

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections to the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability and cause permanent damage to the device.

Supply Voltage V _{CC}	-0.3V to +6.0V
Receiver Input Voltage (from Ground)	±18V
Driver Output Voltage (from Ground)	±18V
Short Circuit Duration, TX out to Ground	Continuous
Voltage at TTL Input Pins	-0.3V to (V _{CC} + 0.5V)
Storage Temperature Range	-65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Power Dissipation 40-pin QFN (derate 17mW/°C above +70°C)	500mW

CAUTION:

ESD (ElectroStatic Discharge) sensitive device. Permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. Personnel should be properly grounded prior to handling this device. The protective foam should be discharged to the destination socket before devices are removed.

ESD PROTECTION

		MIN.	TYP.	Max.	Units	
R1-R9	R1-R9 Tx Output & Rx Input Pins		±15		kV	Human Body Model (HBM)
1(1-1(3)			±8		kV	IEC 61000-4-2 (Contact)
	All Other Pins		±2		kV	Human Body Model (HBM)

RS-232/RS-485/RS-422 TRANSCEIVER WITH INTERNAL TERMINATION

PIN DESCRIPTIONS BY MODE (MODE2, MODE1, MODE0)

Pin	Name	000, Figure 1	001 , Figure 2	010, Figure 3	011, Figure 4	100 , Figure 5	101, Figure 6	110, Figure 7	111, Figure 8	
1	L1	R1 0	utput	1	1	1	1	1	1	
2	L2	R2 0	utput	R1 Output	R1 Output	R1 Output	R1 Output	R1 Output	R1 Output	
3	L3	T1 l	nput	T1 Input	T1 Input	T1 Input	T1 Input	T1 Input	T1 Input	
4	L4	T2 I	nput							
5	L6	R3 O	utput	1	1	1	1	1	R2 Output	
6	L7	T3 I	nput			T2 Input			T2 Input	
7	L8	R4 0	utput	1	1	R2 Output	1	1	R3 Output	
8	L9	R5 Output		1	1	1	1	1	R4 Output	
9	VCC		V _{CC}							
10	GND		Ground							
11	SLEW			SI	LEW = V _{CC} e	nables 250kb	ps slew limitir	ng		
12	DIR1			T1 Enable, R1 Disable	T1 Enable	T1 Enable	T1 Enable	T1 Enable, R1 Disable	T1 Enable, R1 Disable	
13	DIR2					T2 Enable			T2 Enable, R2 Disable	
14	MODE0	0	1	0	1	0	1	0	1	
15	MODE1	0	0	1	1	0	0	1	1	
16	MODE2	0	0	0	0	1	1	1	1	
17	TERM				Enable	s RS-485/422	receiver tern	nination		
18	INVDIR			Inverts	DIR1 and DII	R2, where ap	plicable			
19	ENABLE		EN	NABLE = V _{CC}	for operation	, ENABLE = (OV for shutdo	wn		
20	VCC				V	CC				

PIN DESCRIPTIONS BY MODE (MODE2, MODE1, MODE0)

Pin	Name	000,	001,	010,	011,	100,	101,	110,	111,	
		Figure 1	Figure 2	Figure 3	Figure 4	Figure 5	Figure 6	Figure 7	Figure 8	
21	R9		R5 Input			R2 Input B	R1 Input B		R4 Input B	
22	R8		R4 Input			R2 Input A			R4 Input A	
23	GND				Gro	und				
24	R7		T3 Output			T2 Out A	R1 Input A		R3 Input A T2 Out A	
25	R6		R3 Input			T2 Out B			R3 Input B T2 Out B	
26	GND				Gro	und			l	
27	R4		T2 Output		R1 Input B	R1 Input B	T1 Out A	R1 Input A T1 Out A	R2 Input B	
28	R3		T1 Output		R2 Input A	R1 Input A			R2 Input A	
29	GND				Gro	und	1			
30	R2		R2 Input	R1 Input A T1 Out A	T1 Out A	T1 Out A			R1 Input A T1 Out A	
31	R1		R1 Input	R1 Input B T1 Out B	T1 Out B	T1 Out B	T1 Out B	R1 Input B T1 Out B	R1 Input B T1 Out B	
32	VCC				V	CC				
33	VSS		V	′ _{SS} - Charge բ	oump negativ	e supply, 0.1ı	ıF from groun	d		
34	C2-			C ₂₊ - (Charge pump	cap 2 negativ	/e lead			
35	C1-		C ₁₋ - Charge pump cap 1 negative lead							
36	GND	- 			Gro	und				
37	C1+		C ₁₊ - Charge pump cap 1 positive lead, 0.1uF							
38	VCC	1			V	CC				
39	C2+			C ₂₊ - Cha	ırge pump ca	o 2 positive le	ead, 0.1uF			
40	VDD			V _{DD} - Charge	e pump positi	ve supply, 0.1	uF to ground			

ELECTRICAL CHARACTERISTICS

UNLESS OTHERWISE NOTED:

 V_{CC} = +3.3V ±5% or +5.0V ±5%, C1-C4 = 0.1 μ F; T_A = T_{MIN} to T_{MAX} . Typical values are at V_{CC} = 3.3V, T_A = +25°C.

SYMBOL	PARAMETERS	MIN.	TYP.	Max.	Units	Conditions
DC CHARAC	CTERISTICS					
I _{CC}	Supply Current (RS-232)		2	10	mA	No load, idle inputs
I _{CC}	Supply Current (RS-485)		4	10	mA	No load, idle inputs
I _{CC}	Vcc Shutdown Current		1	10	μА	ENABLE = 0V
TRANSMITT	ER and LOGIC INPUT PINS: Pins 3, 4,	6, 11-19)			
V _{IH}	Logic Input Voltage High	2.0			V	V _{CC} = 3.3V
V _{IH}	Logic Input Voltage High	2.4			V	V _{CC} = 5.0V
V_{IL}	Logic Input Voltage Low			0.8	V	
I _{IL}	Logic Input Leakage Current Low			1	μА	Input Low (V _{IN} = 0V)
l _{IH}	Logic Input Leakage Current High			1	μА	Input High (V _{IN} = V _{CC}), pins 3, 4 and 6
I _{PD}	Logic Input Pull-down Current			50	μА	Input High ($V_{IN} = V_{CC}$), pins 11-19
V_{HYS}	Logic Input Hysteresis		200		mV	
RECEIVER (OUTPUTS: Pins 1, 2, 5, 7, 8					
V_{OH}	Receiver Output Voltage High	V _{CC} -0.6			V	I _{OUT} = -1.5mA
V _{OL}	Receiver Output Voltage Low			0.4	V	I _{OUT} = 2.5mA
I _{OSS}	Receiver Output ShortCircuit Current		±20	±60	mA	$0 \leq V_O \leq V_{CC}$
I _{OZ}	Receiver Output Leakage Current		±0.1	±1	μА	$0 \le V_O \le V_{CC}$, Receivers disabled

ELECTRICAL CHARACTERISTICS (Continued)

UNLESS OTHERWISE NOTED:

 V_{CC} = +3.3V ±5% or +5.0V ±5%, C1-C4 = 0.1 μ F; T_A = T_{MIN} to T_{MAX} . Typical values are at V_{CC} = 3.3V, T_A = +25°C.

SYMBOL	PARAMETERS	MIN.	TYP.	Max.	Units	Conditions
SINGLE-END	DED RECEIVER INPUTS (RS-232)					
V _{IN}	Input Voltage Range	-15		+15	V	
V _{IL}	Input Threshold Low	0.6	1.2		V	V _{CC} = 3.3V
V IL	input miesnoid Low	0.8	1.5		V	V _{CC} = 5.0V
V _{IH}	Input Threshold High		1.5	2.0	V	V _{CC} = 3.3V
▼IH	input miesnoid nigir		1.8	2.4	V	V _{CC} = 5.0V
V _{HYS}	Input Hysteresis		0.3		V	
R _{IN}	Input Resistance	3	5	7	kΩ	$-15V \le V_{IN} \le +15V$
SINGLE-END	DED DRIVER OUTPUTS (RS-232)					
Vo	Output Voltage Swing	±5.0	±5.5		V	Output loaded with $3k\Omega$ to Gnd
- 0	Carpar voltage Ownig			±7.0	V	No load output
I _{SC}	Short Circuit Current			±60	mA	V _O = 0V
R _{OFF}	Power Off Impedance	300	10M		Ω	V_{CC} = 0V, V_{O} = ±2V

ELECTRICAL CHARACTERISTICS (Continued)

UNLESS OTHERWISE NOTED: V_{CC} = +3.3V ±5% or +5.0V ±5%, C1-C4 = 0.1 μ F; T_A = T_{MIN} to T_{MAX} . Typical values are at V_{CC} = 3.3V, T_A = +25°C.

SYMBOL	PARAMETERS MIN. TYP. MAX. UNITS				Conditions			
DIFFERENT	IAL RECEIVER INPUTS (RS-485 / RS-4	122)						
R _{IN}	Receiver Input Resistance	96			kΩ	TERM = 0V, -7V \leq V _{IN} \leq +12V		
V _{TH}	Receiver Differential Threshold Voltage	-200	-125	-50	mV			
ΔV_{TH}	Receiver Input Hysteresis		25		mV	V _{CM} = 0V		
I _{IN}	Receiver Input Current			125	μА	V _{IN} = +12V		
'IN	Receiver input current			-100	μА	V _{IN} = -7V		
R _{TERM}	Termination Resistance	100	120	155	Ω	TERM = V_{CC} , Figure 9 -7 $V \le V_{CM} \le +12V$		
R _{TERM}	Termination Resistance	100	120	140	Ω	TERM = V_{CC} , Figure 9 $V_{CM} = 0V$		
DIFFERENT	IAL DRIVER OUTPUTS (RS-485 / RS-4	22)						
		2		V _{CC}	V	$R_L = 100\Omega$ (RS-422), Figure 10		
V _{OD}	Differential Driver Output	1.5		V _{CC}	V	$R_L = 54\Omega$ (RS-485), Figure 10		
▼OD	Dillerential Driver Output	1.5		V _{CC}	V	V _{CM} = -7V, Figure 11		
		1.5		V _{CC}	V	V _{CM} = +12V, Figure 11		
ΔV_{OD}	Change In Magnitude of Differential Output Voltage	-0.2		+0.2	٧	R_L = 54Ω or 100Ω, Figure 10		
V _{CM}	Driver CommonMode Output Voltage			3	V	R_L = 54Ω or 100Ω, Figure 10		
ΔV_{CM}	Change In Magnitude of Common Mode Output Voltage			0.2	٧	R_L = 54Ω or 100Ω, Figure 10		
I _{OSD}	Driver Output Short Circuit Current			±250	mA	$-7V \le V_0 \le +12V$, Figure 12		
I _O	Driver Output Leakage Current			±100	μА	ENABLE = 0V, or DIR1 = 0V and DIR2 = 0V in full duplex modes, $-7V \le V_O \le +12V$		

TIMING CHARACTERISTICS

UNLESS OTHERWISE NOTED:

 V_{CC} = +3.3V ±5% or +5.0V ±5%, C1-C4 = 0.1 μ F; T_A = T_{MIN} to T_{MAX} . Typical values are at V_{CC} = 3.3V, T_A = +25 $^{\circ}$ C.

SYMBOL	PARAMETERS	MIN.	TYP.	Max.	Units	Conditions
ALL MODES						
t _{ENABLE}	Enable from Shutdown		1000		ns	
t _{SHUTDOWN}	Enable to Shutdown		1000		ns	
RS-232, DAT	A RATE = 250kbps (SLEW = Vcc), ON	IE TRAN	SMITTE	R SWITC	HING	
	Maximum Data Rate	250			kbps	$R_L = 3k\Omega, C_L = 1000pF$
t _{RHL} , t _{RLH}	Receiver Propagation Delay		100		ns	C ₁ = 150pF, Figure 13
t _{RHL} -t _{RLH}	Receiver Propagation Delay Skew			100	ns	. о _L – 100рг, г igure 10
t _{DHL} , t _{DLH}	Driver Propagation Delay		1400		ns	$R_L = 3k\Omega, C_L = 2500pF,$
t _{DHL} -t _{DLH}	Driver Propagation Delay Skew			600	ns	Figure 14
		1				l
t _{SHL} , t _{SLH}	Transition Region Slew Rate from +3.0V to -3.0V or -3.0V to +3.0V	4		30	V/μs	V_{CC} = 3.3V, R_L = 3k Ω to 7k Ω , C_L = 150pF to 2500pF, Figure 14
t _{SHL} , t _{SLH}	t _{SHL} , t _{SLH} Transition Region Slew Rate from +3.0V to -3.0V or -3.0V to +3.0V			30	V/μs	V_{CC} = 3.3V, R_L = 3k Ω to 7k Ω , C_L = 150pF to 2500pF, T_A = 25°C, Figure 14
RS-232, DAT	A RATE = 1Mbps (SLEW = 0V), ONE	 	ITTER S	WITCHI	NG	
	Maximum Data Rate	1			Mbps	$R_L = 3k\Omega$, $C_L = 250pF$
t _{RHL} , t _{RLH}	Receiver Propagation Delay		100		ns	0 450 F Figure 40
t _{RHL} -t _{RLH}	Receiver Propagation Delay Skew			100	ns	C _L = 150pF, Figure 13
t _{DHL} , t _{DLH}	Driver Propagation Delay		300		ns	$R_L = 3k\Omega, C_L = 1000pF,$
t _{DHL} -t _{DLH}	Driver Propagation Delay Skew			150	ns	Figure 14
		ı		ı		
t _{SHL,} t _{SLH}	Transition Region Slew Rate from +3.0V to -3.0V or -3.0V to +3.0V	15		150	V/μs	V_{CC} = 3.3V, R_L = 3k Ω to 7k Ω , C_L = 150pF to 1000pF, Figure 14
t _{SHL,} t _{SLH}	t _{SHL} , t _{SLH} Transition Region Slew Rate from +3.0V to -3.0V or -3.0V to +3.0V			150	V/μs	V_{CC} = 3.3V, R_L = 3k Ω to 7k Ω , C_L = 150pF to 1000pF, T_A = 25°C, Figure 14

TIMING CHARACTERISTICS (Continued)

UNLESS OTHERWISE NOTED: V_{CC} = +3.3V ±5% or +5.0V ±5%, C1-C4 = 0.1 μ F; T_A = T_{MIN} to T_{MAX} . Typical values are at V_{CC} = 3.3V, T_A = +25°C.

SYMBOL	OL PARAMETERS		TYP.	Max.	Units	CONDITIONS
RS-485/RS-42	2, DATA RATE = 250kbps (SLEW = V	/cc), ONE	TRANS	MITTER	SWITC	HING
	Maximum Data Rate	250			kbps	$R_L = 54\Omega$, $C_L = 50pF$
t _{RPHL} , t _{RPLH}	Receiver Propagation Delay		50	150	ns	C ₁ = 15pF, Figure 15
t _{RPHL} -t _{RPLH}	Receiver Propagation Delay Skew			20	ns	
t _{DPHL} , t _{DPLH}	Driver Propagation Delay		500	1000	ns	D 540 0 50 5
t _{DPHL} -t _{DPLH}	Driver Propagation Delay Skew			100	ns	$R_L = 54\Omega$, $C_L = 50pF$, Figure 16
t _{DR} , t _{DF}	Driver Rise and Fall Time	300	650	1200	ns	Tigure 10
	1	1	•	•	•	
t_{RZH} , t_{RZL}	Receiver Output Enable Time			200	ns	C _I = 15pF, Figure 17
t _{RHZ} , t _{RLZ}	Receiver Output Disable Time			200	ns	or Topi, Figure 17
t _{DZH} , t _{DZL}	Driver Output Enable Time			1000	ns	$R_L = 500\Omega, C_L = 50pF,$
t _{DHZ} , t _{DLZ}	Driver Output Disable Time			200	ns	Figure 18
RS-485/RS-42	2, DATA RATE = 20Mbps (SLEW = 0'	V), ONE 1	ransm	IITTER S	WITCHI	NG
	Maximum Data Rate	20			Mbps	$R_L = 54\Omega$, $C_L = 50pF$
t _{RPHL} , t _{RPLH}	Receiver Propagation Delay		50	150	ns	C _L = 15pF, Figure 15
t _{RPHL} -t _{RPLH}	Receiver Propagation Delay Skew			10	ns	CL = 15pr, Figure 15
t _{DPHL} , t _{DPLH}	Driver Propagation Delay		30	100	ns	
t _{DPHL} -t _{DPLH}	Driver Propagation Delay Skew			10	ns	$R_L = 54\Omega$, $C_L = 50pF$, Figure 16
t _{DR,} t _{DF}	Driver Rise and Fall Time		10	20	ns	Tigure 10
		1	1	1	1	1
t _{RZH} , t _{RZL}	Receiver Output Enable Time			200	ns	C ₁ = 15pF, Figure 17
t _{RHZ} , t _{RLZ}	Receiver Output Disable Time			200	ns	- Ιορι, riguie II
t _{DZH} , t _{DZL}	Driver Output Enable Time			200	ns	$R_L = 500\Omega, C_L = 50pF,$
t _{DHZ} , t _{DLZ} Driver Output Disable Time				200	ns	Figure 18

BLOCK DIAGRAM BY MODE (MODE2, MODE1, MODE0)

FIGURE 1. MODE 000 - LOOPBACK

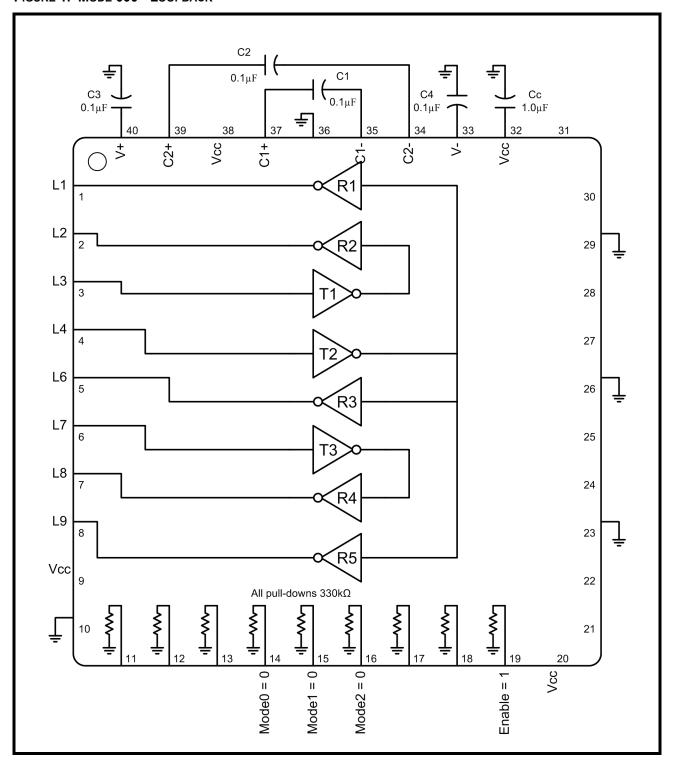


FIGURE 2. MODE 001 - RS-232

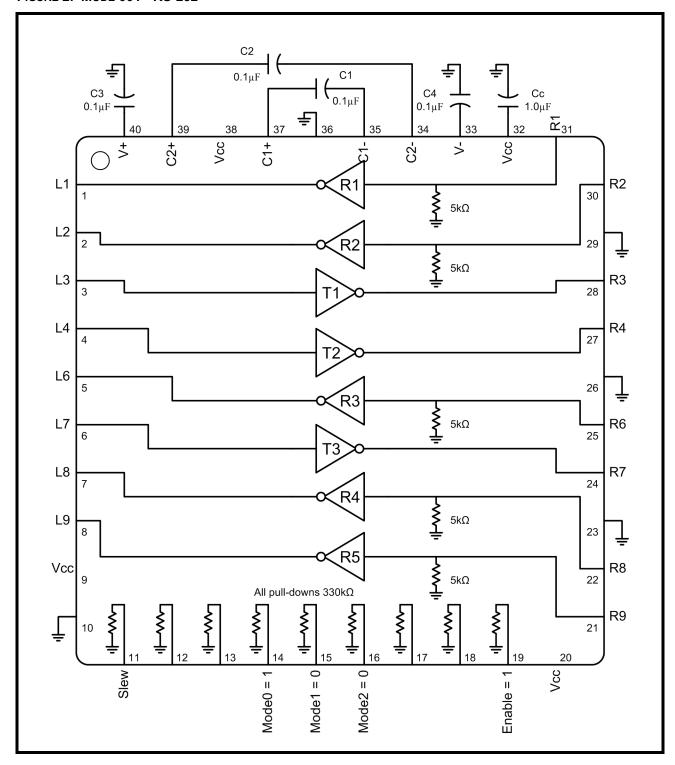


FIGURE 3. MODE 010 - RS-485 HALF DUPLEX #1

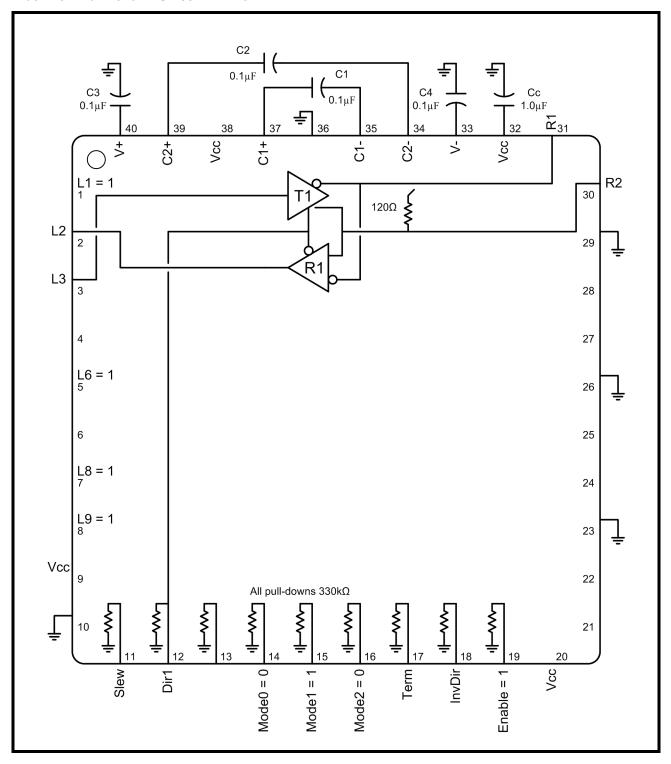


FIGURE 4. MODE 011 - RS-485/422 FULL DUPLEX #1

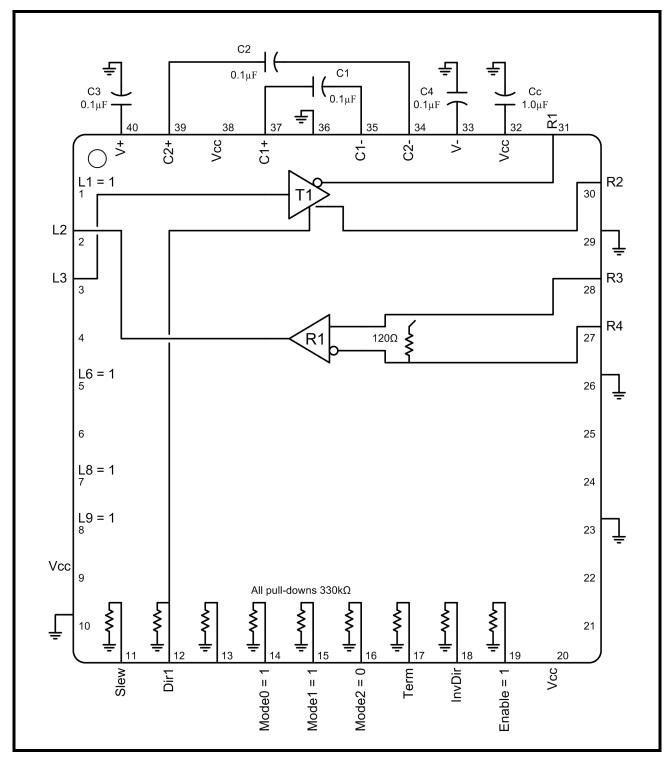


FIGURE 5. MODE 100 - RS-485/422 FULL DUPLEX #2

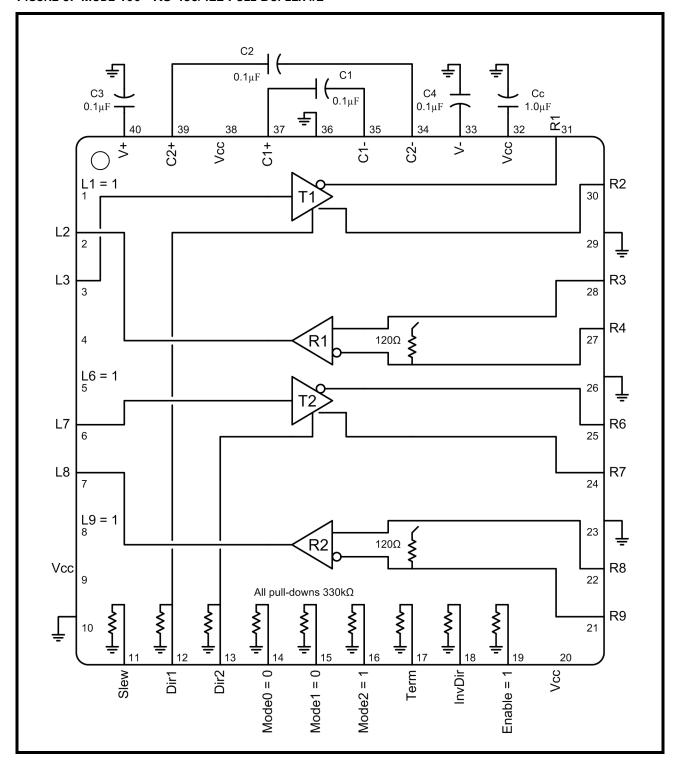


FIGURE 6. MODE 101 - RS-485/422 FULL DUPLEX #3

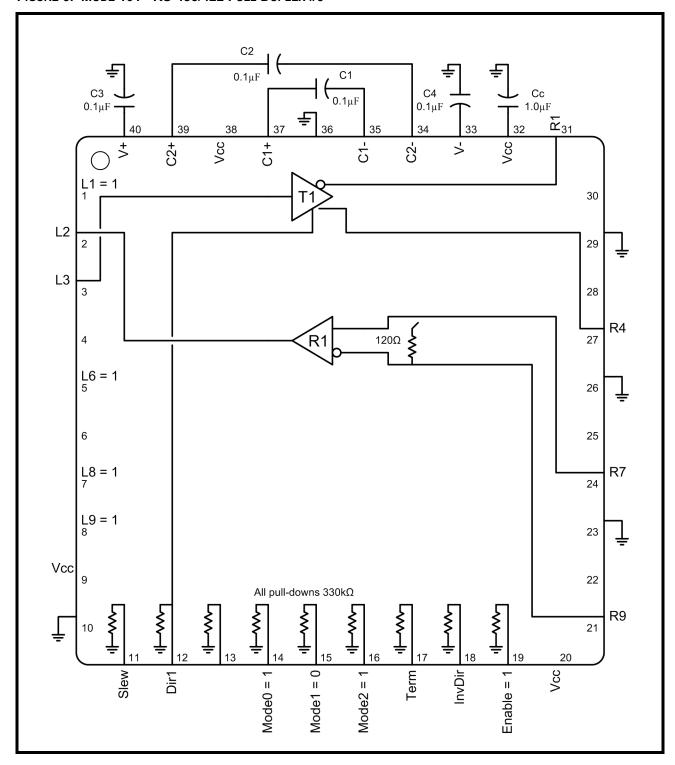


FIGURE 7. MODE 110 - RS-485 HALF DUPLEX #2

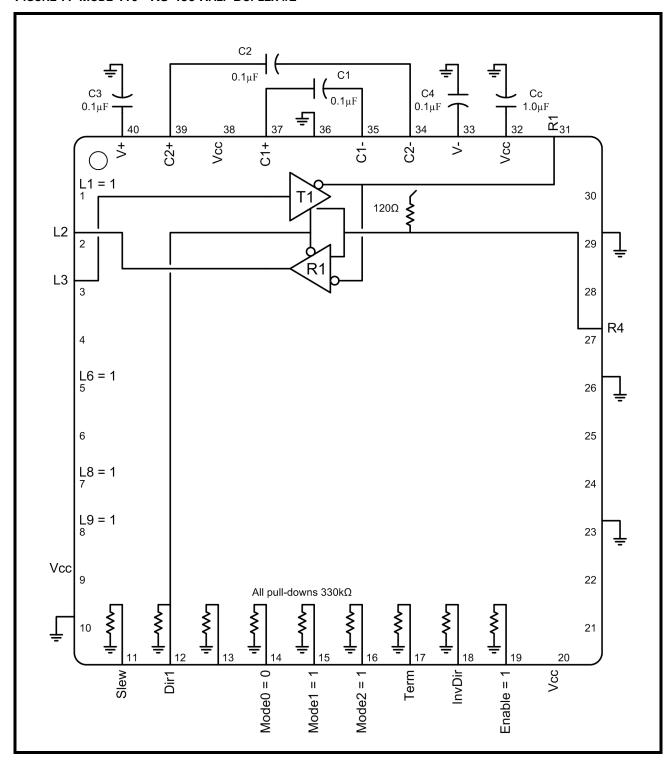
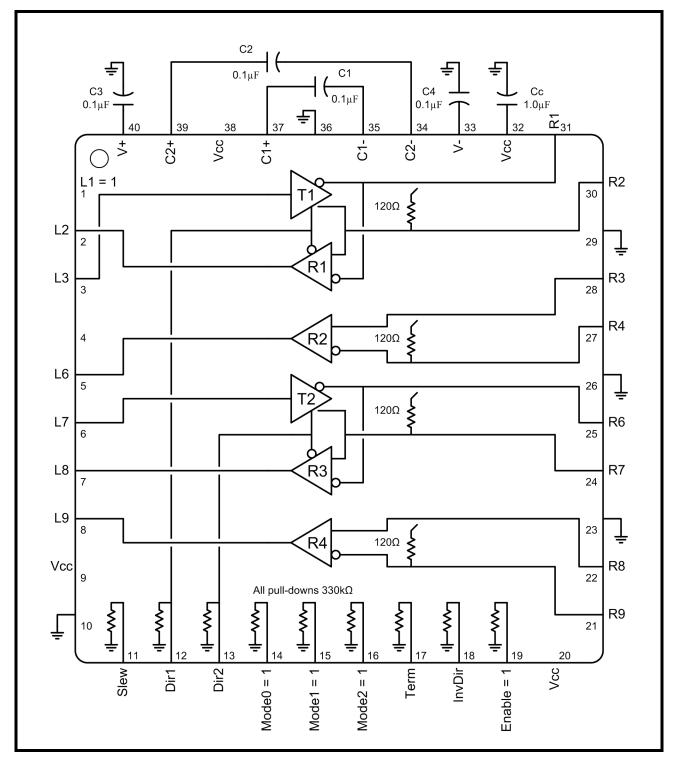



FIGURE 8. MODE 111 - RS-485/422 MIXED DUPLEX

TEST FIXTURES

FIGURE 9. RS-485/422 RECEIVER TERMINATION RESISTANCE

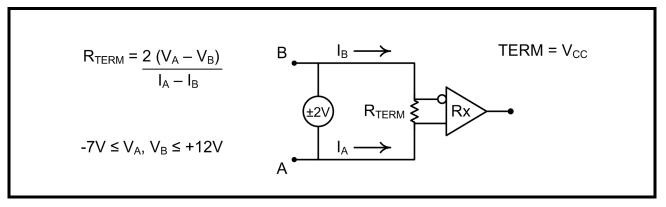


FIGURE 10. RS-485/422 DIFFERENTIAL DRIVER OUTPUT VOLTAGE

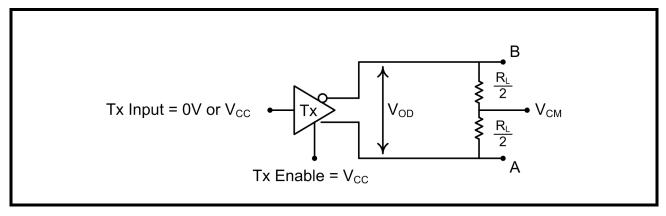
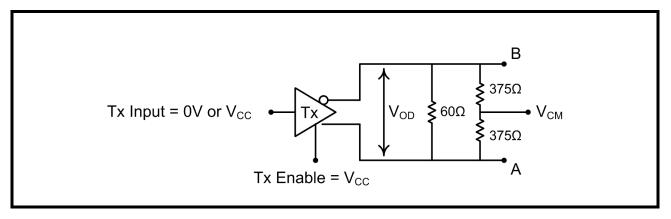



FIGURE 11. RS-485/422 DIFFERENTIAL DRIVER OUTPUT VOLTAGE OVER COMMON MODE

FIGURE 12. RS-485/422 DRIVER OUTPUT SHORT CIRCUIT CURRENT

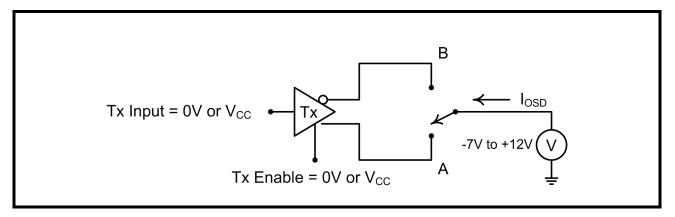


FIGURE 13. RS-232 RECEIVER PROPAGATION DELAY

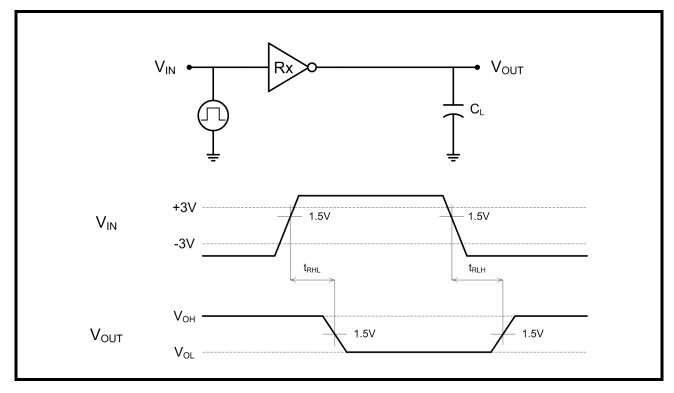


FIGURE 14. RS-232 DRIVER PROPAGATION DELAY

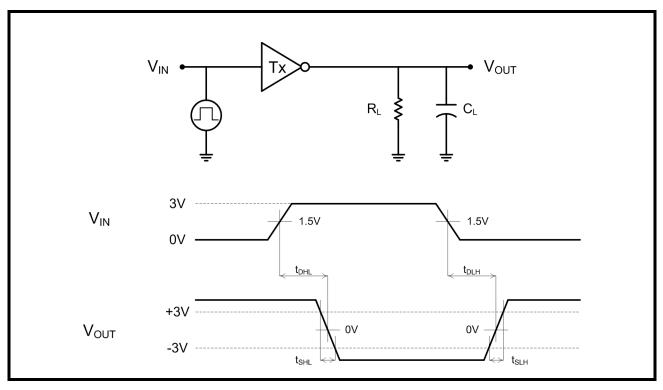


FIGURE 15. RS-485/422 RECEIVER PROPAGATION DELAY

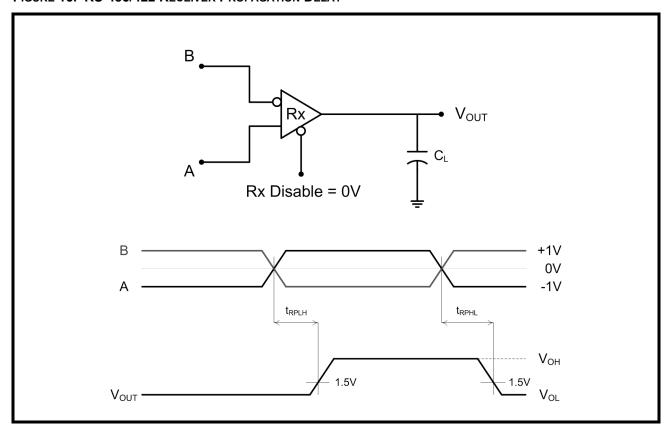


FIGURE 16. RS-485/422 DRIVER PROPAGATION DELAY AND RISE/FALL TIMES

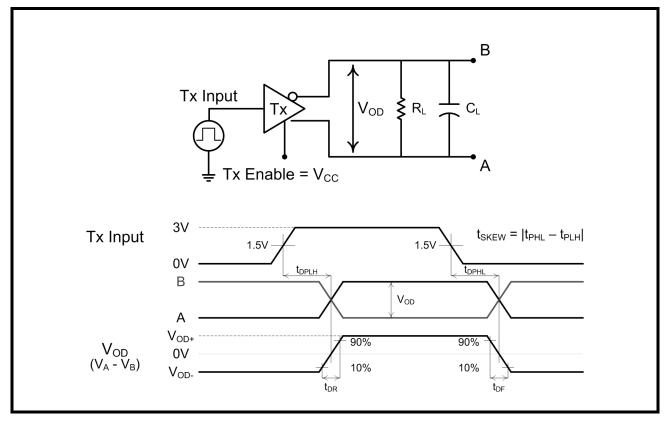
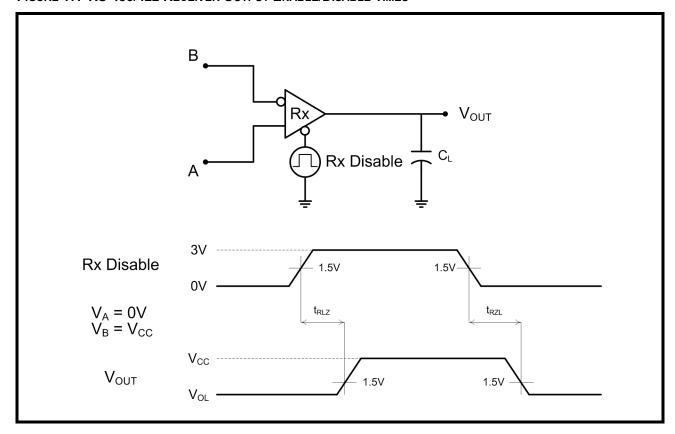
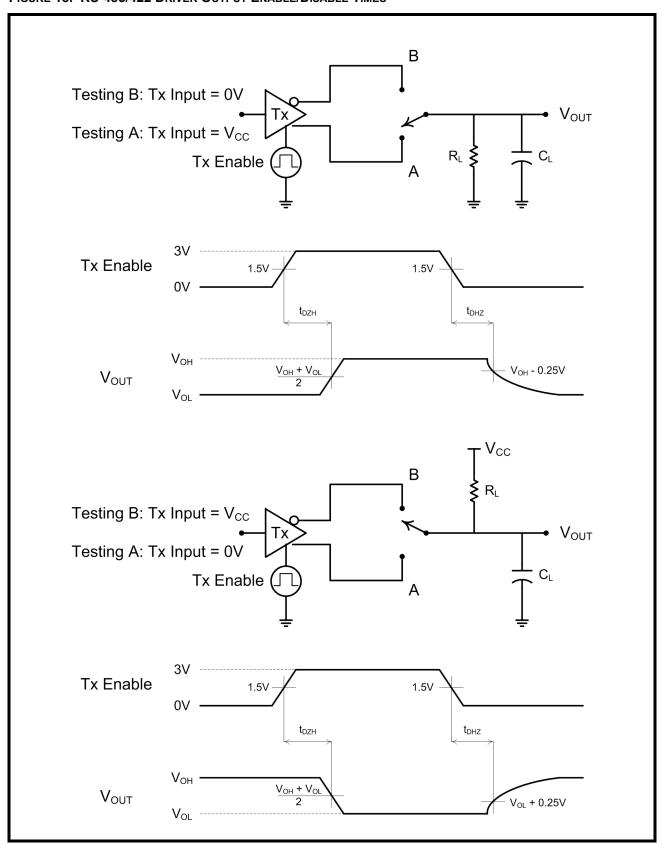




FIGURE 17. RS-485/422 RECEIVER OUTPUT ENABLE/DISABLE TIMES

FIGURE 18. RS-485/422 DRIVER OUTPUT ENABLE/DISABLE TIMES

PRODUCT SUMMARY

The SP338 is an advanced multiprotocol transceiver supporting RS-232, RS-485, and RS-422 serial standards in a 40 pin QFN package. Integrated cable termination and four configuration modes allow all three protocols to be used interchangeably over a single cable or connector with no additional switching components. The RS-485/422 modes feature up to two drivers and four receivers (2TX/4RX) in half, full, and mixed duplex configurations. The RS-232 mode (3TX/5RX) provides full support of all eight signals commonly used with the DB9 RS-232 connector. A dedicated mode is also available for diagnostic loopback testing.

INTERNALLY SWITCHED CABLE TERMINATION

Enabling and disabling the RS-485/422 termination resistor is one of the largest challenges system designers face when sharing a single connector or pair of lines between multiple serial protocols. A termination resistor may be necessary for accurate RS-485/422 communication, but must be removed when the lines are used for RS-232. SP338 provides an elegant solution to this problem by integrating the termination resistor and switching control, and allowing it to be switched in and out of the circuit with a single pin. No external switching components are required.

ENHANCED FAILSAFE

Ordinary RS-485 differential receivers will be in an indeterminate state whenever the data bus is not being actively driven. The enhanced failsafe feature of the SP338 guarantees a logic-high receiver output when the receiver inputs are open, shorted, or terminated but idle/undriven. The enhanced failsafe interprets 0V differential as a logic high with a minimum 50mV noise margin, while maintaining compliance with the EIA/TIA-485 standard of ±200mV. No external biasing resistors are required, further easing the usage of multiple protocols over a single connector.

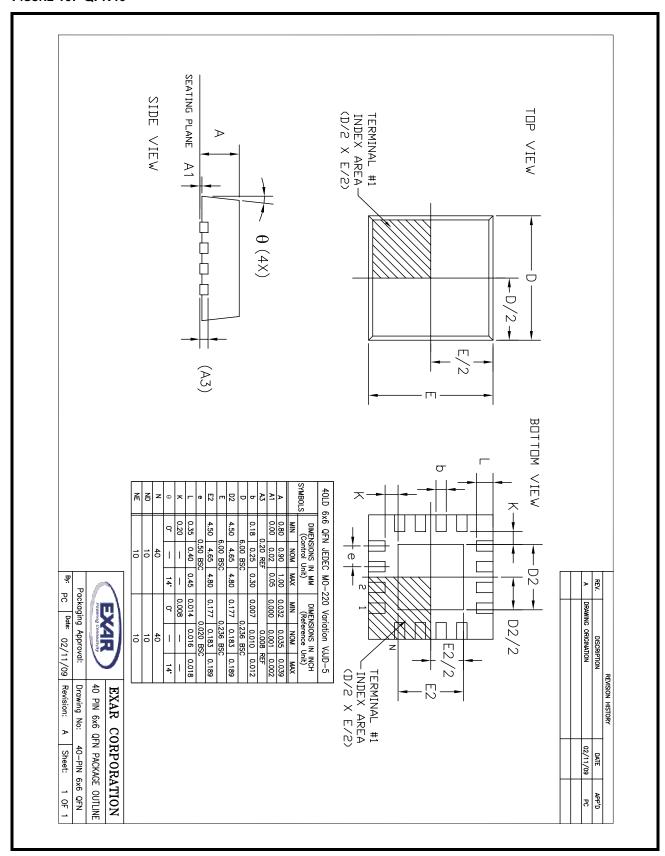
±15kV ESD PROTECTION

ESD protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The bus pins (driver outputs and receiver inputs) have extra protection structures, which have been tested up to ±15kV without damage. These structures withstand high ESD in all states: normal operation, shutdown and powered down.

ESD protection is be tested in various ways. Exar uses the following methods to qualify the protection structures designed into SP338:

- ±15kV using the Human Body Model (HBM)
- ±-8kV using IEC 61000-4-2 Contact Discharge

The IEC 61000-4-2 standard is more rigorous than HBM, resulting in lower voltage levels compared with HBM for the same level of ESD protection. Because IEC 61000-4-2 specifies a lower series resistance, the peak current is higher than HBM. The SP338 has passed both HBM and IEC 61000-4-2 testing without damage.


DIAGNOSTIC LOOPBACK MODE

The SP338 includes a diagnostic digital loop back mode for system testing as shown in Figure 1. The loopback mode connects the TTL driver inputs to the TTL receiver outputs, bypassing the analog driver and receiver circuitry. The analog/bus pins are internally disconnected in this mode.

PACKAGE DRAWINGS

FIGURE 19. QFN40

REVISION HISTORY

DATE	REVISION	DESCRIPTION
November 2011	1.0.0	Production Release

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 2011 EXAR Corporation

Datasheet November 2011.

For technical support please email Exar's Serial Technical Support group at: serialtechsupport@exar.com.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.