and Gm_{CRITICAL} is given in *Table 7*.

Figure 5. Equivalent circuit of crystal and external components

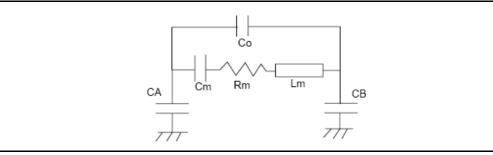


Table 7.Oscillator specifications

Symbol	Parameter		Тур	Max	Unit
I _{OSC}	Oscillator power consumption with crystal connected ⁽¹⁾	-	-	215	μA
Duty _{OSC}	Duty cycle	46.9	47.8%	48.9	%
T _{UP}	Startup time	-	15 * τχ	-	s ⁽²⁾
Gm _{CRITICAL}	Oscillator transconductance	1060	-	-	μA/V

1. If no crystal is connected then the power consumption could be much higher.

2. τx is the time constant of the crystal and external components; a typical value is 44 μs .

STA321

3.5 Embedded DC regulator

The power supply to the digital STA321 core and PLL is provided via embedded linear DC regulators as shown below in *Figure 6*. When pin REG_BYPASS is tied to ground, the DC regulators are active so that a voltage in the range 2.5 V to 3.6 V applied to pins VDD_REGx or PVDD provides a regulated internal voltage to the core and the PLL. The voltages Vddi and Vddipll range from 1.55 V to 1.95 V depending on operating conditions.

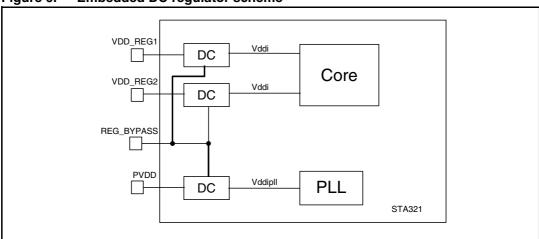
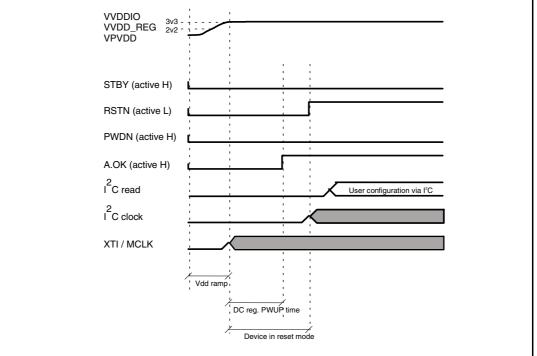


Figure 6. Embedded DC regulator scheme

If the application allows multiple supplies or the power supply requirements are a fundamental constraint, pin REG_BYPASS can be tied high and a 1.8 V external supply can be applied directly to pins VDD_REGx and PVDD. In this case the operating range for such an external supply is 1.55 V to 1.95 V.

Embedded DC regulators imply also static power consumption that must be take into account when the power-down modes are active. The STA321 provides a deep powerdown mode where also the regulators are active but in a low power consumption mode (see *Section 4.3.2 on page 27*).



4 Power-up and power-down sequences

4.1 Device power-up

After providing the power supply to the device, it is necessary to wait until the DC regulator PWUP time has elapsed before the device can be set up and used for normal operations. (see *Figure 7*).

Table 8.Power-up signal description

Signal/pin	Type Description	
VDDIO	Supply	Power supply of the digital pads (= VDDIO1,2)
VDD_REG	Supply	Power supply of the system core (= VDD_REG1,2)
PVDD	Supply	Power supply of the PLL
STBY	In (digital)	External standby signal provided by the user
RSTN	In (digital)	External reset signal provided by the user
PWDN	Internal	Power-down of the DC regulator cell, controlled by the core
A. OK	Internal	DC regulator status, when active the 1.8 V is provided to the core
I ² C read	In (I ² C)	Configuration commands coming to the I ² C interface
I ² C clock	Internal	I ² C peripheral clock
XTI/MCLK	In (digital)	Clock input source

Parameter	Parameter Description		Тур	Max	Unit
DC reg. power-up time	Start up time of the DC Regulator after connecting the power		-	300	μs
Device in reset mode	Must be greater than (VDD time + DC reg. power-up time)	-	-	-	μs

Table 9.Startup timings

Table 10.Configuration example

Register address	Value	Description
0xC9	0x00	Remove PLL bypass
0xCA	0x00	Headphone detection polarity = 0
0xB8	0x4A	Configure SAI output: SAI_out1 = SAI_in1, SAI_out2 = SAI_in2
0xB7	0x38	SRC source select: SRC1 = ADC, SRC2 = ADC
0xC6	0x02	ADC clock on
0xB2	0xF3	I ² S configuration
0xC8	0x21	Core clock on, SAI/ADC audio set to 32 kHz - 48 kHz range
0xB2	0xD3	SAI_out: output enabled
0xA0	0x00	Soft volume removed
0x00	0x00	Remove bridge 3-state

4.2 Software power-down mode

The software power-down is obtained by configuring the appropriate I²C registers.

In order to obtain flexibility every peripheral has its independent, standby signal and several gating clock cells are available.

Obviously, the I^2C peripheral can not be turned off in this mode, otherwise the device can recover from the power-down state only via the reset pin.

In the table below EA is embedded amplifier and CB is CMOS bridge. For complete information this table must be used in conjunction with *Chapter 14: Register description on page 77*.

Description	Register bit	Address
Put EA in standby	FFXCFG1[7]	0x00 on page 81
Put CB in standby	FFXCFG1[6]	0x00
Put PLL in standby	PLLPFE[5]	0xC4 on page 132
Put ADC in standby	ADCCFG0[3]	0xC6 on page 133
Turn core clock off	<i>MISC</i> [0]	0xC8 on page 135
Turn ADC clock off	ADCCFG0[1]	0xC6

Table 11.Registers for power-down

0xC7

······································					
Description	Register bit	Address			
Turn SRC clock off	CKOCFG[3]	0xC7 on page 134			
Turn PROC clock off	CKOCFG[2]	0xC7			

Table 11. Registers for power-down (continued)

4.2.1 Configuration example

Turn FFX clock off

This is an example of the register setup for power-down clock. It is assumed that every peripheral is already configured and working correctly.

CKOCFG[4]

There are other configuration examples to help you get started please refer to other chapters and also to *Chapter 14: Register description on page 77* in order to get all the necessary and complementary details.

Turn off all the peripherals.

Note:

The MCLK (or XTI) must be used as system clock (sys_clk) before setting the PLL to standby.

Register bit	Address	Value	Description
EA_STBY CB_STBY	0x00 on page 81	0xC0	Set the embedded power amplifier and CMOS bridge to power-down
CLK_FFX_ON	0xC7 on page 134	0x0C	Turn off the FFX modulator clock
ADC_STBY	0xC6 on page 133	0x09	Set the ADC into standby mode
CLK_ADC_ON	0xC6	0x80	Turn the ADC clock off
CLK_PROC_ON	0xC7	0x08	Turn the processing clock off
CLK_SRC_ON	0xC7	0x00	Turn the sample rate converter clock to off
PLL_BYP_UNL	0xC4 on page 132	0x80	Bypass the PLL clock and use MCLK (or XTI) as source clock when the PLL is not locked (a safety operational mode)
PLL_PWDN	0xC4	0xA0	Put the PLL in standby
CLK_CORE_ON	0xC8 on page 135	0x00	Turning off the core clock

 Table 12.
 Example configurations for power-down

4.3 Hardware power-down mode

The hardware power-down is obtained by asserting pin STBY to high.

There are two power-down options available, namely mild mode and full (or deep) mode, that could be selected using the DC_STBY_EN signal in register STBY_MODES

Figure 8 summarizes the main power-down sequence. "Power on" is the normal operating status where all the startup procedures have already been executed. The rectangular boxes indicate the steps to be done by the user whilst the rounded boxes indicate the steps done by the device.

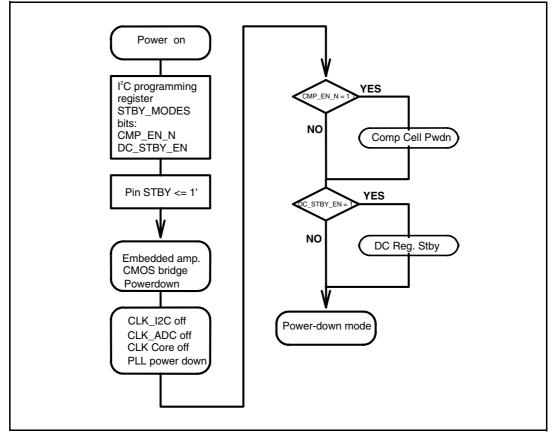


Figure 8. Hardware power-done sequence

Name	Description	
STBY	Input pin STBY on page 11	
PWDN DC regulator	Internal	
A. OK DC regulator	Internal	
CMP_EN_N	Bit 1, register STBY_MODES on page 139	
EA_STBY CB_STBY	Bits 7:6, register FFXCFG1 on page 81	
EA/CB volume	Internal	
PLL_UNLOCK	Bit 7, register PLLST on page 132	
PLL_PWDN	Bit 5, register PLLPFE on page 132	
CLK_PROC_ON	Bit 2, register CKOCFG on page 134	
CLK_PROC	Processing clock	
CLK_FFX_ON	Bit 4, register CKOCFG on page 134	
clk_ffx	FFX clock	
CLK_ADC_ON	Bit 1, register ADCCFG0 on page 133	
clk_adc	ADC clock	
CLK_SRC_ON	Bit 3, register CKOCFG on page 134	
clk_src	SRC clock	
CMP_EN_N	Bit 1, register STBY_MODES on page 139	
DC_STBY_EN	Bit 0, register STBY_MODES on page 139	
FFX_ULCK_PLL	Bits 4:3, register FFXCFG1 on page 81	

Table 13. Frequently used signals

4.3.1 Mild power-down

In this case, the device is put into a mild power-down mode.

All the peripherals are set to standby and their clocks turned off.

The I²C configuration is not required as the default values of the registers are sufficient.

• Initial conditions:

FFX_ULCK_PLL = 10 CMP_EN_N = 0 DC_STBY_EN = 0

• Going into power-down:

After the assertion of the pin STBY, the following actions are taken by the device:

- 1. Embedded amplifier (EA) and CMOS bridge (CB) volume are set to mute (the length of this step changes according to the fade-out ramp configuration).
- 2. EA and CB are put into power-down. After the previous operation is completed:
- 3. All peripherals are turned off (regardless the register settings).
- 4. The PLL clock is bypassed, the system clock (sys_clk in *Figure 11 on page 29*) is XTI.
- 5. All clocks are shut down.
- Returning to normal mode: After the release of the pin STBY, the power-up procedure takes place:
- 1. All clocks are turned on.
- 2. All peripherals are restored to their previous status (based on the last register settings).
- 3. If the PLL clock was the system clock it will be selected again after the locking time.
- 4. The EA and the CB execute the fade-in procedure before becoming ready to be used (the length of this step changes according to the fade-in ramp configuration).

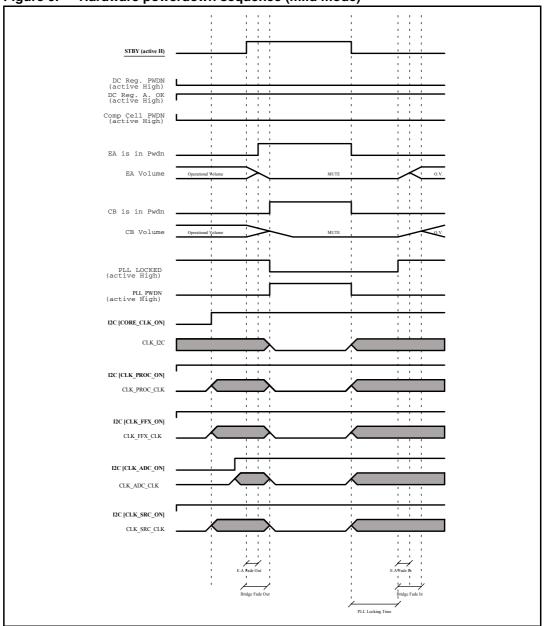


Figure 9. Hardware powerdown sequence (mild mode)

4.3.2 Full power-down

In this case the device is put into a full power-down mode.

This implies lower power consumption than the mild mode, but has a drawback in that it takes longer to execute.

Initial conditions

```
FFX_ULCK_PLL = 10
CMP_EN_N = 1
DC_STBY_EN = 1
```

• Going into power-down:

This mode differs from the previous one by an additional step at the end of the powerdown procedure and at the beginning of the power-up:

- 1. Embedded amplifier (EA) and CMOS bridge (CB) volume are set to mute (the length of this step changes according to the fade-out ramp configuration).
- EA and CB are put into power-down.
 After the acknowledge signals (EA is in power-down and CB is in power-down) are received:
- 3. All peripherals are turned off (regardless the register settings).
- 4. PLL clock is bypassed, the system clock (sys_clk in *Figure 11 on page 29*) is XTI.
- 5. All clocks are shut down.
- 6. DC regulator is put into standby mode. After this point the device is in a very low power consumption mode.
- Returning to normal mode:
 - After the release of pin STBY, the power-up procedure will take place:
- DC regulator is set to operational mode After the acknowledge signal (DCAOK) from the DC regulator is received:
- 2. All clocks are turned on.
- 3. All peripherals are restored to the status based on their relative register settings.
- 4. If the PLL clock was the system clock it is selected again after the locking time.
- 5. The EA and the CB execute the fade-in procedure before being ready to be used (the length of this step changes according to the fade-in ramp configuration).

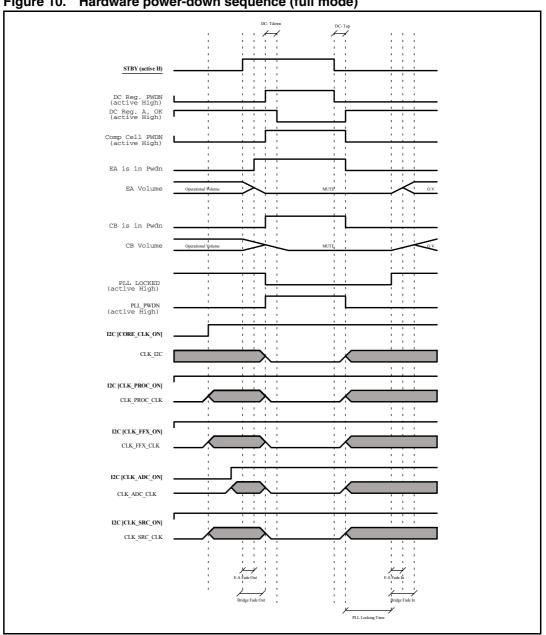
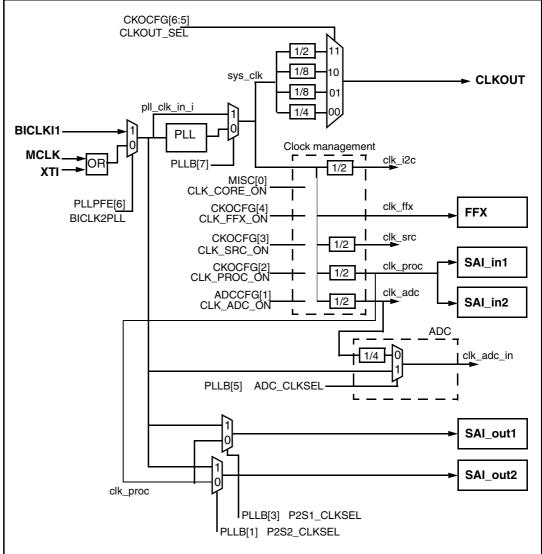



Figure 10. Hardware power-down sequence (full mode)

5 Clock management

Table 14.	Clock	control	registers
-----------	-------	---------	-----------

Register Name	Address
PLLB on page 136	0xC9
ADCCFG0 on page 133	0xC6
CKOCFG on page 134	0xC7

Symbol	Parameter	Min	Тур	Max	Unit
f _{MCLK_Range}	Input clock frequency range	2.048	-	49.152	MHz
Duty _{MCLK}	Input clock duty cycle	40	-	60	%
t _{MCLK_RF}	Input clock rise/fall time	-	-	0.2	ns
f _{XTI_Range}	Input clock frequency range	2.048	-	49.152	MHz
Duty _{XTI}	Input clock duty cycle	40	-	60	%
t _{XTI_RF}	Input clock rise/fall time	-	-	0.2	ns
f _{BICLK1_Range}	Input clock frequency range	2.048	-	49.152	MHz
Duty _{BICLK1}	Input clock duty cycle	40	-	60	%
t _{BICLK1_RF}	Input clock rise/fall time		-	0.2	ns
f _{CLKOUT_Range}	Output clock frequency range	-	-	49.152	MHz

Table 15.Clock characteristics

5.1 System clock

Figure 11 above shows the STA321 clock management scheme with all the major clocks. As can be seen, the system clock (sys_clk) is selected from one of three sources by using register *PLLB on page 136*:

- an external clock BICLKI1
- (default) an external clock XTI or MCLK (the unused one must, however, be set to 0)
- the internal PLL.

If the PLL is used there are some design constraints:

- pll_clk_in_i must be in the range: 2.048 MHz to 49.152 MHz
- pll_clk_out must be in the range: 65.536 MHz to 98.304 MHz.

The sys_clk is routed to the peripherals through the clock manager section.

5.1.1 Configuration example

This is an example of the PLL register setup. It is assumed that every peripheral is already configured and working correctly.

There are other configuration examples to help you get started please refer to other chapters and also to *Chapter 14: Register description on page 77* in order to get all the necessary and complementary details.

Starting with MCLK as system clock switching to PLL as source

Table 16.	Register setup to provide sys_clk from MCLK to PLL
-----------	--

Register	Address	Value	Description
PLLPFE	0xC4	0x80	Safety operational mode: automatic use of MCLK (or XTI) as system clock if the PLL is not locked
PLLB	0xC9	0x00	Remove the PLL bypass and use its clock as system

5.2 Peripheral clock manager

This block manages the clocks of the core processing peripherals ADC, FFX, PROC (including memories and SAI interfaces) and SRC.

A clock divider (by 2) is attached before every block except the FFX.

Each block is attached to a global gating cell and to a dedicated one. This allows a flexible power-consumption management because it is possible to turn off either the whole processing chain or just a single block. The only exception is the I²C peripheral clock which is disabled only when the device is in hardware power-down mode. In all the other cases this clock remains active.

5.3 Fractional PLL

The PLL specifications are given in Table 6 on page 14.

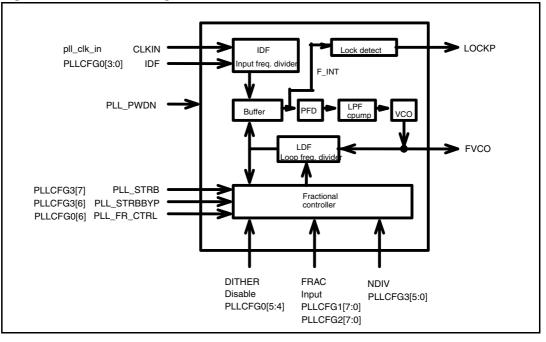


Figure 12. PLL block diagram

5.3.1 PLL block description

Phase/frequency detector (PFD)

This block compares the phase difference between the corresponding rising edges of the F_INT and the clock coming from the loop frequency divider.

It generates voltage pulses with widths proportional to the input phase error.

Charge pump and loop filter (LPF/CPUMP)

This block converts the voltage pulses from the phase/frequency detector to current pulses which charge the loop filter and generate the control voltage for the voltage controlled oscillator (VCO).

Voltage controlled oscillator (VCO)

This is the oscillator inside the PLL, which produces a frequency, f_{VCO} , on output FVCO proportional to the input control voltage.

Input frequency divider (IDF)

This frequency divider divides the PLL input clock CLKIN by the input division factor (IDF) to generate the PFD input frequency. IDF is programmed in register PLLCFG0[3:0].

Loop frequency divider (LDF)

This frequency divider is present within the PLL for dividing the VCO output by the loop division factor (LDF). LDF is programmed in register bits PLLCFG3[5:0].

Lock circuit

The output of this block, signal LOCKP, is asserted high when the PLL enters the state of coarse lock in which the output frequency is $\pm 10\%$ of the desired frequency. LOCKP is refreshed every 32 cycles of F_INT. The status bit PLL_UNLOCK is in register *PLLST on page 132*.

5.3.2 Output frequency computation

The input clock frequency of the phase/frequency detector (PFD) is

f_{F INT} = CLKIN / IDF

The VCO frequency depends on the value of register bit PLLCFG0.PLL_FR_CTRL such that

When PLL_FR_CTRL = 1

$$f_{VCO} = f_{F_{-}INT} * (LDF + FRAC / 2^{16} + 1 / 2^{17})$$

and when PLL_FR_CTRL = 0

 $f_{VCO} = f_{F | INT} * LDF$

Notes:

1. When dither is disabled (PLL_DDIS = 1), the factor $1/2^{17}$ is not used in the multiplication.

2. There are some limits to the input and output frequencies as given in *Table 17* and *Table 18* when selecting the values for IDF, LDF, and FRAC.

3. The LDF values of 5, 6 and 7 cannot be used when fractional synthesis mode is on, that is, when $PLL_FR_CTRL = 1$.

4. The fractional control bits (FRAC_INPUT) must be set to the required values before activating the fractional synthesis mode.

Table 17.	Input	division	factor	(IDF)
-----------	-------	----------	--------	-------

IDF[3]	IDF[2]	IDF[1]	IDF[0]	Input division factor (IDF)
0	0	0	0	1
0	0	0	1	1
0	0	1	0	2

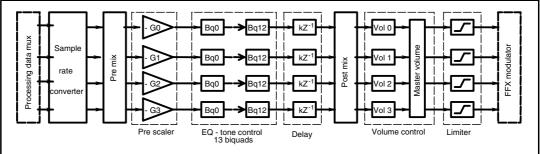
	Table 17. Input division factor (ib) (continued)					
IDF[3]	IDF[2]	IDF[1]	IDF[0]	Input division factor (IDF)		
1	1	1	0	14		
1	1	1	1	15		

 Table 17.
 Input division factor (IDF) (continued)

Table 18.Loop division factor (LDF)

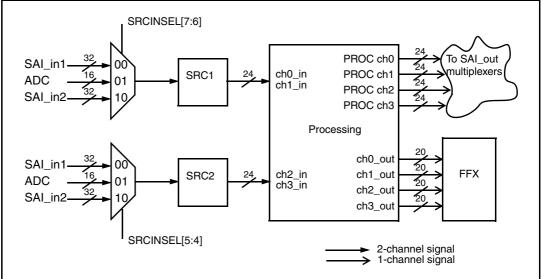
NDIV[5]	NDIV[4]	NDIV[3]	NDIV[2]	NDIV[1]	NDIV[0]	Loop division factor (LDF)
0	0	0	0	х	х	NA
0	0	0	1	0	0	NA
0	0	0	1	0	1	5 ⁽¹⁾
0	0	0	1	1	0	6 (see note 3)
0	0	0	1	1	1	7 (see note 3)
0	0	1	0	0	0	8
1	1	0	1	1	0	54
1	1	0	1	1	1	55
1	1	1	x	x	х	NA

1. The LDF values of 5, 6 and 7 cannot be used when fractional synthesis mode is ON (PLL_FR_CTRL = 1)



6 Digital processing stage

6.1 Signal processing flow


The STA321 provides 4 channels of audio signal processing. The block diagram is shown in the following figure.

Left and right channels coming from the two serial audio interfaces and ADC (left and right channels) are fed into the selection multiplexer (controlled by register *SRCINSEL on page 128*), so that each channel can be connected to any desired processing chain. The four channels are then sample rate converted to the fixed internal sampling rate. Pre mix, EQ/tone processing, programmable delay, post mix, and volume/limiter make up the STA321 signal processing chain.

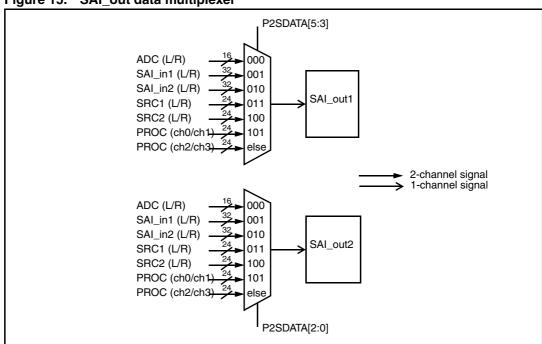


Figure 15. SAI_out data multiplexer

6.2 Sampling rate converter

The sample rate converter (SRC) re samples the input data source in order to send to the processing block an audio stream always with a fixed frequency:

sampling frequency, $f_S = f_{sys_clk} / 1024$ where f_{sys_clk} is the system clock frequency. In all the examples given here, $f_S = 96$ kHz.

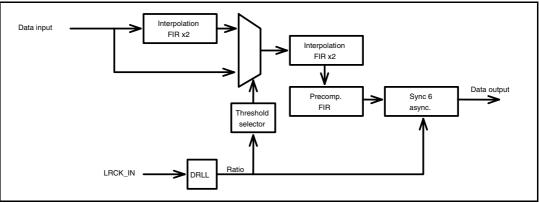


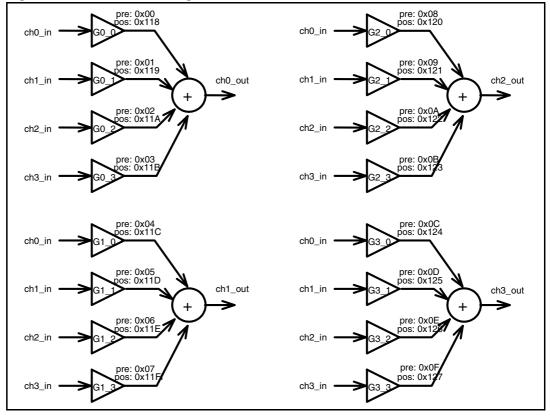
Figure 16. Sample rate converter block diagram

The selection between x2 FIR interpolation and direct input data is made automatically by the threshold selector block. If the input sampling frequency (measured by the DRLL) is higher than the SRC threshold (that is, more than 81 kHz) the direct connection is selected (first filter bypassed), otherwise the first x2 filter is added to the data path.

A 3-kHz hysteresis is fixed around the SRC threshold nominal value in order to prevent unstable oscillations.

STA321

6.3 Pre-EQ mix 1 and post-EQ mix


The four-channel data, received from the sample rate converters, is sent to Mix1 block to produce the four mixed-channel data for processing. All this data can be mapped to any internal processing channel through the appropriate configuration of the RAM memory locations.

Function	Channel	Memory location (RAM)
	Ch0	from 0x00
Pre mixer	Ch1	from 0x04
Pre mixer	Ch2	from 0x08
	Ch3	from 0x0c
	Ch0	from 0x118
Post mixer	Ch1	from 0x11c
	Ch2	from 0x120
	Ch3	from 0x124

Table 19.Channel mapping

The post-EQ mixer acts in a similar way for the output channels from the processing and directed to the FFX. It is placed after the delay block which provides a full 4-channel input mix on every channel.

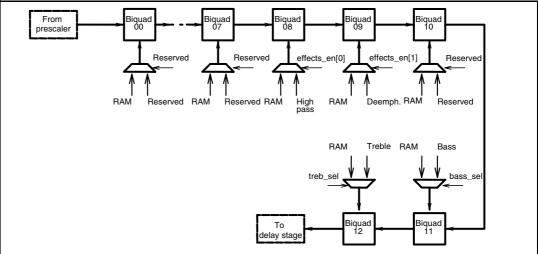
6.3.1 Presets

By default, each mixer output is connected to its corresponding input without any attenuation and without any mixing with the other channels:

 $ch0_out = ch0_in, ch1_out = ch1_in, ch2_out = ch2_in, ch3_out = ch3_in.$

6.4 Pre scaler

The pre scale block, which precedes the first biquad, could be used to attenuate the input signal when the filters of the processing chain have a gain that could reach the clamping value.


Each channel has a dedicated 24-bit signed multiplier in the range -1 (0x800000) to almost +1 (0x7FFFFF).

6.4.1 Presets

By default, all pre-scale factors are set to 0x7FFFFF

6.5 Equalization, tone control and effects

Figure 18. EQ/tone block diagram

Four channels of input data are fed to the EQ processing block which provides 13 user-programmable biquad filters per channel as shown in *Figure 18* above.

A description of the biquad programming is given in Section 6.14 on page 44.

Some filter coefficients are pre-programmed and stored in the non-volatile memory in order to supply particular EQ effects (see *Figure 19* and *Table 20 on page 38*).

The selection of RAM, ROM bass/treble or ROM effects is made using registers EFFS_EN_CHn *on page 109* for the effects and BASS_SELn_R *on page 111* and TREB_SELn_R *on page 113* for the bass/treble. Each biquad can be configured independently.

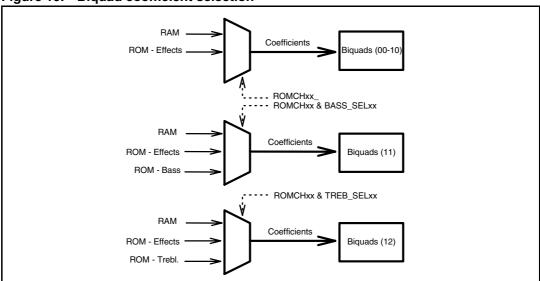
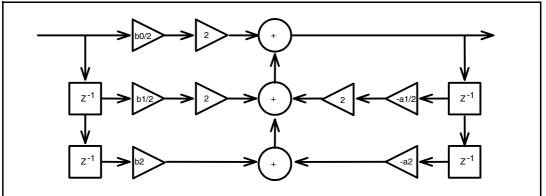


Figure 19. Biquad coefficient selection

Table 20. EQ control signals

Signal name	Description	Channel	Register addr	
		Ch0	0x71	
offecte on[1]	1: anabla daomahaayaa filtar	Ch1	0x73	
effects_en[1]	1: enable deemphasysa filter	Ch2	0x73	
		Ch3	0x77	
		Ch0 0x78		
bass_sel[5]	1: enable bass tone control	Ch1	0X79	
Dass_sel[0]		Ch2	0X7A	
		Ch3	0X7B	
		Ch0	0X7C	
trob col[5]	1: enable treble tone control	Ch1		
treb_sel[5]		Ch2	0X7E	
		Ch3	0X7F	



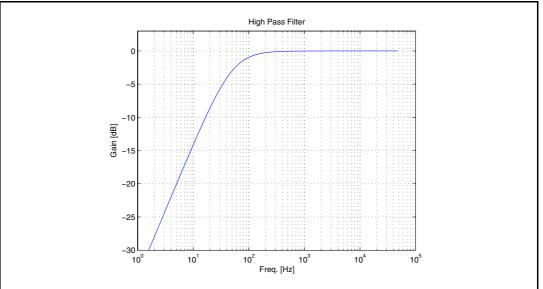
6.6 Biquads

The biquads are based on the following equation and is shown diagramatically in *Figure 20*. Y[n] = b0 * X[n] + b1 * X[n-1] + b2 * X[n-2] - a1 * Y[n-1] - a2 * Y[n-2]

where Y[n] represents the output and X[n] represents the input. Fractional multipliers are 24-bit signed with coefficient values in the range -1 (0xFFFFF) to +1 (0x7FFFFF).

Figure 20. Biquad filter

6.6.1 Presets


By default all the biquads values in RAM are set to give a bypass function; in actual fact, the signal passes through unchanged. The coefficients for this are:

a1/2 = 0, a2/2 = 0, b0/2 = 0.5 (0x400000), b1/2 = 0, b2/2 = 0.

6.7 High-pass filter

The standard high-pass filter is provided by the STA321

Figure 21. High-pass filter frequency response

The standard deemphasis filter is provided by the STA321.

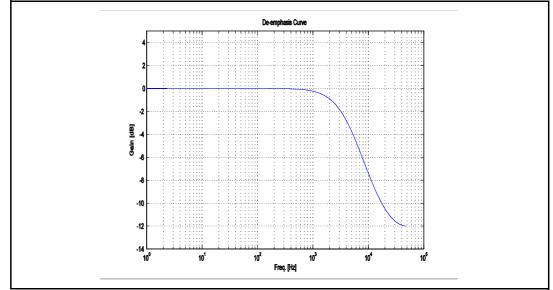


Figure 22. Deemphasis filter frequency response

6.9 Bass and treble control

Preset values for the 11th and 12th biquads of every channel are stored in ROM in order to achieve a bass and treble tone control.

They are channel independent and have 24 curves ranging from -12 to +12 dB gain with 1 dB steps. Their selection (and enable) is via registers $BASS_SELx_R$ and $TREB_SELx_R$ where x is the number of the channel to be equalized.

The EQ curve and filter cut-off frequencies are shown in Figure 23 and Figure 24.

With a sampling frequency of 96 kHz (inside the processing block), the cut-off frequencies are 3 kHz for treble curves and 150 Hz for bass curves.

Figure 23. Frequency responses of treble control at 1-dB gain steps

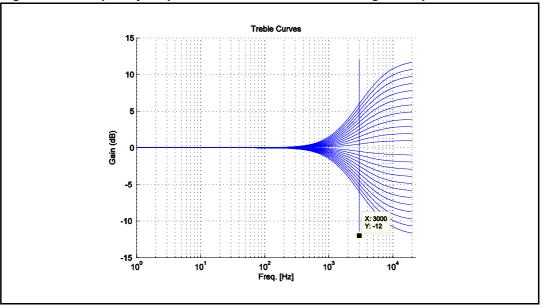
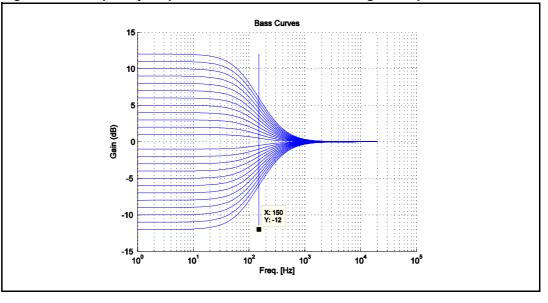



Figure 24. Frequency responses of bass control at 1-dB gain steps

6.9.1 Configuration example

This is an example of the tone control register setup. It is assumed that every peripheral is already configured and working correctly.

Table 21 gives the register values to obtain +12 dB of bass on all channels and -10 dB of treble on channels 0 and 1.

Register - Address	Programmed value	Description
BASS_SEL0_R	0x38	CH0 +12 dB bass
BASS_SEL1_R	0x38	CH1 +12 dB bass
BASS_SEL2_R	0x38	CH2 +12 dB bass
BASS_SEL3_R	0x38	CH3 +12 dB bass
TREB_SEL0_R	0x22	CH0 -10 dB treble
TREB_SEL1_R	0xx22	CH1 - 10 dB treble

Table 21. Selecting EQ curves

6.10 Programmable delay

Every channel, just after the biquads stage, is connected to a dedicated delay block.

The length of the delay is stored in RAM at location 0x128 and can vary from 0 to 35 samples. The corresponding time delay depends on the processing sampling frequency.

6.10.1 Presets

The delay of every channel is set to 0.

6.11 Volume and mute control

The STA321 provides a flexible volume and mute control stage. Using the registers *VOLCH0* to *VOLCH3 on page 122* it is possible to set the volume for each channel individually from +36 dB to -105 dB with 0.5-dB steps.

There is a master volume control, register *MVOL on page 120*, as well. The master volume adds an offset to all the individual volume settings.

The mute function offers the possibility to turn off the sound by reducing the volume setting to -127.5 dB. It could be activated in two ways:

- register *FFXCFG0 on page 82* provides a dedicated mute control for each channel.
- pin MUTE, driven by an external signal, puts all four channels into mute mode.

Register *VOLCFG on page 120* provides some flexibility to set how the mute and volume change procedures are applied. If bit SVOL_ONx is activated the volume of channel x is changed gradually (soft volume or soft mute); using a ramp it starts from the current value and goes down to the target value or to -127.5 dB for mute. The slope of the ramp is set with with the value TIM_SVOL which represents how many samples are needed to achieve a 0.5-dB step.

$$t_{STEP} = 2^{TIM}SVOL / f_S$$

The ramp procedure ends when the target volume or mute level is reached. The time for the volume change is calculated as:

t_{CHANGE} = (volume_{CURRENT} - volume_{TARGET}) / 0.5 * t_{STEP}

If SVOL_ONx is not used, the volume and mute are set instantaneously.

The STA321 also has the possibility to put the FFX into mute in the event of bad input data using register FFXCFG0. If bit BAD_CKS_M is set to 1 the FFX is muted when BICLK and LRCLK do not meet the specifications. If MIS_BICK_M is set to 1 the FFX is muted when BICLK is missing. The mute can be applied gradually or abruptly via bit BAD_IN_M.

6.12 Limiter (clamping)


The saturation stage provides an individual or a global limitation on the output signal amplitude such that if the signal is above the limiting value then it is truncated (clamped).

A 23-bit saturation value made up using registers SATCHxCFG1, SATCHxCFG2 and SATCHxCFG3 can be set for each channel x.

However, if bit 7 of register *SATCH0CFG1 on page 116* is set to 1, all the channels take the saturation value of channel 0 and ignore the individual settings.

6.13 FFX channel re-mapping

Figure 25. FFX re-mapping

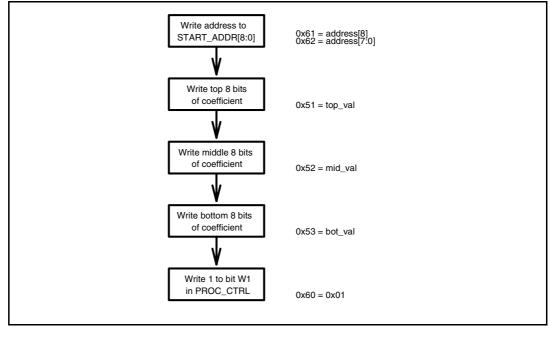
The channels are re-mapped through registers *PWMMAP1*, *PWMMAP2* and *PWMMAP3* on page 86. The default configuration routes the channels directly to their respective CB/EA signals:

pwm_1a -> cb_pwm_1
pwm_1b -> cb_pwm_2
pwm_2a -> cb_pwm_3
pwm_2b -> pwm_00 (PWM00)
pwm_3a -> ea_pwm_1 (EAPWM1)
pwm_3b -> ea_pwm_2 (EAPWM2)
pwm_4a -> ea_pwm_3 (EAPWM3)
pwm_4b -> ea_pwm_4 (EAPWM4)

6.14 Memory programming

Table 22 on page 47 shows the RAM mapping for the programmable functions in the signal processing stage. Changing or reading this data is done through the I²C interface in either single-word mode or in multi-word mode. Register *PROCCTRL on page 107* sets the desired mode and whether to read or write:

- 1-word mode: this is for write only; the address of the memory location must be specified in registers *START_ADDR2* and *START_ADDR1* on page 108 and the value of the parameter must be written into registers *I2CB0_TOP*, *I2CB0_MID* and *I2CB0_BOT* on page 102.
- 5-word mode: in this case it is possible to write/read 5 contiguous locations. Only the address of the first one must be specified in registers START_ADD1-2, all the others are generated automatically. The values of the parameters must be placed in (or taken from) registers *I2CB0_TOP*-BOT, *I2CB1_TOP*-BOT, *I2CB2_TOP*-BOT, *I2CA1_TOP*-BOT, *I2CA2_TOP*-BOT.

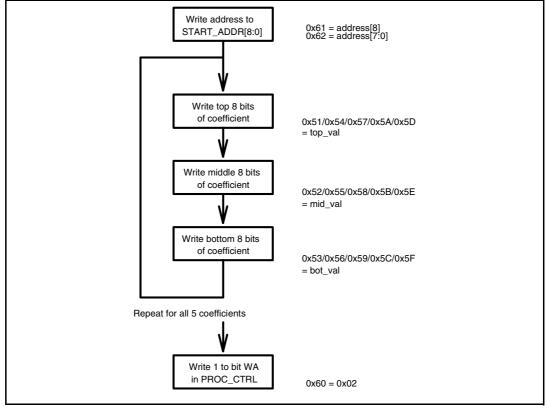

The 5-word mode is particular useful during the biquad programming when a set of five coefficients needs to be updated. Not only is it more efficient to change all of them at the same time but it avoids the generation of possible unpleasant acoustical side-effects.

The following sections explain how to implement this programming using the I²C interface.

6.14.1 Writing one coefficient/location to RAM

- Write RAM address to registers START_ADDR2 and START_ADDR1
- (b0) Write 8 MSBs of coefficient in register I2CB0_TOP
- Write 8 middle bits of coefficient in register I2CB0_MID
- Write 8 LSBs of coefficient in register I2CB0_BOT
- Write 1 to bit W1 in register PROCCTRL.

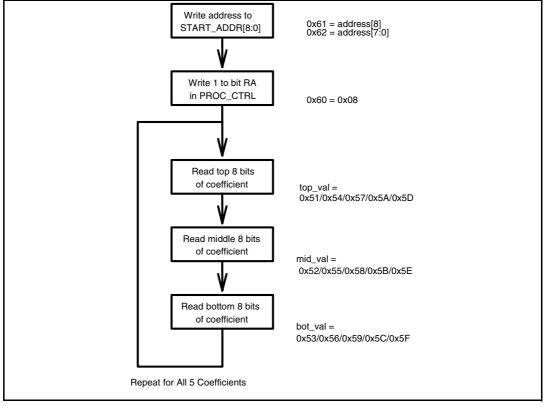
Figure 26. Writing RAM location



6.14.2 Writing a set of five coefficients/locations to RAM

- Write RAM address of b0 to registers START_ADDR2 and START_ADDR1
- (b0) Write 8 MSBs of coefficient in register I2CB0_TOP
- Write 8 middle bits of coefficient in register I2CB0_MID
- Write 8 LSBs of coefficient in register *I2CB0_BOT*
- (b1) Write 8 MSBs of coefficient in register I2CB1_TOP
- Write 8 middle bits of coefficient in register I2CB1_MID
- Write 8 LSBs of coefficient in register I2CB1_BOT
- (b2) Write 8 MSBs of coefficient in register I2CB2_TOP
- Write 8 middle bits of coefficient in register I2CB2_MID
- Write 8 LSBs of coefficient in register I2CB2_BOT
- (a1) Write 8 MSBs of coefficient in register I2CA1_TOP
- Write 8 middle bits of coefficient in register I2CA1_MID
- Write 8 LSBs of coefficient in register I2CA1_BOT
- (a2) Write 8 MSBs of coefficient in register I2CA2_TOP
- Write 8 middle bits of coefficient in register I2CA2_MID
- Write 8 LSBs of coefficient in register I2CA2_BOT
- Write 1 to bit WA in register *PROCCTRL*.

Figure 27. Writing five contiguous RAM locations



6.14.3 Reading a set of five coefficients/locations from RAM

- Write RAM address of b0 to registers START_ADDR2 and START_ADDR1
- Write 1 to bit RA in register PROCCTRL
- (b0) Read 8 MSBs of coefficient in register I2CB0_TOP
- Read 8 middle bits of coefficient in register I2CB0_MID
- Read 8 LSBs of coefficient in register I2CB0_BOT
- (b1) Read 8 MSBs of coefficient in register I2CB1_TOP
- Read 8 middle bits of coefficient in register I2CB1_MID
- Read 8 LSBs of coefficient in register I2CB1_BOT
- (b2) Read 8 MSBs of coefficient in register I2CB2_TOP
- Read 8 middle bits of coefficient in register I2CB2_MID
- Read 8 LSBs of coefficient in register I2CB2_BOT
- (a1) Read 8 MSBs of coefficient in register I2CA1_TOP
- Read 8 middle bits of coefficient in register I2CA1_MID
- Read 8 LSBs of coefficient in register I2CA1_BOT
- (a2) Read 8 MSBs of coefficient in register I2CA2_TOP
- Read 8 middle bits of coefficient in register I2CA2_MID
- Read 8 LSBs of coefficient in register I2CA2_BOT

Figure 28. Reading five contiguous RAM locations

STA321

6.14.4 RAM mapping

Table 22. RAM mapping for processing stage

Addr	Descr.	Default	Block	Addr	Descr.	Default	Block
0x000	ch0i	0x7FFFFF		0x021	#2 a2	0x000000	
0x001	ch1i	0x000000	Bro miv: ab0	0x022	#2 a1	0x000000	
0x002	ch2i	0x000000	Pre mix: ch0	0x023	#3 b0	0x400000	
0x003	ch3i	0x000000		0x024	#3 b1	0x000000	
0x004	ch0i	0x000000		0x025	#3 b2	0x000000	
0x005	ch1i	0x7FFFFF	Bro miv: oh1	0x026	#3 a2	0x000000	
0x006	ch2i	0x000000	Pre mix: ch1	0x027	#3 a1	0x000000	
0x007	ch3i	0x000000		0x028	#3 b0	0x400000	
0x008	ch0i	0x000000		0x029	#4 b1	0x000000	
0x009	ch1i	0x000000	Dra miyu ah 0	0x02A	#4 b2	0x000000	
0x00A	ch2i	0x7FFFFF	Pre mix: ch2	0x02B	#4 a2	0x000000	
0x00B	ch3i	0x000000		0x02C	#4 a1	0x000000	
0x00C	ch0i	0x000000		0x02D	#5 b0	0x400000	
0x00D	ch1i	0x000000	Bro miv: ob?	0x02E	#5 b1	0x000000	
0x00E	ch2i	0x000000	Pre mix: ch3	0x02F	#5 b2	0x000000	
0x00F	ch3i	0x7FFFFF		0x030	#5 a2	0x000000	
0x010	ch0	0x7FFFFF		0x031	#5 a1	0x000000	(Ch0-biquad)
0x011	ch1	0x7FFFFF	Bro ocolor	0x032	#6 b0	0x400000	
0x012	ch2	0x7FFFFF	Pre scaler	0x033	#6 b1	0x000000	
0x013	ch3	0x7FFFFF		0x034	#6 b2	0x000000	
0x014	#0 b0	0x400000		0x035	#6 a2	0x000000	
0x015	#0 b1	0x000000		0x036	#6 a1	0x000000	
0x016	#0 b2	0x000000		0x037	#7 b0	0x400000	
0x017	#0 a2	0x000000		0x038	#7 b1	0x000000	
0x018	#0 a1	0x000000		0x039	#7 b2	0x000000	
0x019	#1 b0	0x400000		0x03A	#7 a2	0x000000	
0x01A	#1 b1	0x000000	Ch0-biquad	0x03B	#7 a1	0x000000	
0x01B	#1 b2	0x000000		0x03C	#8 b0	0x400000	
0x01C	#1 a2	0x000000		0x03D	#8 b1	0x000000	
0x01D	#1 a1	0x000000		0x03E	#8 b2	0x000000	
0x01E	#2 b0	0x400000		0x03F	#8 a2	0x000000	
0x01F	#2 b1	0x000000		0x040	#8 a1	0x000000	
0x020	#2 b2	0x000000		0x041	#9 b0	0x400000	

Table 22		парріпу	or processing	3	laye (co			
Addr	Descr.	Default	Block		Addr	Descr.	Default	Block
0x042	#9 b1	0x000000			0x065	#3 b1	0x000000	
0x043	#9 b2	0x000000			0x066	#3 b2	0x000000	
0x044	#9 a2	0x000000			0x067	#3 a2	0x000000	
0x045	#9 a1	0x000000			0x068	#3 a1	0x000000	
0x046	#10 b0	0x400000			0x069	#3 b0	0x400000	
0x047	#10 b1	0x000000			0x06A	#4 b1	0x000000	
0x048	#10 b2	0x000000			0x06B	#4 b2	0x000000	
0x049	#10 a2	0x000000			0x06C	#4 a2	0x000000	
0x04A	#10 a1	0x000000			0x06D	#4 a1	0x000000	
0x04B	#11 b0	0x400000	(Ch0-biquad)		0x06E	#5 b0	0x400000	
0x04C	#11 b1	0x000000			0x06F	#5 b1	0x000000	
0x04D	#11 b2	0x000000			0x070	#5 b2	0x000000	
0x04E	#11 a2	0x000000			0x071	#5 a2	0x000000	
0x04F	#11 a1	0x000000			0x072	#5 a1	0x000000	
0x050	#12 b0	0x400000			0x073	#6 b0	0x400000	
0x051	#12 b1	0x000000			0x074	#6 b1	0x000000	
0x052	#12 b2	0x000000			0x075	#6 b2	0x000000	
0x053	#12 a2	0x000000			0x076	#6 a2	0x000000	(Ch1-biquad)
0x054	#12 a1	0x000000			0x077	#6 a1	0x000000	
0x055	#0 b0	0x400000			0x078	#7 b0	0x400000	
0x056	#0 b1	0x000000			0x079	#7 b1	0x000000	
0x057	#0 b2	0x000000			0x07A	#7 b2	0x000000	
0x058	#0 a2	0x000000			0x07B	#7 a2	0x000000	
0x059	#0 a1	0x000000			0x07C	#7 a1	0x000000	
0x05A	#1 b0	0x400000			0x07D	#8 b0	0x400000	
0x05B	#1 b1	0x000000			0x07E	#8 b1	0x000000	
0x05C	#1 b2	0x000000	Ch1 biguad		0x07F	#8 b2	0x000000	
0x05D	#1 a2	0x000000	Ch1-biquad		0x080	#8 a2	0x000000	
0x05E	#1 a1	0x000000			0x081	#8 a1	0x000000	
0x05F	#2 b0	0x400000			0x082	#9 b0	0x400000	
0x060	#2 b1	0x000000			0x083	#9 b1	0x000000	
0x061	#2 b2	0x000000			0x084	#9 b2	0x000000	
0x062	#2 a2	0x000000			0x085	#9 a2	0x000000	
0x063	#2 a1	0x000000			0x086	#9 a1	0x000000	
0x064	#3 b0	0x400000			0x087	#10 b0	0x400000	

 Table 22.
 RAM mapping for processing stage (continued)

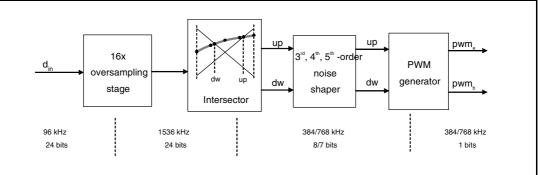
Table 22. RAM mapping for processing stage (continued)								
Addr	Descr.	Default	Block		Addr	Descr.	Default	Block
0x088	#10 b1	0x000000			0x0AB	#4 b1	0x000000	
0x089	#10 b2	0x000000			0x0AC	#4 b2	0x000000	
0x08A	#10 a2	0x000000			0x0AD	#4 a2	0x000000	
0x08B	#10 a1	0x000000			0x0AE	#4 a1	0x000000	
0x08C	#11 b0	0x400000			0x0AF	#5 b0	0x400000	
0x08D	#11 b1	0x000000			0x0B0	#5 b1	0x000000	
0x08E	#11 b2	0x000000	(Ch1-biquad)		0x0B1	#5 b2	0x000000	
0x08F	#11 a2	0x000000	(CITI-biquad)		0x0B2	#5 a2	0x000000	
0x090	#11 a1	0x000000			0x0B3	#5 a1	0x000000	
0x091	#12 b0	0x400000			0x0B4	#6 b0	0x400000	
0x092	#12 b1	0x000000			0x0B5	#6 b1	0x000000	
0x093	#12 b2	0x000000			0x0B6	#6 b2	0x000000	
0x094	#12 a2	0x000000			0x0B7	#6 a2	0x000000	
0x095	#12 a1	0x000000			0x0B8	#6 a1	0x000000	
0x096	#0 b0	0x400000			0x0B9	#7 b0	0x400000	
0x097	#0 b1	0x000000			0x0BA	#7 b1	0x000000	
0x098	#0 b2	0x000000			0x0BB	#7 b2	0x000000	
0x099	#0 a2	0x000000			0x0BC	#7 a2	0x000000	(Ch2-biquad)
0x09A	#0 a1	0x000000			0x0BD	#7 a1	0x000000	
0x09B	#1 b0	0x400000			0x0BE	#8 b0	0x400000	
0x09C	#1 b1	0x000000			0x0BF	#8 b1	0x000000	
0x09D	#1 b2	0x000000			0x0C0	#8 b2	0x000000	
0x09E	#1 a2	0x000000			0x0C1	#8 a2	0x000000	
0x09F	#1 a1	0x000000			0x0C2	#8 a1	0x000000	
0x0A0	#2 b0	0x400000	Ch2-biquad		0x0C3	#9 b0	0x400000	
0x0A1	#2 b1	0x000000			0x0C4	#9 b1	0x000000	
0x0A2	#2 b2	0x000000			0x0C5	#9 b2	0x000000	
0x0A3	#2 a2	0x000000			0x0C6	#9 a2	0x000000	
0x0A4	#2 a1	0x000000			0x0C7	#9 a1	0x000000	
0x0A5	#3 b0	0x400000			0x0C8	#10 b0	0x400000	1
0x0A6	#3 b1	0x000000			0x0C9	#10 b1	0x000000	1
0x0A7	#3 b2	0x000000			0x0CA	#10 b2	0x000000	
0x0A8	#3 a2	0x000000			0x0CB	#10 a2	0x000000	
0x0A9	#3 a1	0x000000			0x0CC	#10 a1	0x000000	1
0x0AA	#3 b0	0x400000			0x0CD	#11 b0	0x400000	1

 Table 22.
 RAM mapping for processing stage (continued)

Table 2			for processing	3	<u> </u>	,		
Addr	Descr.	Default	Block		Addr	Descr.	Default	Block
0x0CE	#11 b1	0x000000			0x0F1	#5 b1	0x000000	
0x0CF	#11 b2	0x000000			0x0F2	#5 b2	0x000000	
0x0D0	#11 a2	0x000000			0x0F3	#5 a2	0x000000	
0x0D1	#11 a1	0x000000			0x0F4	#5 a1	0x000000	
0x0D2	#12 b0	0x400000	(Ch2-biquad)		0x0F5	#6 b0	0x400000	
0x0D3	#12 b1	0x000000			0x0F6	#6 b1	0x000000	
0x0D4	#12 b2	0x000000			0x0F7	#6 b2	0x000000	
0x0D5	#12 a2	0x000000			0x0F8	#6 a2	0x000000	
0x0D6	#12 a1	0x000000			0x0F9	#6 a1	0x000000	
0x0D7	#0 b0	0x400000			0x0FA	#7 b0	0x400000	
0x0D8	#0 b1	0x000000			0x0FB	#7 b1	0x000000	
0x0D9	#0 b2	0x000000			0x0FC	#7 b2	0x000000	
0x0DA	#0 a2	0x000000			0x0FD	#7 a2	0x000000	
0x0DB	#0 a1	0x000000			0x0FE	#7 a1	0x000000	
0x0DC	#1 b0	0x400000			0x0FF	#8 b0	0x400000	
0x0DD	#1 b1	0x000000			0x100	#8 b1	0x000000	
0x0DE	#1 b2	0x000000			0x101	#8 b2	0x000000	
0x0DF	#1 a2	0x000000			0x102	#8 a2	0x000000	(Ch3-biquad)
0x0E0	#1 a1	0x000000			0x103	#8 a1	0x000000	
0x0E1	#2 b0	0x400000			0x104	#9 b0	0x400000	Ī
0x0E2	#2 b1	0x000000			0x105	#9 b1	0x000000	Ī
0x0E3	#2 b2	0x000000	Ch2 bigued		0x106	#9 b2	0x000000	Ī
0x0E4	#2 a2	0x000000	Ch3-biquad		0x107	#9 a2	0x000000	
0x0E5	#2 a1	0x000000			0x108	#9 a1	0x000000	
0x0E6	#3 b0	0x400000			0x109	#10 b0	0x400000	Ī
0x0E7	#3 b1	0x000000			0x10A	#10 b1	0x000000	
0x0E8	#3 b2	0x000000			0x10B	#10 b2	0x000000	
0x0E9	#3 a2	0x000000			0x10C	#10 a2	0x000000	
0x0EA	#3 a1	0x000000			0x10D	#10 a1	0x000000	
0x0EB	#3 b0	0x400000			0x10E	#11 b0	0x400000	1
0x0EC	#4 b1	0x000000			0x10F	#11 b1	0x000000	1
0x0ED	#4 b2	0x000000			0x110	#11 b2	0x000000	1
0x0EE	#4 a2	0x000000			0x111	#11 a2	0x000000	Ì
0x0EF	#4 a1	0x000000			0x112	#11 a1	0x000000	†
0x0F0	#5 b0	0x400000			0x113	#12 b0	0x400000	1

 Table 22.
 RAM mapping for processing stage (continued)

Table 22. RAW mapping for processing stage (continued)								
Addr	Descr.	Default	Block		Addr	Descr.	Default	Block
0x114	#12 b1	0x000000			0x120	ch0i	0x000000	
0x115	#12 b2	0x000000	(Ch2 bigued)		0x121	ch1i	0x000000	Post mix: ch2
0x116	#12 a2	0x000000	(Ch3-biquad)		0x122	ch2i	0x7FFFFF	POST MIX: CH2
0x117	#12 a1	0x000000			0x123	ch3i	0x000000	
0x118	ch0i	0x7FFFFF			0x124	ch0i	0x000000	
0x119	ch1i	0x000000	Doot mive abo		0x125	ch1i	0x000000	Dect mixt ch2
0x11A	ch2i	0x000000	Post mix: ch0		0x126	ch2i	0x000000	Post mix: ch3
0x11B	ch3i	0x000000			0x127	ch3i	0x7FFFFF	
0x11C	ch0i	0x000000			0x128	delay	0x000000	Delay
0x11D	ch1i	0x7FFFFF	Doct mixe oh 1		-	-	-	-
0x11E	ch2i	0x000000	Post mix: ch1		-	-	-	-
0x11F	ch3i	0x000000			-	-	-	-


 Table 22.
 RAM mapping for processing stage (continued)

7 FFX

7.1 Functional description

Figure 29. FFX processing schematic

The FFX modulator is a digital low-distortion low-noise PCM-to-PWM converter, based on a pseudo-natural sampling technique, which converts the 4 by 24-bit digital inputs into differential pulse-width modulated outputs at a frequency of either 384 or 768 kHz (selected by register *FFXCFG2*, bit PWM_FREQ) and with a time resolution of 98.304 MHz. This gives a dynamic range that is approaching 100 dB.

The signal is compared with two different carrier signals (rising and falling sawtooth waveforms at the PWM frequency), to get a double edge modulation and to have the possibility to drive a differential (full bridge) power stage.

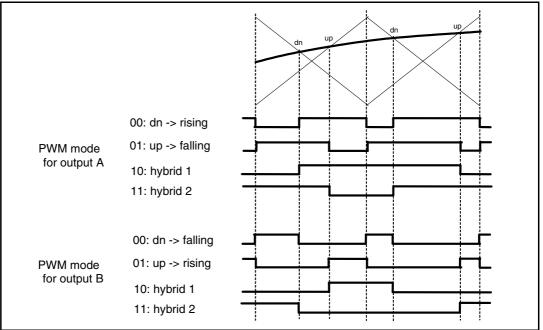
The order of the noise shaper can be modified by the user, via register bit *FFXCFG2*.NS_ORD, depending on the acceptable amount of noise out of the audio band, that is, noise above 20 kHz. The higher the noise shaper order, the better is the SNR but the higher is the out of band noise.

The PWM generator block converts the amplitude quantization into time quantization to generate a PWM signal.

7.2 Modulation schemes

It is possible to use each of the two intersections with up-carrier and down-carrier to force a rising or a falling edge on each of the two PWM outputs (A and B). This flexibility is achieved through programming registers PWMOnCFG1-2 (where n is the number, 1 to 4, of the output) beginning *on page 91*.

PWM output A can be modulated in one of, or a hybrid of, two basic ways via bits PM_nA:

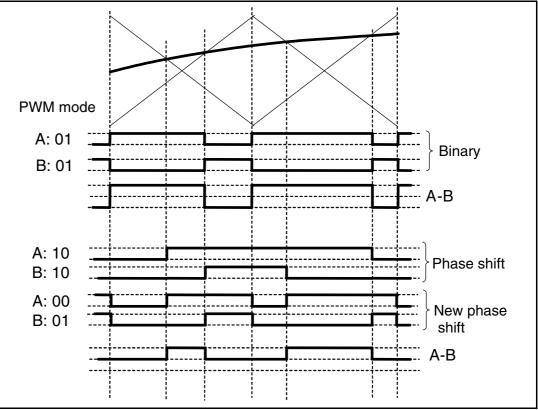

- with the wave starting from level 0 at the beginning of the period, and rising to level 1 when the audio signal intersects the down-carrier
- with the wave starting from level 1 at the beginning of the period, and falling to level 0 when the audio signal intersects the up-carrier;

PWM output B can be similarly modulated via bits PM_nB:

- with the wave starting from level 1 at the beginning of the period, and falling to level 0 when the audio signal intersects the down-carrier;
- with the wave starting from level 0 at the beginning of the period, and rising to level 1 when the audio signal intersects the up-carrier;

The hybrid mode is the toggling between the two methods of modulation for each PWM period.

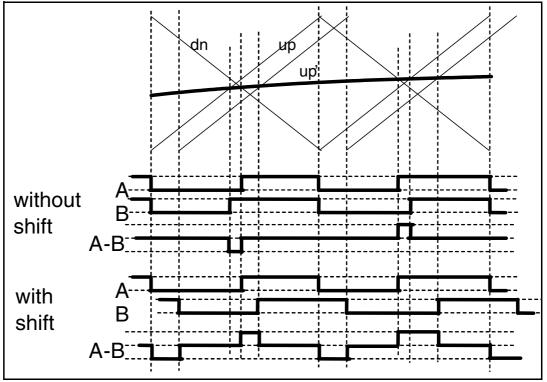
The various single output modulation schemes can be combined together on the two outputs to get the desired differential modulation schemes.



In particular, for the traditional schemes (binary, phase shift), and the new one (new phase shift modulation) the mode bits must be set according to *Table 23* below.

 Table 23.
 Modulation type with register programming

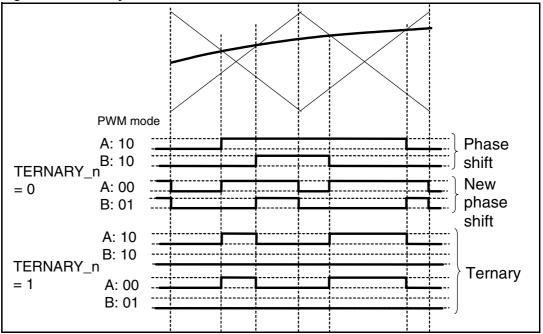
Register bit PWMOnCFG1.PM_nA	Register bit PWMOnCFG2.PM_nB	Resulting modulation
00	00	binary
01	01	binary
10	10	- phase shift
11	11	
00	01	
01	00	new phase shift



7.3 PWM shift feature

In new phase shift modulation it is possible to shift one output with respect to the other one. This can reduce the noise generated by the simultaneous switching of two or more outputs. The shift is performed through by programming bits PS_nA and PS_nB in registers PWMOnCFG1-2 (where n is the number, 1 to 4, of the output) beginning *on page 91*.

Figure 32. New phase shift modulation with shift feature



7.4 Ternary mode

The ternary mode feature is also available. It is activated by bits TERNARY_n in registers PWMOnCFG0 beginning *on page 91* (where n is the number, 1 to 4, of the output).

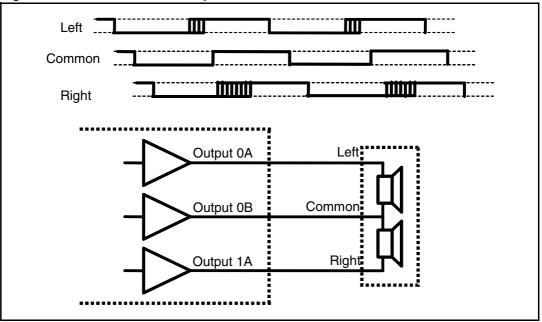
This feature overrides the PWM mode bits settings PM_nA and PM_nB.

7.5 Minimum pulse limitation

The FFX modulator has a minimum pulse limitation feature which has a double purpose:

- to limit the maximum/minimum duty cycle when the audio signal is near to full scale;
- to have the commutations on the same channel outputs A and B separated by a minimum pulse distance.

The first feature is always enabled.


The second feature is enabled with register bit PWMOnCFG0.MP_ZERO_n, where n is the output 1 to 4. It is possible to prevent the commutations on outputs A and B to happen exactly at the same time using bit AZPLS_n. The minimum pulse size is determined by the number of system clock (98.304 MHz) periods programmed in bits MIN_PLS_n[3:0].

7.6 Headphone modulation

The FFX modulator can be used for driving a headphone load with the common terminal available, together with left and right terminals.

In this case it is possible to drive the common terminal with a 50% fixed duty cycle square wave coming from output B of the modulator, by setting bit HALFB_n to 1, and the left and right terminals from the output A of two different channels. For the three outputs used in this way bits PM_nA and PM_nB can be 00 or 01.

7.7 pfStart[™] operation

In order to avoid pop noise the bypass capacitor, situated between the filtered amplifier output and the load in single-ended applications, needs to be pre-charged to half of the power supply voltage. This is usually done by connecting a resistive partition to the output and then disconnecting it at the end of the charging phase (see the analog pop free description in section 9).

In the STA321 the FFX digital pop-free feature allows the digital pre-charging of the bypass capacitor using the amplifier instead of a resistive partition. This active pre-charge is also faster than the resistive partition method. The digital pop-free function can be independently set on both power stages, that is, the CMOS bridge stage using bit CB_PFDIG and the embedded amplifier stage using bit EA_PFDIG in register *FFXCFG2 on page 83*.

Registers CB_PFRAMP1-6 beginning *on page 97* and EA_PFRAMP1-6 beginning *on page 99* control the charging function. The register usage is given in the following description.

The capacitor is charged from zero to half the supply voltage with the PWM signal. By applying a suitable ramp to the input of the modulator the PWM signal begins from near 0% duty cycle to 50% duty cycle.

The method is based on a slow ramp signal (from ground to V_{CC} / 2), implemented using both pulse density modulation (PDM) and pulse width modulation (PWM). At the beginning of the ramp PDM is used starting from an initial value set by bits CBRMPINI and EARMPINI, and then switching to PWM when reaching a threshold value set by bits CBRMPTH and EARMPTH.

The total ramp time can be modified via bits EATIM_RMP and CBTIM_RMP.

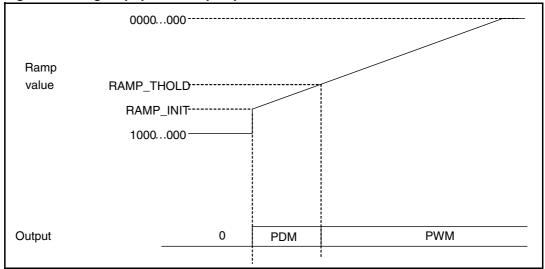


Figure 35. Digital pop-free ramp implementation

The PDM is realized with a noise shaper circuit, where the sampling time (Td) of the noise shaper is equal to the minimum pulse size set by bits CBRMP_MP and EARMP_MP.

7.8 PWM00 output

Pin PWM00 is an additional output with a maximum driving capability of 2 mA to control an external bridge or external operational amplifier.

By default, PWM00 is tied to logical 0. When register bit CKOCFG[0] is set to 1 then any FFX PWM channel output can be mapped to it.

When the CMOS bridge is in standby the output PWM00 is, by default, turned off. However, it is possible to have the FFX signal PWM3A as the PWM00 output by using bit 3 of register *FFXCFG0 on page 82*, and this whatever the status of power-down or the 3-state signals of both bridges, even if they are different from the normal operating mode where the output is 0 when in power-down or 3-state mode.

8 CMOS power stage

The CMOS half-bridge circuit of *Figure 36* is a single channel analog output power stage. There are three such output stages in the STA321, one for each of the outputs OUT1-3.

The switching mode is regulated by the logic circuit which ensures that the MOSFETs are switched in such a way as to avoid (or minimize) conditions where both the PMOS and the NMOS are conducting at the same time.

The input is a 1.8-V to 3.3-V level shifter followed by some combinational logic.

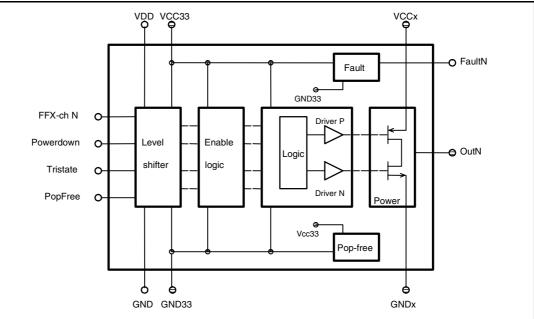


Figure 36. CMOS half bridge block diagram

Pin Name	Direction	Description
FFX-ch	In	Digital audio signal coming from FFX block
Powerdown	In	Powerdown signal coming from the FFX block
Tristate	In	3-state signal from the FFX block
PopFree	In	Pop-free signal from the FFX block
Fault	Out	Short-circuit fault output feedback signal to digital core (active low)
Out	Out	Channel half-bridge analog output
VCC33/GND33	Supply	Pre-driver analog supply
VDD/GND	Supply	Digital core supply generated by internal regulator
VCCx/GNDx	Supply	Half-bridge power supply

The CMOS bridge power rating can be calculated using the following formulas:

P (<1%) = $(R_L / 2) * (M * VCC / 2 / (R_L + 2 * R_{DS}))^2$ for BTL P (<1%) = $(R_L / 2) * (M * VCC / 2 / (R_L + R_{DS}))^2$ for single ended P (10%) = 1.28 * P(<1%)

where R_{DS} is composed of the MOST $\mathsf{R}_{\mathsf{DSON}}$ and the board and connector parasitic resistances (including power supplies and coils) and M is the modulation index obtained from

M = 1 - 2 * (MIN_PLS_n + 1) / $f_{clk_{ffx}} / \tau_{S}$

where MIN_PLS_n is the value in register PWMOnCFG0 for channel n, f_{clk_ffx} is the frequency of the FFX clock and τ_S is the PWM clock period (384 kHz or 768 kHz selected by register bit *FFXCFG2*.PWM_FREQ).

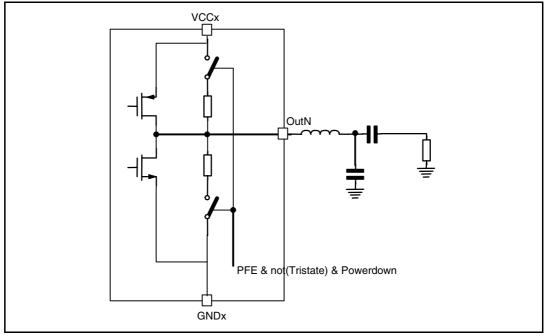

For the CMOS bridge, MIN_PLS_n can be set to 0; this gives M = 0.9922.

Table 25.Power output (at 1% THD) in headphone mode

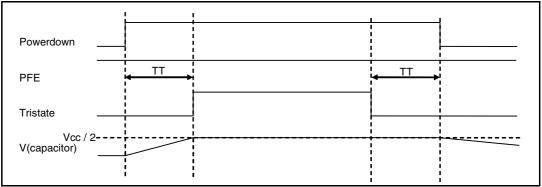
Load, R_L in Ω	Power, P in mW (for 3.3-V supply)
16	70
32	32

The analog pop_free function is available in the CMOS bridge circuit by setting the appropriate bridge start-up as per *Table 26*. The CMOS bridge enable and pop-free signals are generated from the three signals Powerdown, Tristate and PopFree provided by the digital core and controlled/configured through register bits *FFXCFG1*.CB_STBY, *FFXCFG1*.CB_TRISTn and *PFEFAULT*.PFEn for the three outputs, n = 1 to 3.

Figure 37. Analog pop-free schematic

Powerdown	Tristate	PopFree	Pop-free resistors	Bridge status		
0	0	0	Disconnected	3-state		
0	0	1	Disconnected	3-state		
1	0	1	Connected	3-state		
1	1	1	Disconnected	On		
1	1	0	Disconnected	On		

Table 26. Logic circuit at bridge input


At the appropriate time the two pop-free resistors allow the bypass capacitor to be charged to V_{CCx} / 2. The STA321 generates automatically the bridge start-up and switch-off sequence to provide the correct charging. The time TT in *Figure 38* below is set using registers CBTTF0-1 and CBTTP0-1. TT must be chosen for the specific application depending on the decoupling capacitor, load and power supply.

After powerdown is applied again the decoupling capacitor discharges slowly due to capacitor leakage.

The analog pop-free implementation cannot be used with the digital pfStart implementation

Both analog and digital pop-free features must be disabled if binary headphone modulation is used.

Figure 38.	Analog pop-free start-up and switch-off sequence
------------	--

The CMOS bridge circuit includes over-current protection. The FAULT signal indicates to the output the status of the over-current condition due to a short circuit. The over-current thresholds detected by the CMOS bridge are fixed at 1.8 A.

9 Fault detection and recovery

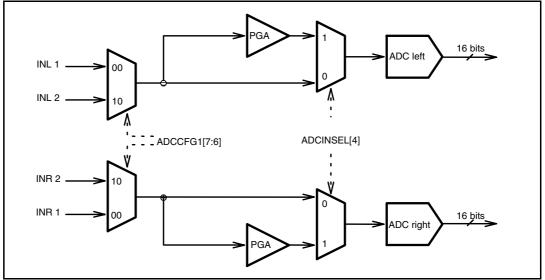
9.1 External amplifier

When Fault is reported on pin EAFTN and bit EA_TSFT_ON of register *FFXCFG2 on page 83* is active, then pin EATSN is reset to 0 and the embedded bridge outputs are put in the high-impedance state. When the fault signal disappears (that is, goes to 1) the embedded bridge is kept in 3-state for a time defined in register EATTF0-1 *on page 86*, after which time the outputs recover.

9.2 CMOS bridge

When Fault is reported to the digital core and CB_TSFT_ON of register *FFXCFG2 on page 83* is active then the tristate is activated thus putting the STA321 OUTn outputs in the high-impedance state. When the fault signal disappears, the CMOS bridge is kept in 3-state status for a time defined in register CBTTF0-1 *on page 88*, after which time the outputs recover.

10 ADC

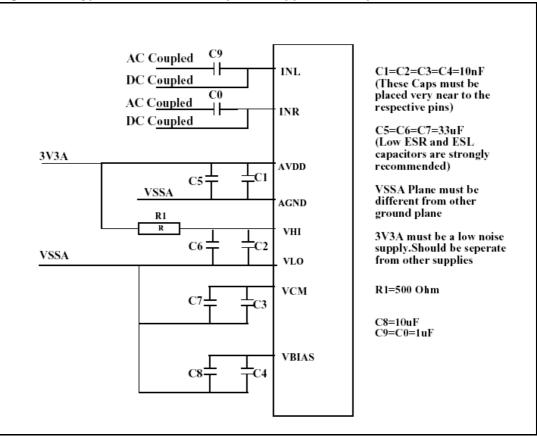

10.1 Description

The STA321 analog input is provided through a low-power, low-voltage complete low-cost analog-to-digital converter front end designed for stereo audio applications. It includes programmable gain amplifier, anti-aliasing filter, low-noise microphone biasing circuit, a third order MASH2-1 delta-sigma modulator, a digital decimating filter and a 1st-order DC-removal filter.

The ADC works with either a microphone input or a line input, selected using bit ADC_INSEL in register *ADCCFG0 on page 133*.

A programmable gain amplifier (PGA) is available in microphone-in mode giving the possibility to amplify the signal from 0 to 42 dB in steps of 6 dB using register bit *ADCCFG0*.ADC_PGA.

The ADC specifications are given in Table 6 on page 14.



10.2 Application schematic

Figure 40. Typical connections for power supplies and inputs

10.2.1 Configuration example

This is an example of the register setup for the ADC inputs. It is assumed that every peripheral is already configured and working correctly.

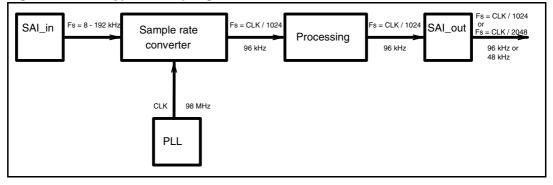
There are other configuration examples to help you get started please refer to other chapters and also to *Chapter 14: Register description on page 77* in order to get all the necessary and complementary details.

Table 27 shows the register settings for selecting INL2 and INR2 as input source for SRC and SAI_out1 and using the PGA with a 12-dB gain.

Table 27. Example register settings for ADC

Register Value Description		Description			
ADCCFG1	0x40	Selecting INL2 and INR2 as sources			
ADCCFG0	0x52	PGA Gain = +12 dB, PGA enabled, ADC clock on			
P2SDATA	0x40	ADC Data routed also to the SAI_out			

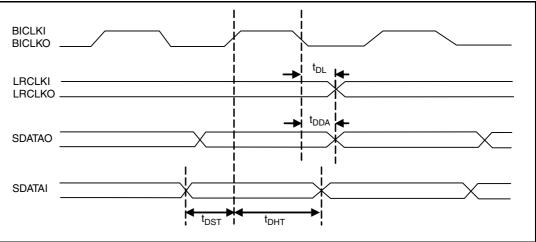
11 Serial audio interface


The data on pins SDATAI, SDATAO, LRCLKI and LRCLKO are always synchronous with the bit clock. The data on these pins changes with the BICLK active (or clocking) edge.

The BICLK strobe edge latches the data SDATAI, SDATAO, LRCLKI, LRCLKO; thus this data should be stable near the BICLK strobe edges. The slave device uses the strobe edges to latch the serial data internally.

The active and strobe edges can be selected to be the rising edge or the falling edge by appropriately programming register bits *SAI_IN1_CFG0*[7], *SAI_OUT_CFG0*[7] and *SAI_IN2_CFG0*[7].

The serial-to-parallel interface and the parallel-to-serial interface can have different sampling rates. *Figure 41* shows a typical setup.


Figure 41. SAI typical sampling rates

11.1 Master mode

In this mode BICLKI/BICLKO and LRCLKI/LRCLKO are configured as outputs and are generated by the core.

Figure 42. Timing diagram for master mode

Symbol	Parameter	Min	Тур	Max	Unit
t _{DL}	LRCLKI/LRCLKO propagation delay from BICLK active edge	0	-	10	ns
t _{DDA}	SDATAI propagation delay from BICLKI/O active edge	0	-	15	ns
t _{DST}	SDATAO setup time to BICLKI/O strobing edge	10	-	-	ns
t _{DHT}	SDATAO hold time from BICLKI/O strobing edge	10	-	-	ns

Table 28.Timing parameters for master mode

11.2 Slave mode

In this mode BICLKI/O and LRCLKI/O are configured as inputs and supplied by the external peripheral.

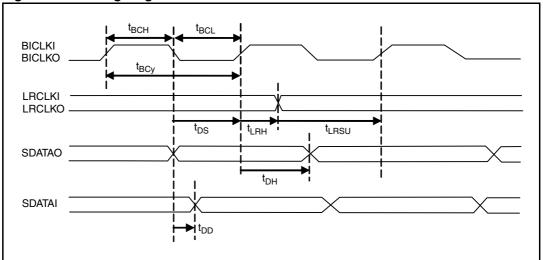
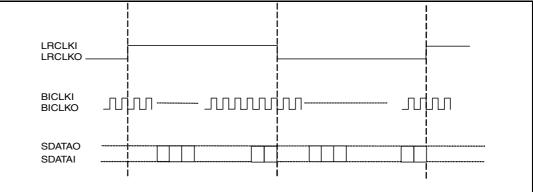


Figure 43. Timing diagram for slave mode

Table 29. Timing parameters for slave mode

Symbol	Parameter	Min	Тур	Max	Unit
t _{BCy}	BICLK cycle time	50	-	-	ns
t _{BCH}	BICLK pulse width high	20	-	-	ns
t _{BCL}	BICLK pulse width low	20	-	-	ns
t _{LRSU}	LRCLKI/LRCLKO setup time to BICLK strobing edge	10	-	-	ns
t _{LRH}	LRCLKI/LRCLKO hold time to BICLK strobing edge	10	-	-	ns
t _{DS}	SDATAO setup time to BICLK strobing edge	10	-	-	ns
t _{DH}	SDATAO hold time to BICLK strobing edge		-	-	ns
t _{DD}	SDATAI propagation delay from BICLK active edge	0	-	10	ns


11.3 Serial formats

Different audio formats are supported in both master and slave modes. Clock and data configurations can be customized to match most of the serial audio protocols available on the market.

Data length can be customized for 8, 16, 24 or 32 bits.

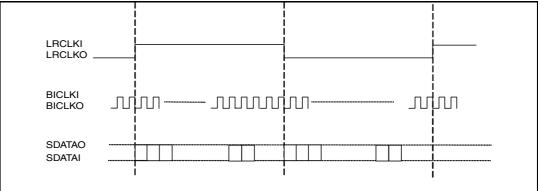
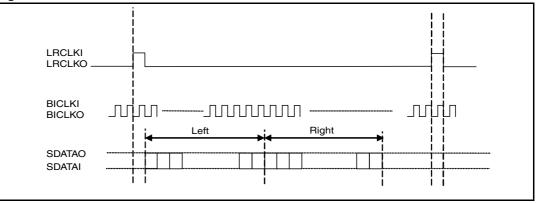

11.3.1 Right justified

Figure 44. Right justified serial format

11.3.2 Left justified


Figure 45. Left justified serial format

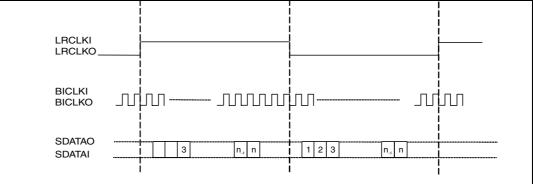
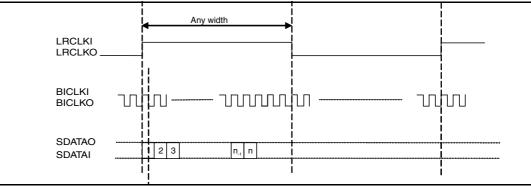

11.3.3 DSP

Figure 46. DSP serial format

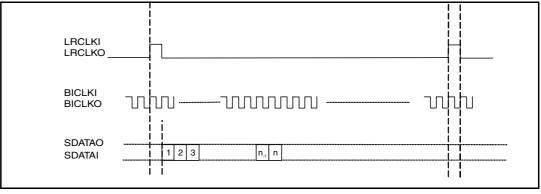
11.3.4 I²S



11.3.5 PCM/IF (non-delayed mode)

- MSB first
- 16-bit data.

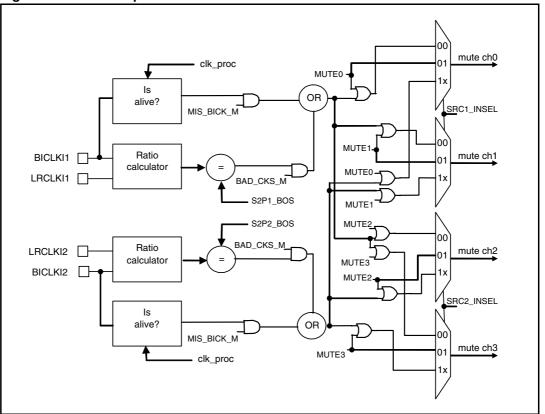
Figure 48. PCM (non-delayed) serial format



11.3.6 PCM/IF (delayed mode)

- MSB first
- 16-bit data.

Figure 49. PCM (delayed) serial format



11.4 Invalid detection

STA321 has an invalid input detection feature that can detect an invalid serial interface bit clock or frame clock and then mute the processing channels to avoid any speaker or headphone damage and, moreover, to avoid loud audible transients which may be discomforting to the listener. The control is active only for the SAI input. The configuration programmed in bits 0, 1 and 2 of register *FFXCFG0 on page 82* is applicable to both SAI1 and SAI2 whilst the checks are independent for each interface. The mute on the processing channel is asserted depending on the input interface mapping.

Figure 50 shows the invalid detection schematic. Here, two different checks are available. The first one is enabled by register bit *FFXCFG0*.BAD_CKS_M and evaluates the ratio of BICLK and LRCLK. The resulting number must be the same as that written in bits S2Pn_BOS (for example, $32 * f_S$ or $64 * f_S$) in registers *SAI_IN1_CFG1 on page 123* and *SAI_IN2_CFG1*, otherwise the channels are muted.

The second check is enabled by register bit *FFXCFG0*.MIS_BICK_M and is related to the presence of BICLK. Basically, a 8-bit watchdog counter decrements, starting from 0xFF, with each edge of clk_proc. The counter is reset to 0xFF at each BICLK edge; so, if the watchdog counter ever reaches 0x00, a missing bit clock error is signalled and the mute command is issued.

Figure 50. Invalid input detection schematic

12 Headphone detection

The headphone detector circuit, shown in *Figure 51*, is made with two schmitt-trigger comparators (with different thresholds) which sense the value of the HPDECT input voltage and modifies the HP_DET1 or the HP_DET2 level as given in *Table 30* and *Table 31* below. The comparators are enabled or disabled with bits E_HP1 and E_HP2 in register *HPDET2* on page 138

E_HP1 (register HPDET2)	HP-jack status	HP_DET voltage		Status register bit HPDST.HP_DET_FILT
1	Unplugged	Low	0	-
1	Plugged	High	1	-
0	х	х	1	-

Table 31. Headphone 2 detector

E_HP2 (register HPDET2)	HP-jack status	HP_DET voltage	HP_DET2	Status register bit HPDST.HP_DET_FILT
1	Unplugged	Low	1	-
1	Plugged	High	0	-
0	х	Х	1	-

The comparator output status is provided via bits 1 and 0 of register *HPDET2 on page 138*. One of the comparator outputs is then selected with register bit *HPDET1*.HPD_SEL, and that signal is passed through a digital debouncing filter and supplied to the FFX modulator. The PWM outputs are then modified depending on the settings of register bits *HPDST*.HP_DET_FILT and *HPDET1*.HPD_ACT_MODE.

STA321

12.1 Applications circuits

Two applications circuits are given here, one for the binary single-ended application and one for the binary headphone application.

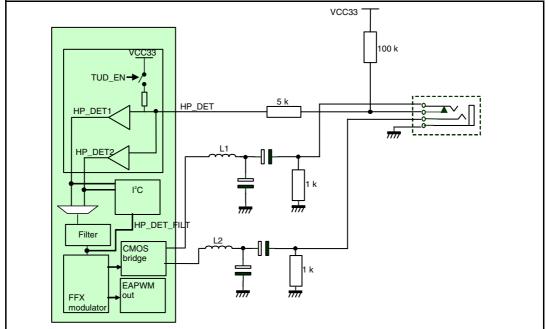
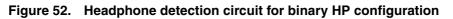




Figure 51. Headphone detection circuit for single-ended configuration

12.2 Configuration example

This is an example of the register setup for headphones detection. It is assumed that every peripheral is already configured and working correctly.

There are other configuration examples to help you get started please refer to other chapters and also to *Chapter 14: Register description on page 77* in order to get all the necessary and complementary details.

Table 32 and *Table 33* below give a possible setup for the headphones detection configurations shown in *Figure 51* and *Figure 52*, respectively.

Register	Value	Description				
MISC on page 135	0x21	Enable core clock				
PLLB on page 136	0x00	Use PLL clock				
User FFX and CMOS bridge configuration						
HPDET2 on page 138	0x80	Disable the HP_DET pull-up				
HPDET1 on page 137	0x57	Use HP1 for hpdet filter; polarity = high; action = mute; mod = binary SE; average time 170 ms.				
HPDET2 on page 138 0x80		Select E_HP1 comparator				
FFXCFG1 on page 81	0x00	Remove the tristate from the bridges				

 Table 32.
 Headphone detection configuration sequence for binary SE

Table 33. Headphone detection configuration sequence for binary headphone

Register	Value	Description				
MISC on page 135	0x21	Enable core clock				
PLLB on page 136	0x00	Use PLL clock				
User FFX and CMOS bridge configuration						
HPDET2 on page 138	0x80	Disable the HP_DET pull-up				
HPDET1 on page 137	0x5F	Use HP1 for hpdet filter; polarity = high; action = mute; mod = binary HP; average time 170 ms.				
HPDET2 on page 138 0x80		Select E_HP1 comparator				
FFXCFG1 on page 81	0x00	Remove the tristate from the bridges				

Note: The pullup on HPDET pad must always be disabled before using the HPDET function.

Note: Comparator 1 and comparator 2 cannot be enabled simultaneously.

STA321

13 I²C interface

13.1 Communication protocol

13.1.1 Data transition and change

Data changes on the SDA line must only occur when the SCL clock is low. SDA transition while the clock is high is used to identify a START or STOP condition.

13.1.2 Start condition

START is identified by a high to low transition of the SDA bus while the clock signal, SCL, is stable in the high state. A START condition must precede any command for data transfer.

13.1.3 Stop condition

STOP is identified by a low to high transition on the SDA bus while the clock signal, SCL, is stable in the high state. A STOP condition terminates communication between STA321 and the bus master.

13.1.4 Data input

During the data input the STA321 samples the SDA signal on the rising edge of clock SCL. For correct device operation the SDA signal must be stable during the rising edge of the clock and the data can change only when the SCL line is low.

13.1.5 Device addressing

To start communication between the master and the STA321, the master initiates with a start condition. Following this, the master sends 8 bits (MSB first) on the SDA line which corresponds to the device select address and read or write mode.

The 7 MSBs are the device address identifiers, corresponding to the I^2C bus definition. In the STA321 the I^2C interface has the device address 0x30.

After a START condition the STA321 identifies the device address and if a match is found, acknowledges the identification on SDA bus during the 9th bit time. The byte following the device identification byte is the internal space address.

13.1.6 Write operation

Following the START condition the master sends a device select code with the RW bit set to 0. After the STA321 acknowledge, the master sends the byte of internal address. On receiving the internal byte address the STA321 responds with acknowledge.

Byte write

In the byte write mode the master sends one data byte, this is acknowledged by the STA321. The master then terminates the transfer by generating a STOP condition.

Multi-byte write

The multi-byte write mode starts from any internal address. The master generates a STOP condition to terminate the transfer.

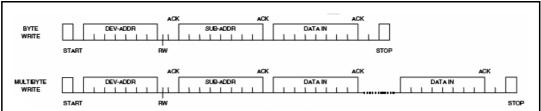
13.1.7 Read operation

Current address byte read

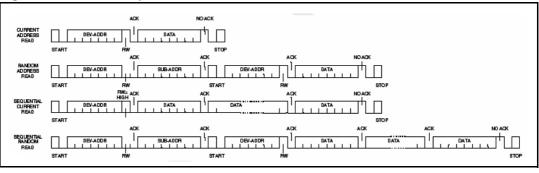
Following the START condition the master sends a device select code with the RW bit set to 1. The STA321 acknowledges and then responds by sending one byte of data. The master then terminates the transfer by generating a STOP condition.

Current address multi-byte read

The multi-byte read mode start from any internal address. Data bytes are read from sequential addresses within the STA321. The master acknowledges each data byte read and then generates a STOP condition to terminate the transfer.


Random address byte read

Following the START condition the master sends a device select code with the RW bit set to 0. The STA321 acknowledges and then the master writes the internal address byte. After receiving, the internal byte address the STA321 again responds with an acknowledge. The master then initiates another START condition and sends the device select code with the RW bit set to 1. The STA321 acknowledges this and then responds by sending one byte of data. The master then terminates the transfer by generating a STOP condition.


Random address multi-byte read

The multi-byte read modes start from any internal address. Data bytes are read from sequential addresses within the STA321. The master acknowledges each data byte read and then generates a STOP condition to terminate the transfer.

Figure 53. I²C write operations

Figure 54. I²C read operations

76/157

Doc ID 15351 Rev 3

14 Register description

Table 34.Register summary

		ci Summa	· y								
Register	Addr	7	6	5	4	3	2	1	0		
FFXCFG1	0x00	EA_STBY	CB_STBY	EA_TRIST	FFX_UL	_CK_PLL	CB_TRIST2	CB_TRIST1	CB_TRIST0		
FFXCFG0	0x01	MUTE3	MUTE2	MUTE1	MUTE0	PWM00_3A	BAD_IN_M	BAD_CKS_M	MIS_BICK_M		
FFXCFG2	0x02	RESET _NOISH	PWM_FREQ	NS_O	RD[1:0]	EA_TSFT_ON	CB_TSFT_ON	EA_PFDIG	CB_PFDIG		
PWMMAP1	0x03		CB1_MAP[2:0]			CB2_MAP[2:0]		CB3_N	IAP[2:1]		
PWMMAP2	0x04	CB3_MAP[0]		PWM00_MAP[2:0]		EA1A_MAP[2:0]		EA1B_MAP[2]		
PWMMAP3	0x05	EA1B_N	/AP[1:0]		EA2A_MAP[2:0]			EA2B_MAP[2:0]			
EATTF0	0x06				EATT	F[7:0]					
EATTF1	0x07				EATT	F[7:0]					
EATTP0	0x08		EATTP[15:8]								
EATTP1	0x09				EATT	P[7:0]					
CBTTF0	0x0A				CBTT	F[15:8]					
CBTTF1	0x0B		CBTTF[7:0]								
CBTTP0	0x0C		CBTTP[15:8]								
CBTTP1	0x0D				CBTI	FP[7:0]					
FFXST	0x0E	EA_MPWM	CB_MPWM	EARMP	_ST[1:0]	CBRMF	P_ST[1:0]	EABINSS_AC	CBBINSS_AC		
POWST	0x0F		Rese	erved		EA_TW	EA_PD	EA_FT	EA_TS		
POWST1	0x10	Reserved	CB_PD		CB_FT[2:0]			CB_TS[2:0]			
PWMO1CFG0	0x11	AZPLS_1	TERNARY_1	HALFB_1	MP_ZERO_1	MIN_PLS_1[3:0]					
PWMO1CFG1	0x12	PM_1	A[1:0]			PS_1	A[5:0]				
PWMO1CFG2	0x13	PM_1	B[1:0]			PS_1	B[5:0]				
PWMO2CFG0	0x14	AZPLS_2	TERNARY_2	HALFB_2	MP_ZERO_2		MIN_PL	.S_2[3:0]			
PWMO2CFG1	0x15	PM_2	A[1:0]			PS_2	2A[5:0]				
PWMO2CFG2	0x16	PM_2	B[1:0]			PS_2	2B[5:0]				
PWMO3CFG0	0x17	AZPLS_3	TERNARY_3	HALFB_3	MP_ZERO_3		MIN_PL	.S_3[3:0]			
PWMO3CFG1	0x18	PM_3	A[1:0]			PS_3	BA[5:0]				
PWMO3CFG2	0x19	PM_3	B[1:0]			PS_3	B[5:0]				
PWMO4CFG0	0x1A	AZPLS_4	TERNARY_4	HALFB_4	MP_ZERO_4		MIN_PL	.S_4[3:0]			
PWMO4CFG1	0x1B	PM_4	A[1:0]			PS_4	IA[5:0]				
PWMO4CFG2	0x1C	PM_4	·B[1:0]			PS_4	IB[5:0]				
CB_PFRAMP1	0x20			CBRMP	_MP[5:0]			Res	erved		
CB_PFRAMP2	0x21				CBRMF	PINI[15:8]					
CB_PFRAMP3	0x22		CBRMPINI[7:0]								
CB_PFRAMP4	0x23		CBTIM_	RMP[3:0]			Rese	erved			
CB_PFRAMP5	0x24				CBRMP	PTH[15:8]					
CB_PFRAMP6	0x25		CBRMPTH[7:0]								
EA_PFRAMP1	0x26			EARMP	_MP[5:0]			Res	erved		
EA_PFRAMP2	0x27				EARMP	PINI[15:8]					

Doc ID 15351 Rev 3

Table 34.	Regist	er summa	ry (contir	nued)						
Register	Addr	7	6	5	4	3	2	1	0	
EA_PFRAMP3	0x28				EARMP	'INI[7:0]				
EA_PFRAMP4	0x29		EATIM_RMP[3:0] Reserved							
EA_PFRAMP5	0x2A		EARMPTH[15:8]							
EA_PFRAMP6	0x2B				EARMP	TH[7:0]				
SRC1STATE	0x30	SRC1_I	SRC1_BYP[1:0] SRC_1_LOCK SRC1_FISF0[4:0]							
SRC2STATE	0x31	SRC1_I	BYP[1:0]	SRC_1_LOCK			SRC1_FISFO[4:0	0]		
I2CB0_TOP	0x51				12CB0[23:16]				
I2CB0_MID	0x52				I2CB0	[15:8]				
I2CB0_BOT	0x53				I2CB	D[7:0]				
I2CB1_TOP	0x54				I2CB1	23:16]				
I2CB1_MID	0x55				I2CB1	[15:8]				
I2CB1_BOT	0x56				I2CB	1[7:0]				
I2CB2_TOP	0x57				I2CB2[23:16]				
I2CB2_MID	0x58				I2CB2	[15:8]				
I2CB2_BOT	0x59				I2CB2	2[7:0]				
I2CA1_TOP	0x5A				I2CA1	23:16]				
I2CA1_MID	0x5B				I2CA1	[15:8]				
I2CA1_BOT	0x5C				I2CA	1[7:0]				
I2CA2_TOP	0x5D		I2CA2[23:16]							
I2CA2_MID	0x5E		I2CA2[15:8]							
I2CA2_BOT	0x5F				I2CA	2[7:0]				
PROCCTRL	0x60		Res	erved		RA	Reserved	WA	W1	
START_ADD2	0x61				Reserved				I2CSTART_A8	
START_ADD	0x62				I2CSTAR	T_A7_A0				
ROM_REMAP	0x6F	Reserved	ENAB_PRE3	ENAB_PRE2	ENAB_PRE1	ENAB_PRE0	ENAB_POST	ENAB_PRMIX	ENAB_DELAY	
BYP_EN_CH0	0x70				Rese	rved				
EFFS_EN_CH0	0x71			Res	erved			EROM09	EROM08	
BYP_EN_CH1	0x72				Rese	rved				
EFFS_EN_CH1	0x73			Res	erved			EROM19	Reserved	
BYP_EN_CH2	0x74				Rese	rved			•	
EFFS_EN_CH2	0x75			Res	erved			EROM29	EROM28	
BYP_EN_CH3	0x76				Rese	rved			•	
EFFS_EN_CH3	0x77			Res	erved			EROM39	Reserved	
BASS_SEL0_R	0x78	Res	erved	BASS_EN0			BASS_SEL0	•		
BASS_SEL1_R	0x79	Reserved BASS_EN1 BASS_SEL1								
BASS_SEL2_R	0x7A	Reserved BASS_EN2 BASS_SEL2								
BASS_SEL3_R	0x7B	Res	Reserved BASS_EN3 BASS_SEL3							
TREB_SEL0_R	0x7C	Res	erved	TREB_EN0			TREB_SEL0			
TREB_SEL1_R	0x7D	Res	erved	TREB_EN1			TREB_SEL1			
TREB_SEL2_R	0x7E	Res	erved	TREB_EN2			TREB_SEL2			

Table 34. Register summary (continued)

Table 34. Register summary (continued)												
Register	Addr	7	6	5	4	3	2	1	0			
TREB_SEL3_R	0x7F	Rese	erved	TREB_EN3			TREB_SEL3					
SATCH0CFG1	0x90	SAT_EQ				SAT_CH0[22:16]						
SATCH0CFG2	0x91				SAT_CI	H0[15:8]						
SATCH0CFG3	0x92		SAT_CH0[7:0]									
SATCH1CFG1	0x93	Reserved	Reserved SAT_CH1[22:16]									
SATCH1CFG2	0x94				SAT_CI	H1[15:8]						
SATCH1CFG3	0x95				SAT_C	:H1[7:0]						
SATCH2CFG1	0x96	Reserved				SAT_CH2[22:16]						
SATCH2CFG2	0x97				SAT_CI	H2[15:8]						
SATCH2CFG3	0x98				SAT_C	:H2[7:0]						
SATCH3CFG1	0x99	Reserved				SAT_CH3[22:16]						
SATCH3CFG2	0x9A				SAT_CI	H3[15:8]						
SATCH3CFG3	0x9B		SAT_CH3[7:0]									
VOLCFG	0xA0	SVOL_ON3	SVOL_ON2	SVOL_ON1	SVOL_ON0		TIM_	SVOL				
MVOL	0xA1				MV	/OL						
VOLCH0	0xA2				CV	OL0						
VOLCH1	0xA3				CV	OL1						
VOLCH2	0xA4				CV	OL2						
VOLCH3	0xA5				CV	OL3						
SAI_IN1_CFG0	0xB0	S2P1_B_STR	S2P1_LR_L	Reserved	S2P1_MSB		S2P1_DFM		S2P1_MMD			
SAI_IN1_CFG1	0xB1	S2P1_	DLEN	S2P1	_BOS	S2P1_	MAP_L	S2P1_	MAP_R			
SAI_OUT_CFG0	0xB2	P2S_B_STR	P2S_LR_L	SDATAO_ACT	P2S_MSB		P2S_DFM		P2S_MMD			
SAI_OUT_CFG1	0xB3	P2S_	DLEN	P2S_	BOS	P2S_N	/IAP_L	P2S_M	/IAP_R			
SAI_IN2_CFG0	0xB4	S2P2_B_STR	S2P2_LR_L	Reserved	S2P2_MSB		S2P2_DFM		S2P2_MMD			
SAI_IN2_CFG1	0xB5	S2P2_	DLEN	S2P2	_BOS	S2P2_	MAP_L	S2P2_	MAP_R			
AUIFSHARE	0xB6			Rese	erved			SHARI	E_BILR			
SRCINSEL	0xB7	SRC1_	INSEL	SRC2	_INSEL	MUTE_SRCU		Reserved				
P2SDATA	0xB8	Reserved	P2S_HFS		P2S1_DSEL			P2S2_DSEL				
PLLCFG0	0xC0	PLL_DPROG	PLL_FR _CTRL	PLL_	DDIS		PLL	_IDF				
PLLCFG1	0xC1				PLL_FR	AC[15:8]						
PLLCFG2	0xC2				PLL_FF	RAC[7:0]						
PLLCFG3	0xC3	PLL_STRB	PLL _STRBBYP			PLL_	NDIV					
PLLPFE	0xC4	PLL_BYP _UNL	BICLK2PLL	PLL_PWDN	PLL _NOPDDIV	Reserved						
PLLST	0xC5	PLL_UNLOCK	PLL_PWD_ST	PLL_BYP_ST			Reserved					
ADCCFG0	0xC6		ADC_PGA		ADC_INSEL	ADC_STBY	ADC_BYPCAL	CLK_ADC_ON	Reserved			
CKOCFG	0xC7	CLKOUT_DIS	CLKOU	JT_SEL	CLK_FFX_ON	CLK_SRC_ON	CLK_PROC _ON	EAPWM_DIS	PWM00ACT			
MISC	0xC8	OSC_DIS		S2P_FS_RNG	•	ADC_F	S_RNG	P2P_IN_ADC	CLKCORE _ON			

Table 34. Register summary (continued)

Table 34. Register summary (continued)												
Register	Addr	7	6	5	4	3	2	1	0			
PLLB	0xC9	PLL_BYP	Reserved	ADC_CLKSEL	Reserved	P2S1 _CLKSEL	Reserved	P2S2 _CLKSEL	Reserved			
HPDET1	0xCA	HPD_SEL	HPD_POL	HPD_AC	T_MODE	HPD_HPMOD		HPD_TIM_F				
HPDET2	0xCB	E_HP2	E_HP1	TUD_EN	E_HPDET1	E_HPDET2						
HPDST	0xCC	HPD_DET _FILT	Reserved									
STBY_MODES	0xCD	PAD_PULLDIS							DC_STBY _EN_N			
ADCCFG1	0xCE	ADC_AN	NA_SEL Reserved									
PFEFAULT	0xCF		Reserved		PFE1	PFE2	PFE3	RESET_EA _FT	RESET_CB _FT			
BISTRUN0	0xD0	SF1_BRUN	SF2_BRUN	SS1_BRUN	SS2_BRUN	CF_BRUN	PR_BRUN	CF_ROM _BRUN	Reserved			
BISTRUN1	0xD1	OS_BRUN	DB_BRUN			Rese	erved					
BISTST0	0xD2	SF1_BEND	SF1_BBAD	SF1_BFAIL	SF2_BEND	SF2_BBAD	SF2_BFAIL	SS1_BEND	SS1_BBAD			
BISTST1	0xD3	SS1_BFAIL	SS2_BEND	SS2_BBAD	SS2_BFAIL	CF_BEND	CF_BBAD	CF_BFAIL	PR_BEND			
BISTST2	0xD4	PR_BBAD	PR_BFAIL	OS_BEND	OS_BBAD	OS_BFAIL	DB_BEND	DB_BBAD	DB_BFAIL			
BISTST3	0xD5	CF_ROM _BEND				Reserved						
ROMSIGN0	0xD6				CF_RC	MS[7:0]						
ROMSIGN1	0xD7				CF_RO	MS[15:8]						
ROMSIGN2	0xD8		CF_ROMS[23:16]									
DEBUG0	0xD9	DBGCKO_ON				DBGCKO_VAL						
PADST0	0xF0	PAD_RSTN	Reserved	PAD_SCL	PAD_SDA	PAD_I2CDIS	Rese	erved	PAD_STBY			
PADST1	0xF1	PAD_MUTE	PAD_BICLKI	PAD_LRCLKI	PAD_SDATAI	PAD_BICLKO	PAD_LRCLKO	Rese	erved			

Table 34. Register summary (continued)

FFXCFG1

7	6	5	4	3	2	1	0
EA_STBY	CB_STBY	EA_TRIST	FFX_UL0	CK_PLL	CB_TRIST2	CB_TRIST1	CB_TRIST0
Address:	0x00						
Туре:	RW						
Reset:	0xD0						
Description:							

[7] EA_STBY0: the external bridge is active1: the external bridge is in standby mode

- [6] CB_STBY
 - 0: the bridge is active
 - 1: the bridge is in standby mode
- [5] EA_TRIST

0: normal behaviour

1: the external bridge is put in 3-state mode

[4:3] FFX_ULCK_PLL: behavior of the FFX modulator in the event of the PLL losing lock:

- 00: do nothing
- 01: FFX hard mute (equivalent to using pin MUTE)
- 10: FFX standby
- 11: FFX hard mute and noise-shaper reset

[2] CB_TRIST2

- 0: the bridge is active 1: force CMOS bridge OUT3 to 3-state
- [1] CB_TRIST1
 - 0: the bridge is active 1: force CMOS bridge OUT2 to 3-state
- [0] CB_TRISTO
 - 0: normal behaviour
 - 1: force CMOS bridge OUT1 to 3-state

FFXCFG0

7	6	5	4	3	2	1	0
MUTE3	MUTE2	MUTE1	MUTE0	PWM00_3A	BAD_IN_M	BAD_CKS_M	MIS_BICK_M
Address:	0x01						
Туре:	RW						
Reset:	0x07	7					
Descriptior	ı:						

[7] MUTE3 0: normal behaviour 1: force the mute in the channel 3 [6] MUTE2 0: normal behaviour 1: force the mute in the channel 2 [5] MUTE1 0: normal behaviour 1: force the mute in the channel 1 [4] MUTE0 0: normal behaviour 1: force the mute in the channel 0 [3] PWM00_3A 0: output PWM00 is driven by FFX (default) 1: output PWM00 comes from FFX output PWM3A and is not sensitive to bridge power-down or 3-state states [2] BAD_IN_M Depending on the bit 0 and bit 1 settings 0: mute with a ramp 1: mute instantaneously [1] BAD_CKS_M 0: FFX not muted 1: FFX muted if biclk and Irclk do not meet the specification

[0] MIS_BICK_M

- 0: FFX not muted
- 1: FFX will be muted if biclk is missing

FFXCFG2

7	6	5	4	3	2	1	0
RESET_NOISH	PWM_FREQ	NS_OF	RD[1:0]	EA_TSFT_ON	CB_TSFT_ON	EA_PFDIG	CB_PFDIG
Address:	0x02						
Туре:	RW						

Description:

[7] **RESET_NOISH**

1: a reset is forced to the noise-shaper block

- [6] PWM_FREQ
 0: 4 f_S (4*96 kHz = 384 kHz)
 - 1: 8 fS (8*96 kHz = 768 kHz)
- [5:4] NS_ORD[1:0]
 - Noise shape order
 - 00: 3rd. order
 - 01: 4th. order 10: 5th. order
 - [3] EA_TSFT_ON1: if there is a fault on the external bridge, it will be put in 3-state
 - [2] CB_TSFT_ON1: if there is a fault on the CMOS bridge, it will be put in 3-state
 - [1] EA_PFDIG1: enable the pop-free ramp of EA
 - [0] CB_PFDIG
 - 1: enable the pop-free ramp of CB

Note: Particular care must be taken when bits NS_ORD and PWM_FREQ are changed. To avoid any audible artifacts, these bits must be modified only with the following procedure:

- 1. Mute STA321 processing.
- 2. Change PWM_FREQ and/or NS_ORD and set RESET_NOISH = 1.
- 3. Configure RESET_NOISH = 0.
- 4. Unmute STA321 processing.

PWMMAP1

Processing to PWM out mapping

7	6	6	5	4	3	2	1	0	
	CB1_M	IAP[2:0]			CB2_MAP[2:0]		CB3_MAP[2:1]		
Address:		0x03							
Туре:		RW							
Reset:		0x08							
Descriptio	n:								
	[7:5]	CB1_M/ CB_PW 000: Ch 010: Ch 100: Ch 110: Ch	'M_1 chanr 0-A 1-A 2-A	el mapping:		001: Ch0-B 011: Ch1-B 101: Ch2-B 111: Ch3-B			
	[4:2]	CB2_M	AP[2:0] /M_2 chanr 0-A 1-A 2-A	el mapping		001: Ch0-B 011: Ch1-B 101: Ch2-B 111: Ch3-B			
	[1:0]	CB3_M/ CB_PW 000: Ch 010: Ch 100: Ch 110: Ch	'M_3 chanr 0-A 1-A 2-A	el mapping (f	or bit 0 see re	gister <i>PWMMA</i> 001: Ch0-B 011: Ch1-B 101: Ch2-B 111: Ch3-B	<i>P2</i>):		

PWMMAP2

7	6	5	4	3	2	1	0
CB3_MAP[0]	Р	WM00_MAP[2:0)]		EA1A_MAP[2:0]		EA1B_MAP[2]
Address:	0x04						
Туре:	RW						
Reset:	0xB9						
Description:							
	 CB3_MA		mapping (for b	its 1 and 2 se	e register <i>PN</i>	VMMAP1)	
	 PWM00_ PWM00 c 000: Ch0- 010: Ch1- 100: Ch2- 110: Ch3-	hannel mapp A A A	bing:	01 10	01: Ch0-B 1: Ch1-B 01: Ch2-B 1: Ch3-B		
I	 EA1A_MA EA_PWM 000: Ch0- 010: Ch1- 100: Ch2- 110: Ch3-	I_1A channel •A •A •A	l mapping:	01 10	01: Ch0-B 1: Ch1-B 01: Ch2-B 1: Ch3-B		
	 EA1B_M/ EA_PWM 000: Ch0- 010: Ch1- 100: Ch2- 110: Ch3-	I_1B channel -A -A -A	l mapping (for	00 01 10	ee register <i>P</i> I 1: Ch0-B 1: Ch1-B 1: Ch2-B 1: Ch2-B 1: Ch3-B	NMMAP3)	

PWMMAP3

7	6	5	4	3	2	1	0
EA1B	_MAP[1:0]		EA2A_MAP[2:0]			EA2B_MAP[2:0]	
Address:	0x05						
Туре:	RW						
Reset:	0x77						

Description:

[7:6] **EA1B_MAP[1:0]**

EA_PWM_1B channel mapping (for bit 2 see register PWMMAP2)

[5:3]	EA2A_MAP[2:0]	
	EA_PWM_2A channel mapping:	
	000: Ch0-A	001: Ch0-B
	010: Ch1-A	011: Ch1-B
	100: Ch2-A	101: Ch2-B
	110: Ch3-A	111: Ch3-B
[2:0]	EA2B_MAP[2:0]	
[2:0]	EA2B_MAP[2:0] EA_PWM_2B channel mapping:	
[2:0]		001: Ch0-B
[2:0]	EA_PWM_2B channel mapping:	001: Ch0-B 011: Ch1-B
[2:0]	EA_PWM_2B channel mapping: 000: Ch0-A	

EATTF0

External bridge tristate time from fault

7	6	5	4	3	2	1	0
			EATT	F[15:8]			
Address:	0x06						
Туре:	RW						
Reset:	0x00						
Description:		The tristate time is the time between fault deasserted and 3-state removed for the external bridge. It is calculated as EATTF[15:0] * 41.66 μs					
[7:	:0] EATTF[15:8]					

MSBs of the EA tristate time factor

EATTF1

External bridge tristate time from fault

7	6	5	4	3	2	1	0
			EATT	F[7:0]			
Address:	0x07						
Туре:	RW						
Reset:	0x03						
Description:	See als	See also register EATTF0					
[7:0	0] EATTF[7	7:0] EA tristate tin	ne factor				

EATTP0	External bridge tristate time from powerdown								
7	6 5 4 3 2 1 0								
			EATTP[15:8]						
Address:	0x08								
Туре:	RW								
Reset:	0x00								
Description:	This tristate time is the time between bridge powerdown removed and 3-state removed for the external bridge. It is calculated as EATTP[15:0] * 41.66 μs								

[7:0] EATTP[15:8] MSBs of EA 3-state time after power-up factor

EATTP1

7	6	5	4	3	2	1	0
			EATT	P[7:0]			
Address:	0x09						
Туре:	RW						
Reset:	0x03						
Description:	See also	o register EA	TTP0				
[7.0]	EATTP[7	.01					

External bridge tristate time from powerdown

LSBs of EA 3-state time after power-up factor

CBTTF0

CMOS bridge tristate time from fault

•=•••								
7	6	5	4	3	2	1	0	
	CBTTF[15:8]							
Address:	0x0A							
Туре:	RW							
Reset:	0x00	00						
Description:		The tristate time is the time between fault deasserted and 3-state removed for the CMOS bridge. It is calculated as CBTTF[15:0] * 41.66 μs						
[7:	0] CBTTF[1 MSBs of	5:8] CB 3-state ti	me factor					
CBTTF1		CMOS bridge tristate time from fault						
7	6	5	4	3	2	1	0	
			CBTT	F[7:0]				
Address:	0x0B							
Туре:	RW							
Reset:	0x02							
Description:	See also	o register <i>Cl</i>	BTTF0					
[7:	0] CBTTF[7 LSBs of (7 :0] CB 3-state tin	ne factor					
CBTTP0			CMOS bri	dge tristat	e time fron	n powerdo	wn	
7	6	5	4	3	2	1	0	
			CBTT	P[15:8]				
Address:	0x0C							

Туре:	RW
Reset:	0x00

Description: This tristate time is the time between bridge powerdown removed and 3-state removed for the CMOS bridge. It is calculated as CBTTP[15:0] * 41.66 µs

[7:0] **CBTTP[15:8]** MSBs of CB 3-state time after power-up factor

CBTTP1

CMOS bridge tristate time from powerdown

7	6	5	4	3	2	1	0
			CBTTF	P[7:0]			
Address:	0x0D						
Туре:	RW						
Reset:	0x02						
Description:	See also r	register CL	BTTP0				

[7:0] CBTTP[7:0]

LSBs of CB 3-state time after power-up factor

FFXST

7	6	5	4	3	2	1	0
EA_MPWM	CB_MPWM	EARMP	_ST[1:0]	CBRMF	P_ST[1:0]	EABINSS_AC	CBBINSS_AC
Address:	0x0E						
Туре:	RO						
Reset:	0xC0						
Description:							

[7] **EA_MPWM**

1: EA is in mute

- [6] CB_MPWM
 - 1: CB is in mute
- [5:4] EARMP_ST[1:0]: pop free ramp status
 - 00: parked
 - 11: ready
 - 10: going to park
 - 01: going to ready
- [3:2] CBRMP_ST[1:0]: pop free ramp status
 - 00: parked
 - 11: ready
 - 10: going to park
 - 01: going to ready
 - [1] EABINSS_AC
 - 1: ramp active (going to park or ready)
 - [0] CBBINSS_AC
 - 1: ramp active (going to park or ready)

POWST

Status register for external amplifier

7	6	5	4	3	2	1	0
	Rese	erved		EA_TW	EA_PD	EA_FT	EA_TS
Address:	0x0F						
Type:	RO						

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Reset:	0x05

Description:

[7:4] Reserved

- [3] EA_TW
 - 1: EA thermal warning
- [2] EA_PD
 - 1: EA power-down
- [1] EA_FT 1: EA is in fault
 - T. EA IS IN IAU
- [0] **EA_TS** 1: EA is in 3-state

POWST1

Status register for CMOS bridge

7	6	5	4	3	2	1	0
Reserved	CB_PD	CB_FT[2:0] CB_TS[2:0]					
Address:	0x10						
Туре:	RO						
Reset:	0x47						
Description:							

[7] Reserved

[6] CB_PD

1: CMOS bridge is in power-down

- [5:3] CB_FT[2:0]
 - xx1: CMOS bridge channel 1 is in fault
 - x1x: CMOS bridge channel 2 is in fault
 - 1xx: CMOS bridge channel 3 is in fault
- [2:0] CB_TS[2:0]
 - xx1: CMOS bridge channel 1 is in 3-state
 - x1x: CMOS bridge channel 2 is in 3-state
 - 1xx: CMOS bridge channel 3 is in 3-state

PWMO1CFG0

7	6	5	4	3	2	1	0
AZPLS_1	TERNARY_1	HALFB_1	MP_ZERO_1		MIN_PL	S_1[3:0]	
Address:	0x11						
Туре:	RW						
Reset:	0x20						
Description:							
	 [6] TERNAR 1: ternary [5] HALFB_1 1: 1B is m [4] MP_ZER 1: apply th [3:0] MIN_PLS 	ero pulse Y_1 modulation nodulated as n O_1 he minimum pi S_1[3:0]	ull signal ulse settings also : clock period * (N				

PWMO1CFG1

7	6	5	4	3	2	1	0			
PM_1A[1:0]				PS_1	A[5:0]					
Address:	0x12									
Туре:	RW									
Reset:	0x00	x00								
Description: Configuration for PWM-A										
	00: gene 01: gene 10: hybr 11: hybr PS_1A[[1:0]: PWM mo erate a rising e erate a falling e rid mode: altern rid mode: altern 5:0]: PWM shift M waveform co	dge using a do dge using an ation of mode ation of mode	up carrier s 00 and 01 s 01 and 00	block period / 6	4)				

PWMO1CFG2

7	6	5	4	3	2	1	0				
PM_1B[1:0]				PS_1B	[5:0]						
Address:	0x13										
Туре:	RW										
Reset:	0x48										
Description:	escription: Configuration for PWM-B										
 [7:6] PM_1B[1:0]: PWM mode 00: generate a rising edge using a down carrier 01: generate a falling edge using an up carrier 10: ibrid mode: alternation of modes 00 and 01 11: ibrid mode: alternation of modes 01 and 00 [5:0] PS_1B[5:0]: PWM shift The PWM waveform could be shifted by (PS_1B * clock period / 64) 											

PWMO2CFG0

7	6	5	4	3	2	1	0	
AZPLS_2	TERNARY_2	HALFB_2	MP_ZERO_2	MIN_PLS_2[3:0]				
Address:	0x14							
Туре:	RW							
Reset:	0x20							
D								

Description:

- [7] AZPLS_2 1: avoid zero pulse
- [6] TERNARY_2 1: ternary modulation
- [5] HALFB_21: 2B is modulated as null signal
- [4] MP_ZERO_21: apply the minimum pulse settings also for values near 0
- [3:0] MIN_PLS_2[3:0] Minimum pulse length = clock period * (MIN_PLS_2 + 1)

PWMO2CFG1

7	6	5	4	3	2	1	0		
PM_	_2A[1:0]			PS_2	A[5:0]				
Address:	0x15								
Туре:	RW								
Reset:	0x10								
Description	ı:								
 [7:6] PM_2A[1:0]: PWM mode 00: generate a rising edge using a down carrier 01: generate a falling edge using an up carrier 10: hybrid mode: alternation of modes 00 and 01 11: hybrid mode: alternation of modes 01 and 00 									
		5:0]: PWM shif /M waveform c		l by (PS_2A * c	lock period / 64	4)			
PWMO2C	FG2								

7	6	5	4	3	2	1	0
PM_2E	3[1:0]			PS_2I	B[5:0]		
Address:	0x16						
Туре:	RW						
Reset:	0x58						

Description:

[7:6]	PM_2B[1:0]: PWM mode	
-------	----------------------	--

- 00: generate a rising edge using a down carrier
- 01: generate a falling edge using an up carrier
- 10: hybrid mode: alternation of modes 00 and 01
- 11: hybrid mode: alternation of modes 01 and 00

[5:0] PS_2B[5:0]: PWM shift

The PWM waveform could be shifted by (PS_2B * clock period / 64)

PWMO3CFG0

7	6	5	4	3	2	1	0
AZPLS_3	TERNARY_3	HALFB_3	MP_ZERO_3		MIN_PL	.S_3[3:0]	
Address:	0x17						
Туре:	RW						
Reset:	0x00						
Description:							
	[5] HALFB_3	ero pulse Y_3 modulation	ull signal				

[4] MP_ZERO_3

apply the minimum pulse settings also for values near 0

[3:0] MIN_PLS_3[3:0]

Minimum pulse length = clock period * (MIN_PLS_3 + 1)

PWMO3CFG1

7	6	5	4	3	2	1	0		
PM_3A[1:0]		PS_3A[5:0]							
Address:	0x18								
Туре:	RW								
Reset:	0x20								
Description:									

- [7:6] **PM_3A[1:0]:** PWM mode
 - 00: generate a rising edge using a down carrier
 - 01: generate a falling edge using an up carrier
 - 10: hybrid mode: alternation of modes 00 and 01
 - 11: hybrid mode: alternation of modes 01 and 00
- [5:0] PS_3A[5:0]: PWM shift
 - The PWM waveform could be shifted by (PS_3A * clock period / 64)

PWMO3CFG2

7	6	5	4	3	2	1	0
PM_3B[1:0]				PS_3B	[5:0]		
Address:	0x19						
Туре:	RW						
Reset:	0x68						
Description	:						
	00: ger 01: ger 10: hyb	5[1:0]: PWM mo herate a rising e herate a falling e rid mode: altern rid mode: altern	dge using a do edge using an i nation of mode	up carrier s 00 and 01			

[5:0] PS_3B[5:0]: PWM shift The PWM waveform could be shifted by (PS_3B * clock period / 64)

PWMO4CFG0

7	6	5	4	3	2	1	0	
AZPLS_4	TERNARY_4	HALFB_4	MP_ZERO_4	MIN_PLS_4[3:0]				
Address:	0x1A							
Туре:	RW							
Reset:	0x00							
Description:								

- - [7] AZPLS_4 1: avoid zero pulse
 - [6] TERNARY_4 1: ternary modulation
 - [5] HALFB_41: 4B is modulated as null signal
 - [4] MP_ZERO_41: apply the minimum pulse settings also for values near 0
 - [3:0] MIN_PLS_4[3:0] Minimum pulse length = clock period * (MIN_PLS_4 + 1)

PWMO4CFG1

7	6	5	4	3	2	1	0		
PM	I_4A[1:0]			PS_4	A[5:0]				
Address:	0x1B								
Туре:	RW								
Reset:	0x30								
Description	n:								
 [7:6] PM_4A[1:0]: PWM mode 00: generate a rising edge using a down carrier 01: generate a falling edge using an up carrier 10: hybrid mode: alternation of modes 00 and 01 11: hybrid mode: alternation of modes 01 and 00 									
	– .	5:0]: PWM shi /M waveform c		l by (PS_4A * c	lock period / 6	4)			
PWMO40	CFG2								

7	6	5	4	3	2	1	0
PM_4E	8[1:0]		PS_4B[5:0]				
Address:	0x1C						
Туре:	RW						
Reset:	0x78						
.							

Descri	iption:
--------	---------

[7:6]	PM	_4B[1:0]:	: PWM mode	
-------	----	-----------	------------	--

00: generate a rising edge using a down carrier

- 01: generate a falling edge using an up carrier
- 10: hybrid mode: alternation of modes 00 and 01
- 11: hybrid mode: alternation of modes 01 and 00

[5:0] PS_4B[5:0]: PWM shift

The PWM waveform could be shifted by (PS_4B * clock period / 64)

CB_PFRAMP1

7	6	5	4	3	2	1	0
		CBRMP	Rese	rved			
Address:	0x20						
Туре:	RW						
Reset:	0x14						
Description:							

[7:2] CBRMP_MP[5:0] Minimum pulse width of the PDM signal

[1:0] Reserved

CB_PFRAMP2

7	6	5	4	3	2	1	0				
CBRMPINI[15:8]											
Address:	0x21										
Туре:	RW										
Reset:	0x80										
Description:	Initial v	alue of the ra	amp signal								
[7:	0] CBRMF										
	MSBs o	f CB ramp init									

CB_PFRAMP3

7	6	5	4	3	2	1	0		
CBRMPINI[7:0]									
Address:	0x22								
Туре:	RW								
Reset:	0x3C								
Description:									
	[7:0] CBRMP	PINI[7:0]							

LSBs of CB ramp init

CB_PFRAMP4

7	6	5	4	3	2	1	0
CBTIM_RMP[3:0]					Rese	erved	
Address:	0x23						
Туре:	RW						
Reset:	0x10						

Description:

[7:4] CBTIM_RMP[3:0] EA timing duration of the ramp (= slope)

[3:0] Reserved

CB_PFRAMP5

7	6	5	4	3	2	1	0			
CBRMPTH[15:8]										
Address:	0x24									
Туре:	RW									
Reset:	0x14									
Description: During the ramp, if the signal is below the threshold, the signal is modulated with PDM, otherwise with PWM										
[7:	0] CBRMP MSBs o	TH[15:8] f CB ramp thre	eshold							

CB_PFRAMP6

7	6	5	4	3	2	1	0				
	CBRMPTH[7:0]										
Address:	0x25										
Туре:	RW										
Reset:	0x00										
Description:	-	the ramp, if t otherwise wit	the signal is b h PWM	elow the thre	shold, the sig	nal is modul	ated with				
[7:	0] CBRMP	TH[7:0]									

LSBs of CB ramp threshold

EA_PFRAMP1

7	6	5	4	3	2	1	0
		EARMP	Rese	rved			
Address:	0x26						
Туре:	RW						
Reset:	0x1C						
Description:							

[7:2] EARMP_MP[5:0] Minimum pulse width of the PDM signal

[1:0] Reserved

EA_PFRAMP2

7	6	5	4	3	2	1	0			
EARMPINI[15:8]										
Address:	0x27									
Туре:	RW									
Reset:	0x80									
Description:	Initial val	ue of the ra	mp signal							
[7:0] EARMPIN MSBs of E	II[15:8] EA ramp init								

EA_PFRAMP3

7	6	5	4	3	2	1	0
			EARMF	PINI[7:0]			
Address:	0x28						
Туре:	RW						
Reset:	0x60						
Description:							
[]	7:0] EARMP	PINI[7:0]					

LSBs of EA ramp init

EA_PFRAMP4

7	6	5	4	3	2	1	0
	EATIM_F	RMP[3:0]			Rese	rved	
Address:	0x29						
Туре:	RW						
Reset:	0x10						
Description:							

[7:4] EATIM_RMP[3:0] EA timing duration of the ramp (= slope)

[3:0] Reserved

EA_PFRAMP5

7	6	5	4	3	2	1	0
			EARMP	TH[15:8]			
Address:	0x2A						
Туре:	RW						
Reset:	0x80						
Description:	-	the ramp, if t otherwise with	he signal is b n PWM	elow the thre	shold, the sig	nal is modul	ated with
[7:0)] EARMP MSBs of	TH[15:8] f EA ramp thre	eshold				

EA_PFRAMP6

7	6	5	4	3	2	1	0
			EARMF	PTH[7:0]			
Address:	0x2B						
Туре:	RW						
Reset:	0x60						
Description:	-	the ramp, if t otherwise with	-	elow the thre	shold, the sig	nal is modul	ated with
[7	:0] EARMP	TH[7:0]					

LSBs of EA ramp threshold

SRC1STATE

7	6	5	4	3	2	1	0				
SRC1_BYP[1:	0]	SRC_1_LOCK		:	SRC1_FISFO[4:0]						
Address:	0x30										
Туре:	RO										
Reset:	0x8F										
Description:	Values	Values of f_S based on the 96 kHz as output frequency									
[5]	10: inpu SRC_1 0: SRC 1: SRC SRC1_	it signal has f _S it signal has f _S	> 81 kHz cy not reached ncy reached	I							

SRC2STATE

7	6	5	4	3	2	1	0
SRC1_E	3YP[1:0]	SRC_1_LOCK		:	SRC1_FISFO[4:0]		
Address:	0x31						
Туре:	RO						
Reset:	0x8F						
Description:							

- - [5] SRC_2_LOCK0: SRC target frequency not reached1: SRC1 target frequency reached
- [4:0] SRC2_FISFO[4:0] MSB Fs_input / Fs_output

I2CB0_TOP

7	6	5	4	3	2	1	0
			I2CB0[2	23:16]			
Address:	0x51						
Туре:	RW						
Reset:	0x00						
Description:							

[7:0] I2CB0[23:16] MSBs of coefficient b0

I2CB0_MID

7	6	5	4	3	2	1	0
			I2CB0[15:8]				
Address:	0x52						
Туре:	RW						
Reset:	0x00						
Description:							

[7:0] I2CB0[15:8] Middle bits of coefficient b0

I2CB0_BOT

7	6	5	4	3	2	1	0
			I2CB	0[7:0]			
Address:	0x53						
Туре:	RW						
Reset:	0x00						
Description:							

[7:0] I2CB0[7:0] LSBs of coefficient b0

I2CB1_TOP

7	6	5	4	3	2	1	0
			I2CB1	[23:16]			
Address:	0x54						
Туре:	RW						
Reset:	0x00						
Description:							
r .	':0] I2CB1[2	0.16]					

MSBs of coefficient b1

I2CB1_MID

7	6	5	4	3	2	1	0
			I2CB1	[15:8]			
Address:	0x55						
Туре:	RW						
Reset:	0x00						
Description:							

[7:0] I2CB1[15:8] Middle bits of coefficient b1

I2CB1_BOT

7	6	5	4	3	2	1	0
			I2CB	1[7:0]			
Address:	0x56						
Туре:	RW						
Reset:	0x00						
Description:							

[7:0] I2CB1[7:0] LSBs of coefficient b1

I2CB2_TOP

7	6	5	4	3	2	1	0
			I2CB2[23:16]			
Address:	0x57						
Туре:	RW						
Reset:	0x00						
Description:							

[7:0] I2CB2[23:16] MSBs of coefficient b2

I2CB2_MID

7	6	5	4	3	2	1	0
			I2CB2[15:8]				
Address:	0x58						
Туре:	RW						
Reset:	0x00						
Description:							

[7:0] I2CB2[15:8] Middle bits of coefficient b2

I2CB2_BOT

7	6	5	4	3	2	1	0
			I2CB	2[7:0]			
Address:	0x59						
Туре:	RW						
Reset:	0x00						
Description:							

[7:0] I2CB2[7:0] LSBs of coefficient b2

I2CA1_TOP

7	6	5	4	3	2	1	0
			I2CA1	[23:16]			
Address:	0x5A						
Туре:	RW						
Reset:	0x00						
Description:							
L.	7.01 120.4112	3.161					

[7:0] I2CA1[23:16] MSBs of coefficient a1

I2CA1_MID

7	6	5	4	3	2	1	0
			I2CA1[15:8]				
Address:	0x5B						
Туре:	RW						
Reset:	0x00						
Description:							

[7:0] I2CA1[15:8] Middle bits of coefficient a1

I2CA1_BOT

7	6	5	4	3	2	1	0
			I2CA	1[7:0]			
Address:	0x5C						
Туре:	RW						
Reset:	0x00						
Description:							

[7:0] I2CA1[7:0] LSBs of coefficient a1

I2CA2_TOP

7	6	5	4	3	2	1	0
			I2CA2[23:16]			
Address:	0x5D						
Туре:	RW						
Reset:	0x00						
Description:							

[7:0] I2CA2[23:16] MSBs of coefficient a2

I2CA2_MID

7	6	5	4	3	2	1	0
			I2CA2[15:8]			
Address:	0x5E						
Туре:	RW						
Reset:	0x00						
Description:							

[7:0] I2CA2[15:8] Middle bits of coefficient a2

I2CA2_BOT

7	6	5	4	3	2	1	0
			I2CA	2[7:0]			
Address:	0x5F						
Туре:	RW						
Reset:	0x00						
Description:							

[7:0] I2CA2[7:0] LSBs of coefficient a2

PROCCTRL

7		6	5	4	3	2	1	0
	Reserved					Reserved	WA	W1
Address:		0x60						
Туре:		RO						
Reset:		0x00						
Description	n:							
	[7:4]	Reserve	d					
	[3]	RA 1: read a	II the biquad o	coefficients				
	[2]	Reserved	b					
	[1]	WA 1: write/u	pdate all the	biquad coeffici	ents			
	[0]	W1 1: write/u	pdate the b0	coefficient				

START_ADDR2

7	6	5	4	3	2	1	0
			Reserved				I2CSTART_A8
Address:	0x61						
Туре:	RW						
Reset:	0x00						
Description:							

- [7:1] Reserved
 - [0] I2CSTART_A8 Base address of the biquadratic to be updated (= address of coefficient b0)

START_ADDR1

7	6	5	4	3	2	1	0
			I2CSTAF	RT_A7_A0			
Address:	0x62						
Туре:	RW						
Reset:	0x00						

Description:

[7:0] I2CSTART_A7_A0

Base address of the biquadratic to be updated (= address of the b0 coefficient)

ROM_REMAP

7	6	5	4	3	2	1	0
Reserved	ENAB_PRE3	ENAB_PRE2	ENAB_PRE1	ENAB_PRE0	ENAB_POST	ENAB_PRMIX	ENAB_DELAY
Address:	0x6F						
Туре:	RW						
Reset:	0x00						
Descriptio	on:						

[7] Reserved

[6] ENAB_PRE3

0: pre scale value of channel 3 taken from RAM 1: pre scale value of channel 3 taken from ROM

[5] ENAB_PRE2

0: pre scale value of channel 2 taken from RAM 1: pre scale value of channel 2 taken from ROM

[4] ENAB_PRE1

0: pre scale value of channel 1 taken from RAM 1: pre scale value of channel 1 taken from ROM

[3] ENAB_PRE0

0: pre scale value of channel 0 taken from RAM 1: pre scale value of channel 0 taken from ROM

[2] ENAB_POST

0: post mix values taken from RAM 1: post mix values taken from ROM

[1] ENAB_PRMIX

0: pre mix values taken from RAM 1: pre mix values taken from ROM

- [0] ENAB_DELAY
 - 0: Delay values taken from RAM
 - 1: Delay values taken from ROM

Doc ID 15351 Rev 3

BYP_EN_CH0

7	6	5	4	3	2	1	0			
	Reserved									
Address:	0x70									
Туре:	RW									
Reset:	0x00									
Description:										

[7:0] Reserved

EFFS_EN_CH0

7	6	5	4	3	2	1	0
		Res	EROM09	EROM08			
Address:	0x71						
Туре:	RW						
Reset:	0x00						
Description:							

- [7:2] Reserved[1] EROM091. crashla da complexia EO en chara
 - 1: enable de-emphasis EQ on channel 0
 - [0] EROM08 1: enable high-pass filter on channel 0

BYP_EN_CH1

7	6	5	4	3	2	1	0		
	Reserved								
Address:	0x72								
Туре:	RW								
Reset:	0x00								
Description:									

[7:0] Reserved

EFFS_EN_CH1

7	6		5	4	3	2	1	0
			Reserv	ved			EROM19	Reserved
Address:	0x	73						
Туре:	RV	V						
Reset:	0x	00						
Description	:							
	[7:2] Re	served						
	[1] ER	OM19						

- 1: enable de-emphasis EQ on channel 1
- [0] Reserved

BYP_EN_CH2

7	6	5	4	3	2	1	0
			Rese	erved			
Address:	0x74						
Туре:	RW						
Reset:	0x00						
Description:							

[7:0] Reserved

EFFS_EN_CH2

7	6	5	4	3	2	1	0
		Reserved				EROM29	EROM28
Address:	0x75						
Туре:	RW						
Reset:	0x00						
Description:							
[7:2]	Reserved						
[1]	EROM29 1: enable de-	emphasis EQ (on channel 2				
[0]	EROM28						

1: enable high-pass filter on channel 2

BYP_EN_CH3

7	6	5	4	3	2	1	0
			Reserved				
Address:	0x76						
Туре:	RW						
Reset:	0x00						
Description:							

[7:0] Reserved

EFFS_EN_CH3

7	6	5	4	3	2	1	0
		Reserved				EROM39	Reserved
Address:	0x77						
Туре:	RW						
Reset:	0x00						
Description:							

- [7:2] Reserved
 - [1] EROM391: enable de-emphasis EQ on channel 3
 - [0] Reserved

BASS_SEL0_R

7	6	5	4	3	2	1	0
Reserved		BASS_EN0			BASS_SEL0		
Address:	0x78						
Туре:	RW						
Reset:	0x00						
Description:							

- [7:6] Reserved
 - [5] BASS_EN00: Bass EQ of channel 0 is not active
 - 1: Bass EQ of channel 0 is active
- [4:0] BASS_SEL0 Select the gain of the bass filter from -12 dB (00000) to +12 dB using *Table 35* below

BASS_SEL1_R

7	6	5	4	3	2	1	0
Reserved		BASS_EN1			BASS_SEL1		
Address:	0x79						
Туре:	RW						
Reset:	0x00						
Description:							
[7:6] Reserv	ved					

[5] BASS_EN10: Bass EQ of channel 1 is not active1: Bass EQ of channel 1 is active

[4:0] BASS_SEL1 Select the gain of the bass filter from -12 dB (00000) to +12 dB using *Table 35* below

BASS_SEL2_R

7	6	5	4	3	2	1	0
Reserve	Reserved				BASS_SEL2		
Address:	0x7A						
Туре:	RW						
Reset:	0x00						
Description:							

-
 - [7:6] Reserved
 - [5] BASS_EN20: Bass EQ of channel 2 is not active1: Bass EQ of channel 2 is active
 - [4:0] BASS_SEL2 Select the gain of the bass filter from -12 dB (00000) to +12 dB using Table 35 below

BASS_SEL3_R

7	6	5	4	3	2	1	0
Rese	rved	BASS_EN3			BASS_SEL3		
Address:	0x7B						
Туре:	RW						
Reset:	0x00						
Description:							
	[7:6] Reserve [5] BASS_1 0: Bass		3 is not active	9			
	1: Bass	EQ of channel	3 is active				
	[4:0] BASS_3	SEL3					

Select the gain of the bass filter from -12 dB (00000) to +12 dB using Table 35 below

TREB_SEL0_R

7	6	5	4	3	2	1	0
Reserved		TREB_EN0			TREB_SEL0		
Address:	0x7C						
Туре:	RW						
Reset:	0x00						
Description:							

- [7:6] Reserved
- [5] TREB_EN00: Treble EQ of channel 0 is not active1: Treble EQ of channel 0 is active
- [4:0] TREB_SEL0 Select the gain of the treble filter from -12 dB (00000) to +12 dB using *Table 35* below

TREB_SEL1_R

7	6	5	4	3	2	1	0
Reserved		TREB_EN1			TREB_SEL1		
Address:	0x7D						
Туре:	RW						
Reset:	0x00						
Description:							
[7:6] Reserv	ed					

[5] TREB_EN10: Treble EQ of channel 1 is not active1: Treble EQ of channel 1 is active

[4:0] TREB_SEL1 Select the gain of the treble filter from -12 dB (00000) to +12 dB using *Table 35* below

TREB_SEL2_R

7	6	5	4	3	2	1	0
Reserved		TREB_EN2			TREB_SEL2		
Address:	0x7E						
Туре:	RW						
Reset:	0x00						
Description:							

- - [7:6] Reserved
 - [5] TREB_EN20: Treble EQ of channel 2 is not active1: Treble EQ of channel 2 is active
 - [4:0] TREB_SEL2 Select the gain of the treble filter from -12 dB (00000) to +12 dB using *Table 35* below

TREB_SEL3_R

7	6	5	4	3	2	1	0
Res	erved	TREB_EN3			TREB_SEL3		
Address:	0x7F						
Туре:	RW						
Reset:	0x00						

	_
Descri	ntion
000011	

- [7:6] Reserved
- [5] TREB_EN30: Treble EQ of channel 3 is not active1: Treble EQ of channel 3 is active
- [4:0] TREB_SEL3

Select the gain of the treble filter from -12 dB (00000) to +12 dB using Table 35 below

BASS_SELx TREBLE_SELx	Gain	BASS_SELx TREBLE_SELx	Gain
11000	+12	-	-
10111	+11	01011	-01
10110	+10	01010	-02
10101	+09	01001	-03
10100	+08	01000	-04
10011	+07	00111	-05
10010	+06	00110	-06
10001	+05	00101	-07
10000	+04	00100	-08
01111	+03	00011	-09
01110	+02	00010	-10
01101	+01	00001	-11
01100	+00	00000	-12

Table 35. Bass/treble filter gains used in register addresses 0x78 -	0x7F
--	------

SATCH0CFG1

7	6	5	4	3	2	1	0
SAT_EQ			SA	T_CH0[22:16]			
Address:	0x90						
Туре:	RW						
Reset:	0xFF						
Description:							
	 1: all the cha SAT_CH0[22 MSBs of the	value of every nnels take the 1:16] absolute satur s above SAT_(saturation variation variation value for	alue of char or channel (nnel 0 D.		

SATCH0CFG2

7	6	5	4	3	2	1	0
			SAT_CH	10[15:8]			
Address:	0x91						
Туре:	RW						
Reset:	0xFF						
Description:							

[7:0] SAT_CH0[15:8]Middle bits of the saturation value for channel 0If the signal is above SAT_CH0[22:0] then it is truncated

SATCH0CFG3

7		6	5	4	3	2	1	0	
SAT_CH0[7:0]									
Address:		0x92							
Туре:		RW							
Reset:		0xFF							
Description	:								
			he saturation	value for chanr SAT_CH0[22:0]		ated			

116/157	Doc ID 15351 Rev 3	

SATCH1CFG1

7	6	5	4	3	2	1	0
Reserved				SAT_CH1[22:16]			
Address:	0x93						
Туре:	RW						
Reset:	0x00						
Description:							
	[7] Reserved	b					
[6	:0] SAT_CH	1[22:16]					

MSBs of the absolute saturation value for channel 1. If the signal is above SAT_CH1[22:0] then it is truncated, see also register bit SATCH0CFG1[7]

SATCH1CFG2

7	6	5	4	3	2	1	0
			SAT_CH	11[15:8]			
Address:	0x94						
Туре:	RW						
Reset:	0x00						
Description:							

Description:

[7:0] SAT_CH1[15:8]
 Middle bits of the saturation value for channel 1
 If the signal is above SAT_CH1[22:0] then it is truncated, see also register bit SATCH0CFG1[7]

SATCH1CFG3

7	6	5	4	3	2	1	0
			SAT_CH	H1[7:0]			
Address:	0x95						
Туре:	RW						
Reset:	0x00						
Description:							

[7:0] SAT_CH1[7:0]
 LSBs of the saturation value for channel 1
 If the signal is above SAT_CH1[22:0] then it is truncated, see also register bit SATCH0CFG1[7]

SATCH2CFG1

7	6	5	4	3	2	1	0
Reserved				SAT_CH2[22:16]			
Address:	0x96						
Туре:	RW						
Reset:	0x00						
Description:							
	[7] Reserve	d					

[6:0] SAT_CH2[22:16]
 MSBs of the absolute saturation value for channel 2.
 If the signal is above SAT_CH2[22:0] then it is truncated, see also register bit SATCH0CFG1[7]

SATCH2CFG2

7	6	5	4	3	2	1	0
			SAT_CH	12[15:8]			
Address:	0x97						
Туре:	RW						
Reset:	0x00						
Description:							

Description:

[7:0] SAT_CH2[15:8]
 Middle bits of the saturation value for channel 2
 If the signal is above SAT_CH2[22:0] then it is truncated, see also register bit SATCH0CFG1[7]

SATCH2CFG3

7	6	5	4	3	2	1	0
			SAT_CH2[7:	0]			
Address:	0x98						
Туре:	RW						
Reset:	0x00						
Description:							

[7:0] SAT_CH2[7:0]
 LSBs of the saturation value for channel 2
 If the signal is above SAT_CH2[22:0] then it is truncated, see also register bit SATCH0CFG1[7]

118/157

SATCH3CFG1

7	6	5	4	3	2	1	0				
Reserved		SAT_CH3[22:16]									
Address:	0x99										
Туре:	RW										
Reset:	0x00										
Description:											
[[7] Reserved										
[6:	0] SAT_CH		4 4		0						

MSBs of the absolute saturation value for channel 3. If the signal is above SAT_CH3[22:0] then it is truncated, see also register bit *SATCH0CFG1*[7]

SATCH3CFG2

7	6	5	4	3	2	1	0
			SAT_CH	13[15:8]			
Address:	0x9A						
Туре:	RW						
Reset:	0x00						
Description:							

Description:

[7:0] SAT_CH3[15:8]
 Middle bits of the saturation value for channel 3
 If the signal is above SAT_CH3[22:0] then it is truncated, see also register bit SATCH0CFG1[7]

SATCH3CFG3

7	6	5	4	3	2	1	0
			SAT_CH3[7:	0]			
Address:	0x9B						
Туре:	RW						
Reset:	0x00						
Description:							

[7:0] SAT_CH3[7:0]
 LSBs of the saturation value for channel 3
 If the signal is above SAT_CH3[22:0] then it is truncated, see also register bit SATCH0CFG1[7]

VOLCFG

7	6	5	4	3	2	1	0
SVOL_ON3	SVOL_ON2	SVOL_ON1	SVOL_ON0		TIM_	SVOL	
Address:	0xA0						
Туре:	RW						
Reset:	0xF5						
Description	: The re	egister sets up	the soft volu	me control			
	1: volu [6] SVOL_	me on channel me on channel _ON2	3 is updated g	radually with a	a ramp		
		me on channel me on channel	•		a ramp		
		ON1 me on channel me on channel	-	-	a ramp		
		ON0 me on channel me on channel	-	-	a ramp		
	[3:0] TIM_S Set the		each volume s	tep (0.5 dB) t	akes (2 ^{TIM_SVO}	^L / f _S) s	
MVOL			Master vol	ume cont	rol		
7	6	5	4 M	3	2	1	0
Address:	0xA1						

Description:

Туре:

Reset:

[7:0] MVOL

RW

0x00

Master volume from 0 dB to -127.5 dB in 0.5 dB steps (volume = MVOL * 0.5 dB)

VOLCH0

Channel 0 volume control

7		6	5	4 CVO	3	2	1	0
A		0.40			20			
Address:		0xA2						
Туре:		RW						
Reset:		0x48						
Description	ו:							
	[7:0]	CVOL0 Channel	0 volume 36	dB to -91.5 dB i	n 0.5 dB steps	5		
VOLCH1			(Channel 1	volume co	ontrol		
7		6	5	4	3	2	1	0
				CVO	L1			
Address:		0xA3						
Туре:		RW						
Reset:		0x48						
Descriptior	ו:							
	[7:0]	CVOL1 Channel	1 volume 36	dB to -91.5 dB i	n 0.5 dB steps	6		
VOLCH2				Channel 2 v	volume co	ontrol		
7		6	5	4	3	2	1	0
				CVO	L2			
Address:		0xA4						
Туре:		RW						
Reset:		0x48						
Descriptior	ו:							
	[7:0]	CVOL2 Channel	2 volume 36	dB to -91.5 dB i	n 0.5 dB steps	5		

VOLCH3

Channel 3 volume control

7	6	5	4	3	2	1	0
			CVC	DL3			
Address:	0xA5						
Туре:	RW						
Reset:	0x48						

Description:

[7:0] CVOL3

Channel 3 volume 36 dB to -91.5 dB in 0.5 dB steps

SAI_IN1_CFG0

7	6	5	4	3	2	1	0
S2P1_B_STR	S2P1_LR_L	Reserved	S2P1_MSB		S2P1_DFM		S2P1_MMD
Address:	0xB0						
Туре:	RW						
Reset:	0xD2						
Description:							

[7] S2P1_B_STR
BICLK strobe
0: active_edge = rising, strb_edge = falling
1: active_edge = falling, strb_edge = rising

- [6] S2P1_LR_L
 LRCLK strobe
 0: left = 0, right = 1
 1: left = 1, right = 0
- [5] Reserved
- [4] S2P1_MSB MSB first
- [3:1] S2P1_DFM[2:0] Data format
 - 000: left justified
 - 001: I²S
 - 010: right justified
 - 100: PCM no-delay
 - 101: PCM delay
 - 111: DSP
 - [0] S2P1_MMD Master mode

SAI_IN1_CFG1

7		6	5	4	3	2	1	0
S2P	1_DLEN		S2P	_BOS	S2P1	1_MAP_L	S2P1	_MAP_R
Address:		0xB1						
Туре:		RW						
Reset:		0x91						
Descriptior	า:							
	[7:6]	S2P1_E Data ler 00: 8 bit 01: 16 b 10: 24 b 11: 32 b	ngth is its its					
	[5:4]	01: BIC 10: BIC						
	[3:2]	S2P1_N Map left 00: slot 01: slot 10: slot 11: slot	0 1 2					
	[1:0]	S2P1_N Map rig 00: slot 01: slot 10: slot 11: slot	ht 0 1 2					

SAI_OUT_CFG0

7	6	5	4	3	2	1	0
P2S_B_STR	P2S_LR_L	SDATAO_ACT	P2S_MSB		P2S_DFM		P2S_MMD
ddress:	0xB2						
уре:	RW						
leset:	0xD3						
escription:							
	0: left =	R_L (strobe = 0, right = 1 = 1, right = 0					
		0_ACT nal behavior TAO is disabled					
	[4] P2S_M MSB fi						
	001: I ² 010: riç 100: Pe	ormat ft justified S ght justified CM no-delay CM delay					
	[0] P2S_M Master						

SAI_OUT_CFG1

7		6	5	4	3	2	1	0
P28	S_DLEN		P2S_	BOS	P2S_N	1AP_L	P2S_	MAP_R
Address:		0xB3						
Гуре:		RW						
Reset:		0x91						
Description	n:							
	[7:6]	P2S_DLH Data leng 00: 08 bit 01: 16 bit 10: 24 bit 11: 32 bit	gth ts ts ts					
	[5:4]	01: BICL 10: BICL						
	[3:2]	P2S_MA Map left 00: slot 0 01: slot 1 10: slot 2 11: slot 3						
	[1:0]	P2S_MA Map righ 00: slot 0 01: slot 1 10: slot 2 11: slot 3	t					

SAI_IN2_CFG0

7	6	5	4	3	2	1	0
S2P2_B_STR	S2P2_LR_L	Reserved	S2P2_MSB		S2P2_DFM		S2P2_MMD
Address:	0xB4						
Туре:	RW						
Reset:	0xD2						
Description:							
				-			
	[5] Reserve	ed					
	[4] S2P2_M MSB fir						
	001: I ² S 010: rig 100: PC	rmat t justified S ht justified CM no-delay CM delay					
	[0] S2P2_N Master						

SAI_IN2_CFG1

7		6	5	4	3	2	1	0
S2P2	2_DLEN		S2P2_I	BOS	S2P2	_MAP_L	S2P2	_MAP_R
Address:		0xB5						
Туре:		RW						
Reset:		0x91						
Description	:							
	[7:6]	S2P2_C Data ler 00: 8 bi 01: 16 b 10: 24 b 11: 32 b	ngth ts bits bits					
	[5:4]	01: BIC 10: BIC						
	[3:2]	S2P2_N Map left 00: slot 01: slot 10: slot 11: slot	t 0 1 2					
	[1:0]	S2P2_M Map rig 00: slot 01: slot 10: slot 11: slot	ht 0 1 2					

AUIFSHARE

7		6	5	4	3	2	1	0
		Reserved SHARE_BIL						
Address:		0xB6						
Туре:		RW						
Reset:		0x00						
Description:								
	[7:2]	Reserved	k					
	[1:0]	01: SAI_i SAI1: SAI2 10: SAI_i SAI_c	ock sharing n1, SAI_in2 s can be mast : always slave n1, SAI_in2,	er/slave (see c e SAI_out share aster/slave (se	config) e the clocks: BI	d LRCLKI1 (oth CLKI1 and LRC		
		11: no clo	ock sharing					

SRCINSEL

7	6	5	4	3	2	1	0
SRC1_IN	ISEL	SRC2	INSEL	MUTE_SRCU	Reserved		
Address:	0xB7						
Туре:	RW						
Reset:	0x28						
Description:							

coonpaon.

[7:6] SRC1_INSEL

Sample rate converter IN channels 0 and 1: 00: serial audio interface IN 1 01: ADC 1x: serial audio interface IN 2

[5:4] SRC2_INSEL

Sample rate converter IN channels 2 and 3: 00: serial audio interface IN 1 01: ADC

1x: serial audio interface IN 2

[3] MUTE_SRCU0:

1: The device will be put in mute if the SRC is not locked at the 96 kHz sample frequency

[2:0] Reserved

P2SDATA

7	6	5	4	3	2	1	0
Reserved	P2S_HFS		P2S1_DSEL			P2S2_DSEL	
Address:	0xB8						
Туре:	RW						
Reset:	0x00						
Description:	:						
	[7] Reserve	ed					
	[6] P2S_HF SAI OU 0: 96 kl 1: half j	T: Hz	equency (48 kHz))			
	100: SF 101: pro	T 1 DC JI IN 1	2-3 nnels 0 - 1				
	100: SR 101: pro	T 2 DC JI IN 1	2-3 nnels 0 - 1				

PLLCFG0

7	6	5	4	3	2	1	0
PLL_DPROG	PLL_FR_CTRL	PLL_	DDIS		PLL_	IDF	
Address:	0xC0						
Туре:	RW						
Reset:	0x00						
Description	:						
		akes the inter akes the regis	-				
	[6] PLL_FF		, avetbaaia diaa	blad			

0: fractional frequency synthesis disabled1: fractional frequency synthesis enabled

[5:4] PLL_DDIS

- PLL dither disable
- x0: triangular PDF dither input enabled
- x1: triangular PDF dither input disabled
- 0x: rectangular PDF dither input enabled
- 1x: rectrangular PDF dither input disabled

[3:0] PLL_IDF Set the input division factor of the PLL (see Section 5.3: Fractional PLL on page 31)

PLLCFG1

7	6	5	4	3	2	1	0
			PLL_FR	AC[15:8]			
Address:	0xC1						
Туре:	RW						
Reset:	0x00						
Description:	See als	So Section 5.3	3: Fractional	PLL on page	31		

[7:0] PLL_FRAC[15:8] The MSBs of PLL_FRAC[15:0] which is used to set the PLL multiplication factor

PLLCFG2

7	6	5	4	3	2	1	0
			PLL_FR/	AC[7:0]			
Address:	0xC2						
Туре:	RW						
Reset:	0x00						
Description:	See also	Section 5.	3: Fractional F	PLL on page	31		

[7:0] PLL_FRAC[7:0] The LSBs of PLL_FRAC[15:0] which is used to set the PLL multiplication factor

PLLCFG3

7	6	5	4	3	2	1	0
PLL_STRB	PLL_STRBBYP			PLL_I	NDIV		
Address:	0xC3						
Туре:	RW						
Reset:	0x00						
Description	See als	so Section 5.3	3: Fractional I	PLL on page	31		
		al behaviour	e input, a new	configuration in	nput is loaded i	nto the fractio	n controller
	••••••	RBBYP al behaviour ss the strobe si	gnal				
	[5:0] PLL_NI Set the		ion factor (inte	gral part), loop	division factor	(LDF)	

PLLPFE

7	6	5	4	3	2	1	0
PLL_BYP_UNL	BICLK2PLL	PLL_PWDN	PLL_NOPDDIV		Rese	rved	
Address:	0xC4						
Туре:	RW						
Reset:	0x80						
Description:							

[7] PLL_BYP_UNL

0: PLL clock is not bypassed if it is unlock

1: PLL clock is bypassed if it is unlock, the external clock is used as system clock

- [6] BICLK2PLL
 - PLL clock in selection
 - 0: normal behaviour
 - 1: BICLKI1 is used as PLL clock source
- [5] PLL_PWDN
 - 0: normal behaviour
 - 1: PLL goes into power-down mode
- [4] PLL_NOPDDIV0: PLL goes to power-down when the divider settings are changed1: PLL remains active when the divider settings are changed
- [3:0] Reserved

PLLST

PLL status

7	6	5	4	3	2	1	0
PLL_UNLOCK	PLL_PWD_ST	PLL_BYP_ST			Reserved		
Address:	0xC5						
Туре:	RO						
Reset:	0x00						
Description:							

- [7] PLL_UNLOCK
 - 0: normal behaviour
 - 1: PLL is not locked
- [6] PLL_PWD_ST0: normal behaviour1: PLL is in power-down mode
- [5] PLL_BYP_ST0: PLL is selected1: PLL is bypassed

[4:0] Reserved

ADCCFG0

7	6	5	4	3	2	1	0
	ADC_PGA		ADC_INSEL	ADC_STBY	ADC_BYPCAL	CLK_ADC_ON	Reserved
Address:	0xC6						
Туре:	RW						
Reset:	0x00						
Description:							

[7:5]	ADC_PGA
	Programmable gain amplifier:
	000: 0 dB
	001: +6 dB
	010: +12 dB
	011: +18 dB
	100: +24 dB
	101: +30 dB
	110: +36 dB
	111: +42 dB
[4]	ADC_INSEL

0: line input mode selected
1: mike input mode selected

[3] ADC_STBY

0: ADC normal mode 1: ADC standby mode for power reduction

[2] ADC_BYPCAL

0: DC-removal block enabled

- 1: bypass DC-removal block
- [1] CLK_ADC_ON0: ADC clock disabled1: ADC clock active
- [0] Reserved

CKOCFG

7		6	5	4	3	2	1	0
CLKOUT_DIS		CLKOUT	_SEL	CLK_FFX_ON	CLK_SRC_ON	CLK_PROC_ON	EAPWM_DIS	PWM00ACT
Address:		0xC7						
Туре:		RW						
Reset:		0x1C						
Description:								
	[7]		_DIS UT is enabled UT is disabled					
	[6:5]	01: syste 10: syste	_SEL m clock / 4 m clock / 2 m clock / 4 m clock / 8					
	[4]		K_ON ock disabled ock active					
	[3]	-	e rate convert	er clock disabl er clock active				
	[2]	0: proces	CLK_PROC_ON 0: process block clock disabled 1: process block clock active					
	[1]		_DIS VM output is e VM output is c					
	[0]	-	ACT PWM00 is at t PWM00 is a	-				

MISC

7	6	5	4	3	2	1	0
OSC_DIS		S2P_FS_RNG		ADC_F	S_RNG	Reserved	CLK_CORE_ON
Address:	0xC8						
Туре:	RW						
Reset:	0x20						
Description:							

[7] OSC_DIS0: normal behaviour1: XT oscillator is disabled[6:4] S2P_FS_RNG

Serial audio interface sampling frequency, f_S, range:

- 000: 8 12 kHz (very low)
- 001: 16 24 kHz (low)
- 010: 32 48 kHz (normal)
- 011: 64 96 kHz (high)
- 100: 128 192 kHz (very high)
- [3:2] ADC_FS_RNG
 ADC sampling frequency, f_S, range:
 00: 32 48 kHz (normal)
 01: 16 24 kHz (low)
 1x: 8 12 kHz (very low)
 - [1] Reserved
 - [0] CLK_CORE_ON0: core clock disabled1: core clock active

PLLB

7	6	5	4	3	2	1	0
PLL_BYP	Reserved	ADC_CLKSEL	Reserved	P2S1_CLKSEL	Reserved	P2S2_CLKSEL	Reserved
Address:	0xC9						
Туре:	RW						
Reset:	0x80						
Description:	See al	so Figure 11:	Clock mana	gement scher	me on page 2	29	
	1: PLL [6] Reserv [5] ADC_C 0: clk_a 1: pll_c [4] Reserv [3] P2S1_(0: proce 1: pll_c [2] Reserv [1] P2S2_(not bypassed bypassed ed ELKSEL adc / 4 lk_in ed ELKSEL essing clock lk_in ed ELKSEL essing clock					

[0] Reserved

HPDET1

7	6	5	4	3	2	1	0
HPD_SEL	HPD_POL	HPD_AC	T_MODE	HPD_HPMOD		HPD_TIM_F	
Address:	0xCA						
Туре:	RW						
Reset:	0x40						
Description:							

[7] HPD_SELSelect the headphone detection threshold0: HP11: HP2

- [6] HPD_POL Polarity of the detection signal
- [5:4] HPD_ACT_MODE
 Action to be done in case of detection:
 00: inactive
 01: mute EA and un-mute CB
 10: 3-state EA and un-3-state CB
 11: power-down EA and power-up CB

[3] HPD_HPMOD

0: normal behaviour 1: FFX is in headphone modulation mode

[2:0] HPD_TIM_F

- 000: 1.33 ms 001: 2.66 ms 010: 5.33 ms 011: 10.66 ms 100: 21.33 ms 101: 42.66 ms
- 110: 85.33 ms
- 111: 170.67 ms

HPDET2

7	6	5	4	3	2	1	0
E_HP2	E_HP1	TUD_EN		Reserved		E_HPDET1	E_HPDET2
Address:	0xCB						
Туре:	RW						
Reset:	0xC0						
Description:							

[7]	E_HP2
	0: headphone detection 2 is disabled
	1: headphone detection 2 is enabled

- [6] E_HP1
 - 0: headphone detection 1 is disabled
 - 1: headphone detection 1 is enabled
- [5] TUD_EN1: disable the pull-up resistor of the headphones detector
- [4:2] Reserved
 - [1] E_HPDET1 Headphone 1 detector line (not filtered)
- [0] E_HPDET2 Headphone 2 detector line (not filtered)

HPDST

Headphone detection status

7	6	5	4	3	2	1	0
HPD_DET_FILT				Reserved			
Address:	0xCC						
Туре:	RO						
Reset:	0x00						
Description:							
	[7] HPD_DE 0: no hea	T_FILT adphones					

- 1: headphones detected
- [6:0] Reserved

STBY_MODES

7		6	5	4	3	2	1	0
PAD_PULLDIS				Reserved			CMP_EN_N	DC_STBY_EN_ N
Address:		0xCD						
Туре:		RW						
Reset:		0x00						
Description:								
	[7]		the pull (up/	down) of the p /down) of the p				
	[6:2]	Reserved						
	 [1] CMP_EN_N 0: compensation cell is active 1: compensation cell goes into power-down mode when pin STBY is asserted 							
	[0]	-	ulators are a		n mode when	pin STBY is ass	erted	

ADCCFG1

ADC analog input selection

7	6	5	4	3	2	1	0
ADC_ANA_SEL				Rese	rved		
Address:	0xCE						
Туре:	RW						
Reset:	0x00						
Description:							

[7:6]	ADC_ANA_SEL
	00: INL1, INR1
	01: INL2, INR2
	1x: reserved
[5:0]	Reserved

PFEFAULT

7	6	5	4	3	2	1	0
	Reserved		PFE1	PFE2	PFE3	RESET_EA_FT	RESET_CB_FT
Address:	0xCF						
Туре:	RW						
Reset:	0x00						

Description:

- [7:5] Reserved
 - [4] PFE1

0: analog pop free disabled on bridge output 11: analog pop free enabled bridge output 1

- [3] PFE2
 - 0: analog pop free disabled on bridge output 2
 - 1: analog pop free enabled bridge output 2
- [2] PFE3

0: analog pop free disabled on bridge output 31: analog pop free enabled bridge output 3

- [1] RESET_EA_FT0: normal operation1: reset register bit *POWST*[1]
- [0] RESET_CB_FT0: normal operation1: reset register bits *POWST1*[5:3]

BISTRUN0

BIST control

7	6	5	4	3	2	1	0
SF1_BRUN	SF2_BRUN	SS1_BRUN	SS2_BRUN	CF_BRUN	PR_BRUN	CF_ROM_BRUN	Reserved
ddress:	0xD0						
уре:	RW						
Reset:	0x00						
Description:							
			iode				
	[6] SF2_BI SRC2 F 0: norm	RUN	iode				
			ode				
			ode				
	0: norm	UN RAM (coefficie nal functional m the BIST					
	0: norm	UN RAM (program nal functional m the BIST	-				
	0: norm	M_BRUN RAM (coefficie nal functional m the BIST					
	[0] Reserv	ed					

BISTRUN1

7	6	5	4	3	2	1	0
OS_BRUN	DB_BRUN			Rese	rved		
Address:	0xD1						
Туре:	RW						
Reset:	0x00						
Description:							

[7]	OS_BRUN
	FFX RAM
	0: normal functional mode
	1: start the BIST

- [6] DB_BRUNFFX RAM0: normal functional mode1: start the BIST
- [5:0] Reserved

BISTST0

BIST status register 0

7	6	5	4	3	2	1	0
SF1_BEND	SF1_BBAD	SF1_BFAIL	SF2_BEND	SF2_BBAD	SF2_BFAIL	SS1_BEND	SS1_BBAD
Address:	0xD2						
Туре:	RO						
Reset:	0x00						
Description:							

- [7] SF1_BEND:For SRC1 RAM BIST0: normal functional mode
 - 1: BIST is finished
- [6] SF1_BBADFor SRC1 RAM BIST0: no faults detected1: at least one fault detected
- [5] SF1_BFAIL
 For SRC1 RAM BIST
 0: no faults detected in the current location
 1: at least one fault detected in the current location

- [4] SF2_BEND
 For SRC2 RAM BIST
 0: normal functional mode
 1: BIST is finished
- [3] SF2_BBAD
 For SRC2 RAM BIST
 0: no faults detected
 1: at least one fault detected
- [2] SF2_BFAIL
 For SRC2 RAM BIST
 0: no faults detected in the current location
 1: at least one fault detected in the current location
- [1] SS1_BEND
 For SRC1 RAM BIST
 0: normal functional mode
 1: BIST is finished

[0] SS1_BBAD For SRC1 RAM BIST

0: no faults detected

1: at least one fault detected

BISTST1

BIST status register 1

7	6	5	4	3	2	1	0
SS1_BFAIL	SS2_BEND	SS2_BBAD	SS2_BFAIL	CF_BEND	CF_BBAD	CF_BFAIL	PR_BEND
ddress:	0xD3						
уре:	RO						
Reset:	0x00						
Description:							
	0: no fa	C1 RAM BIST ults detected in		ocation urrent location			
	0: norm	END: C2 RAM BIST nal functional m	node				
	0: no fa	BAD C2 RAM BIST ults detected ast one fault de	etected				
	0: no fa	C2 RAM BIST ults detected in		ocation urrent location			
	0: norm	ND: OC RAM BIST nal functional m					
	0: no fa	AD OC RAM BIST Jults detected ast one fault de					
	0: no fa	OC RAM BIST	n the current lo	ocation urrent location			
	0: norm	ND: OC RAM BIST al functional m					

BISTST2

BIST status register 2

7	6	5	4	3	2	1	0
PR_BBAD	PR_BFAIL	OS_BEND	OS_BBAD	OS_BFAIL	DB_BEND	DB_BBAD	DB_BFAIL
Address:	0xD4						
Гуре:	RO						
Reset:	0x00						
Description:							
	0: no fa	AD OC RAM BIST ults detected ast one fault de	tected				
	0: no fa	AIL OC RAM BIST ults detected ir ast one fault de					
	0: norm	ND: K RAM BIST al functional m is finished	ode				
	0: no fa	AD K RAM BIST ults detected ast one fault de	tected				
	0: no fa	AIL K RAM BIST ults detected ir ast one fault de					
	0: norm	ND: K RAM BIST hal functional m is finished	ode				
	0: no fa	AD K RAM BIST ults detected ast one fault de	tected				
	0: no fa	AIL K RAM BIST ults detected ir ast one fault de					

BISTST3

BIST status register 3

7	6	5	4	3	2	1	0
CF_ROM_BEND				Reserved			
Address:	0xD5						
Туре:	RO						
Reset:	0x00						
Description:							
	[7] CF_RON ROM BI	M_BEND ST computatio	on is finished				

[6:0] Reserved

ROMSIGN0

ROM BIST signature (LSBs)

7	6	5	4	3	2	1	0
			CF_ROI	MS[7:0]			
Address:	0xD6						
Туре:	RO						
Reset:	0x00						
Description:							
I	[7:0] CF_ROM LSBs of F		gnature CF_RC	DMS[23:0]			
ROMSIGN1		F	ROM BIST	signature	(middle bit	ts)	
7	6	5	4	3	2	1	0
			CF_RON	/IS[15:8]			
Address:	0xD7						
Туре:	RO						
Reset:	0x00						
Description:							
I	[7:0] CF_ROM Middle bi		ST signature C	F_ROMS[23:0]		
ROMSIGN2	2	F	ROM BIST	signature	(MSBs)		
7	6	5	4	3	2	1	0
			CF_ROM	IS[23:16]			
Address:	0xD8						
Туре:	RO						
Reset:	0x00						
Description:							
		P[02-16]					
I	[7:0] CF_ROM			0100.01			

MSBs of ROM BIST signature CF_ROMS[23:0]

DEBUG0

7		6	5	4	3	2	1	0
DBGCKO_ON					DBGCKO_VAL			
Address:		0xD9						
Туре:		RW						
Reset:		0x00						
Description:	:							
	[7]		l behaviour	ernal clocks a	s defined by b	its DBGCKO_V	AL	
	[6:0]	0x01: mu 0x02: bin 0x21: de 0x22: de 0x23: de 0x23: de 0x24: de 0x40: clk 0x41: clk 0x41: clk 0x42: clk 0x50: src 0x51: src 0x55: src 0x55: src 0x56: pw	alid_inp_fbk ite_int_fbk iss_fbk bug_start bug_data_end bug_data_ok bug_lrclk_old bug_biclk c_proc c_src c_ffx c_1_lock c_2_lock c_1_bypass_s c_2_bypass_s c_2_bypass_s	tate[0] tate[1] tate[0] tate[1]				

148/157

0x58: s2p_2_bad_clocks 0x59: s2p_1_missing_biclk all other values: no clock exported

PADST0

Pad status 0

7	6	5	4	3	2	1	0	
PAD_RSTN	Reserved	PAD_SCL	PAD_SDA	PAD_I2CDIS	Res	erved	PAD_STBY	
Address:	0xF0							
Туре:	RO	RO						
Reset:	0xA0							
Description:								
	[7] PAD_R	STN						
	[6] Reserve	[6] Reserved						
	[5] PAD_SCL							
	[4] PAD_SDA							
	[3] PAD_I2CDIS							
	[2:1] Reserved							
	[0] PAD_STBY							

PADST1

7	6	5	4	3	2	1	0
PAD_MUTE	PAD_BICLKI	PAD_LRCLKI	PAD_SDATAI	PAD_BICLKO	PAD_LRCLKO	Reserved	
Address:	0xF1						
Туре:	RW						
Reset:	0x74						
Description:							

- [7] PAD_MUTE
- [6] PAD_BICLKI
- [5] PAD_LRCLKI
- [4] PAD_SDATAI
- [3] PAD_BICLKO
- [2] PAD_LRCLKO
- [1:0] Reserved

15 I²C disabled (microless) mode

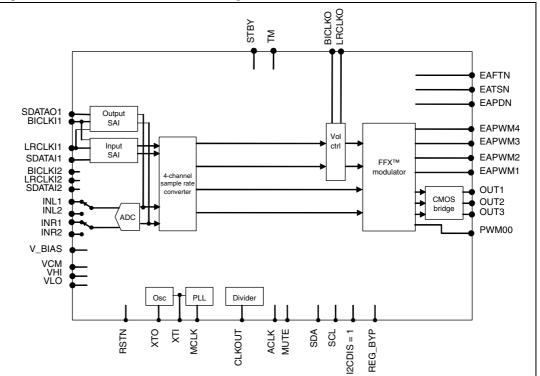


Figure 55. Microless mode block diagram

In microless mode (I2CDIS = 1) the I^2C interface is inhibited and SDA and SCL are used as static inputs. The device is working in the configuration shown in *Figure 55* with the ADC connected to input line 1 and to SAI out. The processing chain uses the inputs from SAI input 1. The working modes are selected via the logical levels on the inputs SDA, SCL as follows:

- SCL = 0 : CMOS bridge outputs come from digital input serial audio interface; SCL = 1 : CMOS bridge outputs come from analog ADC input.
- SDA = 0 : external amplifier outputs come from digital input serial audio interface; SDA = 1 : external amplifier outputs come from analog ADC input.

At power-up the channel volume is set to -60 dB. The volume is controlled by pulsing the inputs LRCLKO and BICLKO as follows:

- when pulsing LRCLKO = 1 and BICLKO = 1 simultaneously the channel volume is set to 0 dB.
- Any LRCLKO = 1 pulse causes a channel volume decrease of 0.5 dB.
- Any BICLKO = 1 pulse causes a channel volume increase of 0.5 dB.

The channel volume change applies only to the external amplifier.

The digital output serial audio interface is always fed with the result of the ADC conversion with no volume control (line-out mode). It is in master mode when SCL = 1 and SDA = 1 otherwise it is in slave mode. It is configured in I^2S format.

The LRCLK and BICLK signals are shared between input and output SAI.

Doc ID 15351 Rev 3

The input sampling frequency must be between 32 kHz and 48 kHz and the master clock input (MCLK or XTI) must be 256 * $\rm f_S.$

The CMOS bridge FFX output is configured in line-out mode:

- left channel binary on OUT1
- right channel binary on OUT2
- zero signal binary (duty cycle 50%) on OUT3
- pop-free digital ramp active
- volume control not effective (always 0 dB)
- switching frequency 384 kHz.

The external amplifier FFX output is configured in BTL mode:

- left channel BTL (new ternary modulation) on EAPWM1 and EAPWM2
- right channel BTL (new ternary modulation) on EAPWM1 and EAPWM2
- volume control is effective
- switching frequency 384 kHz.

The headphone detection is disabled.

The CLKOUT pad is active at the PLL frequency of 2048 * f_S .

16 Package mechanical data

S

PIN 1

IDENTIFICATION

64^{-E}

1

The STA321 comes in a 64-pin, 10 mm x 10 mm, LQFP, exposed pad down (EPD) package. The reference number is JEDEC MS-026-BCD-HD.

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.



Figure 56. LQFP-64L EPD outline drawing

Doc ID 15351 Rev 3

S

е

E1

-

16

17

Ш

	Dimensions in mm			Dimensions in inches			
Symbol	Min	Тур	Max	Min	Тур	Max	Notes
A	-	-	1.60	-	-	0.063	-
A1	0.05	-	0.15	0.002	-	0.006	-
A2	1.35	1.40	1.45	0.053	0.055	0.057	-
b	0.17	0.22	0.27	0.007	0.009	0.011	-
С	0.09	-	0.20	0.004	-	0.008	-
D	11.80	12.00	12.20	0.465	0.472	0.480	-
D1	9.80	10.00	10.20	0.386	0.394	0.402	-
D3	-	7.50	-	-	0.295	-	-
E	11.80	12.00	12.20	0.465	0.472	0.480	-
E1	9.80	10.00	10.20	0.386	0.394	0.402	-
E3	-	7.50	-	-	0.295	-	-
е	-	0.50	-	-	0.020	-	-
Н	-	5.89	-	-	0.232	-	-
L	0.45	0.60	0.75	0.018	0.024	0.030	-
L1	-	1.00	-	-	0.039	-	-
S	6.00	-	-	0.236	-	-	Exposed pad
S1	6.00	-	-	0.236	-	-	Exposed pad
CCC	-	-	0.08	-	-	0.003	-
k	0	3.5	7.0	0	3.5	7.0	Degrees

Table 36. LQFP-64L EPD dimensions

17 Glossary

Total harmonic distortion + noise (THDN)

The ratio of the RMS value of all the spectral components in the specified band (20 Hz - 20 kHz) to the RMS values of the signal fundamental component. THDN is measured at 0 dBfs input at a frequency of 1 kHz.

Signal to noise plus distortion ratio (SNDR)

Ratio between power of signal fundamental component and "noise+distortion". It is measured at different input levels: 0 dBfs, -3 dBfs, -6 dBfs, -10 dBfs, -20 dBfs, -40 dBfs, -60 dBfs. When the signal amplitude is less than 0 dBfs, that much dB is added to obtain the final SNR. For example, if SNDR is 87 dB with -6dBfs signal, then SNR = 87 + 6 = 93 dB.

Dynamic range (DR)

Dynamic range is measured using SNDR at -60 dBfs, 1 kHz signal and adding 60 dB. For example, if SNDR with -60 dBfs is 38 dB then the dynamic range is 38 + 60 = 98 dB.

Crosstalk

Crosstalk is the measure of the inter-channel isolation between the left and right channels of a stereo system. It is measured at each output with zero input to the channel under test and a full-scale input applied to the other channel.

Deviation from linear phase

Measurement bandwidth 20 Hz to 20 kHz, $f_S = 48$ kHz. The measurement takes into account the combined digital and analog filter characteristics.

Pass band, pass-band ripple, stop band, stop-band attenuation

These parameters take into account both analog and digital filter characteristics. Stop-band attenuation should be measured between 0.55 * $\rm f_S$ and 3.45 * $\rm f_S.$

18 Trademarks and other acknowledgements

SoundTerminal, FFX and pfStart are trademarks of STMicroelectronics. ECOPACK is a registered trademark of STMicroelectronics.

19 Revision history

Date	Revision	Changes
27-Mar-2009	1	Initial release.
11-May-2009	2	 Updated Table 1: Device summary on page 1 Added ambient temperature to Table 5: Recommended operating conditions on page 13 Updated Table 6: Electrical specifications on page 14 Updated resistor to 32 Ω in Figure 3: Test circuit on page 17 Updated and moved Headphone detector threshold limits table from Chapter 12 on page 72 and merged into Table 6: Electrical specifications on page 14 Updated HPDET2 bitfield in Table 34: Register summary on page 77 Updated description of register HPDET2 on page 138
30-Oct-2009	3	Updates to feature list <i>on page 1</i> Updated <i>Chapter 1: Overview on page 9</i> Updated <i>Chapter 16: Package mechanical data on page 152</i>

Table 37.	Document revision history
Table 37.	Document revision mistory

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 15351 Rev 3