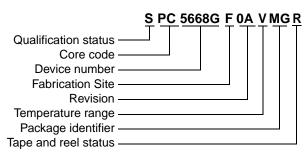


Table of Contents

4	Ordo	ring Information		4.8	Low Voltage Characteristics	26
1	Orde	ring Information			•	
	1.1	Orderable Parts3		4.9	Oscillators Electrical Characteristics	36
2	MPC	5668x Block Diagrams		4.10	FMPLL Electrical Characteristics	38
3	Pin A	ssignments6		4.11	ADC Electrical Characteristics	39
	3.1	208-ball MAPBGA Pin Assignments		4.12	Flash Memory Electrical Characteristics	39
	3.2	256-ball MAPBGA Pin Assignments7		4.13	Pad AC Specifications	40
	3.3	Pin Muxing and Reset States		4.14	AC Timing	43
		3.3.1 Power and Ground Supply Summary			4.14.1 Reset and Boot Configuration Pins	43
4	Elect	rical Characteristics			4.14.2 External Interrupt (IRQ) and Non-Maskable	
	4.1	Maximum Ratings			Interrupt (NMI) Pins	43
	4.2	Thermal Characteristics			4.14.3 JTAG (IEEE 1149.1) Interface	44
		4.2.1 General Notes for Specifications at Maximum			4.14.4 Nexus Debug Interface	47
		Junction Temperature27			4.14.5 Enhanced Modular I/O Subsystem (eMIOS)	49
	4.3	ESD Characteristics			4.14.6 Deserial Serial Peripheral Interface (DSPI) .	50
	4.4	VRC Electrical Specifications			4.14.7 MLB Interface	55
	4.5	DC Electrical Specifications			4.14.8 Fast Ethernet Interface	57
	4.6	Operating Current Specifications32	5	Packa	age Characteristics	61
	4.7	I/O Pad Current Specifications		5.1	Package Mechanical Data	
		4.7.1 I/O Pad V _{DD33} Current Specifications 35	6	Revis	sion History	


Table 1. MPC5668G/MPC5668E Comparison

Feature	MPC	C5668G	MPC	5668E		
Package	208 MAPBGA	256 MAPBGA	208 MAPBGA	256 MAPBGA		
RAM with ECC	59	92 KB	128	3 KB		
MPU		No	16	entry		
DMA	16-0	channel	32-cl	nannel		
Ethernet (FEC)		Yes	1	No		
MediaLB (MLB-DIM)		Yes	1	No		
FlexRay	Yes (128 Me	essage Buffers)	No			
ADC (10-bit)	36 interr	nal channels	64 interna	al channels		
	Supports 32 6	external channels	Supports 32 ex	xternal channels		
Total Timer I/O (eMIOS200)	24 chan	nnels, 16-bit	32 chanr	nels, 16-bit		
Cross Trigger Unit (CTU)		No	Υ	⁄es		
SCI (eSCI)		6	,	12		
SPI (DSPI)		4		4		
CAN (FlexCAN)		6		5		
I ² C		4	4			
Nexus3 Debug (e200Z6)		Supported on 256BGA	Supported on 256			
Nexus2+ Debug (e200Z0)	_	emulation package	_	emulation package		

1 Ordering Information

1.1 Orderable Parts

Qualification Status

P = Prototype

M = Fully spec. qualified, general market flow S = Fully spec. qualified, automotive flow

Core Code PC = Power Architecture

Fabrication Site

F = Freescale

Temperature Range V = -40 °C to 105 °C

M = -40 °C to 125 °C

Package Identifier

MG = 208 MAPBGA Pb-free MJ = 256 MAPBGA Pb-free

Tape and Reel Status

R = Tape and reel (blank) = Trays

Note: Not all options are available on all devices. Refer to Table 1.

Table 1 shows the orderable part numbers for the MPC5668x.

Table 1. Orderable Part Numbers

Freescale Part Number ¹	Package Description	Speed (MHz)	Operating Temperature ²			
Freescale Fait Number	rackage Description	Max ³ (f _{MAX})	Min (T _L)	Max (T _H)		
PPC5668GF1AVMJ ⁴	MPC5668G 256 MAPBGA package Lead-free (PbFree)	116	−40 °C	105 °C		
SPC5668GF1AMMG	MPC5668G 208 MAPBGA package Lead-free (PbFree)	116	−40 °C	125 °C		
SPC5668EF1AVMG	MPC5668G 208 MAPBGA package Lead-free (PbFree)	116	−40 °C	105 °C		
SPC5668EF1AVMGR	MPC5668G 208 MAPBGA package Lead-free (PbFree)	116	−40 °C	105 °C		
SPC5668GF1AMMGR	MPC5668G 208 MAPBGA package Lead-free (PbFree)	116	−40 °C	125 °C		
SPC5668GF1AVMG	MPC5668G 208 MAPBGA package Lead-free (PbFree)	116	−40 °C	105 °C		
SPC5668GF1AVMGR	MPC5668G 208 MAPBGA package Lead-free (PbFree)	116	−40 °C	105 °C		

All packaged devices are PPC5668x, rather than MPC5668x or SPC5668x, until product qualifications are complete. The unpackaged device prefix is PCC, rather than SCC, until product qualification is complete.

Not all configurations are available in the PPC parts.

MPC5668x Microcontroller Data Sheet, Rev. 6

² The lowest ambient operating temperature (T_A) is referenced by T_L; the highest ambient operating temperature is referenced by T_L.

³ Maximum speed is the maximum frequency allowed including frequency modulation (FM).

⁴ The 256 MAPBGA package for the MPC5668x is not intended for full production qualification, and is supplied for development use only.

2 MPC5668x Block Diagrams

Figure 1 shows a top-level block diagram of the MPC5668G device.

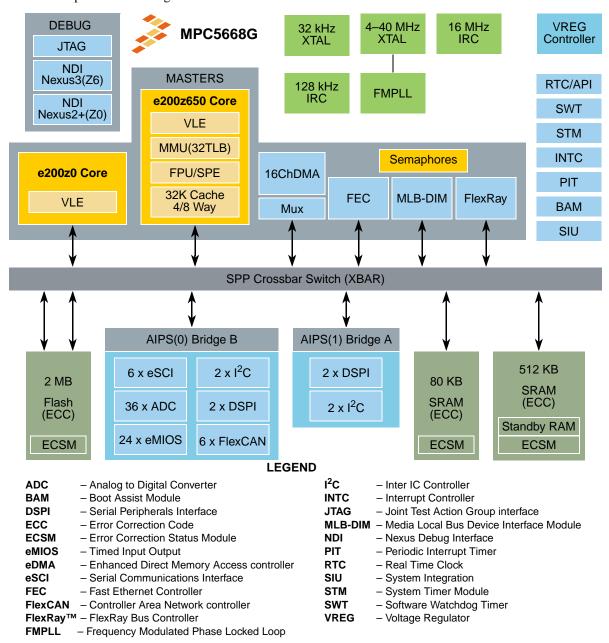


Figure 1. MPC5668G Block Diagram

MPC5668x Microcontroller Data Sheet, Rev. 6

Figure 2 shows a top level block diagram for the MPC5668E device.

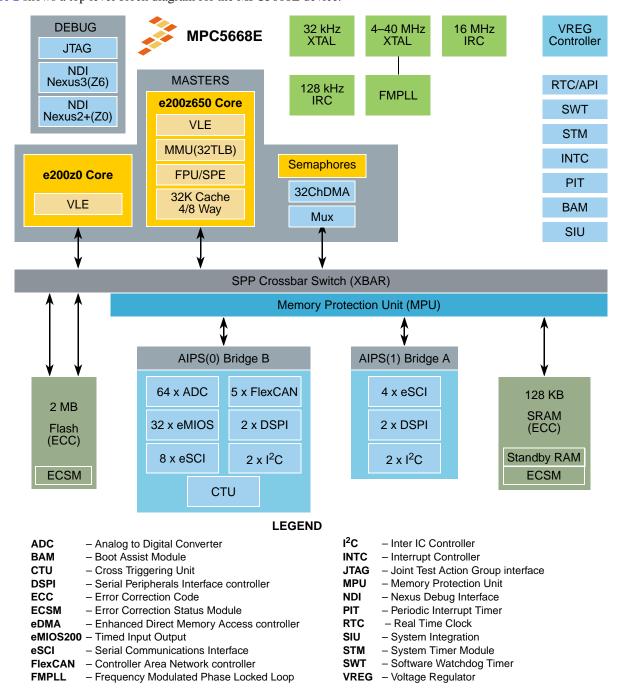


Figure 2. MPC5668E Block Diagram

3 Pin Assignments

3.1 208-ball MAPBGA Pin Assignments

Figure 3 shows the 208-ball MAPBGA pin assignments.

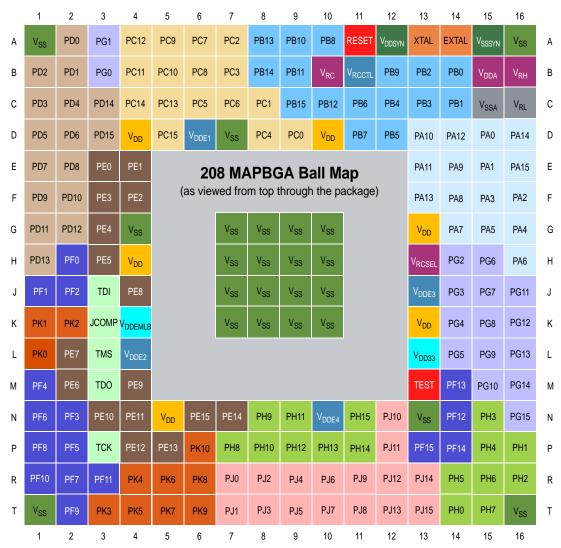


Figure 3. MPC5668x 208-ball MAPBGA (full diagram)

MPC5668x Microcontroller Data Sheet, Rev. 6

3.2 256-ball MAPBGA Pin Assignments

Figure 4 shows the 256-ball MAPBGA pin assignments.

256 MAPBGA Ball Map

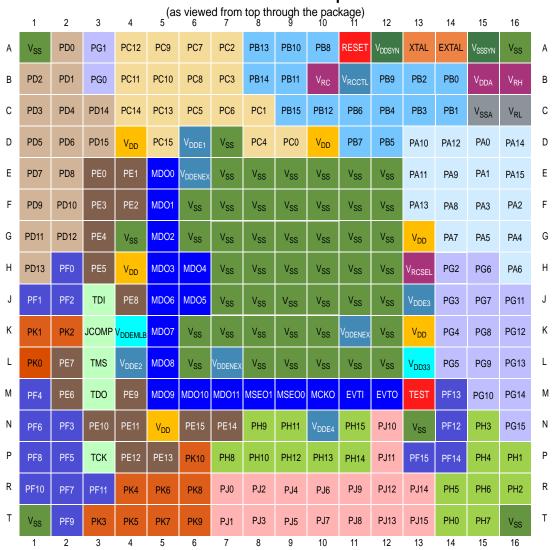


Figure 4. MPC5668x 256-ball MAPBGA (full diagram)

3.3 Pin Muxing and Reset States

Table 2 shows the signals properties for each pin on MPC5668x. For all port pins that have an associated SIU_PCR*n* register to control pin properties, the supported functions column lists the functions associated with the programming of the SIU_PCR*n*[PA] bit in the order: general-purpose input/output (GPIO), function 1, function 2, and function 3 (see Figure 5). When an alternate function is not implemented for a value of SIU_PCR*n*[PA], a dash is shown in the Description column and the respective value in the PA bit field is reserved.

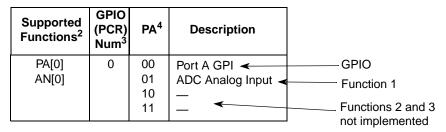


Figure 5. Supported Functions Example

Table 2. MPC5668x Signal Properties

Pin		GPIO	р л4	Description	I/O	Volt-	Pad_		atus	Packa Loca	ge Pin tions
Name ¹	Functions ²	(PCR) Num ³	, A	Description	Туре	age	Type ⁵	During Reset ⁶	After Reset ⁷	208 BGA	256 BGA
				Port A (16)							
PA0	PA[0] AN[0]	0	00 01 10 11	Port A GPI ADC Analog Input —		V _{DDA}	IHA	_	_	D15	D15
PA1	PA[1] AN[1]	1	00 01 10 11	Port A GPI ADC Analog Input —	 - -	V _{DDA}	IHA	_	_	E15	E15
PA2	PA[2] AN[2]	2	00 01 10 11	Port A GPI ADC Analog Input —	 - -	V _{DDA}	IHA	_	_	F16	F16
PA3	PA[3] AN[3]	3	00 01 10 11	Port A GPI ADC Analog Input —	 - -	V _{DDA}	IHA	_	_	F15	F15
PA4	PA[4] AN[4]	4	00 01 10 11	Port A GPI ADC Analog Input —	 - -	V _{DDA}	IHA	_		G16	G16
PA5	PA[5] AN[5]	5	00 01 10 11	Port A GPI ADC Analog Input —		V _{DDA}	IHA	_	_	G15	G15

MPC5668x Microcontroller Data Sheet, Rev. 6

Pin	Supported	GPIO (PCR)	р л 4	Description	I/O	Volt-	Pad		atus	Packa Loca	ge Pin tions
Name ¹	Functions ²	Num ³	FA	Description	Туре	age	Type ⁵	During Reset ⁶	After Reset ⁷	208 BGA	256 BGA
PA6	PA[6] AN[6]	6	00 01 10 11	Port A GPI ADC Analog Input —		V _{DDA}	IHA	_	_	H16	H16
PA7	PA[7] AN[7]	7	00 01 10 11	Port A GPI ADC Analog Input —		V _{DDA}	IHA	_	_	G14	G14
PA8	PA[8] AN[8]	8	00 01 10 11	Port A GPI ADC Analog Input —		V _{DDA}	IHA	_	_	F14	F14
PA9	PA[9] AN[9]	9	00 01 10 11	Port A GPI ADC Analog Input —		V _{DDA}	IHA	_		E14	E14
PA10	PA[10] AN[10]	10	00 01 10 11	Port A GPI ADC Analog Input —		V _{DDA}	IHA	_		D13	D13
PA11	PA[11] AN[11]	11	00 01 10 11	Port A GPI ADC Analog Input —		V _{DDA}	IHA	_	_	E13	E13
PA12	PA[12] AN[12]	12	00 01 10 11	Port A GPI ADC Analog Input —		V _{DDA}	IHA	_	_	D14	D14
PA13	PA[13] AN[13]	13	00 01 10 11	Port A GPI ADC Analog Input —		V _{DDA}	IHA	_	_	F13	F13
PA14	PA[14] AN[14] EXTAL32	14	00 01 10 11	Port A GPI ADC Analog Input External 32 kHz Crystal In —		V _{DDA}	IHA	_	_	D16	D16
PA15	PA[15] AN[15] XTAL32	15	00 01 10 11	Port A GPI ADC Analog Input External 32 kHz Crystal Out —	0 -	V _{DDA}	IHA	_	_	E16	E16

Table 2. MPC5668x Signal Properties (continued)

Pin	Supported	GPIO (PCR)	д 4	Description	I/O	Volt-	Pad_	Sta	atus	Packa Loca	ge Pin tions
Name ¹	Functions ²	Num ³	PA	Description	Туре	age	Type ⁵	During Reset ⁶	After Reset ⁷	208 BGA	256 BGA
				Port B (16)							
PB0	PB[0] AN[16]/ANW	16	00 01 10 11	Port B GPIO ADC Analog Input/Mux In —	I/O I —	V _{DDE1}	SHA	_	_	B14	B14
PB1	PB[1] AN[17]/ANX	17	00 01 10 11	Port B GPIO ADC Analog Input/Mux In —	I/O I —	V _{DDE1}	SHA	_	_	C14	C14
PB2	PB[2] AN[18]/ANY	18	00 01 10 11	Port B GPIO ADC Analog Input/Mux In —	I/O I —	V _{DDE1}	SHA	_	_	B13	B13
PB3	PB[3] AN[19]/ANZ	19	00 01 10 11	Port B GPIO ADC Analog Input/Mux In —	I/O I —	V _{DDE1}	SHA	_	_	C13	C13
PB4	PB[4] AN[20]	20	00 01 10 11	Port B GPIO ADC Analog Input —	I/O I —	V _{DDE1}	SHA	_	_	C12	C12
PB5	PB[5] AN[21]	21	00 01 10 11	Port B GPIO ADC Analog Input — —	I/O I —	V _{DDE1}	SHA	_	_	D12	D12
PB6	PB[6] AN[22]	22	00 01 10 11	Port B GPIO ADC Analog Input —	I/O I —	V _{DDE1}	SHA	_	_	C11	C11
PB7	PB[7] AN[23]	23	00 01 10 11	Port B GPIO ADC Analog Input —	I/O I —	V _{DDE1}	SHA	_	_	D11	D11
PB8	PB[8] AN[24] PCS_A[2]	24	00 01 10 11	Port B GPIO ADC Analog Input DSPI_A Peripheral Chip Select —	I/O I O —	V _{DDE1}	SHA	_	_	A10	A10
PB9	PB[9] AN[25] PCS_A[3]	25	00 01 10 11	Port B GPIO ADC Analog Input DSPI_A Peripheral Chip Select —	I/O I O —	V _{DDE1}	SHA	_	_	B12	B12

MPC5668x Microcontroller Data Sheet, Rev. 6

Pin	Supported	GPIO (PCR)	DA 4	Description	I/O	Volt-	Pad	St	atus		ge Pin tions
Name ¹	Functions ²	Num ³	I A	Description	Туре	age	Type ⁵	During Reset ⁶	After Reset ⁷	208 BGA	256 BGA
PB10	PB[10] AN[26] PCS_B[4]	26	00 01 10 11	Port B GPIO ADC Analog Input DSPI_B Peripheral Chip Select —	I/O - O -	V _{DDE1}	SHA	_	_	A9	A9
PB11	PB[11] AN[27] PCS_B[5]	27	00 01 10 11	Port B GPIO ADC Analog Input DSPI_B Peripheral Chip Select —	I/O I O	V _{DDE1}	SHA	_	_	В9	В9
PB12	PB[12] AN[28] PCS_C[1]	28	00 01 10 11	Port B GPIO ADC Analog Input DSPI_C Peripheral Chip Select —	I/O I O	V _{DDE1}	SHA	_	_	C10	C10
PB13	PB[13] AN[29] PCS_C[2]	29	00 01 10 11	Port B GPIO ADC Analog Input DSPI_C Peripheral Chip Select —	I/O - O	V _{DDE1}	SHA	_	_	A8	A8
PB14	PB[14] AN[30] PCS_D[3]	30	00 01 10 11	Port B GPIO ADC Analog Input DSPI_D Peripheral Chip Select —	I/O - O	V _{DDE1}	SHA	_	_	B8	B8
PB15	PB[15] AN[31] PCS_D[4]	31	00 01 10 11	Port B GPIO ADC Analog Input DSPI_D Peripheral Chip Select —	I/O I O	V _{DDE1}	SHA	_	_	C9	C9
		1	•	Port C (16)							
PC0	PC[0] AN[32]	32	00 01 10 11	Port C GPIO ADC Analog Input —	I/O I —	V _{DDE1}	SHA	_	_	D9	D9
PC1	PC[1] AN[33]	33		Port C GPIO ADC Analog Input —	I/O - -	V _{DDE1}	SHA	_	_	C8	C8
PC2	PC[2] AN[34] EVTI	34	00 01 10 11	Port C GPIO ADC Analog Input Nexus Event In —	I/O 	V _{DDE1}	SHA	_	_	A7	A7
PC3	PC[3] AN[35] EVTO	35	00 01 10 11	Port C GPIO ADC Analog Input Nexus Event Out —	I/O I O —	V _{DDE1}	SHA	_	_	В7	В7

MPC5668x Microcontroller Data Sheet, Rev. 6

Table 2. MPC5668x Signal Properties (continued)

Pin	Supported	GPIO (PCR)	DA 4	Description	I/O	Volt-	Pad	Sta	atus		ge Pin tions
Name ¹	Functions ²	Num ³	PA	Description	Туре	age	Type ⁵	During Reset ⁶	After Reset ⁷	208 BGA	256 BGA
PC4	PC[4] AN[36]	36	00 01 10 11	Port C GPIO ADC Analog Input —	I/O - 	V _{DDE1}	SHA	_	_	D8	D8
PC5	PC[5] AN[37] Z6NMI	37	00 01 10 11	Port C GPIO ADC Analog Input Z6 Core Non-Maskable Interrupt —	I/O 	V _{DDE1}	SHA	_	_	C6	C6
PC6	PC[6] AN[38] Z0NMI	38	00 01 10 11	Port C GPIO ADC Analog Input Z0 Core Non-Maskable Interrupt —	I/O 	V _{DDE1}	SHA	_	_	C7	C7
PC7	PC[7] AN[39] FR_DBG3	39	00 01 10 11	Port C GPIO ADC Analog Input FlexRay Debug —	I/O - O -	V _{DDE1}	SHA	_	_	A6	A6
PC8	PC[8] AN[40] FR_DBG2	40	00 01 10 11	Port C GPIO ADC Analog Input FlexRay Debug —	I/O - O -	V _{DDE1}	SHA	_	_	B6	B6
PC9	PC[9] AN[41] FR_DBG1	41	00 01 10 11	Port C GPIO ADC Analog Input FlexRay Debug —	I/O - O -	V _{DDE1}	SHA	_	_	A5	A5
PC10	PC[10] AN[42] FR_DBG0	42	00 01 10 11	Port C GPIO ADC Analog Input FlexRay Debug —	I/O	V _{DDE1}	SHA	_	_	B5	B5
PC11	PC[11] AN[43] SCL_C —	43	00 01 10 11	Port C GPIO ADC Analog Input I ² C_C Serial Clock —	I/O I/O —	V _{DDE1}	SHA	_	_	B4	B4
PC12	PC[12] AN[44] SDA_C —	44	00 01 10 11	Port C GPIO ADC Analog Input I ² C_C Serial Data —	I/O I/O —	V _{DDE1}	SHA	_	_	A4	A4
PC13	PC[13] AN[45] —	45	00 01 10	Port C GPIO ADC Analog Input — ADC Ext. Mux Address Select	I/O	V _{DDE1}	SHA	_	_	C5	C5
PC14	MA[0] PC[14] AN[46] MA[1]	46	00 01 10 11	Port C GPIO ADC Analog Input ADC Ext. Mux Address Select —	1/0 - 0	V _{DDE1}	SHA	_	_	C4	C4

MPC5668x Microcontroller Data Sheet, Rev. 6

Pin	Supported	GPIO (PCR)	D Δ4	Description	I/O	Volt-	Pad_	St	atus	Packa Loca	ge Pin tions
Name ¹	Functions ²	Num ³		Description	Туре	age	Type ⁵	During Reset ⁶	After Reset ⁷	208 BGA	256 BGA
PC15	PC[15] AN[47] MA[2] —	47	00 01 10 11	Port C GPIO ADC Analog Input ADC Ext. Mux Address Select —	I/O I O	V _{DDE1}	SHA	_	_	D5	D5
				Port D (16)							
PD0	PD[0] CNTX_A	48	00 01 10 11	Port D GPIO FlexCAN_A Transmit —	I/O O —	V _{DDE2}	SH	_	_	A2	A2
PD1	PD[1] CNRX_A	49	00 01 10 11	Port D GPIO FlexCAN_A Receive —	I/O I —	V _{DDE2}	SH	_	_	B2	B2
PD2	PD[2] CNTX_B	50	00 01 10 11	Port D GPIO FlexCAN_B Transmit —	I/O O —	V _{DDE2}	SH	_	_	B1	B1
PD3	PD[3] CNRX_B	51	00 01 10 11	Port D GPIO FlexCAN_B Receive —	I/O I —	V _{DDE2}	SH	_		C1	C1
PD4	PD[4] CNTX_C	52	00 01 10 11	Port D GPIO FlexCAN_C Transmit —	I/O O —	V _{DDE2}	SH	_	_	C2	C2
PD5	PD[5] CNRX_C	53	00 01 10 11	Port D GPIO FlexCAN_C Receive —	I/O I —	V _{DDE2}	SH	_	_	D1	D1
PD6	PD[6] CNTX_D TXD_K SCL_B	54		Port D GPIO FlexCAN_D Transmit SCI_K Transmit I ² C_B Serial Clock	I/O O O I/O	V _{DDE2}	SH	_		D2	D2
PD7	PD[7] CNRX_D RXD_K SDA_B	55	00 01 10 11	Port D GPIO FlexCAN_D Receive SCI_K Receive I ² C_B Serial Data	I/O I I I/O	V _{DDE2}	SH	_	_	E1	E1
PD8	PD[8] CNTX_E TXD_L SCL_C	56		Port D GPIO FlexCAN_E Transmit SCI_L Transmit I ² C_C Serial Clock	I/O O O I/O	V _{DDE2}	SH	_	_	E2	E2

MPC5668x Microcontroller Data Sheet, Rev. 6

Table 2. MPC5668x Signal Properties (continued)

Pin	Supported	GPIO (PCR)	D Λ ⁴	Description	I/O	Volt-	Pad_	St	atus		ge Pin tions
Name ¹	Functions ²	Num ³	r A	Description	Туре	age	Type ⁵	During Reset ⁶	After Reset ⁷	208 BGA	256 BGA
PD9	PD[9] CNRX_E RXD_L SDA_C	57	00 01 10 11	Port D GPIO FlexCAN_E Receive SCI_L Receive I ² C_C Serial Data	I/O I I/O	V _{DDE2}	SH	_	_	F1	F1
PD10	PD[10] CNTX_F TXD_M SCL_D	58	00 01 10 11	Port D GPIO FlexCAN_F Transmit SCI_M Transmit I ² C_D Serial Clock	1/0 0 0 1/0	V _{DDE2}	SH	_		F2	F2
PD11	PD[11] CNRX_F RXD_M SDA_D	59	00 01 10 11	Port D GPIO FlexCAN_F Receive SCI_M Receive I ² C_D Serial Data	I/O /O	V _{DDE2}	SH	_	_	G1	G1
PD12	PD[12] TXD_A	60	00 01 10 11	Port D GPIO eSCI_A Transmit —	I/O O —	V _{DDE2}	SH	_	_	G2	G2
PD13	PD[13] RXD_A	61	00 01 10 11	Port D GPIO eSCI_A Receive —	I/O - -	V _{DDE2}	SH	_		H1	H1
PD14	PD[14] TXD_B	62	00 01 10 11	Port D GPIO eSCI_B Transmit —	I/O O —	V _{DDE2}	SH	_	_	C3	C3
PD15	PD[15] RXD_B	63	00 01 10 11	Port D GPIO eSCI_B Receive —	I/O - 	V _{DDE2}	SH	_	_	D3	D3
				Port E (16)							
PE0	PE[0] TXD_C eMIOS[31]	64	00 01 10 11	Port E GPIO eSCI_C Transmit eMIOS Channel —	I/O O I/O —	V _{DDE2}	SH	_		E3	E3
PE1	PE[1] RXD_C eMIOS[30]	65	00 01 10 11	Port E GPIO eSCI_C Receive eMIOS Channel —	I/O I I/O	V _{DDE2}	SH	_	_	E4	E4
PE2	PE[2] TXD_D eMIOS[29]	66	00 01 10 11	Port E GPIO eSCI_D Transmit eMIOS Channel —	I/O O I/O	V _{DDE2}	SH	_	_	F4	F4

MPC5668x Microcontroller Data Sheet, Rev. 6

Pin	Supported	GPIO (PCR)	DA 4	Description	I/O	Volt-	Pad	Sta	atus	Packa Loca	ge Pin tions
Name ¹	Functions ²	Num ³	PA	Description	Туре	age	Type ⁵	During Reset ⁶	After Reset ⁷	208 BGA	256 BGA
PE3	PE[3] RXD_D eMIOS[28]	67	00 01 10 11	Port E GPIO eSCI_D Receive eMIOS Channel —	I/O I I/O	V _{DDE2}	SH	_	_	F3	F3
PE4	PE[4] TXD_E eMIOS[27]	68	00 01 10 11	Port E GPIO eSCI_E Transmit eMIOS Channel —	I/O O I/O	V _{DDE2}	SH	_		G3	G3
PE5	PE[5] RXD_E eMIOS[26]	69	00 01 10 11	Port E GPIO eSCI_E Receive eMIOS Channel —	I/O I I/O	V _{DDE2}	SH	_		H3	НЗ
PE6	PE[6] TXD_F eMIOS[25]	70	00 01 10 11	Port E GPIO eSCI_F Transmit eMIOS Channel —	I/O O I/O	V _{DDE2}	SH	_	_	M2	M2
PE7	PE[7] RXD_F eMIOS[24]	71	00 01 10 11	Port E GPIO eSCI_F Receive eMIOS Channel —	I/O I I/O	V _{DDE2}	SH	_	_	L2	L2
PE8	PE[8] TXD_G PCS_A[1]	72	00 01 10 11	Port E GPIO eSCI_G Transmit DSPI_A Peripheral Chip Select —	I/O O O	V _{DDE2}	SH	_	_	J4	J4
PE9	PE[9] RXD_G PCS_A[4]	73	00 01 10 11	Port E GPIO eSCI_G Receive DSPI_A Peripheral Chip Select —	I/O I O	V _{DDE2}	SH	_	_	M4	M4
PE10	PE[10] TXD_H PCS_B[3]	74	00 01 10 11	Port E GPIO eSCI_H Transmit DSPI_B Peripheral Chip Select —	I/O O O	V _{DDE2}	SH	_	_	N3	N3
PE11	PE[11] RXD_H PCS_B[2]	75	00 01 10 11	Port E GPIO eSCI_H Receive DSPI_B Peripheral Chip Select —	I/O I O	V _{DDE2}	SH	_	_	N4	N4
PE12	PE[12] TXD_J PCS_C[5]	76	00 01 10 11	Port E GPIO eSCI_J Transmit DSPI_C Peripheral Chip Select —	I/O O O	V _{DDE2}	SH	_	_	P4	P4
PE13	PE[13] RXD_J PCS_C[3]	77	00 01 10 11	Port E GPIO eSCI_J Receive DSPI_C Peripheral Chip Select —	I/O I O	V _{DDE2}	SH	_	_	P5	P5

MPC5668x Microcontroller Data Sheet, Rev. 6

Table 2. MPC5668x Signal Properties (continued)

Pin	Supported	GPIO (PCR)	DA 4	Description	I/O	Volt-	Pad	Sta	atus	Packa Loca	ge Pin tions
Name ¹	Functions ²	Num ³	ГА	Description	Туре	age	Type ⁵	During Reset ⁶	After Reset ⁷	208 BGA	256 BGA
PE14	PE[14] SCL_A PCS_D[2]	78	00 01 10 11	Port E GPIO I ² C_A Serial Clock DSPI_D Peripheral Chip Select —	I/O I/O O	V _{DDE2}	SH	_	_	N7	N7
PE15	PE[15] SDA_A PCS_D[5]	79	00 01 10 11	Port E GPIO I ² C_A Serial Data DSPI_D Peripheral Chip Select —	I/O I/O O	V _{DDE2}	SH	_	_	N6	N6
				Port F (16)							
PF0	PF[0] SCK_A	80	00 01 10 11	Port F GPIO DSPI_A Serial Clock —	I/O I/O —	V _{DDE2}	МН	_	_	H2	H2
PF1	PF[1] SOUT_A	81	00 01 10 11	Port F GPIO DSPI_A Serial Data Out — —	I/O O —	V _{DDE2}	МН	_	_	J1	J1
PF2	PF[2] SIN_A	82	00 01 10 11	Port F GPIO DSPI_A Serial Data In —	I/O I —	V _{DDE2}	SH	_	_	J2	J2
PF3	PF[3] PCS_A[0] PCS_B[5] PCS_C[4]	83	00 01 10 11	Port F GPIO DSPI_A Peripheral Chip Select DSPI_B Peripheral Chip Select DSPI_C Peripheral Chip Select	I/O I/O O	V _{DDE2}	SH	_	_	N2	N2
PF4	PF[4] SCK_B PCS_A[1] PCS_C[2]	84	00 01 10 11	Port F GPIO DSPI_B Serial Clock DSPI_A Peripheral Chip Select DSPI_C Peripheral Chip Select	1/0 1/0 0	V _{DDE2}	МН	_	_	M1	M1
PF5	PF[5] SOUT_B PCS_A[2] PCS_C[3]	85	00 01 10 11	Port F GPIO DSPI_B Serial Data Out DSPI_A Peripheral Chip Select DSPI_C Peripheral Chip Select	1/0 0 0 0	V _{DDE2}	МН	_	_	P2	P2
PF6	PF[6] SIN_B PCS_A[3] PCS_C[5]	86	00 01 10 11	Port F GPIO DSPI_B Serial Data In DSPI_A Peripheral Chip Select DSPI_C Peripheral Chip Select	I/O	V _{DDE2}	SH	_	_	N1	N1
PF7	PF[7] PCS_B[0] PCS_C[5] PCS_D[4]	87	00 01 10 11	Port F GPIO DSPI_B Peripheral Chip Select DSPI_C Peripheral Chip Select DSPI_D Peripheral Chip Select	I/O I/O O	V _{DDE2}	SH		_	R2	R2

MPC5668x Microcontroller Data Sheet, Rev. 6

Pin	Supported	GPIO (PCR)	В А 4	Description	I/O	Volt-	Pad_	Sta	atus	Package Pin Locations	
Name ¹	Functions ²	Num ³	r A	Description	Туре	age	Type ⁵	During Reset ⁶	After Reset ⁷	208 BGA	256 BGA
PF8	PF[8] SCK_C	88	00 01 10 11	Port F GPIO DSPI_C Serial Clock —	I/O I/O —	V _{DDE2}	МН	_	_	P1	P1
PF9	PF[9] SOUT_C	89	00 01 10 11	Port F GPIO DSPI_C Serial Data Out — —	I/O O —	V _{DDE2}	МН	_	_	T2	T2
PF10	PF[10] SIN_C	90	00 01 10 11	Port F GPIO DSPI_C Serial Data In —	I/O - -	V _{DDE2}	SH	_	_	R1	R1
PF11	PF[11] PCS_C[0] PCS_D[5] PCS_A[4]	91	00 01 10 11	Port F GPIO DSPI_C Peripheral Chip Select DSPI_D Peripheral Chip Select DSPI_A Peripheral Chip Select	1/0 1/0 0	V _{DDE2}	SH	_	_	R3	R3
PF12	PF[12] SCK_D	92	00 01 10 11	Port F GPIO DSPI_D Serial Clock —	I/O I/O —	V _{DDE3}	МН	_	_	N14	N14
PF13	PF[13] SOUT_D	93	00 01 10 11	Port F GPIO DSPI_D Serial Data Out — —	I/O O —	V _{DDE3}	МН	_	_	M14	M14
PF14	PF[14] SIN_D	94	00 01 10 11	Port F GPIO DSPI_D Serial Data In —	I/O - -	V _{DDE3}	SH	_	_	P14	P14
PF15	PF[15] PCS_D[0] PCS_A[5] PCS_B[4]	95	10	Port F GPIO DSPI_D Peripheral Chip Select DSPI_A Peripheral Chip Select DSPI_B Peripheral Chip Select	I/O I/O O	V _{DDE3}	SH	_	_	P13	P13
				Port G (16)			•				
PG0	PG[0] PCS_A[4] PCS_B[3] AN[48]	96	00 01 10 11	Port G GPIO DSPI_A Peripheral Chip Select DSPI_B Peripheral Chip Select ADC Analog Input	I/O O O I	V _{DDE2}	SHA	_	_	В3	В3
PG1	PG[1] PCS_A[5] PCS_B[4] AN[49]	97	00 01 10 11	Port G GPIO DSPI_A Peripheral Chip Select DSPI_B Peripheral Chip Select ADC Analog Input	I/O O O I	V _{DDE2}	SHA	_	_	А3	A3

MPC5668x Microcontroller Data Sheet, Rev. 6

Table 2. MPC5668x Signal Properties (continued)

Pin	Supported	GPIO (PCR)	DA4	Description	I/O	Volt-	Pad	Sta	atus		ge Pin tions
Name ¹	Functions ²	Num ³	FA	Description	Туре	age	Type ⁵	During Reset ⁶	After Reset ⁷	208 BGA	256 BGA
PG2	PG[2] PCS_D[1] SCL_C AN[50]	98	00 01 10 11	Port G GPIO DSPI_D Peripheral Chip Select I ² C_C Serial Clock ADC Analog Input	I/O O I/O I	V _{DDE3}	SHA	_	_	H14	H14
PG3	PG[3] PCS_D[2] SDA_C AN[51]	99	00 01 10 11	Port G GPIO DSPI_D Peripheral Chip Select I ² C_C Serial Data ADC Analog Input	I/O O I/O I	V _{DDE3}	SHA	_		J14	J14
PG4	PG[4] PCS_D[3] SCL_B AN[52]	100	00 01 10 11	Port G GPIO DSPI_D Peripheral Chip Select I ² C_B Serial Clock ADC Analog Input	I/O O I/O I	V _{DDE3}	SHA	_		K14	K14
PG5	PG[5] PCS_D[4] SDA_B AN[53]	101	00 01 10 11	Port G GPIO DSPI_D Peripheral Chip Select I ² C_B Serial Data ADC Analog Input	I/O O I/O I	V _{DDE3}	SHA	_	_	L14	L14
PG6	PG[6] PCS_C[1] FEC_MDC AN[54]	102	00 01 10 11	Port G GPIO DSPI_C Peripheral Chip Select Ethernet Mgmt. Data Clock ADC Analog Input	I/O O O I	V _{DDE3}	МНА	_	_	H15	H15
PG7	PG[7] PCS_C[2] FEC_MDIO AN[55]	103	00 01 10 11	Port G GPIO DSPI_C Peripheral Chip Select Ethernet Mgmt. Data I/O ADC Analog Input	I/O O I/O I	V _{DDE3}	МНА	_	_	J15	J15
PG8	PG[8] eMIOS[7] FEC_TX_CLK AN[56]	104	00 01 10 11	Port G GPIO eMIOS Channel Ethernet Transmit Clock ADC Analog Input	I/O I/O I	V _{DDE3}	SHA	_	_	K15	K15
PG9	PG[9] eMIOS[6] FEC_CRS AN[57]	105	00 01 10 11	Port G GPIO eMIOS Channel Ethernet Carrier Sense ADC Analog Input	I/O I/O I	V _{DDE3}	SHA	_	_	L15	L15
PG10	PG[10] eMIOS[5] FEC_TX_ER AN[58]	106	00 01 10 11	Port G GPIO eMIOS Channel Ethernet Transmit Error ADC Analog Input	I/O I/O O	V _{DDE3}	МНА	_	_	M15	M15
PG11	PG[11] eMIOS[4] FEC_RX_CLK AN[59]	107	00 01 10 11	Port G GPIO eMIOS Channel Ethernet Receive Clock ADC Analog Input	I/O I/O I	V _{DDE3}	SHA	_	_	J16	J16
PG12	PG[12] eMIOS[3] FEC_TXD[0] AN[60]	108	00 01 10 11	Port G GPIO eMIOS Channel Ethernet Transmit Data ADC Analog Input	I/O I/O O I	V _{DDE3}	МНА	_	_	K16	K16

MPC5668x Microcontroller Data Sheet, Rev. 6

Pin	Supported	GPIO (PCR)	DA 4	Description	I/O	Volt-	Pad	St	atus		ge Pin tions
Name ¹	Functions ²	Num ³	ra	Description	Туре	age	Type ⁵	During Reset ⁶	After Reset ⁷	208 BGA	256 BGA
PG13	PG[13] eMIOS[2] FEC_TXD[1] AN[61]	109	00 01 10 11	Port G GPIO eMIOS Channel Ethernet Transmit Data ADC Analog Input	I/O I/O O	V _{DDE3}	МНА	_	_	L16	L16
PG14	PG[14] eMIOS[1] FEC_TXD[2] AN[62]	110	00 01 10 11	Port G GPIO eMIOS Channel Ethernet Transmit Data ADC Analog Input	I/O I/O O	V _{DDE3}	МНА	_		M16	M16
PG15	PG[15] eMIOS[0] FEC_TXD[3] AN[63]	111	00 01 10 11	Port G GPIO eMIOS Channel Ethernet Transmit Data ADC Analog Input	I/O I/O O	V _{DDE3}	MHA	_	_	N16	N16
				Port H (16)							
PH0	PH[0] eMIOS[31] FEC_COL	112	00 01 10 11	Port H GPIO eMIOS Channel Ethernet Collision	I/O I/O I	V _{DDE3}	SH	_	_	T14	T14
PH1	PH[1] eMIOS[30] FEC_RX_DV	113	00 01 10 11	Port H GPIO eMIOS Channel Ethernet Receive Data Valid	I/O I/O I	V _{DDE3}	SH	_		P16	P16
PH2	PH[2] eMIOS[29] FEC_TX_EN	114	00 01 10 11	Port H GPIO eMIOS Channel Ethernet Transmit Enable	I/O I/O O	V _{DDE3}	МН	_	_	R16	R16
PH3	PH[3] eMIOS[28] FEC_RX_ER	115	00 01 10 11	Port H GPIO eMIOS Channel Ethernet Receive Error	I/O I/O I	V _{DDE3}	SH	_		N15	N15
PH4	PH[4] eMIOS[27] FEC_RXD[0]	116	00 01 10 11	Port H GPIO eMIOS Channel Ethernet Receive Data	I/O I/O I	V _{DDE3}	SH	_		P15	P15
PH5	PH[5] eMIOS[26] FEC_RXD[1]	117	00 01 10 11	Port H GPIO eMIOS Channel Ethernet Receive Data	I/O I/O I	V _{DDE3}	SH	_	_	R14	R14
PH6	PH[6] eMIOS[25] FEC_RXD[2]	118	00 01 10 11	Port H GPIO eMIOS Channel Ethernet Receive Data	I/O I/O I	V _{DDE3}	SH	_	_	R15	R15

MPC5668x Microcontroller Data Sheet, Rev. 6

Table 2. MPC5668x Signal Properties (continued)

Pin	Supported	GPIO (PCR)	р д 4	Description	I/O	Volt-	Pad	Sta	atus	Package Pin Locations	
Name ¹	Functions ²	Num ³	PA	Description	Туре	age	Type ⁵	During Reset ⁶	After Reset ⁷	208 BGA	256 BGA
PH7	PH[7] eMIOS[24] FEC_RXD[3]	119	00 01 10 11	Port H GPIO eMIOS Channel Ethernet Receive Data —	I/O I/O I	V _{DDE3}	SH	_	_	T15	T15
PH8	PH[8] eMIOS[23]	120	00 01 10 11	Port H GPIO eMIOS Channel —	I/O I/O —	V _{DDE4}	SH	_	_	P7	P7
PH9	PH[9] eMIOS[22]	121	00 01 10 11	Port H GPIO eMIOS Channel —	I/O I/O —	V _{DDE4}	SH	_	_	N8	N8
PH10	PH[10] eMIOS[21]	122	00 01 10 11	Port H GPIO eMIOS Channel —	I/O I/O —	V _{DDE4}	SH	_	_	P8	P8
PH11	PH[11] eMIOS[20]	123	00 01 10 11	Port H GPIO eMIOS Channel —	I/O I/O —	V _{DDE4}	SH	_	_	N9	N9
PH12	PH[12] eMIOS[19]	124	00 01 10 11	Port H GPIO eMIOS Channel —	I/O I/O —	V _{DDE4}	SH	_	_	P9	P9
PH13	PH[13] eMIOS[18]	125	00 01 10 11	Port H GPIO eMIOS Channel —	I/O I/O —	V _{DDE4}	SH	_	_	P10	P10
PH14	PH[14] eMIOS[17]	126	00 01 10 11	Port H GPIO eMIOS Channel —	I/O I/O —	V _{DDE4}	SH	_	_	P11	P11
PH15	PH[15] eMIOS[16]	127	00 01 10 11	Port H GPIO eMIOS Channel —	I/O I/O —	V _{DDE4}	SH	_	_	N11	N11
				Port J (16)							
PJ0	PJ[0] eMIOS[15] PCS_A[4]	128	00 01 10 11	Port J GPIO eMIOS Channel DSPI_A Peripheral Chip Select	I/O I/O O	V _{DDE4}	SH	_	_	R7	R7

MPC5668x Microcontroller Data Sheet, Rev. 6

Pin	Supported	GPIO (PCR)	DA 4	Description	I/O	Volt-	Pad	Sta	atus		ge Pin tions
Name ¹	Functions ²	Num ³	ra	Description	Туре	age	Type ⁵	During Reset ⁶	After Reset ⁷	208 BGA	256 BGA
PJ1	PJ[1] eMIOS[14] PCS_A[5]	129	00 01 10 11	Port J GPIO eMIOS Channel DSPI_A Peripheral Chip Select	I/O I/O O	V _{DDE4}	SH	_	_	T7	T7
PJ2	PJ[2] eMIOS[13] PCS_B[1]	130	00 01 10 11	Port J GPIO eMIOS Channel DSPI_B Peripheral Chip Select —	I/O I/O O	V _{DDE4}	SH	_	_	R8	R8
PJ3	PJ[3] eMIOS[12] PCS_B[2]	131	00 01 10 11	Port J GPIO eMIOS Channel DSPI_B Peripheral Chip Select —	I/O I/O O	V _{DDE4}	SH	_	_	Т8	T8
PJ4	PJ[4] eMIOS[11] PCS_C[3]	132	00 01 10 11	Port J GPIO eMIOS Channel DSPI_C Peripheral Chip Select —	I/O I/O O	V _{DDE4}	SH	_	_	R9	R9
PJ5	PJ[5] eMIOS[10] PCS_C[4]	133	00 01 10 11	Port J GPIO eMIOS Channel DSPI_C Peripheral Chip Select —	I/O I/O O	V _{DDE4}	SH	_	_	Т9	Т9
PJ6	PJ[6] eMIOS[09] PCS_D[5]	134	00 01 10 11	Port J GPIO eMIOS Channel DSPI_D Peripheral Chip Select —	I/O I/O O	V _{DDE4}	SH	_	_	R10	R10
PJ7	PJ[7] eMIOS[08] PCS_D[1]	135	00 01 10 11	Port J GPIO eMIOS Channel DSPI_D Peripheral Chip Select	I/O I/O O	V _{DDE4}	SH	_	_	T10	T10
PJ8	PJ[8] eMIOS[07]	136	00 01 10 11	Port J GPIO eMIOS Channel —	I/O I/O —	V _{DDE4}	SH	_	_	T11	T11
PJ9	PJ[9] eMIOS[06]	137	00 01 10 11	Port J GPIO eMIOS Channel —	I/O I/O —	V _{DDE4}	SH	_	_	R11	R11
PJ10	PJ[10] eMIOS[05]	138	00 01 10 11	Port J GPIO eMIOS Channel —	I/O I/O —	V _{DDE4}	SH	_	_	N12	N12
PJ11	PJ[11] eMIOS[04]	139	00 01 10 11	Port J GPIO eMIOS Channel —	I/O I/O —	V _{DDE4}	SH	_	_	P12	P12

MPC5668x Microcontroller Data Sheet, Rev. 6

Table 2. MPC5668x Signal Properties (continued)

Pin	Supported	GPIO (PCR)	В А 4	Description	I/O	Volt-	Pad_	St	atus	Package Pin Locations	
Name ¹	Functions ²	Num ³	FA	Description	Туре	age	Type ⁵	During Reset ⁶	After Reset ⁷	208 BGA	256 BGA
PJ12	PJ[12] eMIOS[03]	140	00 01 10 11	Port J GPIO eMIOS Channel —	I/O I/O —	V _{DDE4}	SH	_	_	R12	R12
PJ13	PJ[13] eMIOS[02]	141	00 01 10 11	Port J GPIO eMIOS Channel —	I/O I/O —	V _{DDE4}	SH	_	_	T12	T12
PJ14	PJ[14] eMIOS[01]	142	00 01 10 11	Port J GPIO eMIOS Channel —	I/O I/O —	V _{DDE4}	SH	_	_	R13	R13
PJ15	PJ[15] eMIOS[00]	143	00 01 10 11	Port J GPIO eMIOS Channel —	I/O I/O —	V _{DDE4}	SH	_	_	T13	T13
				Port K (11)							
PK0	PK[0] MLBCLK SCK_B CLKOUT	144	00 01 10 11	Port K GPIO Media Local Bus Clock DSPI_B Serial Clock CLKOUT (Test Only)	I/O I I/O O	V _{DDEMLB}	F	_	_	L1	L1
PK1	PK[1] MLBSIG SOUT_B PCS_D[4]	145	00 01 10 11	Port K GPIO Media Local Bus Signal DSPI_B Serial Data Out DSPI_D Peripheral Chip Select	I/O I/O O	V _{DDEMLB}	F	_	_	K1	K1
PK2	PK[2] MLBDAT SIN_B PCS_D[5]	146	00 01 10 11	Port K GPIO Media Local Bus Data DSPI_B Serial Data In DSPI_D Peripheral Chip Select	I/O I/O I O	V _{DDEMLB}	F	_	_	K2	K2
PK3	PK[3] FR_A_RX MA[0] PCS_C[1]	147	00 01 10 11	Port K GPIO FlexRay A Receive Data ADC Ext. Mux Address Select DSPI_C Peripheral Chip Select	I/O I O O	V _{DDE2}	SH	_		Т3	ТЗ
PK4	PK[4] FR_A_TX MA[1] PCS_C[2]	148	00 01 10 11	Port K GPIO FlexRay A Transmit Data ADC Ext. Mux Address Select DSPI_C Peripheral Chip Select	I/O O O	V _{DDE2}	МН	_	_	R4	R4
PK5	PK[5] FR_A_TX_EN MA[2] PCS_C[3]	149	00 01 10 11	Port K GPIO FlexRay A Transmit Enable ADC Ext. Mux Address Select DSPI_C Peripheral Chip Select	I/O O O	V _{DDE2}	МН	_	_	T4	T4

MPC5668x Microcontroller Data Sheet, Rev. 6

Table 2. MPC5668x Signal Properties (continued)

Pin	Supported	GPIO (PCR)	D Δ4	Description	I/O	Volt-	Pad_	St	atus	Packa Loca	ge Pin tions
Name ¹	Functions ²	Num ³		Description	Туре	age	Type ⁵	During Reset ⁶	After Reset ⁷	208 BGA	256 BGA
	PK[6] FR_B_RX PCS_B[1] PCS_C[4]	150	00 01 10 11	Port K GPIO FlexRay B Receive Data DSPI_B Peripheral Chip Select DSPI_C Peripheral Chip Select	I/O I O O	V _{DDE2}	SH	_	_	R5	R5
	PK[7] FR_B_TX PCS_B[2] PCS_C[5]	151	00 01 10 11	Port K GPIO FlexRay B Transmit Data DSPI_B Peripheral Chip Select DSPI_C Peripheral Chip Select	I/O O O	V _{DDE2}	МН	_	_	T5	T5
	PK[8] FR_B_TX_EN PCS_B[3] PCS_A[1]	152	00 01 10 11	Port K GPIO FlexRay B Transmit Enable DSPI_B Peripheral Chip Select DSPI_A Peripheral Chip Select	I/O O O	V _{DDE2}	MH	_	_	R6	R6
	PK[9] CLKOUT PCS_D[1] PCS_A[2] BOOTCFG	153	00 01 10 11	Port K GPIO CLKOUT (User mode) DSPI_D Peripheral Chip Select DSPI_A Peripheral Chip Select Boot Configuration	I/O O O O	V _{DDE2}	МН	BOOT CFG (Pull- down)	GPIO	Т6	T6
	PK[10] PCS_B[5] PCS_D[2] PCS_A[3]	154	00 01 10 11	Port K GPIO DSPI_B Peripheral Chip Select DSPI_D Peripheral Chip Select DSPI_A Peripheral Chip Select	I/O O O	V _{DDE2}	SH	_	_	P6	P6
				Nexus Pins (1	7)						
EVTI	EVTI	_	_	Nexus Event In	I	V _{DDENEX}	F	_	_	_	M11
EVTO	EVTO	_	_	Nexus Event Out	0	V_{DDENEX}	F	_	_	_	M12
MSEO0	MSEO[0]	_	_	Nexus Message Start/End Out	0	V_{DDENEX}	F	_	_	_	M9
MSEO1	MSEO[1]	_	_	Nexus Message Start/End Out	0	V_{DDENEX}	F	_	_	_	M8
MCKO	MCKO	_	_	Nexus Message Clock Out	0	V_{DDENEX}	F	_	_	_	M10
MDO0	MDO[0]	_	_	Nexus Message Data Out	0	V_{DDENEX}	F	_	_	_	E5
MDO1	MDO[1]	_	_	Nexus Message Data Out	0	V_{DDENEX}	F	_	_	_	F5
MDO2	MDO[2]	_	_	Nexus Message Data Out	0	V_{DDENEX}	F	_	_	_	G5
MDO3	MDO[3]	_	_	Nexus Message Data Out	0	V_{DDENEX}	F	_	_	_	H5
MDO4	MDO[4]	_	_	Nexus Message Data Out	0	V_{DDENEX}	F	_	_	_	H6
MDO5	MDO[5]	_	_	Nexus Message Data Out	0	V_{DDENEX}	F	_	_	_	J6
MDO6	MDO[6]	_	_	Nexus Message Data Out	0	V_{DDENEX}	F	_	_	_	J5
MDO7	MDO[7]	_	_	Nexus Message Data Out	0	V_{DDENEX}	F	_	_	_	K5
MDO8	MDO[8]		_	Nexus Message Data Out	0	V_{DDENEX}	F	_	_	_	L5
MDO9	MDO[9]	_	_	Nexus Message Data Out	0	V_{DDENEX}	F	_	_	_	M5
MDO10	MDO[10]	_	_	Nexus Message Data Out	0	V_{DDENEX}	F	_	_	_	M6

MPC5668x Microcontroller Data Sheet, Rev. 6

Table 2. MPC5668x Signal Properties (continued)

Pin	Supported	GPIO (PCR)	р л4	Description	I/O	Volt-	Pad_	Status		Package Pin Locations	
Name ¹	Functions ²	Num ³		Description	Туре	age	Type ⁵	During Reset ⁶	After Reset ⁷	208 BGA	256 BGA
MDO11	MDO[11]	_	_	Nexus Message Data Out	0	V_{DDENEX}	F	_	_	_	M7
				Miscellaneous Pi	ns (9)						
EXTAL	EXTAL EXTCLK	_	_	Main Crystal Oscillator Input External Clock Input	I I	V _{DDSYN}	А	EX	TAL	A14	A14
XTAL	XTAL	_	_	Main Crystal Oscillator Output	0	V _{DDSYN}	Α	X	TAL	A13	A13
TDI	TDI	_	_	JTAG Test Data Input	I	V _{DDE2}	SH	TDI (F	Pull Up)	J3	J3
TDO	TDO	_	_	JTAG Test Data Output	0	V _{DDE2}	МН	TDO (F	Pull Up ⁸)	M3	М3
TMS	TMS	_	_	JTAG Test Mode Select Input	I	V _{DDE2}	МН	TMS (Pull Up)	L3	L3
TCK	TCK	_	_	JTAG Test Clock Input	Ι	V _{DDE2}	SH	TCK (P	ull Down)	P3	P3
JCOMP	JCOMP	_	_	JTAG Compliancy	I	V _{DDE2}	SH	JCOMP (Pull Down)	K3	K3
TEST	TEST	_	_	Test Mode Select	I	V _{DDE3}	IH	TE	ST ⁹	M13	M13
RESET	RESET	_	_	External Reset	I/O	V _{DDE1}	МН	RESET	(Pull Up)	A11	A11

The primary signal name is used as the pin label on the BGA map for identification purposes.

MPC5668x Microcontroller Data Sheet, Rev. 6

Each line in the Signal Name column corresponds to a separate signal function on the pin. For all device I/O pins, the primary, alternate, or GPIO signal functions are designated in the PA field of the System Integration Unit (SIU) PCR registers except where explicitly noted.

³ The GPIO number is the same as the corresponding pad configuration register (SIU_PCR*n*) number.

⁴ The PA bitfield in the SIU_PCR*n* register selects the signal function for the pin. A dash in the Description field of this table indicates that this value for PC is reserved on this pin, and should not be used.

⁵ The pad type is indicated by one or more of the following abbreviations: A–analog, F—fast speed, H–high voltage, I—input-only, M–medium speed, S–slow speed. For example, pad type SH designates a slow high-voltage pad.

The Status During Reset pin is sampled after the internal POR is negated. Prior to exiting POR, the signal has a high impedance. The terminology used in this column is: O – output, I – input, Up – weak pull up enabled, Down – weak pulldown enabled, Low – output driven low, High – output driven high. A dash on the left side of the slash denotes that both the input and output buffers for the pin are off. A dash on the right side of the slash denotes that there is no weak pull up/down enabled on the pin. The signal name to the left or right of the slash indicates the pin is enabled.

The Function After Reset of a GPI function is general purpose input. A dash on the left side of the slash denotes that both the input and output buffers for the pin are off. A dash on the right side of the slash denotes that there is no weak pull up/down enabled on the pin.

⁸ Pullup is enabled only when JCOMP is negated.

⁹ Tie to V_{SS} for normal operation.

3.3.1 Power and Ground Supply Summary

Table 3. MPC5668x Power/Ground

Pin	Function Description	Voltage ¹	Package Pi	n Locations
Name	Function Description	voitage	208	256
V _{DD}	Internal Logic Power	1.2 V	D4, D10, H4, G13, K13, N5	D4, D10, H4, G13, K13, N5
V _{DDE1}	External I/O Power	3.3–5.0 V	D6	D6
V _{DDE2}			L4	L4
V _{DDE3}			J13	J13
V _{DDE4}			N10	N10
V_{DDA}	Analog Power	3.3–5.0 V	B15	B15
V _{DD33}	3.3 V I/O Power	3.3 V	L13	L13
V _{DDEMLB}	Media Local Bus Power	2.5 or 3.3 V	K4	K4
V _{DDENEX} ²	Nexus Power	3.3 V	_	E6, K11, L7
V _{RCSEL}	Voltage Regulator Select	V _{SSA} / V _{DDA}	H13	H13
V _{RC}	Voltage Regulator Control Voltage	3.3–5.0 V	B10	B10
V _{RCCTL}	Voltage Regulator Control Output	_ 3	B11	B11
V _{DDSYN}	Clock Synthesizer Power	3.3 V	A12	A12
V _{RH}	Analog High Voltage Reference	3.3–5.0 V	B16	B16
V_{RL}	Analog Low Voltage Reference	0 V	C16	C16
V _{SS}	Ground	0 V	A1, A16, D7, G4, G[7:10], H[7:10], J[7:10], K[7:10], N13, T1, T16	A1, A16, D7, E[7:12], F[7:12], G4, G[6:12], H[7:12], J[7:12], K[6:10], K12, L[8:10], L12, N13, T1, T16
V _{SSA}	Analog Ground	0 V	C15	C15
V _{SSSYN}	Clock Synthesizer Ground	0 V	A15	A15

¹ Nominal voltages.

Dedicated Nexus power pin on 256-pin package only. On the 208-pin package, VDDENEX is tied to VSS internal to the package substrate and is not available externally.

Base current to external NPN power transistor. Voltage may vary.

4 Electrical Characteristics

This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications for the MPC5668x.

4.1 Maximum Ratings

Table 4. Absolute Maximum Ratings¹

Spec	Characteristic	Symbol	Min	Max	Unit
1	1.2 V Core Supply Voltage ²	V_{DD}	-0.3	1.32 ³	V
2	3.3 V Clock Synthesizer Voltage ^{2, 4}	V _{DDSYN}	-0.3	3.6	V
3	3.3 V I/O Buffer Voltage ^{2, 4}	V _{DD33}	-0.3	3.6	V
4	3.3–5.0 V Voltage Regulator Control Voltage ^{2, 5, 6}	V _{RC}	-0.3	5.5	V
5	3.3–5.0 V Analog Supply Voltage (reference to V _{SSA}) ^{2, 5}	V_{DDA}	-0.3	5.5	V
6	3.3–5.0 V External I/O Supply Voltage ^{2, 5, 7}	V _{DDE1} ⁸ V _{DDE2} ⁸ V _{DDE3} ⁸ V _{DDE4} ⁸	-0.3 -0.3 -0.3 -0.3	5.5 5.5 5.5 5.5	V
7	2.5–3.3 V External I/O Supply Voltage (MLB) ^{2, 4}	V _{DDEMLB} ⁸	-0.3	3.6	V
8	3.3 V External I/O Supply Voltage (Nexus) 2, 4	V _{DDENEX} 8	-0.3	3.6	V
9	DC Input Voltage ⁹ V _{DDE1} , V _{DDE2} , V _{DDE3} , V _{DDE4} V _{DDEMLB} , V _{DDENEX}	V _{IN}	-1.0 ¹⁰ -1.0 ⁹	$V_{DDEx} + 0.3 V^{11}$ $V_{DDEx} + 0.3 V^{10}$	V
10	Analog Reference High Voltage	V _{RH}	-0.3	Minimum of 5.5 or V _{DDA} + 0.3	V
11	Analog Reference Low Voltage	V_{RL}	-0.3	5.5	V
12	V _{SS} to V _{SSA} Differential Voltage	V _{SS} – V _{SSA}	-100	100	mV
13	V _{SS} to V _{SSSYN} Differential Voltage	V _{SS} – V _{SSSYN}	-100	100	mV
14	Maximum DC Digital Input Current ¹² (per pin, applies to all digital F, MH, SH, and IH pins)	I _{MAXD}	-2	2	mA
15	Maximum DC Analog Input Current ¹³ (per pin, applies to all analog AE and A pins)	I _{MAXA}	-3	3	mA
16	Storage Temperature Range	T _{STG}	-55.0	150.0	οС
17	Maximum Solder Temperature ¹⁴	T _{SDR}	_	235.0	°C
18	Moisture Sensitivity Level ¹⁵	MSL	_	3	

Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device.

MPC5668x Microcontroller Data Sheet, Rev. 6

² Voltage overshoots during a high-to-low or low-to-high transition must not exceed 10 seconds per instance.

³ 2.0 V for 10 hours cumulative time, 1.2 V +10% for time remaining.

⁴ 5.3 V for 10 hours cumulative time, 3.3 V +10% for time remaining.

 $^{^{5}}$ 6.4 V for 10 hours cumulative time, 5.0 V +10% for time remaining.

⁶ VRC cannot be 100mV higher than VDDA. VDDSYN and VDD33 cannot be 100mV higher than VRC.

- 7 All functional non-supply I/O pins are clamped to V_{SS} and V_{DDEx} .
- VDDEx are separate power segments and may be powered independently with no differential voltage constraints between the power segments.
- ⁹ AC signal over and undershoot of the input voltages of up to ±2.0 V is permitted for a cumulative duration of 60 hours over the complete lifetime of the device (injection current does not need to be limited for this duration).
- ¹⁰ Internal structures will hold the input voltage above –1.0 V if the injection current limit of 2 mA is met.
- ¹¹ Internal structures hold the input voltage below this maximum voltage on all pads powered by V_{DDE} supplies, if the maximum injection current specification is met (25 mA for all pins) and V_{DDE} is within Operating Voltage specifications.
- ¹² Total injection current for all pins (including both digital and analog) must not exceed 25 mA.
- ¹³ Total injection current for all analog input pins must not exceed 15 mA.
- ¹⁴ Solder profile per CDF-AEC-Q100.
- ¹⁵ Moisture sensitivity per JEDEC test method A112.

4.2 Thermal Characteristics

Table 5. Thermal Characteristics

Spec	Characteristic	Symbol	Unit	Value			
Spec	Characteristic	Symbol	Oiiit	208 MAPBGA	256 MAPBGA		
1	Junction to Ambient ^{1, 2} Natural Convection (Single layer board)	$R_{ heta JA}$	°C/W	39	39		
2	Junction to Ambient ^{1, 3} Natural Convection (Four layer board 2s2p)	$R_{ heta JA}$	°C/W	24	24		
3	Junction to Ambient ^{1, 3} (@200 ft./min., Single layer board)	$R_{\theta JMA}$	°C/W	31	31		
4	Junction to Ambient ^{1, 3} (@200 ft./min., Four layer board 2s2p)	$R_{\theta JMA}$	°C/W	20	20		
5	Junction to Board ⁴	$R_{\theta JB}$	°C/W	13	13		
6	Junction to Case ⁵	$R_{\theta JC}$	°C/W	6	6		
7	Junction to Package Top ⁶ Natural Convection	Ψ_{JT}	°C/W	2	2		

Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

4.2.1 General Notes for Specifications at Maximum Junction Temperature

An estimation of the chip junction temperature, T₁, can be obtained from the equation:

MPC5668x Microcontroller Data Sheet, Rev. 6

² Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.

³ Per JEDEC JESD51-6 with the board horizontal.

⁴ Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature.

⁶ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

Electrical Characteristics

$$T_{J} = T_{A} + (R_{\theta,JA} \times P_{D})$$
 Eqn. 1

where:

 T_A = ambient temperature for the package (o C)

 $R_{\theta JA}$ = junction to ambient thermal resistance (${}^{\circ}C/W$)

 P_D = power dissipation in the package (W)

The supplied thermal resistances are provided based on JEDEC JESD51 series of standards to provide consistent values for estimations and comparisons. The difference between the values determined on the single-layer (1s) board and on the four-layer board with two signal layers and a power and a ground plane (2s2p) clearly demonstrate that the effective thermal resistance of the component is not a constant. It depends on the construction of the application board (number of planes), the effective size of the board which cools the component, how well the component is thermally and electrically connected to the planes, and the power being dissipated by adjacent components.

Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance between through vias leave the planes virtually disconnected, the thermal performance is also greatly reduced.

As a general rule, the value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the application board has one oz. (35 micron nominal thickness) internal planes, the components are well separated, and the overall power dissipation on the board is less than $0.02 \, \text{W/cm}^2$.

The thermal performance of any component depends strongly on the power dissipation of surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

At a known board temperature, the junction temperature is estimated using the following equation:

$$T_J = T_B + (R_{\theta JB} \times P_D)$$
 Eqn. 2

where:

 T_I = junction temperature ($^{\circ}$ C)

 T_B = board temperature at the package perimeter (${}^{\circ}C/W$)

 $R_{\theta JB}$ = junction to board thermal resistance (°C/W) per JESD51-8

 P_D = power dissipation in the package (W)

When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. The application board should be similar to the thermal test condition, with the component soldered to a board with internal planes.

Historically, the thermal resistance has frequently been expressed as the sum of a junction to case thermal resistance and a case to ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$
 Eqn. 3

where:

 $R_{\theta JA}$ = junction to ambient thermal resistance (${}^{\circ}C/W$)

 $R_{\theta IC}$ = junction to case thermal resistance (°C/W)

 $R_{\theta CA}$ = case to ambient thermal resistance (${}^{\circ}C/W$)

MPC5668x Microcontroller Data Sheet, Rev. 6

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This description is most useful for packages with heat sinks where some 90% of the heat flow is through the case to the heat sink to ambient. For most packages, a better model is required.

A more accurate two-resistor thermal model can be constructed from the junction to board thermal resistance and the junction to case thermal resistance. The junction to case covers the situation where a heat sink will be used or where a substantial amount of heat is dissipated from the top of the package. The junction to board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. This model can be used for either hand estimations or for a computational fluid dynamics (CFD) thermal model.

To determine the junction temperature of the device in the application after prototypes are available, the Thermal Characterization Parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_{J} = T_T + (\Psi_{JT} \times P_D)$$
 Eqn. 4

where:

 T_T = thermocouple temperature on top of the package ($^{\circ}$ C)

 Ψ_{JT} = thermal characterization parameter (${}^{o}C/W$)

 P_D = power dissipation in the package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

References:

Semiconductor Equipment and Materials International 3081 Zanker Road San Jose, CA 95134 (408) 943-6900

MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956.

JEDEC specifications are available on the WEB at http://www.jedec.org.

- 1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
- 2. G. Kromann, S. Shidore, and S. Addison, "Thermal Modeling of a PBGA for Air-Cooled Applications," Electronic Packaging and Production, pp. 53–58, March 1998.
- 3. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.

MPC5668x Microcontroller Data Sheet, Rev. 6

Electrical Characteristics

4.3 ESD Characteristics

Table 6. ESD Ratings^{1, 2}

Characteristic	Symbol	Value	Unit
ESD for Human Body Model (HBM)		2000	V
HBM Circuit Description	R1	1500	Ohm
	С	100	pF
ESD for Field Induced Charge Model (FDCM)		750 (corner pins)	
		250 (all other pins)	V
Number of Pulses per pin: Positive Pulses (HBM) Negative Pulses (HBM)		1 1	
Interval of Pulses	_	1	second

All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

4.4 VRC Electrical Specifications

Table 7. VRC Electrical Specifications

Spec	Characteristic	Symbol	Min	Max	Units
1	Current which can be sourced by V _{RCCTL}	I_V _{RCCTL}	6.25 μA	20 mA	_
2	Minimum Required Gain from external circuit: I _{DD} / I_V _{RCCTL} (@V _{DD} = 1.32 V) ¹ -40°C 25°C 150°C	BETA	50 50 50	500	

¹ Assumes "typical usage" currents which will vary with application.

4.5 DC Electrical Specifications

Table 8. DC Electrical Specifications

Spec	Characteristic	Symbol	Min	Max	Unit
1	Maximum Operating Temperature Range — Die Junction Temperature	T _J	-40.0	150.0	°C
2	3.3 V Clock Synthesizer Voltage ¹	V _{DDSYN}	3.0	3.6	V
3	3.3 V I/O Buffer Voltage ¹	V _{DD33}	3.0	3.6	V
4	3.3–5.0 V Voltage Regulator Reference Voltage ¹ V _{RCSEL} = V _{SSA} V _{RCSEL} = V _{DDA}	$V_{ m VRC}$	3.0 4.5	3.6 5.5	V
5	3.3–5.0 V Analog Supply Voltage	V_{DDA}	maximum of 3.0 V or V _{VRC} - 0.1	5.5	V

MPC5668x Microcontroller Data Sheet, Rev. 6

² A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Table 8. DC Electrical Specifications

Spec	Characteristic	Symbol	Min	Max	Unit
6	3.3–5.0 V External I/O Supply Voltage ²	V _{DDE1} V _{DDE2} V _{DDE3} V _{DDE4}	3.0 3.0 3.0 3.0	5.5 5.5 5.5 5.5	V
7	2.5 V – 3.3 V External I/O Supply Voltage (MLB)	V _{DDEMLB} ³	2.375	3.6	V
8	3.3 V External I/O Supply Voltage (Nexus)	V _{DDENEX}	3.0	3.6	V
9	Pad Input High Voltage Hysteresis enabled Hysteresis disabled (IHA/SH/SHA/MH/MHA) ^{4, 5} Hysteresis disabled (F)	V _{IH}	$0.65 \times V_{DDE} \\ 0.55 \times V_{DDE} \\ 0.55 \times V_{DDE}$	V _{DDE} + 0.3	V
10	Pad Input Low Voltage Hysteresis enabled Hysteresis disabled (IHA/SH/SHA/MH/MHA) ^{4, 5} Hysteresis disabled (F)	V _{IL}	V _{SS} - 0.3	$0.35 \times V_{DDE} \\ 0.40 \times V_{DDE} \\ 0.40 \times V_{DDE}$	V
11	Pad Input Hysteresis	V _{HYS}	0.1 ×	V_{DDE}	V
12	Analog (IHA) Input Voltage	V _{INDC}	V _{SSA} - 0.3	V _{DDA} + 0.3	V
13	Pad Output High Voltage ^{6, 7, 8}	V _{OH}	$0.8 \times V_{DDE}$	_	V
14	Pad Output Low Voltage ⁸	V _{OL}	_	$0.2 \times V_{DDE}$	V
15	Input Capacitance (Digital Pins: Pad type F, MH, SH) ⁴	C _{IN}	_	7	pF
16	Input Capacitance (Analog Pins: Pad type IHA) ^{4, 5}	C _{IN_A}	_	10	pF
17	Input Capacitance (Shared digital/analog pins: MHA, SHA) ⁴	C _{IN_M}	_	12	pF
18	I/O Weak Pull Up/Down Absolute Current ^{4, 9} Pad F: 2.375 V – 3.6 V Pad SH/MH/IHA: 3.0 V – 3.6 V Pad SH/MH/IHA: 4.5 V – 5.5 V	I _{ACT}	25 10 35	180 95 200	μА
19	I/O Input Leakage Current ¹⁰	I _{INACT_D}	-2.5	2.5	μА
20	DC Injection Current (per pin)	I _{IC}	-1.0	1.0	mA
21	Analog Input Current, Channel Off ¹¹ (Analog pins IHA) ^{4, 5}	I _{INACT_A}	-150	150	nA
22	Analog Reference High Voltage	V _{RH}	V _{DDA} – 500	V_{DDA}	mV
23	Analog Reference Low Voltage	V _{RL}	V _{SSA}	V _{SSA} + 500	mV
24	V _{SS} to V _{SSA} Differential Voltage	V _{SS} - V _{SSA}	-100	100	mV
25	V _{SSSYN} to V _{SS} Differential Voltage	V _{SSSYN} - V _{SS}	-100	100	mV
26	Slew rate on $V_{\rm DDA}$, $V_{\rm DDEx}$, $V_{\rm DDSYN}$, $V_{\rm DD33}$, and $V_{\rm RC}$ power supply pins	V _{Ramp}	_	100	V/ms
27	Capacitive Supply Load (V _{DD})	V _{Load}	8	_	μF
28	Capacitive Supply Load (V _{DD33} , V _{DDSYN})	V_{Load}	1	_	μF

When V_{RCSEL} = V_{SSA} (low), V_{DDSYN} and V_{DD33} are externally supplied. When V_{RCSEL} = V_{DDA} (high), V_{DDSYN} and V_{DD33} are generated by internal voltage regulators. When V_{RCSEL} = V_{SSA} (low), V_{DDSYN} and V_{DD33} cannot be 100 mV higher than V_{RC}.

MPC5668x Microcontroller Data Sheet, Rev. 6

Electrical Characteristics

- V_{DDE1} V_{DDE4} are separate power segments and may be powered independently with no differential voltage constraints between the power segments. V_{DDE1} V_{DDE3} pad power segments contain ADC analog input channels and thus the input analog signal level may be clamped to the V_{DDE} level, resulting in inaccurate ADC results if the V_{DDE} voltage level is less than V_{DDA}.
- When V_{RCSEL} = V_{DDA} (high), the internally generated V_{DD33} voltage may be used to power V_{DDEMLB} as long as the PK[0:2] pads remain in the disabled default state with their output buffers, input buffers, and pull devices disabled.
- The pad type is indicated by one or more of the following abbreviations: A-analog, F—fast speed, H-high voltage, I—input-only, M-medium speed, S-slow speed. For example, pad type SH designates a slow high-voltage pad.
- ⁵ The IHA pads are related to V_{DDA}.
- 6 Characterization Based Capability:

IOH_F = $\{12, 20, 30, 40\}$ mA and IOL_F = $\{24, 40, 50, 65\}$ mA for $\{00, 01, 10, 11\}$ drive mode with $V_{DDE} = 3.0 \text{ V}$;

 $IOH_F = \{7, 13, 18, 25\}$ mA and $IOL_F = \{18, 30, 35, 50\}$ mA for $\{00, 01, 10, 11\}$ drive mode with $V_{DDE} = 2.25$ V; $IOH_F = \{3, 7, 10, 15\}$ mA and $IOL_F = \{12, 20, 27, 35\}$ mA for $\{00, 01, 10, 11\}$ drive mode with $V_{DDE} = 1.62$ V.

Characterization Based Capability:

IOH_S = $\{6, 11.6\}$ mA and IOL_S = $\{9.2, 17.7\}$ mA for $\{\text{slow, medium}\}\ \text{I/O with V}_{\text{DDEH}} = 4.5\ \text{V};$ IOH_S = $\{2.8, 5.4\}$ mA and IOL_S = $\{4.2, 8.1\}$ mA for $\{\text{slow, medium}\}\ \text{I/O with V}_{\text{DDEH}} = 3.0\ \text{V}$

- 8 All V_{OL}/V_{OH} values 100% tested with ±2 mA load.
- Absolute value of current, measured at V_{IL} and V_{IH}.
- Weak pull up/down inactive. Measured at V_{DDE} = 5.25 V. Applies to pad types: SH and MH. Leakage specification guaranteed only when power supplies are within specified operating conditions.
- ¹¹ Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately one-half for each 8 to 12 °C, in the ambient temperature range of 50 to 125 °C. Applies to pad types: pad_a and pad_ae.

4.6 Operating Current Specifications

Table 9. Operating Currents

Spec	Characteristic	Symbol	Typ ¹ 25 °C Ambient	Max ¹ -40-150 °C Junction	Unit
Equations	$\begin{split} I_{\text{TOTAL}} &= I_{\text{DDE}} + I_{\text{DDA}} + I_{\text{RH}} + I_{\text{DD33}} + I_{\text{DDSYN}} + I_{\text{RC}} + I_{\text{DD}} \\ I_{\text{DDE}} &= I_{\text{DDE1}} + I_{\text{DDE2}} + I_{\text{DDE3}} + I_{\text{DDE4}} + I_{\text{DDEMLB}} \end{split}$	_	_		_
1	V_{DDE} Current $V_{DDE(1,2,3,4)} @ 3.0 V - 5.5 V \ V_{DDEMLB} @ 2.375 V - 3.6 V \ Static^2 \ Dynamic^3$	I _{DDE}	0 Note 3	30 25	μA mA
2	V _{DDA} Current V _{DDA} @ 3.0 V – 5.5 V Run mode Sleep mode – Optional 32 kHz osc enabled	I _{DDA}	1 20 +5	30 50 +15	mA μΑ μΑ
3	V _{RH} Current V _{RH} @ 3.0 V – 5.5 V Run mode Sleep mode	I _{RH}	300 1	700 30	μ Α μ Α
4	V _{DD33} Current V _{DD33} @ 3.0 V – 3.6 V Run mode Sleep mode	I _{DD33}	10 10	20 20	mA μA

MPC5668x Microcontroller Data Sheet, Rev. 6

Table 9. Operating Currents (continued)

Spec	Characteristic	Symbol	Typ ¹ 25 °C Ambient	Max ¹ -40-150 °C Junction	Unit
5	V _{DDSYN} Current V _{DD33} @ 3.0 V – 3.6 V Run mode Sleep mode - Optional ⁴ 4–40 MHz osc enabled w/ no clock - Optional ⁴ 4–40 MHz osc enabled w/ clock	I _{DDSYN}	5 1 +150 +300	10 20 +350 +400	mA μΑ μΑ μΑ
6	V _{RC} Current (excluding I _{DD} , I _{DD33} , I _{DDSYN}) ⁵ V _{RC} @ 3.135 V - 5.5 V Run mode Sleep mode - Optional ⁴ 16MIRC enabled	I _{RC}	1 0 +40	10 10 +60	mA μΑ μΑ
7	V _{DD} Current V _{DD} @ 1.08 V - 1.32 V Run mode (Maximum @ 116 MHz) ⁶ Sleep mode - Optional ⁴ 128KIRC enabled - Optional ⁴ 16MIRC enabled - Optional ⁴ 32 kHz osc enabled - Optional ⁴ 4-40 MHz osc enabled w/ no clock - Optional ⁴ 4-40 MHz osc enabled w/ clock - Optional ⁴ 32 KB RAM - Optional ⁴ 64 KB RAM - Optional ⁴ 128 KB RAM	I _{DD}	200 100 +5 +200 +5 +5 +150 +10 +20 +40	340 900 +10 +220 +20 +20 +150 +300 +600	mΑ μΑ μΑ μΑ μΑ μΑ μΑ

¹ Typ – Nominal voltage levels and functional activity. Max – Maximum voltage levels and functional activity.

Static state of pins is when input pins are disabled or not being toggled and driven to a valid input level, output pins are not toggling or driving against any current loads, and internal pull devices are disabled or not pulling against any current loads.

Dynamic current from pins is application-specific and depends on active pull devices, switching outputs, output capacitive and current loads, and switching inputs. Refer to Table 10 for more information.

Optional currents are values that should be added to their respective current specifications to obtain the actual value for that specification when the optional function is active. The plus sign (+) in the Typ and Max columns indicates these optional currents. For example, V_{DDSYN} in Sleep mode draws 1 .μA (typ). With the optional 4–40 MHz osc enabled w/ no clock, add 150 .μA for a total of 151 .μA (typ).

V_{RC} Current excluding the current supply to V_{DD33}, V_{DDSYN} and V_{DD} from V_{RC}.

⁶ Maximum supply current transition: 50mA per 20µS observation window.

Electrical Characteristics

4.7 I/O Pad Current Specifications

The power consumption of an I/O segment depends on the usage of the pins on a particular segment. The power consumption is the sum of all output pin currents for a particular segment. The output pin current can be calculated from Table 10 based on the voltage, frequency, and load on the pin. Use linear scaling to calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in Table 10.

Table 10. I/O Pad Average I_{DDE} Specifications¹

Spec	Pad Type ²	Symbol	Period (ns)	Load ³ (pF)	V _{DDE} (V)	Drive/Slew Rate Select	I _{DDE} Avg (mA)	I _{DDE} RMS (mA)
1			37	50	5.5	11	14	
2	Slow		130	50	5.5	01	5.3	
3	Slow	I _{DRV_SSR_HV}	650	50	5.5	00	1.1	
4			840	200	5.5	00	3	
6			24	50	5.5	11	9	
7	Medium I _{DRV_I}		62	50	5.5	01	2.5	
8		I _{DRV_MSR_HV}	317	50	5.5	00	0.5	
9			425	200	5.5	00	1.5	
11			10	50	3.6	11	50.4	101.6
12			10	30	3.6	10	14.2	57.3
13			10	20	3.6	01	16.4	43.6
14	Fast		10	10	3.6	00	9.8	15.9
15	rasi	I _{DRV_FC}	10	50	2.75	11	22.9	45.3
16			10	30	2.75	10	6.7	25.3
17	1		10	20	2.75	01	4.5	17.3
18			10	10	2.75	00	3	9.6
19	Input	I _{DRV_I_HV}	7	0.5	5.5	N/A	N/A	N/A

¹ These are typical values that are estimated from simulation and not tested. Currents apply to output pins only.

² Slow = SH or SHA; Medium = MH or MHA; Fast = F; Input = IHA. See Table 2.

³ All loads are lumped.

56.2

4.7.1 I/O Pad V_{DD33} Current Specifications

The power consumption of the V_{DD33} supply is dependent on the usage of the pins on all I/O segments. The power consumption is the sum of all input and output pin V_{DD33} currents for all I/O segments. The output pin V_{DD33} current can be calculated from Table 11 based on the voltage, frequency, and load on all Pad F pins. The input pin V_{DD33} current can be calculated from Table 11 based on the voltage, frequency, and load on all Pad MH pins. Use linear scaling to calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in Table 11.

Spec	Pad Type ²	Symbol	Period (ns)	Load ³ (pF)	Drive Select	I _{DD33} Avg (μΑ)	I _{DD33} RMS (μΑ)	
1	- Slow		100	50	11	0.8	235.7	
2		Slow		200	50	01	0.04	87.4
3			IDRV_SSR_HV	800	50	00	0.06	47.4
4			800	200	00	0.009	47	
5			40	50	11			
6	NA - diam-		100	50	01	0.11	76.5	
7	Medium	IDRV_MSR_HV	500	50	00	0.02	56.2	

Table 11. I/O Pad Average I_{DD33} Specifications¹

I_{DRV_I_HV}

500

7

Input

8

9

Table 12. I_{DD33} Pad Average DC Current¹

200

0.5

00

N/A

0.01

Spec	Pad Type ²	Symbol	Period (ns)	Load ³ (pF)	V _{DD33} (V)	V _{DDE} (V)	Drive Select	I _{DD33} Avg (μΑ)	I _{DD33} RMS (μΑ)
1			10	50	3.6	3.6	11	3.32	11.77
2			10	30	3.6	3.6	10	2.28	7.07
3			10	20	3.6	3.6	01	1.73	5.75
4	Fast	1 .	10	10	3.6	3.6	00	1.39	4.77
5	rasi	I _{DRV_FC}	10	50	3.6	2.75	11	2.3	7.81
6			10	30	3.6	2.75	10	1.64	4.96
7			10	20	3.6	2.75	01	1.37	4.31
8			10	10	3.6	2.75	00	1.06	4.09

¹ These are typical values that are estimated from simulation and not tested. Currents apply to output pins only.

MPC5668x Microcontroller Data Sheet, Rev. 6

¹ These are typical values that are estimated from simulation and not tested. Currents apply to output pins only.

² Slow = SH or SHA; Medium = MH or MHA; Fast = F; Input = IHA. See Table 2.

³ All loads are lumped.

² Slow = SH or SHA; Medium = MH or MHA; Fast = F; Input = IHA. See Table 2.

³ All loads are lumped.

Electrical Characteristics

4.8 Low Voltage Characteristics

Table 13. Low Voltage Monitors

Spec	Characteristic	Symbol	Min	Typical	Max	Unit
1	Power-on-Reset Assert Level ¹	V _{POR}	1.5	_	2.8	V
2	Low Voltage Monitor 3.3 V ² Assert Level De-assert Level	V _{LVI33A} V _{LVI33D}	3.00 3.04	3.05 3.12	3.10 3.19	V
3	Low Voltage Monitor Synthesizer ³ Assert Level De-assert Level	V _{LVISYNA} V _{LVISYND}	3.00 3.04	3.05 3.12	3.10 3.19	V
4	Low Voltage Monitor 3.0 V Low Threshold ¹ VRCSEL = V _{SSA} Assert Level De-assert Level VRCSEL = V _{DDA} Assert Level De-assert Level	VLVI_VDDA_LOA VLVI_VDDA_LOD VLVI_VDDA_LOA VLVI_VDDA_LOD	3.00 3.04 3.25 3.35	3.05 3.12 3.35 3.45	3.10 3.19 3.48 3.55	V
5	Low Voltage Monitor 5.0 V ^{1, 4} Assert Level De-assert Level	V _{LVI_VDDA_} A V _{LVI_VDDA_} D	4.35 4.45	4.475 4.575	4.55 4.65	V
6	Low Voltage Monitor 5.0 V High Threshold ^{1, 5} Assert Level De-assert Level	V _{LVI_VDDA_} HA V _{LVI_VDDA_} HD	4.50 4.50	4.675 4.675	4.80 4.80	V

¹ Monitors V_{DDA.}

4.9 Oscillators Electrical Characteristics

Table 14. 3.3 V High Frequency External Oscillator

Spec	Characteristic	Symbol	Min	Max	Unit
1	Frequency Range	f _{ref}	4 ¹	40	MHz
2	Duty Cycle of reference	t _{DC}	40	60	%
3	EXTAL Input High Voltage External crystal mode ² External clock mode	V _{IHEXT}	V _{XTAL} + 0.4 0.65 × V _{DDSYN}	V _{DDSYN} + 0.3 V _{DDSYN} + 0.3	V
4	EXTAL Input Low Voltage External crystal mode ³ External clock mode	V _{ILEXT}	V _{DDSYN} - 0.3 V _{DDSYN} - 0.3	V _{XTAL} - 0.4 0.35 × V _{DDSYN}	V
5	XTAL Current ⁴	I _{XTAL}	1	3	mA
6	Total On-chip stray capacitance on XTAL	C _{S_XTAL}	_	3	pF
7	Total On-chip stray capacitance on EXTAL	C _{S_EXTAL}	_	3	pF

MPC5668x Microcontroller Data Sheet, Rev. 6

² Monitors V_{DD33}.

³ Monitors V_{DDSYN}.

 $^{^{4}}$ Disabled when $V_{RCSEL} = V_{SSA}$.

Table 14. 3.3 V	High Frequency	External Oscillator	(continued)

Spec	Characteristic	Symbol	Min	Max	Unit
8	Crystal manufacturer's recommended capacitive load	C _L	See crystal specification	See crystal specification	pF
9	Discrete load capacitance to be connected to EXTAL	C _{L_EXTAL}	_	2×C _L - C _{S_EXTAL} - C _{PCB_EXTAL} ⁵	pF
10	Discrete load capacitance to be connected to XTAL	C _{L_XTAL}	_	2×C _L - C _{S_XTAL} - C PCB_XTAL	pF
11	Startup Time	t _{startup}	_	10	ms

When PLL frequency modulation is active, reference frequencies less than 8 MHz will distort the modulated waveform and the effects of this on emissions is not characterized.

Table 15. 5 V Low Frequency (32 kHz) External Oscillator

Spec	Characteristic	Symbol	Min	Max	Unit
1	Frequency Range	f _{ref32}	32	40	kHz
2	Duty Cycle of reference	t _{dc32}	40	60	%
3	XTAL32 Current ¹	I _{XTAL32}	_	3	μΑ
4	Crystal manufacturer's recommended capacitive load	C _{L32}	See crystal specification	See crystal specification	pF
5	Startup Time	t _{Startup}	_	2	S

I_{xtal32} is the oscillator bias current out of the XTAL32 pin with both EXTAL32 and XTAL32 pins grounded.

Table 16. 5 V High Frequency (16 MHz) Internal RC Oscillator

Spec	Characteristic	Symbol	Range	Min	Тур	Max	Unit
1	Frequency before trim ¹	f _{ut}	35%	10.4	16	21.6	MHz
2	Frequency after loading factory trim ²	f _t	7%	14.9	16	17.1	MHz
3	Application trim resolution ³	t _s	_	_	_	±0.5	%
4	Application frequency trim step ³	f _s	_	_	300	_	kHz
5	Startup Time	t _{Startup}	_	_	_	500	ns

¹ Across process, voltage, and temperature.

MPC5668x Microcontroller Data Sheet, Rev. 6

This parameter is meant for those who do not use quartz crystals or resonators, but instead use CAN oscillators in crystal mode. In that case, V_{extal} − V_{xtal} ≥ 400 mV criteria has to be met for oscillator's comparator to produce output clock.

This parameter is meant for those who do not use quartz crystals or resonators, but instead use CAN oscillators in crystal mode. In that case, $V_{xtal} - V_{extal} \ge 400$ mV criteria has to be met for oscillator's comparator to produce output clock.

⁴ I_{xtal} is the oscillator bias current out of the XTAL pin with both EXTAL and XTAL pins grounded.

 $^{^{5}}$ C_{PCB EXTAL} and C_{PCB XTAL} are the measured PCB stray capacitances on EXTAL and XTAL, respectively.

² Across voltage and temperature.

³ Fixed voltage and temperature.

Table 17. 5V Low Frequency (128 kHz) Internal RC Oscillator

Spec	Characteristic	Symbol	Range	Min	Тур	Max	Unit
1	Frequency before trim ¹	F _{ut128}	35%	83.2	128	172.8	kHz
2	Frequency after loading factory trim ²	F _{t128}	7%	119.0	128	137.0	kHz
3	Application trim resolution ³	T _{s128}	_	_	_	±2	%
4	Application frequency trim step ³	F _{s128}	_	_	4	_	kHz
5	Startup Time	S _{t128}	_		_	100	μS

¹ Across process, voltage, and temperature.

4.10 FMPLL Electrical Characteristics

Table 18. FMPLL Electrical Specifications¹

Spec	Characteristic	Symbol	Min	Max	Unit
1	System Frequency ²	f _{SYS}	_	116	MHz
2	PLL Reference Frequency Range	f _{REF}	4	40	MHz
3	PLL Frequency	f _{PLL}	$\frac{f_{vco(min)}}{(ERFD+1)}$		MHz
4	Loss of Reference Frequency ³	f _{LOR}	100	2000	kHz
5	Self Clocked Mode Frequency	f _{SCM}	16	64	MHz
6	PLL Lock Time ⁴	t _{LPLL}	_	400	μS
7	Duty Cycle of Reference	t _{DC}	40	60	%
8	Frequency un-LOCK Range	f _{UL}	-4.0	4.0	% f _{SYS}
9	Frequency LOCK Range	f _{LCK}	-2.0	2.0	% f _{SYS}
10	CLKOUT Period Jitter, ⁵ Measured at f _{SYS} Max Cycle-to-cycle Jitter	C _{Jitter}	- 5	5	%f _{SYS}
11	CLKOUT Jitter at ≥ 50 µs period	C _{Jitter}	-250	250	ns
12	Peak-to-Peak Frequency Modulation Range Limit ^{6,7} (f _{SYS} Max must not be exceeded)	C _{mod}	0	4	%f _{SYS}
13	FM Depth Tolerance ⁸	C _{mod_err}	-0.50	0.50	%f _{SYS}
14	VCO Frequency ⁹	f _{VCO}	192	600	MHz
15	Modulation Rate Limits ¹⁰	f _{MOD}	0.400	1	MHz

¹ V_{DDSYN} = 3.0 V to 3.6 V, V_{SS} = V_{SSSYN} = 0 V, T_A = T_L to T_H.

MPC5668x Microcontroller Data Sheet, Rev. 6

² Across voltage and temperature.

³ Fixed voltage and temperature.

- ² The maximum frequency value is with frequency modulation disabled. If frequency modulation is enabled, the maximum frequency value should be de-rated by the percentage of modulation enabled so that the maximum frequency is not exceeded.
- ³ "Loss of Reference Frequency" is the reference frequency detected internally, which transitions the PLL into self clocked mode.
- ⁴ This specification applies to the period required for the PLL to re-lock after changing the MFD frequency control bits in the synthesizer control register (SYNCR). From power up with crystal oscillator reference, lock time will be additive with crystal startup time.
- ⁵ Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of C_{jitter} + C_{mod}.
- ⁶ Modulation depth selected must not result in f_{PLL} value greater than the f_{PLL} maximum specified value.
- Maximum and minimum variations from programmed modulation depth are 2%, 3%, and 4% peak-to-peak. Use only these settings.
- ⁸ Depth tolerance is the programmed modulation depth ±0.25% of f_{SYS}.
- ⁹ See the Block Guide for VCO frequency synthesis equations.
- Modulation rates less than 400 kHz will result in exceedingly long FM calibration durations. Modulation rates greater than 1 MHz will result in reduced calibration accuracy.

4.11 ADC Electrical Characteristics

Table 19. ADC Conversion Specifications (Operating)

Spec	Characteristic	Symbol	Min	Max	Unit
1	Analog High Reference Voltage	V_{RH}	V _{DDA} – 0.5	V_{DDA}	V
2	Analog Low Reference Voltage	V_{RL}	0	0.5	V
3	Analog Input Voltage	AV _{IN}	V_{RL}	V _{RH}	V
4	Sampling Frequency	F _S	_	1.53	MHz
5	Maximum ADC Clock Frequency	F _{MAX}	_	60	MHz
6	Sampling Time $V_{DDA} = 3.0 \text{ V} - 3.6 \text{ V}$ $V_{DDA} > 3.6 \text{ V} - 5.5 \text{ V}$	t _S	250 125	1	ns
7	Differential Non Linearity	DNL	-1.0	1.0	LSB
8	Integral Non Linearity	INL	-1.5	1.5	LSB
9	Offset Error	OFS	-1.0	1.0	LSB
10	Gain Error	GNE	-2.0	2.0	LSB
11	Total Unadjusted Error ¹	TUE	-2.0	2.0	LSB

¹ TUE assumes no pin activity on pins adjacent to analog channel or output driver activity on corresponding V_{DDE} segment.

4.12 Flash Memory Electrical Characteristics

Table 20. Flash Program and Erase Specifications¹

Spec	Characteristic	Symbol	Min	Initial Max ²	Max ³	Unit
1	Double Word (64 bits) Program Time ⁴	t _{dwprogram}	_	_	500	μS
2	Page (128 bits and 256 bits) Program Time ⁴	t _{pprogram}	_	160	500	μS
3	16 KB Block Pre-program and Erase Time	t _{16kpperase}	_	1000	5000	ms
4	64 KB Block Pre-program and Erase Time	t _{64kpperase}	_	1800	5000	ms
5	128 KB Block Pre-program and Erase Time	t _{128kpperase}	_	2600	7500	ms

MPC5668x Microcontroller Data Sheet, Rev. 6

Table 20. Flash Program and Erase Specifications¹ (continued)

Spec	Characteristic	Symbol	Min	Initial Max ²	Max ³	Unit
6	256 KB Block Pre-program and Erase Time	t _{256kpperase}	_	5200	15,000	ms
7	Wait States Relative to System Frequency ⁵ $PFCRPn[RWSC] = PFCRPn[APC] = 0b000; PFCRPn[WWSC] = 0b01$ $PFCRPn[RWSC] = PFCRPn[APC] = 0b001; PFCRPn[WWSC] = 0b01$ $PFCRPn[RWSC] = PFCRPn[APC] = 0b010; PFCRPn[WWSC] = 0b01$ $PFCRPn[RWSC] = PFCRPn[APC] = 0b011 - 0b111; PFCRPn[WWSC] = 0b01$	t _{rwsc}	1111		30 60 90 f _{SYS} max	MHz
8	Recovery Time	t _{Recover}	_	_	45	μS

¹ Typical program and erase times assume nominal supply values and operation at 25 °C.

Table 21. Flash EEPROM Module Life (Full Temperature Range)

Spec	Characteristic	Symbol	Min	Typical ¹	Unit
1	Number of Program/Erase cycles per block for 16 KB and 64 KB blocks over the operating temperature range (T_J)	P/E	100,000	_	cycles
2	Number of Program/Erase cycles per block for 128 KB blocks over the operating temperature range (T_J)	P/E	1,000	100,000	cycles
3	Minimum Data Retention at 85 °C ambient temperature ² Blocks with 0–1,000 P/E cycles Blocks with 1,001–10,000 P/E cycles Blocks with 10,001–100,000 P/E cycles	Retention	20 10 1 – 5	_	years

Typical endurance is evaluated at 25 °C. Product qualification is performed to the minimum specification. For additional information on the Freescale definition of Typical Endurance, please refer to Engineering Bulletin EB619, Typical Endurance for Nonvolatile Memory.

4.13 Pad AC Specifications

Table 22. Pad AC Specifications (5.0 V, 2.5 V)¹

Spec	Pad Type ²	SRC/DSC ³	Output Delay ^{4,4} (ns)	Rise/Fall ^{5,6} (ns)	Load Drive (pF)
		00	318/343	155/173	50
		00	408/431	188/204	200
1	Slow ⁷	01	61/67	30/34	50
'	SIOW	01	80/90	38/44	200
		11	18/18	10/11	50
		11	27/28	15/17	200

MPC5668x Microcontroller Data Sheet, Rev. 6

² Initial factory condition: < 100 program/erase cycles, nominal supply values and operation at 25 °C.

The maximum time is at worst case conditions after the specified number of program/erase cycles. This maximum value is characterized but not guaranteed.

⁴ Actual hardware programming time. This does not include software overhead.

⁵ Wait state timing is based on the system clock frequency and thus is same for all masters.

² Ambient temperature averaged over duration of application, not to exceed product operating temperature range.

Table 22. Pad AC Specifications	(5.0 V, 2.5 V) ¹ (continued)
--	---------------	----------------------------

Spec	Pad Type ²	SRC/DSC ³	Output Delay ^{4,4} (ns)	Rise/Fall ^{5,6} (ns)	Load Drive (pF)	
		00	142/186	65/89	50	
		00	195/253	91/122	200	
2	Medium	01	20/35	8.7/16.6	50	
2	Wedium	01	41/64	24/35	200	
		11	11	12/11	5.3/5.9	50
				11	32/34	21/23
		00			10	
3	Fast ⁸	01	2.7	1.5	20	
3	rast	10	2.7	1.5	30	
		11			50	
4	Input	N/A	1.9/1.9	1.5/1.5	0.5	

These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at F_{SYS} = 116 MHz, V_{DD} = 1.08 – 1.32 V, V_{DDE} = 1.62 – 1.98 V, V_{DDEH} = 4.5 – 5.5 V, V_{RC33} and V_{DDPLL} = 3.0 – 3.6 V, T_A = T_L to T_H .

Table 23. De-rated Pad AC Specifications (3.3 V, 3.3 V)¹

Spec	Pad Type ²	SRC/DSC ³	Out Delay ^{4,5} (ns)		
		00	408/431	188/204	50
		00	533/592	250/288	200
1	Slow ⁷	01	80/90	38/44	50
'	SIOW	01	146/167	82/96	200
		11	27/28	15/17	50
		11	81/92	57/67	200
		00	184/240	79/107	50
		00	253/330	114/153	200
2	Medium	01	28/47	11.8/21.8	50
2	Wedium	01	58/88	34/49	200
		11	18/17	7.6/8.9	50
	11		46/51	30/35	200

MPC5668x Microcontroller Data Sheet, Rev. 6

² Slow = SH or SHA; Medium = MH or MHA; Fast = F; Input = IHA. See Table 2.

³ SRC/DSC are bit fields in the Pad Configuration Registers. SRC—Slew Rate Control (slow and medium pad types only), DSC—Drive Strength Control (fast pad type only).

⁴ This parameter is supplied for reference and is not guaranteed by design and not tested.

⁵ This parameter is guaranteed by characterization before qualification rather than 100% tested.

⁶ Delay and rise/fall are measured to 20% or 80% of the respective signal.

⁷ Add a maximum of one system clock to the output delay for delay with respect to system clock.

⁸ Output delay is shown in. Add a maximum of one system clock to the output delay for delay with respect to system clock.

Table 23. De-rated Pad AC Specifications (3.3 V, 3.3 V)¹ (continued)

Spec	Pad Type ²	SRC/DSC ³	Out Delay ^{4,5} (ns)	Rise/Fall ^{6,} (ns)	Load Drive (pF)
		00		1.2	10
	Fast ⁸	01	1.2	20	
3	Fast	10		1.2	30
		11		1.2	50
4	Input	N/A	3/3	1.5/1.5	0.5

These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at F_{SYS} = 116 MHz, V_{DD} = 1.08 – 1.32 V, V_{DDE} = 3.0 – 3.6 V, V_{DDEH} = 3.0 – 3.6 V, V_{RC33} and V_{DDPLL} = 3.0 – 3.6 V, V_{A} = V_{A} = V_{A} to V_{A} = $V_{$

Output delay is shown in Figure 6. Add a maximum of one system clock to the output delay for delay with respect to system clock

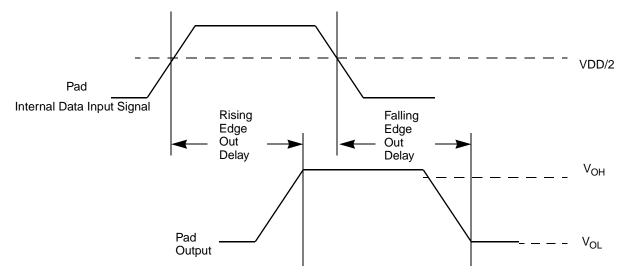


Figure 6. Pad Output Delay

MPC5668x Microcontroller Data Sheet, Rev. 6

² Slow = SH or SHA; Medium = MH or MHA; Fast = F; Input = IHA. See Table 2.

³ SRC/DSC are bit fields in the Pad Configuration Registers. SRC—Slew Rate Control (slow and medium pad types only), DSC—Drive Strength Control (fast pad type only).

⁴ This parameter is supplied for reference and is not guaranteed by design and not tested.

⁵ Delay and rise/fall are measured to 20% or 80% of the respective signal.

⁶ This parameter is guaranteed by characterization before qualification rather than 100% tested.

⁷ Add a maximum of one system clock to the output delay for delay with respect to system clock.

4.14 AC Timing

4.14.1 Reset and Boot Configuration Pins

Table 24. Reset and Boot Configuration Timing

Spec	Characteristic	Symbol	Min	Max	Unit
1	RESET Pulse Width	t _{RPW}	150	_	ns
2	BOOTCFG Setup Time after RESET Valid	t _{RCSU}	_	100	μS
3	BOOTCFG Hold Time from RESET Valid	t _{RCH}	0	_	μS

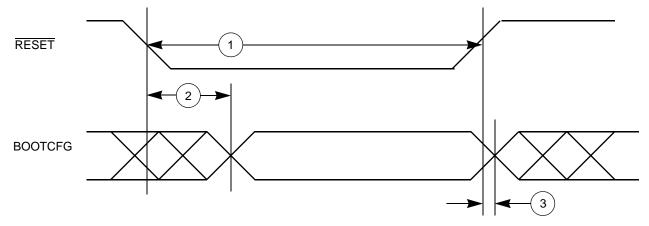


Figure 7. Reset and Boot Configuration Timing

4.14.2 External Interrupt (IRQ) and Non-Maskable Interrupt (NMI) Pins

Table 25. IRQ/NMI Timing

Spec	Characteristic	Symbol	Min	Max	Unit
1	IRQ/NMI Pulse Width Low	t _{IPWL}	3	_	t _{SYS}
2	IRQ/NMI Pulse Width High	T _{IPWH}	3	_	t _{SYS}
3	IRQ/NMI Edge to Edge Time ¹	t _{ICYC}	6	_	t _{SYS}

¹ Applies when IRQ/NMI pins are configured for rising edge or falling edge events, but not both.

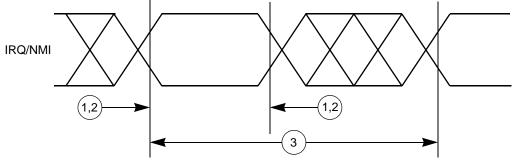
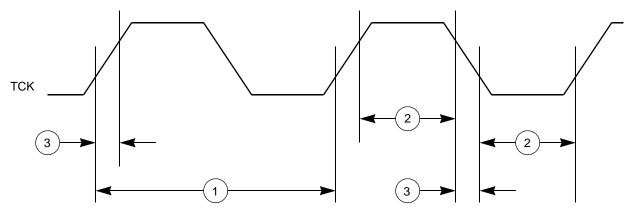


Figure 8. IRQ and NMI Timing

MPC5668x Microcontroller Data Sheet, Rev. 6



4.14.3 JTAG (IEEE 1149.1) Interface

Table 26. JTAG Interface Timing¹

Spec	Characteristic	Symbol	Min	Max	Unit
1	TCK Cycle Time	t _{JCYC}	100	_	ns
2	TCK Clock Pulse Width (Measured at V _{DDE} /2)	t _{JDC}	40	60	ns
3	TCK Rise and Fall Times (40% – 70%)	t _{TCKRISE}	_	3	ns
4	TMS, TDI Data Setup Time	t _{TMSS} , t _{TDIS}	5	_	ns
5	TMS, TDI Data Hold Time	t _{TMSH} , t _{TDIH}	25	_	ns
6	TCK Low to TDO Data Valid	t _{TDOV}	_	25	ns
7	TCK Low to TDO Data Invalid	t _{TDOI}	0	_	ns
8	TCK Low to TDO High Impedance	t _{TDOHZ}	_	20	ns
9	JCOMP Assertion Time	t _{JCMPPW}	100	_	ns
10	JCOMP Setup Time to TCK Low	t _{JCMPS}	40	_	ns
11	TCK Falling Edge to Output Valid	t _{BSDV}	_	50	ns
12	TCK Falling Edge to Output Valid out of High Impedance	t _{BSDVZ}	_	50	ns
13	TCK Falling Edge to Output High Impedance	t _{BSDHZ}	_	50	ns
14	Boundary Scan Input Valid to TCK Rising Edge	t _{BSDST}	50	_	ns
15	TCK Rising Edge to Boundary Scan Input Invalid	t _{BSDHT}	50	_	ns

These specifications apply to JTAG boundary scan only. JTAG timing specified at $V_{DDE} = 3.0 - 5.5 \text{ V}$, $T_A = T_L$ to T_H , and $C_L = 30 \text{ pF}$ with SRC = 0b11.

Figure 9. JTAG Test Clock Input Timing

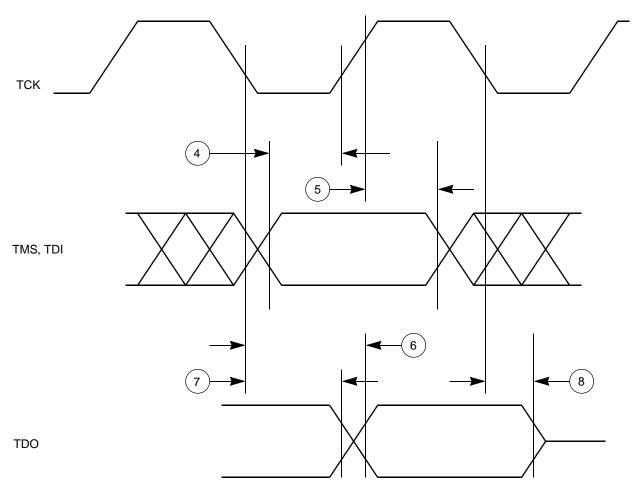


Figure 10. JTAG Test Access Port Timing

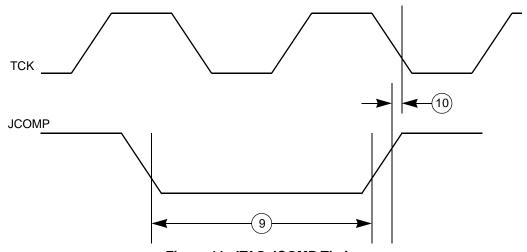


Figure 11. JTAG JCOMP Timing

MPC5668x Microcontroller Data Sheet, Rev. 6

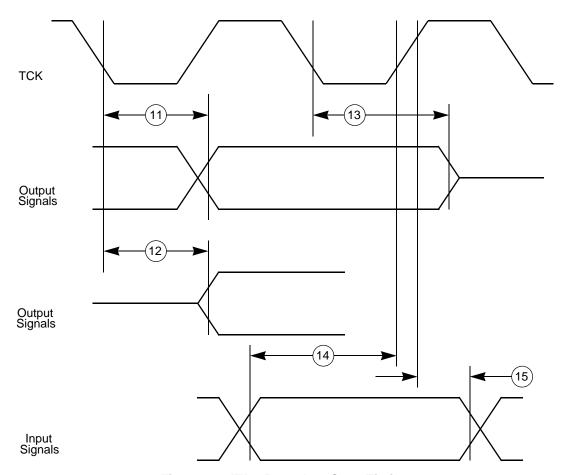


Figure 12. JTAG Boundary Scan Timing

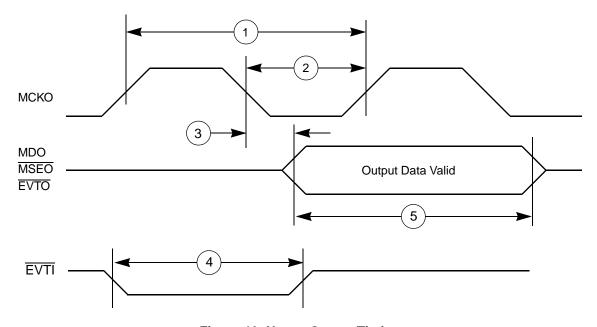

4.14.4 Nexus Debug Interface

Table 27. Nexus Debug Port Timing¹

Spec	Characteristic	Symbol	Min	Max	Unit
1	MCKO Cycle Time	t _{MCYC}	15.6		ns
2	MCKO Duty Cycle	t _{MDC}	40	60	%
3	MCKO Low to MDO, MSEO, EVTO Data Valid ²	t _{MDOV}	-0.1	0.25	t _{MCYC}
4	EVTI Pulse Width	t _{EVTIPW}	4.0	1	t _{TCYC}
5	EVTO Pulse Width	t _{EVTOPW}	1		t _{MCYC}
6	TCK Cycle Time ³	t _{TCYC}	40	_	ns
7	TCK Duty Cycle	t _{TDC}	40	60	%
8	TDI, TMS Data Setup Time	t _{NTDIS} , t _{NTMSS}	8	_	ns
9	TDI, TMS Data Hold Time	t _{NTDIH} , t _{NTMSH}	5	_	ns
10	TCK Low to TDO Data Valid	t _{JOV}	0	25	ns

JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified at $V_{DDE} = 3.0 - 5.5 \text{ V}$, $T_A = T_L$ to T_H , and $T_L = 30 \text{ pF}$ with SRC = 0b11.

³ The system clock frequency needs to be three times faster than the TCK frequency.

Figure 13. Nexus Output Timing

 $^{^2~}$ MDO, $\overline{\rm MSEO},$ and $\overline{\rm EVTO}$ data is held valid until next MCKO low cycle.

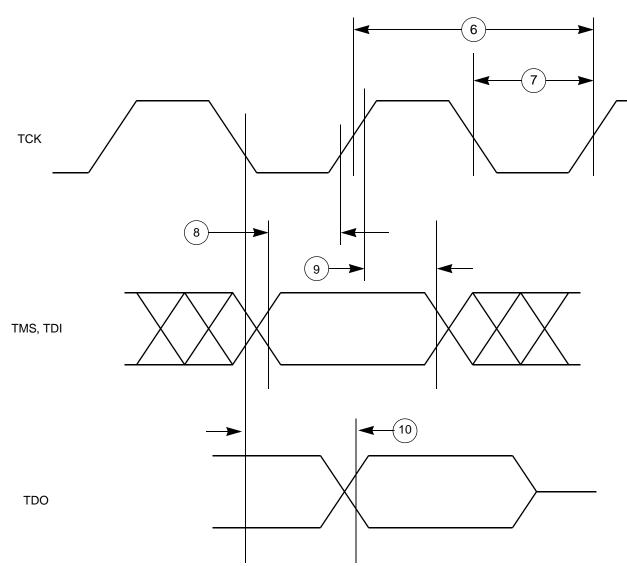


Figure 14. Nexus TDI, TMS, TDO Timing

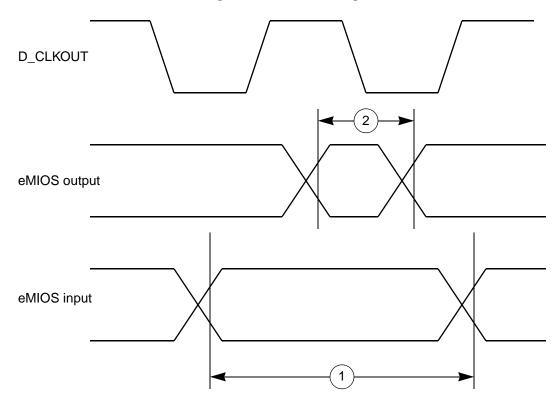

4.14.5 Enhanced Modular I/O Subsystem (eMIOS)

Table 28. eMIOS Timing¹

Spec	Characteristic	Symbol	Min	Max	Unit
1	eMIOS Input Pulse Width	t _{MIPW}	4	_	t _{CYC}
2	eMIOS Output Pulse Width	t _{MOPW}	1 ²	_	t _{CYC}

 $^{^{1}}$ eMIOS timing specified at $V_{DDE} = 3.0 - 5.5$ V, $T_{A} = T_{L}$ to T_{H} , and CL = 30 pF with SRC = 0b11.

Figure 15. eMIOS Timing

This specification does not include the rise and fall times. When calculating the minimum eMIOS pulse width, include the rise and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).

4.14.6 Deserial Serial Peripheral Interface (DSPI)

Table 29. DSPI Timing

Snaa	Characteristic	Sumbal	116 [MHz ¹	Unit
Spec	Characteristic	Symbol	Min. Value	Max. Value	Unit
1	DSPI Cycle Time Master (MTFE = 0) Slave (MTFE = 0) Master (MTFE = 1) Slave (MTFE = 1)	^t sck	100 100 50 50	_ _ _ _	ns ns ns ns
2	PCS to SCK Delay ²	t _{csc}	7	_	ns
3	After SCK Delay ³	t _{ASC}	14	_	ns
4	SCK Duty Cycle	t _{SDC}	$0.4 \times t_{SCK}$	$0.6 \times t_{SCK}$	ns
5	Slave Access Time (SS active to SOUT valid)	t _A	_	25	ns
6	Slave SOUT Disable Time (SS inactive to SOUT High-Z or invalid)	t _{DIS}	_	25	ns
7	PCSx to PCSS time	t _{PCSC}	0	_	ns
8	PCSS to PCSx time	t _{PASC}	0	_	ns
9	Data Setup Time for Inputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) ⁴ Master (MTFE = 1, CPHA = 1)	t _{SUI}	25 5 10 25	_ _ _ _	ns ns ns
10	Data Hold Time for Inputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) ⁴ Master (MTFE = 1, CPHA = 1)	t _{HI}	-4 7 12 -4	_ _ _ _	ns ns ns ns
11	Data Valid (after SCK edge) Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) Master (MTFE = 1, CPHA = 1)	t _{suo}	_ _ _ _	8 28 15 8	ns ns ns ns
12	Data Hold Time for Outputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) Master (MTFE = 1, CPHA = 1)	t _{HO}	-7 2 1 -7	_ _ _ _	ns ns ns ns

^{1 116} MHz timing specified at CL = 50 pF with SRC = 0b11.

MPC5668x Microcontroller Data Sheet, Rev. 6

² The maximum value is programmable in DSPI_CTAR*n*[PSSCK] and DSPI_CTAR*n*[CSSCK].

³ The maximum value is programmable in DSPI_CTAR n[PASC] and DSPI_CTAR n[ASC].

⁴ This number is calculated assuming the SMPL_PT bit field in DSPI_MCR is set to 0b10.

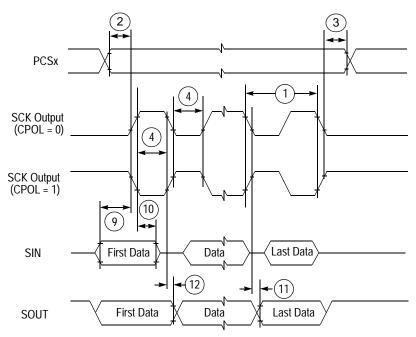


Figure 16. DSPI Classic SPI Timing — Master, CPHA = 0

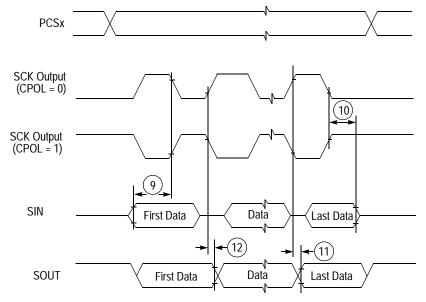


Figure 17. DSPI Classic SPI Timing — Master, CPHA = 1

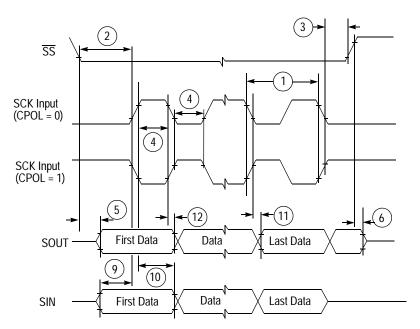


Figure 18. DSPI Classic SPI Timing — Slave, CPHA = 0

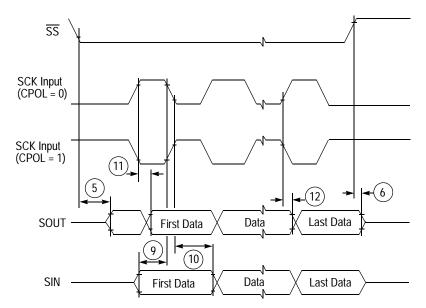


Figure 19. DSPI Classic SPI Timing — Slave, CPHA = 1

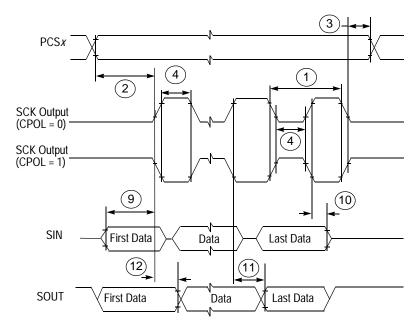


Figure 20. DSPI Modified Transfer Format Timing — Master, CPHA = 0

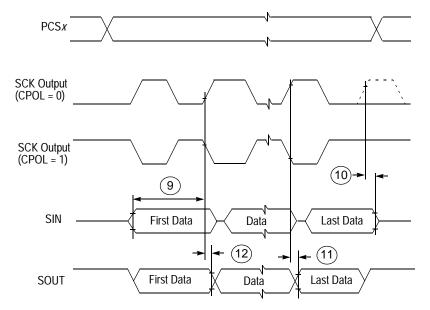


Figure 21. DSPI Modified Transfer Format Timing — Master, CPHA = 1

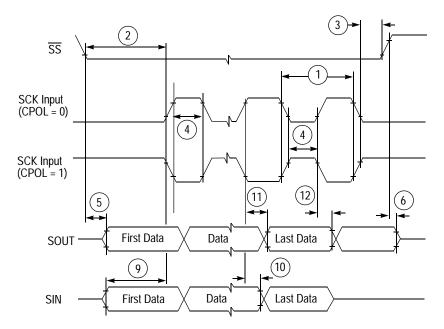


Figure 22. DSPI Modified Transfer Format Timing — Slave, CPHA = 0

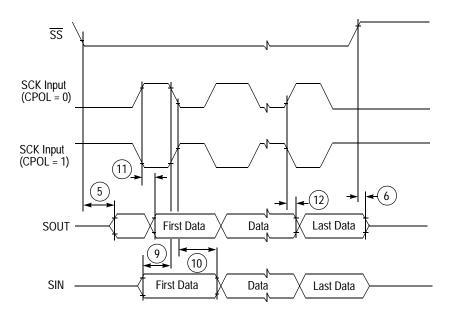


Figure 23. DSPI Modified Transfer Format Timing — Slave, CPHA = 1

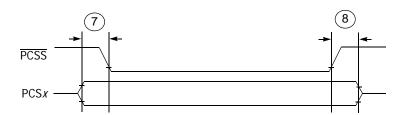


Figure 24. DSPI PCS Strobe (PCSS) Timing

MPC5668x Microcontroller Data Sheet, Rev. 6

4.14.7 MLB Interface

4.14.7.1 Media Local Bus DC Electrical Characteristics

Table 30 provides the DC electrical characteristics for the Media Local Bus interface.

Table 30. Media Local Bus DC Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	Comments
Maximum Input Voltage	_	_	_	3.6	V	
Low Level Input Threshold	V_{IL}	_	_	0.7	V	
High Level Input Threshold	V _{IH}	1.8 ¹	_	_	V	
Low Level Output Threshold	V _{OL}	_	_	0.4	V	I _{OL} = 6 mA
High Level Output Threshold	V _{OH}	2.0	_	_	V	$I_{OH} = -6 \text{ mA}$
Input Leakage Current	ΙL	_	_	±1	μΑ	$0 < V_{in} < V_{DDE4}$

Higher V_{IH} thresholds can be used; however, the risks associated with less noise margin in the system must be evaluated and assumed by the customer.

4.14.7.2 Media Local Bus (MLB) AC Electrical Characteristics

Table 31 and Table 32 provide the AC electrical characteristics for the Media Local Bus interface.

Table 31. MLB Timing for MLB Speed 256 Fs or 512 Fs

Spec	Parameter	Symbol	Min	Тур	Max	Unit	Comments
1	MLBCLK Operating Frequency ¹	f _{mck}	11.264 — — —	 12.288 24.576 	 24.6272 25.600	MHz	256 Fs at 44.0 kHz 256 Fs at 48.0 kHz 512 Fs at 48.0 kHz 512 Fs at 48.1 kHz 512 Fs PLL unlocked
2	MLBCLK rise time	t _{mckr}		_	3	ns	V _{IL} to V _{IH}
3	MLBCLK fall time	t _{mckf}	_	_	3	ns	V _{IH} to V _{IL}
4	MLBCLK cycle time	t _{mckc}	_	81 40	_	ns	256 Fs 512 Fs
5	MLBCLK low time	t _{mckl}	31.5 30	37 35.5	_	ns	256 Fs 256 Fs PLL unlocked
			14.5 14	17 16.5	_	ns	512 Fs 512 Fs PLL unlocked
6	MLBCLK high time	t _{mckh}	31.5 30	38 36.5	_	ns	256xFs 256 Fs PLL unlocked
			14.5 14	17 16.5	_	ns	512 Fs 512 Fs PLL unlocked
7	MLBCLK pulse width variation ²	t _{mpwv}	_	_	2	ns p-p	
8	MLBSIG/MLBDAT input valid to MLBCLK falling	t _{dsmcf}	1	_	_	ns	
9	MLBSIG/MLBDAT input hold from MLBCLK low	t _{dhmcf}	0	_	1	ns	

MPC5668x Microcontroller Data Sheet, Rev. 6

Table 31. MLB Timing for MLB Speed 256 Fs or 512 Fs (continued)

Spec	Parameter	Symbol	Min	Тур	Max	Unit	Comments
10	MLBSIG/MLBDAT output high impedance from MLBCLK low	t _{mcfdz}	0	_	t _{mckl}	ns	
11	Bus Hold time ³	t _{mdzh}	4	_	_	ns	
12	MLBSIG/MLBDAT output valid from MLBCLK rising	t _{mcrdv}	_	_	8	ns	

[•] Ground = 0.0V

- Load Capacitance = 60 pF, SIU_PCR144-SIU_PCR146[DSC] = 0b11.
- MLB speed of 256 Fs or 512 Fs (Fs = 48 kHz)
 Unless otherwise noted, all timing parameters are specified from the valid voltage threshold in Table 30.

Table 32. MLB Timing for MLB Speed 1024 Fs

Spec	Parameter	Symbol	Min	Тур	Max	Unit	Comments
1	MLBCLK Operating Frequency ¹	f _{mck}	45.056 — — —	49.152 — —	— 49.2544 51.200	MHz	1024 Fs at 44.0 kHz 1024 Fs at 48.0 kHz 1024 Fs at 48.1 kHz 1024 Fs PLL unlocked
2	MLBCLK rise time	t _{mckr}	_	_	1	ns	V _{IL} to V _{IH}
3	MLBCLK fall time	t _{mckf}	_	_	1	ns	V _{IH} to V _{IL}
4	MLBCLK cycle time	t _{mckc}	_	20.3	_	ns	V _{IL} to V _{IH}
5	MLBCLK low time	t _{mckl}	6.5 6.1	7.7 7.3	_	ns	1024 Fs PLL unlocked
6	MLBCLK high time	t _{mckh}	9.7 9.3	10.6 10.2	_	ns	1024 Fs PLL unclocked
7	MLBCLK pulse width variation ²	t _{mpwv}	_	_	0.7	ns p-p	
8	MLBSIG/MLBDAT input valid to MLBCLK falling	t _{dsmcf}	1	_	_	ns	
9	MLBSIG/MLBDAT input hold from MLBCLK low	t _{dhmcf}	0	_	_	ns	
10	MLBSIG/MLBDAT output high impedance from MLBCLK low	t _{mcfdz}	0	_	t _{mckl}	ns	
11	Bus Hold time ³	t _{mdzh}	2	_	_	ns	
12	MLBSIG/MLBDAT output valid from MLBCLK rising	t _{mcrdv}	_	_	7	ns	

[•] Ground = 0.0V

- Load Capacitance = 40 pF, SIU_PCR144-SIU_PCR146[DSC] = 0b00.
- MLB speed = 1024Fs (Fs = 48 kHz)
- Unless otherwise noted, timing parameters are specified from the valid voltage threshold in Table 30.

MPC5668x Microcontroller Data Sheet, Rev. 6

The Controller can shut off MLBCLK to place MLB in a low-power state.

² Pulse width variation is measured at 1.25 V by triggering on one edge of MLBCLK and measuring the spread on the other edge, measured in ns peak-to-peak (ns p-p).

³ The board must be designed to insure that the high-impedance bus does not leave the logic state of the final driven bit for this time period. Therefore, coupling must be minimized while meeting the maximum capacitive load listed.

- ¹ The Controller can shut off MLBCLK to place MLB in a low-power state.
- ² Pulse width variation is measured at 1.25 V by triggering on one edge of MLBCLK and measuring the spread on the other edge, measured in ns peak-to-peak (ns p-p).
- The board must be designed to insure that the high-impedance bus does not leave the logic state of the final driven bit for this time period. Therefore, coupling must be minimized while meeting the maximum capacitive load listed.



Figure 25. Media Local Bus (MLB) Timing

4.14.8 Fast Ethernet Interface

MII signals use CMOS signal levels compatible with devices operating at either 5.0 V or 3.3 V. Signals are not TTL compatible. They follow the CMOS electrical characteristics.

4.14.8.1 MII Receive Signal Timing (RXD[3:0], RX_DV, RX_ER, and RX_CLK)

The receiver functions correctly up to a RX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the system clock frequency must exceed four times the RX_CLK frequency.

Spec	Characteristic	Min	Max	Unit
M1	RXD[3:0], RX_DV, RX_ER to RX_CLK setup	5	_	ns
M2	RX_CLK to RXD[3:0], RX_DV, RX_ER hold	5	_	ns
МЗ	RX_CLK pulse width high	35%	65%	RX_CLK period
M4	RX CLK pulse width low	35%	65%	RX CLK period

Table 33. MII Receive Signal Timing

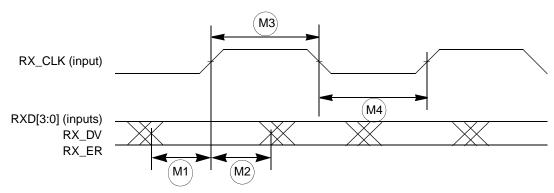


Figure 26. MII Receive Signal Timing Diagram

4.14.8.2 MII Transmit Signal Timing (TXD[3:0], TX_EN, TX_ER, TX_CLK)

The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the system clock frequency must exceed four times the TX_CLK frequency.

The transmit outputs (TXD[3:0], TX_EN, TX_ER) can be programmed to transition from either the rising or falling edge of TX_CLK, and the timing is the same in either case. This options allows the use of non-compliant MII PHYs.

Refer to the Ethernet chapter for details of this option and how to enable it.

Table 34. MII Transmit Signal Timing¹

Spec	Characteristic	Min	Max	Unit
M5	TX_CLK to TXD[3:0], TX_EN, TX_ER invalid	5	_	ns
M6	TX_CLK to TXD[3:0], TX_EN, TX_ER valid	_	25	ns
M7	TX_CLK pulse width high	35%	65%	TX_CLK period
M8	TX_CLK pulse width low	35%	65%	TX_CLK period

Output pads configured with SRC = 0b11.

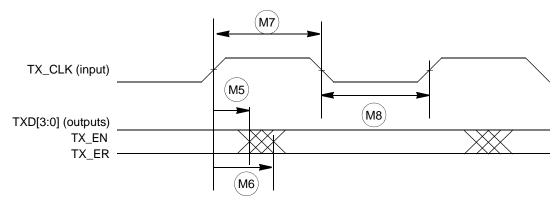


Figure 27. MII Transmit Signal Timing Diagram

MPC5668x Microcontroller Data Sheet, Rev. 6

4.14.8.3 MII Async Inputs Signal Timing (CRS and COL)

Table 35. MII Async Inputs Signal Timing¹

Spec	Characteristic	Min	Max	Unit
M9	CRS, COL minimum pulse width	1.5	_	TX_CLK period

Output pads configured with SRC = 0b11.

Figure 28. MII Async Inputs Timing Diagram

4.14.8.4 MII Serial Management Channel Timing (MDIO and MDC)

The FEC functions correctly with a maximum MDC frequency of 2.5 MHz.

Table 36. MII Serial Management Channel Timing¹

Spec	Characteristic	Min	Max	Unit
M10	MDC falling edge to MDIO output invalid (minimum propagation delay)	0	_	ns
M11	MDC falling edge to MDIO output valid (max prop delay)	_	25	ns
M12	MDIO (input) to MDC rising edge setup	10	_	ns
M13	MDIO (input) to MDC rising edge hold	0	_	ns
M14	MDC pulse width high	40%	60%	MDC period
M15	MDC pulse width low	40%	60%	MDC period

¹ Output pads configured with SRC = 0b11.

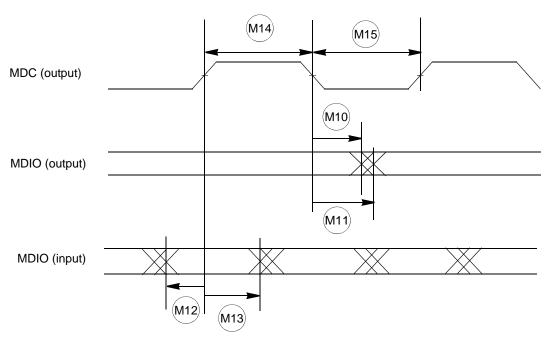


Figure 29. MII Serial Management Channel Timing Diagram

Package Characteristics 5

5.1 **Package Mechanical Data**

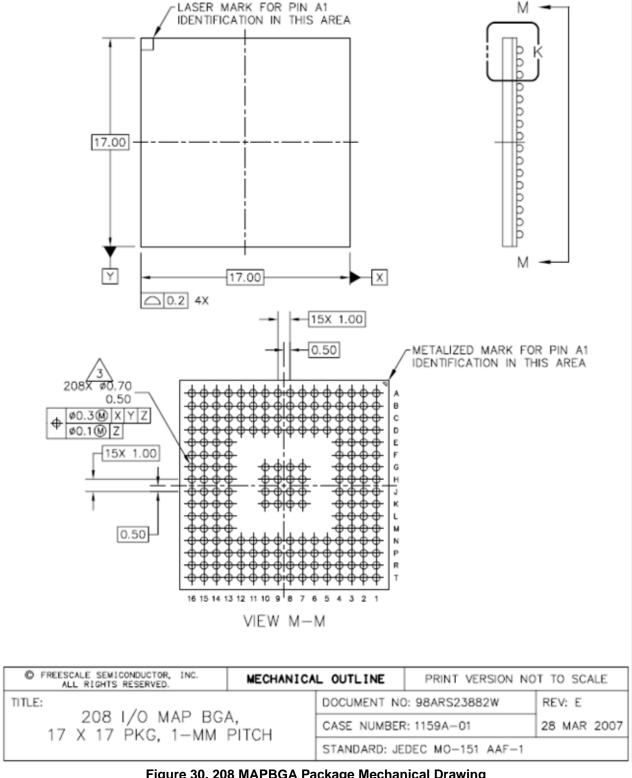
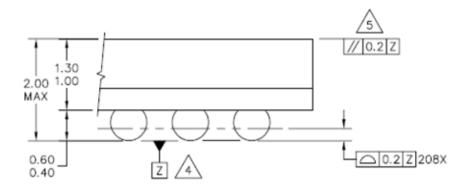



Figure 30. 208 MAPBGA Package Mechanical Drawing

MPC5668x Microcontroller Data Sheet, Rev. 6

Package Characteristics

DETAIL K (ROTATED 90' CLOCKWISE)

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

DIMENSION 6 IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL TO DATUM PLANE Z.

DATUM Z (SEATING PLANE) IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

 PACKAGE CODE SUMMARY: MAP BGA: 5253 MAP BGA PGE DIE: 5371

FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE: 208 I/O MAP BGA, 17 X 17 PKG, 1-MM PITCH		DOCUMENT NO: 98ARS23882W		REV: E
		CASE NUMBER: 1159A-01		28 MAR 2007
		STANDARD: JE	DEC MO-151 AAF-1	

Figure 31. 208 MAPBGA Package Detail

MPC5668x Microcontroller Data Sheet, Rev. 6

Freescale Semiconductor

62

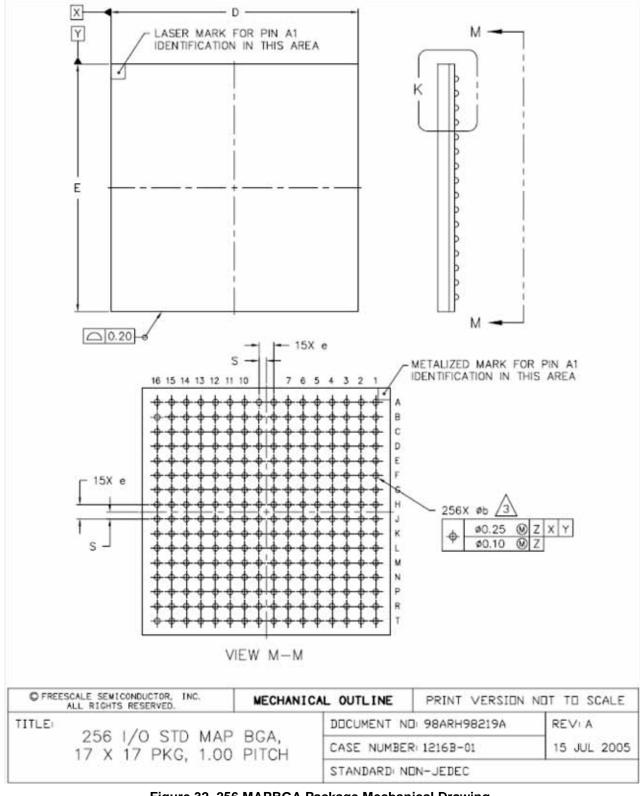
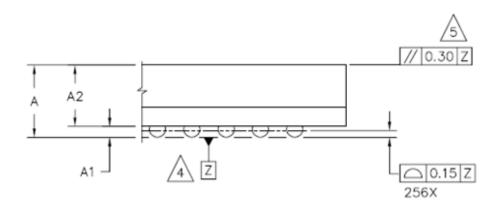



Figure 32. 256 MAPBGA Package Mechanical Drawing

MPC5668x Microcontroller Data Sheet, Rev. 6

Package Characteristics

DETAIL K
ROTATED 90° CLOCKWISE

DIM	MIN	MAX		NO	OTES	
A	1.25	1.60	1. DIMENSIONS	ARE IN MILLIM	ETERS.	
A1	0.27	0.47	2. INTERPRET ASME Y14.		D TOLERANCES PER	
A2	1.16	REF	A DIMENSION	L IC MEASURES	AT THE MAYIMIN	
b	0.40	0.60	SOLDER BA		AT THE MAXIMUM ARALLEL TO DATUM	
D	17.00	BSC	PLANE Z.			
Ε	17.00	BSC	DATUM Z (SEATING PLANE) IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS. S PARALLELISM MEASUREMENT SHALL EXCLUDE ANY			
е	1.00	BSC				IY
S	0.50	BSC		MARK ON TOP SURFACE OF PACKAGE.		
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHA		MECHANICA	AL OUTLINE PRINT VERSION NOT TO SCALE			
TITLE: OF C. I. (O. CTD. M.)			ND BOA	DUCUMENT NO: 98ARH98219A REV: A		REV: A
	256 I/O STD MAP BGA, 17 X 17 PKG, 1.00 PITCH		CASE NUMBER: 1216B-01		15 JUL 2005	
		STANDARD: NON-JEDEC				

Figure 33. 256 MAPBGA Package Detail

MPC5668x Microcontroller Data Sheet, Rev. 6

6 Revision History

Table 37 describes the changes made to this document between revisions.

Table 37. Revision History

Revision	Date	Description
0	April 2008	Preliminary release.
1	June 2008	Initial release: Advance Information.
2	Jan 2009	Release: Advance Information.
3	September 2009	Release: Advance Information, interim updates.
4	January 2011	Release: Technical Data, interim updates.
5	January 2011	Release: Technical Data, interim updates.
6	March 2011	Release: Technical Data, interim updates.

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2010, 2011. All rights reserved.

Document Number: MPC5668X

Rev. 6 2010, 2011

