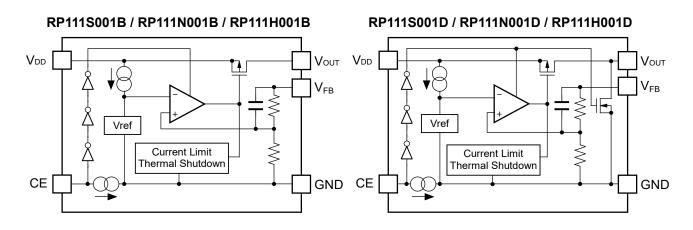

NO.EC-241-200630

BLOCK DIAGRAMS

Internally Fixed Output Voltage (HSOP-6J)

Internally Fixed Output Voltage (SOT-23-5/ SOT-89-5)



Vout

GND

╢╧┓

Externally Adjustable Output Voltage (HSOP-6J/ SOT-23-5/ SOT-89-5)

SELECTION GUIDE

The set output voltage, auto-discharge function^{*1}, and package type for the IC are user-selectable.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free	
RP111Nxx1*-TR-#E	- SOT-23-5	2,000 mag	Maa	Vaa	
RP111N001*-TR-#E		3,000 pcs	Yes	Yes	
RP111Hxx1*-T1-#E		1,000 pcs	Yes	Yes	
RP111H001*-T1-#E	- SOT-89-5				
RP111Sxx1*-E2-#E		1.000 mag	Vee	Xaa	
RP111S001*-E2-#E	- HSOP-6J	1,000 pcs	Yes	Yes	

RP111x001B/D: Adjustable with external resistor

xx: Specify the set output voltage (VSET)

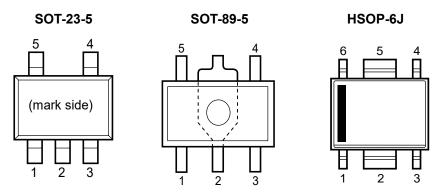
0.7 V (07), 1.1 V (11), 1.2 V (12), 1.5 V (15), 1.8 V (18), 2.5 V (25), 2.8 V (28), 2.9 V (29), 3.0 V (30), 3.3 V (33), 3.4 V (34)

2.85 V: RP111x281*5

Contact Ricoh sales representatives for other voltages.

*: Specify the auto-discharge function at off state

- (B) Active-high, without auto discharge function at off state
- (D) Active-high, with auto discharge function at off state


#: Specify Automotive Class Code

	Operating Temperature Range	Guaranteed Specs Temperature Range	Screening		
А	-40°C to 105°C	25°C	High Temperature		
J	-40°C to 105°C	-40°C to 105°C	High and Low Temperature		

^{*1} Auto-discharge function quickly lowers the output voltage to 0 V by releasing the electrical charge in the external capacitor when the chip enable signal is switched from the active mode to the standby mode.

NO.EC-241-200630

PIN DESCRIPTIONS

SOT-23-5

Pin No.	Symbol	Description
1	V _{DD}	Input Pin
2	GND	Ground Pin
3	CE	Chip Enable Pin (Active-high)
4	V _{FB}	Feed Back Pin
5	Vout	Output Pin

The V_{OUT} pin should be connected to the V_{FB} pin when using RP111x as an internal fixed output voltage type. In case of using this device as an external adjustable type, refer to *Adjustable Output Voltage Type Setting* for detailed information.

SOT-89-5

Pin No.	Symbol	Description
1	V _{FB}	Feed Back Pin
2	GND	Ground Pin
3	CE	Chip Enable Pin (Active-high)
4	Vdd	Input Pin
5	Vout	Output Pin

The V_{OUT} pin should be connected to the V_{FB} pin when using RP111x as an internal fixed output voltage type. In case of using this device as an external adjustable type, refer to *Adjustable Output Voltage Type Setting* for detailed information.

HSOP-6J

Pin No.	Symbol	Description
1	Vout	Output Pin
2	GND	Ground Pin
2	GND	Ground Pin (Internal fixed output voltage type: RP111Sxx1B/D)
3	VFB	Feed Back Pin (Adjustable output voltage type: RP111S001B/D)
4	CE	Chip Enable Pin
5	GND	Ground Pin
6	V _{DD}	Input Pin

In case of using this device as an external adjustable type, refer to Adjustable Output Voltage Type Setting for detailed information.

RP111x NO.EC-241-200630

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit	
Vin	Input Voltage		-0.3 to 6.0	V
VCE	Input Voltage (CE Pin)		-0.3 to 6.0	V
Vout	Output Voltage	Output Voltage		V
Іоит	Output Current		510	mA
	Power Dissipation*1SOT-23-5(JEDEC STD. 51)SOT-89-5		830	
PD			3200	mW
		3400		
Tj	Junction Temperature		-40 to 150	°C
Tstg	Storage Temperature		-55 to 150	°C

^{*1} Refer to PACKAGE INFORMATION for detailed information.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings are not assured.

RECOMMENDED OPERATING CONDITIONS

Symbol	Item	Rating	Unit
VIN	Input Voltage *2	1.4 to 5.25	V
Та	Operating Temperature	-40 to 105	°C

^{*2} In case of exceeding the maximum Input Voltage of 5.25 V, the device must be operated on condition that the Input Voltage is up to 5.5 V and the total operating time is within 500 hrs.

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

NO.EC-241-200630

ELECTRICAL CHARACTERISTICS

 $V_{IN} = V_{SET} + 1.0 V (V_{SET} > 1.5 V), V_{IN} = 2.5 V (V_{SET} \le 1.5 V), I_{OUT} = 1 mA$,

 $C_{IN} = C_{OUT} = 1.0 \ \mu F$, unless otherwise noted.

The specifications surrounded by \square are guaranteed by design engineering at $-40^{\circ}C \le Ta \le 105^{\circ}C$.

RP111xxx1D/B (-AE) (Fixed Output Voltage Type)

(Ta = 25°C)

Symbol	Item	Condition	s	Min.	Тур.	Max.	Unit
		T 0500	V _{SET} ≥ 1.8 V	x 0.992		x 1.008	V
		Ta = 25°C	V _{SET} < 1.8 V	-18		18	mV
Vout	Output voltage	-40°C ≤ Ta ≤ 105°C	V _{SET} ≥ 1.8 V	x 0.985		x 1.015	V
			V _{SET} < 1.8 V	-55		50	mV
Іоит	Output Current			500			mA
ΔV out/ ΔI out	Load regulation	1 mA ≤ I _{OUT} ≤ 500 mA			1	20	mV
		Ιουτ: 1 mA⇔250 mA	C _{OUT} = 1 μF		-75 +45		
VTRLD	Load Transient Response	(tr = tf = 0.5 μs)	C _{OUT} = 2.2 μF		-55 +35		mV
		loυτ: 1 mA⇔250 mA (tr = tf = 5 μs)	C _{OUT} = 1 μF		-20 +15		
VDIF	Dropout Voltage	Re	fer to the Dropo	out Voltag	je		
lss	Supply Current	I _{ОUT} = 0 mA			80	125	μA
Istandby	Standby Current	V _{CE} = 0 V			0.1	7.0	μA
$\Delta V_{OUT}/\Delta V_{IN}$	Line regulation	$ V_{SET} + 0.5 V \le V_{IN} \le 5.2 $ $ V_{IN} \ge 1.4 V $	5 V,		0.02	0.10	%/V
lsc	Short Current Limit	V _{OUT} = 0 V			50		mA
IPD	CE Pull-down Current				0.3	0.6	μA
VCEH	CE Input Voltage "H"			1.0			V
V _{CEL}	CE Input Voltage "L"					0.4	V
T _{TSD}	Thermal Shutdown Detection Temperature	Junction Temperature			165		°C
T _{TSR}	Thermal Shutdown Released Temperature	Junction Temperature			100		°C
R _{LOW}	LOW output Nch Tr. ON Resistance (RP111xxxD only)	V _{IN} = 4.0 V, V _{CE} = 0 V			60		Ω

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj ≈ Ta = 25°C) except for Load Transient Response.

The specifications surrounded by \square are guaranteed by design engineering at $-40^{\circ}C \le Ta \le 105^{\circ}C$.

RP111xxx1D/B (-AE) (Fixed Output Voltage Type) Dropout Voltage				
Output Voltage		Dropout Voltage VDIF (\	/)	
V оит (V)	Condition	Тур.	Max.	
0.7 ≤ V _{SET} < 0.8		0.58	0.88	
0.8 ≤ V _{SET} < 0.9		0.52	0.80	
0.9 ≤ V _{SET} < 1.0		0.45	0.70	
1.0 ≤ V _{SET} < 1.2		0.42	0.64	
1.2 ≤ V _{SET} < 1.4	L = 500 m A	0.35	0.53	
1.4 ≤ V _{SET} < 1.8	Ι _{ουτ} = 500 mA	0.31	0.48	
1.8 ≤ V _{SET} < 2.1		0.27	0.44	
2.1 ≤ V _{SET} < 2.5		0.25	0.38	
2.5 ≤ V _{SET} < 3.0		0.23	0.34	
3.0 ≤ V _{SET} ≤ 3.6		0.22	0.32	

RP111xxx1D/B (-AE) (Fixed Output Voltage Type) Dropout Voltage

NO.EC-241-200630

 V_{IN} = 2.5 V, I_{OUT} = 1 mA, C_{IN} = C_{OUT} = 1.0 μ F, unless otherwise noted. The specifications surrounded by are guaranteed by design engineering at -40°C ≤ Ta ≤ 105°C.

RP111x001D/B (-AE) (Adjustable Output Voltage Type)

(Ta = 25°C)

Symbol	ltem	Condition	IS	Min.	Тур.	Max.	Unit
. <i>.</i>	Feedback pin	Ta = 25°C	V - V	0.682	0.700	0.718	v
V_{FB}	output voltage	−40°C ≤ Ta ≤ 105°C	- V _{OUT} = V _{FB}	0.645		0.750	v
Vout	Adjustable Output Voltage Range			0.7		3.6	V
IOUT	Output Current			500			mA
ΔV out/ ΔI out	Load regulation	$1 \text{ mA} \le I_{OUT} \le 500 \text{ mA}$			1	20	mV
		Ιουτ: 1 mA⇔250 mA	C _{OUT} = 1 μF		-75 +45		
V _{TRLD}	Load Transient Response	(tr = tf = 0.5 μs)	C _{OUT} = 2.2 μF		-55 +35		mV
		l _{OUT} : 1 mA⇔250 mA (tr = tf = 5 μs)	C_{OUT} = 1 μ F		-20 +15		
VDIF	Dropout Voltage	V _{OUT} = V _{FB}	І _{оυт} = 500 mA			0.88	V
lss	Supply Current	I _{OUT} = 0 mA			80	125	μA
Istandby	Standby Current	V _{CE} = 0 V			0.1	7.0	μA
$\Delta V_{OUT} / \Delta V_{IN}$	Line regulation	$V_{OUT} = V_{FB}$, 1.4 V $\leq V_{IN} \leq$	≤ 5.25 V		0.02	0.10	%/V
lsc	Short Current Limit	V _{OUT} = V _{FB} = 0 V			50		mA
IPD	CE Pull-down Current				0.3	0.6	μA
VCEH	CE Input Voltage "H"			1.0			V
VCEL	CE Input Voltage "L"					0.4	V
T _{TSD}	Thermal Shutdown Detection Temperature	Junction Temperature			165		°C
T _{TSR}	Thermal Shutdown Released Temperature	Junction Temperature			100		°C

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj \approx Ta = 25°C) except for Load Transient Response.

 V_{IN} = V_{SET} + 1.0 V (V_{\text{SET}} > 1.5 V), V_{IN} = 2.5 V (V_{\text{SET}} \leq 1.5 V), I_{OUT} = 1 mA, $C_{IN} = C_{OUT} = 1.0 \ \mu F$, unless otherwise noted.

RP111xxx1D/B (-JE) (Fixed Output Voltage Type)(-40°C ≤ Ta ≤ 105°C						105°C)	
Symbol	ltem	Condition	S	Min.	Тур.	Max.	Unit
		T 0500	V _{SET} ≥ 1.8 V	x 0.992		x 1.008	V
	Output voltage	Ta = 25°C	V _{SET} < 1.8 V	-18		18	mV
Vout	Output voltage	-40°C ≤ Ta ≤ 105°C	V _{SET} ≥ 1.8 V	x 0.985		x 1.015	V
		-40 C S Ta S 105 C	V _{SET} < 1.8 V	-55		50	mV
Ι _{Ουτ}	Output Current			500			mA
ΔV out/ ΔI out	Load regulation	$1 \text{ mA} \le I_{OUT} \le 500 \text{ mA}$			1	20	mV
		Ιουτ: 1 mA⇔250 mA	C _{OUT} = 1 μF		-75 +45		
V _{TRLD}	Load Transient Response	(tr = tf = 0.5 μs)	C _{OUT} = 2.2 μF		-55 +35		mV
		lou⊤: 1 mA⇔250 mA (tr = tf = 5 μs)	C _{OUT} = 1 μF		-20 +15		
VDIF	Dropout Voltage	R	efer to the Drop	out Volta	ge		
Iss	Supply Current	I _{OUT} = 0 mA			80	125	μA
Istandby	Standby Current	V _{CE} = 0 V			0.1	7.0	μA
$\Delta V_{OUT}/\Delta V_{IN}$	Line regulation	$ V_{SET} + 0.5 V \leq V_{IN} \leq 5.25 $ $ V_{IN} \geq 1.4 V $	V,		0.02	0.10	%/V
I _{SC}	Short Current Limit	V _{OUT} = 0 V			50		mA
IPD	CE Pull-down Current				0.3	0.6	μA
VCEH	CE Input Voltage "H"			1.0			V
VCEL	CE Input Voltage "L"					0.4	V
T _{TSD}	Thermal Shutdown Detection Temperature	Junction Temperature			165		°C
T _{TSR}	Thermal Shutdown Released Temperature	Junction Temperature			100		°C
RLow	LOW output Nch Tr. ON Resistance (RP111xxxD only)	$V_{IN} = 4.0 V, V_{CE} = 0 V$			60		Ω

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj \approx Ta = 25°C) except for Load Transient Response.

NO.EC-241-200630

RP111xxx1D/B (-JE) (Fixed Output Voltage Type) Dropout Voltage

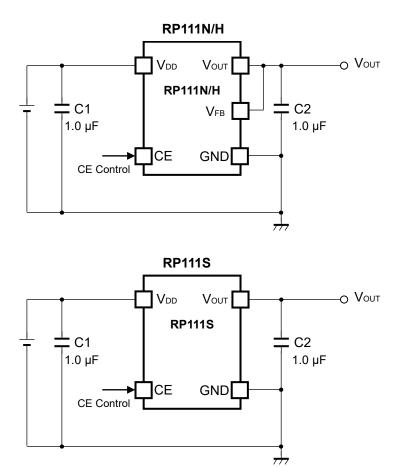
(−40°C ≤ Ta ≤ 105°C)

Output Voltage	Γ	()	
V оит (V)	Condition	Тур.	Max.
0.7 ≤ V _{SET} < 0.8		0.58	0.88
0.8 ≤ V _{SET} < 0.9		0.52	0.80
0.9 ≤ V _{SET} < 1.0		0.45	0.70
1.0 ≤ V _{SET} < 1.2		0.42	0.64
1.2 ≤ V _{SET} < 1.4		0.35	0.53
1.4 ≤ V _{SET} < 1.8	- Ι _{Ουτ} = 500 mA	0.31	0.48
1.8 ≤ V _{SET} < 2.1		0.27	0.44
2.1 ≤ V _{SET} < 2.5		0.25	0.38
2.5 ≤ V _{SET} < 3.0		0.23	0.34
3.0 ≤ V _{SET} ≤ 3.6		0.22	0.32

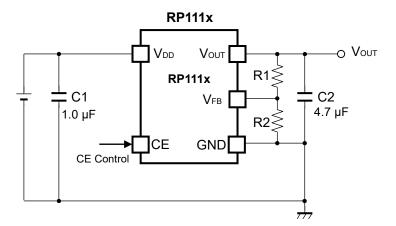
 V_{IN} = 2.5 V, I_{OUT} = 1 mA, C_{IN} = C_{OUT} = 1.0 $\mu\text{F},$ unless otherwise noted.

RP111x001D/B (-JE) (Adjustable Output Voltage Type)

 $(-40^{\circ}C \le Ta \le 105^{\circ}C)$


	(10 0 = 14 = 100						
Symbol	ltem	Condition	าร	Min.	Тур.	Max.	Unit
	Feedback pin	Ta = 25°C		0.682	0.700	0.718	v
Vfb	output voltage	-40°C ≤ Ta ≤ 105°C	V _{OUT} = V _{FB}	0.645		0.750	v
V _{OUT}	Adjustable Output Voltage Range			0.7		3.6	V
Іоит	Output Current			500			mA
ΔV out/ ΔI out	Load regulation	$1 \text{ mA} \le I_{OUT} \le 500 \text{ mA}$			1	20	mV
		Ιουτ: 1 mA⇔250 mA	C _{OUT} = 1 μF		-75 +45		
VTRLD	Load Transient Response	(tr = tf = 0.5 μs)	C _{OUT} = 2.2 μF		-55 +35		mV
		loυτ: 1 mA⇔250 mA (tr = tf = 5 μs)	C _{OUT} = 1 μF		-20 +15		
VDIF	Dropout Voltage	V _{OUT} = V _{FB}	I _{оυт} = 500 mA			0.88	V
lss	Supply Current	I _{ОUT} = 0 mA			80	125	μA
Istandby	Standby Current	V _{CE} = 0 V			0.1	7.0	μA
$\Delta V_{OUT} / \Delta V_{IN}$	Line regulation	$V_{OUT} = V_{FB}$, 1.4 V $\leq V_{IN}$	≤ 5.25 V		0.02	0.10	%/V
lsc	Short Current Limit	V _{OUT} = V _{FB} = 0 V			50		mA
IPD	CE Pull-down Current				0.3	0.6	μA
VCEH	CE Input Voltage "H"			1.0			V
V _{CEL}	CE Input Voltage "L"					0.4	V
T _{TSD}	Thermal Shutdown Detection Temperature	Junction Temperature			165		°C
T _{TSR}	Thermal Shutdown Released Temperature	Junction Temperature			100		°C

All test items listed under Electrical Characteristics are done under the pulse load condition (Tj ≈ Ta = 25°C) except for Load Transient Response.


NO.EC-241-200630

TYPICAL APPLICATIONS

Internally Fixed Output Voltage

Externally Adjustable Output Voltage

TECHNICAL NOTES

Phase Compensation

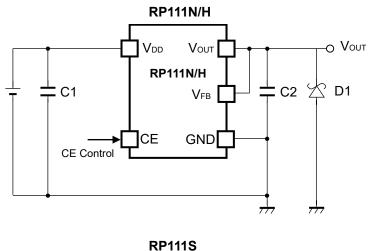
In this device, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a 1.0 μ F or more capacitor C2.

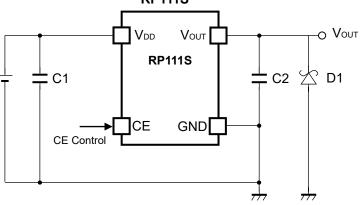
In case of using a tantalum capacitor, and its ESR is large, the output may be unstable. Therefore, select C2 carefully considering its frequency characteristics.

When using the Adjustable Output Voltage Type, set 4.7 μ F or more of the output capacitor C2 as close as possible to the device, and make wiring as short as possible.

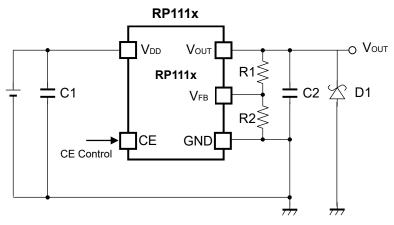
PCB Layout

Make V_{DD} and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a capacitor C1 with a capacitance value as much as 1.0 μF or more between V_{DD} and GND pin, and as close as possible to the pins.


Set external components, especially the output capacitor C2, as close as possible to the device, and make wiring as short as possible (Refer to *TYPICAL APPLICATIONS*).


Transient Response

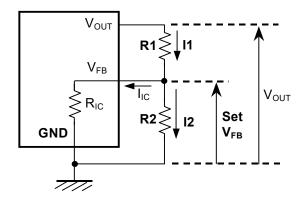
When using the Adjustable Output Voltage Type, the transient response could be affected by the external resistors. Evaluate the circuit taking the actual conditions of use into account.


TYPICAL APPLICATION FOR IC CHIP BREAKDOWN PREVENTION

Internally Fixed Output Voltage

Externally Adjustable Output Voltage

When a sudden surge of electrical current travels along the V_{OUT} pin and GND due to a short-circuit, electrical resonance of a circuit involving an output capacitor (C2) and a short circuit inductor generates a negative voltage and may damage the device or the load devices. Connecting a schottky diode (D1) between the V_{OUT} pin and GND has the effect of preventing damage to them.


RICOH

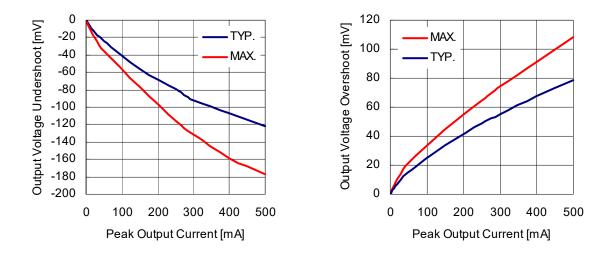
ADJUSTABLE OUTPUT VOLTAGE SETTING

Output Voltage Setting

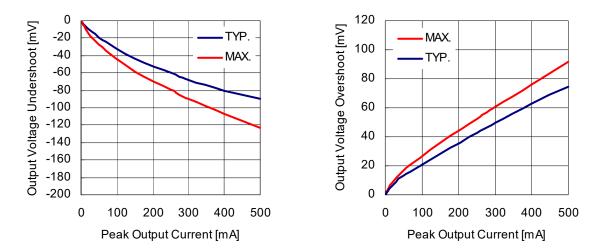
RP111x is capable of adjusting the output voltage by using the external divider resistors. If the V_{FB} voltage fixed in the device is described as setV_{FB}, the output voltage can be set by using the following formulas.

$I1 = I_{IC} + I2(1)$ $I2 = setV_{FB} / R2(2)$	
Thus,	
$I1 = I_{IC} + setV_{FB} / R2$ (3)	
Therefore,	
V _{OUT} = setV _{FB} + R1 x I1(4)	
Put formula (3) into formula (4), then	
V _{OUT} = setV _{FB} + R1 x (I _{IC} + setV _{FB} / R2)	
= setV _{FB} x (1 + R1/R2) + R1 x I _{IC} (5)	
In formula (5), R1x I_{IC} is the error-causing factor in V_{OUT} .	
As for I _{IC} ,	
$I_{IC} = setV_{FB} / R_{IC} $ (6)	
Therefore, the error-causing factor R1x I_{IC} can be described as follows.	
R1 x I _{IC} = R1 x setV _{FB} / R _{IC} = setV _{FB} x R1 / R _{IC}	
For better accuracy, choosing R1 (< <r<sub>IC) reduces this error.</r<sub>	
Without the error-causing factor R1x I _{IC} , the output voltage can be calculated by the following formula. V _{OUT} = setV _{FB} x ((R1 +R2) / R2)(8)	

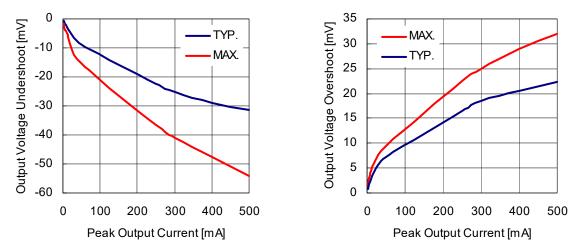
The output voltage of the externally adjustable output voltage type should be set to 3.6 V or less. The resistance of R2 should be 16 k Ω or less.


NO.EC-241-200630

TRANSIENT RESPONSE

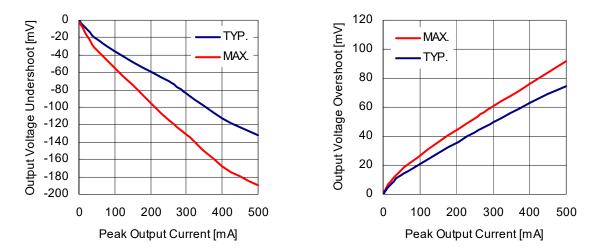

The RP111x has been improved in overall output voltage characteristics including temperature and transient response. The load transient response indicated under the Electrical Characteristics is guaranteed by design based on the condition when I_{OUT} changes from 1 mA to 250 mA or 250 mA to 1 mA. The output voltage variations under the other load conditions, the characteristic examples are shown below.

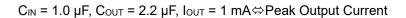
RP111x151x

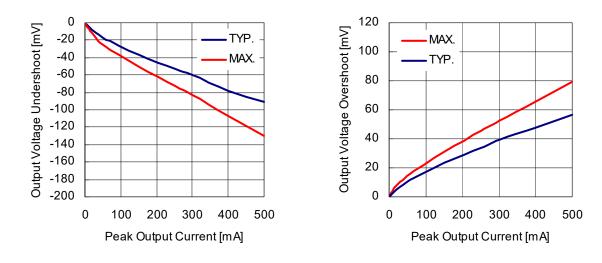

 V_{IN} = 2.5 V, −40°C ≤ Ta ≤ 85°C C_{IN} = 1.0 µF, C_{OUT} = 1.0 µF, I_{OUT} = 1 mA⇔Peak Output Current

C_{IN} = 1.0 µF, C_{OUT} = 2.2 µF, I_{OUT} = 1 mA⇔Peak Output Current

RICOH

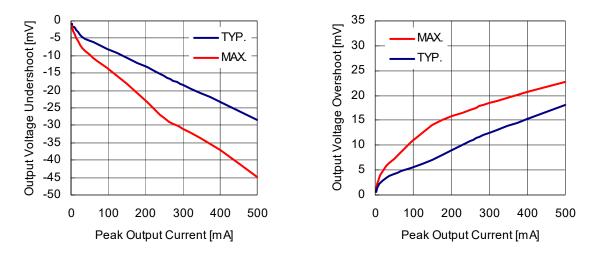


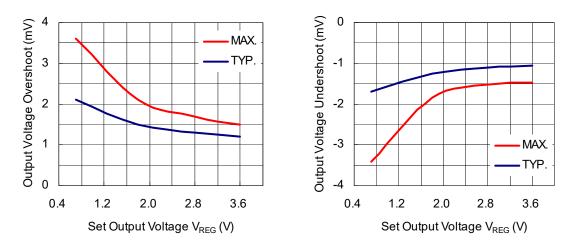

C_{IN} = 1.0 µF, C_{OUT} = 1.0 µF, I_{OUT} = 1 mA⇔Peak Output Current


RP111x281x

 V_{IN} = 3.8 V, -40°C ≤ Ta ≤ 85°C

 $C_{\text{IN}} = 1.0 \ \mu\text{F}, \ C_{\text{OUT}} = 1.0 \ \mu\text{F}, \ I_{\text{OUT}} = 1 \ \text{mA} \Leftrightarrow \text{Peak Output Current}$




NO.EC-241-200630

Input Transient Response has the output voltage dependency. Please refer to the characteristic examples below.

 $\begin{array}{l} V_{\text{IN}}: \, V_{\text{SET}} + 0.5 \; V \Leftrightarrow V_{\text{SET}} + 1.5 \; V \; (tr = tf = 5.0 \; \mu s), \, V_{\text{IN}} \geq 1.4 \; V, \\ C_{\text{OUT}} = 1.0 \; \mu F, \; I_{\text{OUT}} = 30 \; \text{mA} \end{array}$

The graphs shown above are reference data.

For the better transient response, a capacitor with higher capacitance is recommended and the wire impedance of GND and V_{OUT} should be minimized as possible.

The transient response characteristics depend on the external parts and PCB layout. Therefore, the operating conditions for the transient response in the application should be considered and evaluation is necessary.

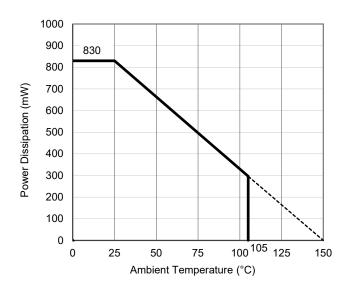
PACKAGE INFORMATION

P POWER DISSIPATION (SOT-23-5)

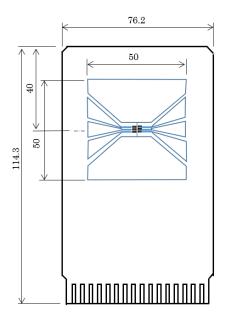
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditio	
Item	Measurement Conditions
Environment	Mounting on Board (Wind Velocity = 0 m/s)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square
Through-holes	φ 0.3 mm × 7 pcs

Measurement Conditions

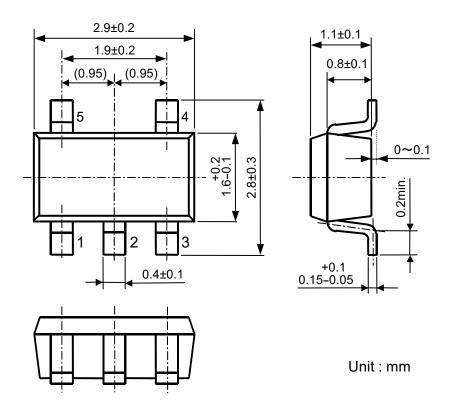

Measurement Result

(Ta = 25°C, Tjmax = 150°C)


Item	Measurement Result
Power Dissipation	830 mW
Thermal Resistance (θja)	θja = 150°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 51°C/W

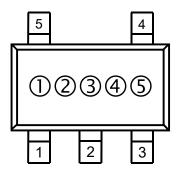
 θ ja: Junction-to-Ambient Thermal Resistance

ψjt: Junction-to-Top Thermal Characterization Parameter



Measurement Board Pattern

NO.EC-241-200630


PACKAGE DIMENSIONS (SOT-23-5)

RICOH

MARK SPECIFICATION (SOT-23-5)

①②③: Product Code ... <u>Refer to MARK SPECIFICATION TABLE (SOT-23-5)</u>
④⑤: Lot Number ... Alphanumeric Serial Number

NOTICE

There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact RICOH sales or our distributor before attempting to use AOI.

MARK SPECIFICATION TABLE (SOT-23-5)

RP111Nxx1B

Product Name	1	2	3	V _{SET}
RP111N071B	Н	0	7	0.7 V
RP111N111B	Н	1	1	1.1 V
RP111N121B	Н	1	2	1.2 V
RP111N151B	Н	1	5	1.5 V
RP111N181B	Н	1	8	1.8 V
RP111N251B	Н	2	5	2.5 V
RP111N281B	Н	2	8	2.8 V
RP111N281B5	Н	4	0	2.85 V
RP111N291B	Н	2	9	2.9 V
RP111N301B	Н	3	0	3.0 V
RP111N331B	Н	3	3	3.3 V
RP111N341B	Н	3	4	3.4 V

RP111Nxx1D

	-			
Product Name	0	2	3	VSET
RP111N071D	J	0	7	0.7 V
RP111N111D	J	1	1	1.1 V
RP111N121D	J	1	2	1.2 V
RP111N151D	J	1	5	1.5 V
RP111N181D	J	1	8	1.8 V
RP111N251D	J	2	5	2.5 V
RP111N281D	J	2	8	2.8 V
RP111N281D5	J	4	0	2.85 V
RP111N291D	J	2	9	2.9 V
RP111N301D	J	3	0	3.0 V
RP111N331D	J	3	3	3.3 V
RP111N341D	J	3	4	3.4 V

RP111N001B (Adjustable Output Voltage Type)

Product Name	0	2	3	VSET
RP111N001B	Н	0	0	-

RP111N001D (Adjustable Output Voltage Type)

Product Name	0	2	3	VSET
RP111N001D	J	0	0	-

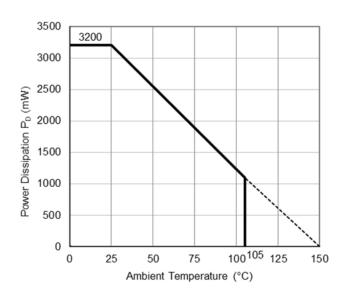
NO.EC-241-200630

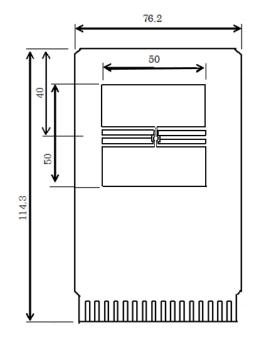
POWER DISSIPATION (SOT-89-5)

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

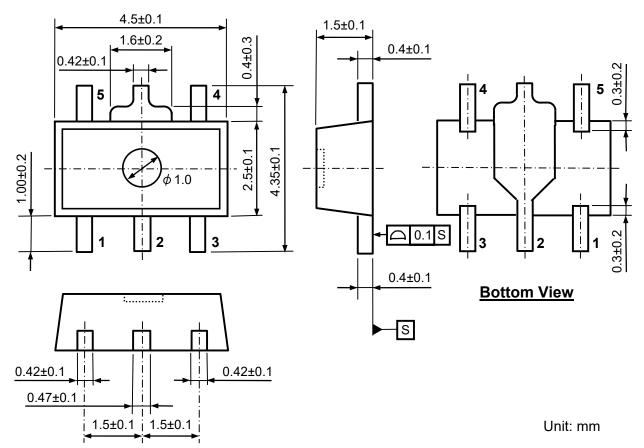
ltem	Measurement Conditions
Environment	Mounting on Board (Wind Velocity = 0 m/s)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square
Through-holes	φ 0.3 mm × 13 pcs


Measurement Result


(Ta = 25°C, Tjmax = 150°C)

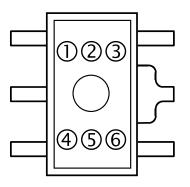
Item	Measurement Result
Power Dissipation	3200 mW
Thermal Resistance (θja)	θja = 38°C/W
Thermal Characterization Parameter (ψjt)	ψjt = 13°C/W

θja: Junction-to-Ambient Thermal Resistance


wjt: Junction-to-Top Thermal Characterization Parameter

Measurement Board Pattern

PACKAGE DIMENSIONS (SOT-89-5)


<u>RP111x</u>

NO.EC-241-200630

MARK SPECIFICATION (SOT-89-5)

①②③④: Product Code ... Refer to MARK SPECIFICATION TABLE (SOT-89-5)

⑤ ⑥: Lot Number ... Alphanumeric Serial Number

NOTICE

There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact RICOH sales or our distributor before attempting to use AOI.

MARK SPECIFICATION TABLE (SOT-89-5)

RP111Hxx1B

Product Name	0	2	3	4	VSET
RP111H071B	Α	0	7	В	0.7 V
RP111H111B	Α	1	1	В	1.1 V
RP111H121B	Α	1	2	В	1.2 V
RP111H151B	Α	1	5	В	1.5 V
RP111H181B	Α	1	8	В	1.8 V
RP111H251B	Α	2	5	В	2.5 V
RP111H281B	Α	2	8	В	2.8 V
RP111H281B5	Α	4	0	В	2.85 V
RP111H291B	А	2	9	В	2.9 V
RP111H301B	Α	3	0	В	3.0 V
RP111H331B	Α	3	3	В	3.3 V
RP111H341B	Α	3	4	В	3.4 V

RP111Hxx1D

Product Name	0	2	3	4	VSET
RP111H071D	А	0	7	D	0.7 V
RP111H111D	А	1	1	D	1.1 V
RP111H121D	Α	1	2	D	1.2 V
RP111H151D	А	1	5	D	1.5 V
RP111H181D	А	1	8	D	1.8 V
RP111H251D	А	2	5	D	2.5 V
RP111H281D	А	2	8	D	2.8 V
RP111H281D5	Α	4	0	D	2.85 V
RP111H291D	А	2	9	D	2.9 V
RP111H301D	А	3	0	D	3.0 V
RP111H331D	Α	3	3	D	3.3 V
RP111H341D	Α	3	4	D	3.4 V

RP111H001B (Adjustable Output Voltage Type)

Product Name	0234	VSET
RP111H001B	A 0 0 B	-

RP111H001D (Adjustable Output Voltage Type)

Product Name	0 2 3 4	V _{SET}
RP111H001D	A 0 0 D	-

POWER DISSIPATION (HSOP-6J)

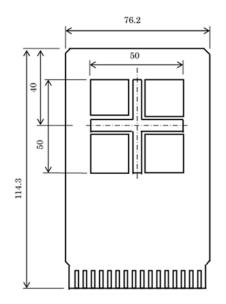
The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Item	Measurement Conditions
Environment	Mounting on Board (Wind Velocity = 0 m/s)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	76.2 mm × 114.3 mm × 0.8 mm
Copper Ratio	Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square
Through-holes	φ 0.3 mm × 28 pcs

Measurement Conditions


Measurement Result

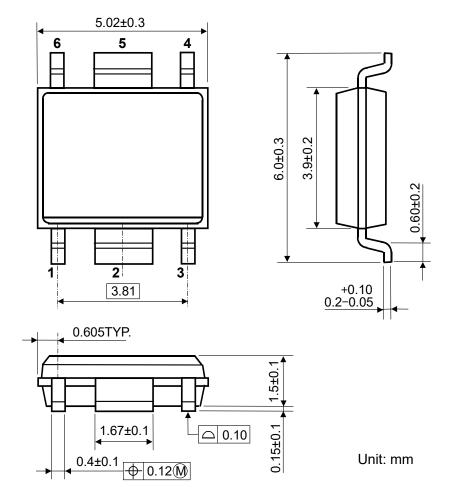
(Ta = 25°C, Tjmax = 150°C) **Measurement Result** Item 3400 mW **Power Dissipation** Thermal Resistance (θja) θ ja = 37°C/W


θja: Junction-to-Ambient Thermal Resistance

Thermal Characterization Parameter (ψjt)

wjt: Junction-to-Top Thermal Characterization Parameter

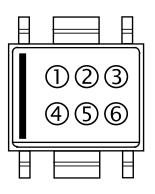
Power Dissipation vs. Ambient Temperature



 $\psi jt = 7^{\circ}C/W$

Measurement Board Pattern

NO.EC-241-200630


PACKAGE DIMENSIONS (HSOP-6J)

MARK SPECIFICATION (HSOP-6J)

①②③④: Product Code ... Refer to MARK SPECIFICATION TABLE (HSOP-6J)

⑤ ⑥: Lot Number ... Alphanumeric Serial Number

NOTICE

There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact RICOH sales or our distributor before attempting to use AOI.

MARK SPECIFICATION TABLE (HSOP-6J)

RP111Sxx1B

Product Name	0	2	3	4	V _{SET}
RP111S071B	С	0	7	В	0.7 V
RP111S111B	С	1	1	В	1.1 V
RP111S121B	С	1	2	В	1.2 V
RP111S151B	С	1	5	В	1.5 V
RP111S181B	С	1	8	В	1.8 V
RP111S251B	С	2	5	В	2.5 V
RP111S281B	С	2	8	В	2.8 V
RP111S281B5	С	4	0	В	2.85 V
RP111S291B	С	2	9	В	2.9 V
RP111S301B	С	3	0	В	3.0 V
RP111S331B	С	3	3	В	3.3 V
RP111S341B	С	3	4	В	3.4 V

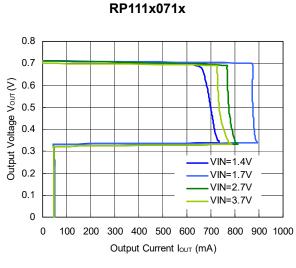
RP111Sxx1D

Product Name	0	2	3	۹	V _{SET}
RP111S071D	С	0	7	D	0.7 V
RP111S111D	С	1	1	D	1.1 V
RP111S121D	С	1	2	D	1.2 V
RP111S151D	С	1	5	D	1.5 V
RP111S181D	С	1	8	D	1.8 V
RP111S251D	С	2	5	D	2.5 V
RP111S281D	С	2	8	D	2.8 V
RP111S281D5	С	4	0	D	2.85 V
RP111S291D	С	2	9	D	2.9 V
RP111S301D	С	3	0	D	3.0 V
RP111S331D	С	3	3	D	3.3 V
RP111S341D	С	3	4	D	3.4 V

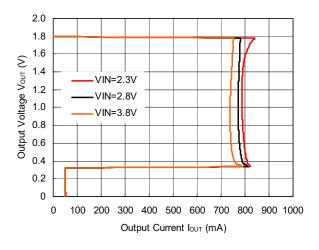
RP111S001B (Adjustable Output Voltage Type)

Product Name	0234	V _{SET}
RP111S001B	C 0 0 B	-

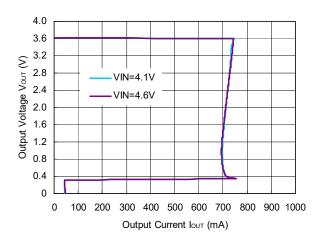
RP111S001D (Adjustable Output Voltage Type)

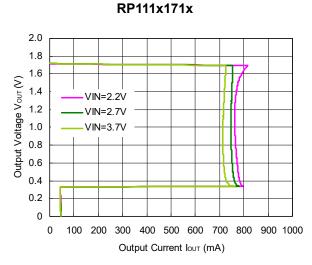

Product Name	0234	V _{SET}
RP111S001D	C 0 0 D	-

NO.EC-241-200630

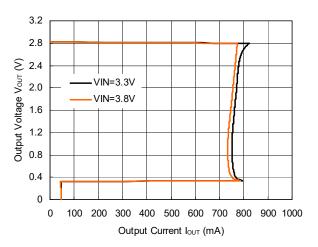

TYPICAL CHARACTERISTICS

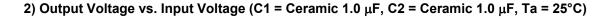
Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

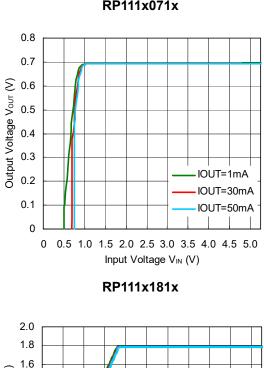

1) Output Voltage vs. Output Current (C1 = Ceramic 1.0 μ F, C2 = Ceramic 1.0 μ F, Ta = 25°C)

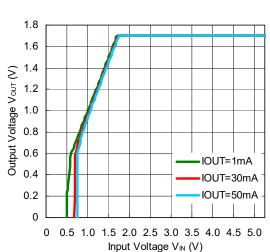


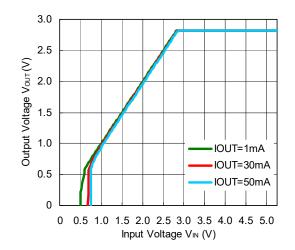
RP111x181x

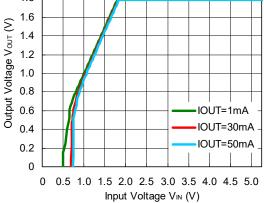


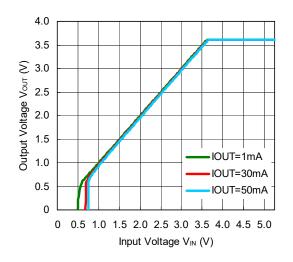

RP111x361x

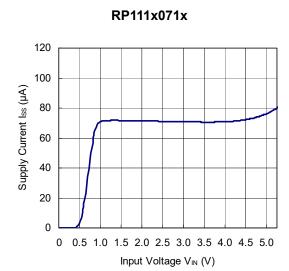


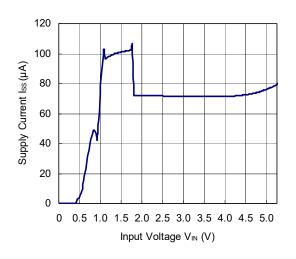

RP111x281x



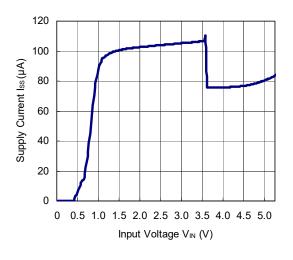

RP111x071x

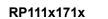

RP111x171x

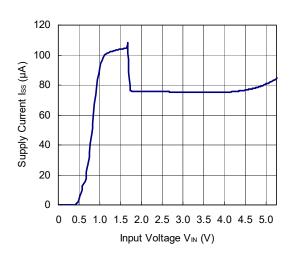


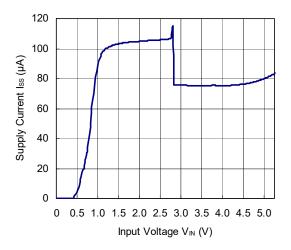


NO.EC-241-200630

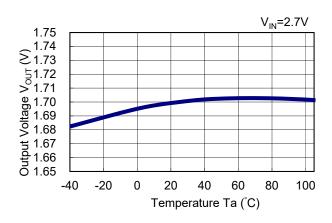

3) Supply Current vs. Input Voltage (C1 = Ceramic 1.0 μ F, C2 = Ceramic 1.0 μ F, Ta = 25°C)



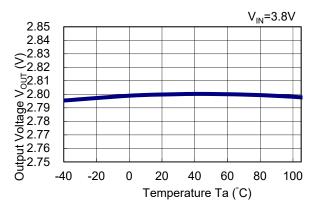

RP111x181x



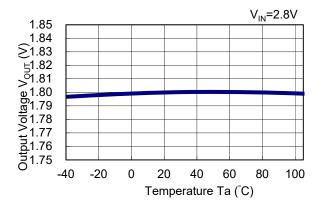
RP111x281x

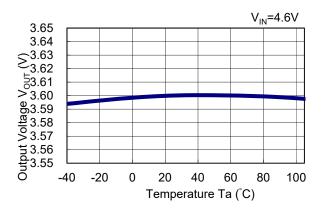


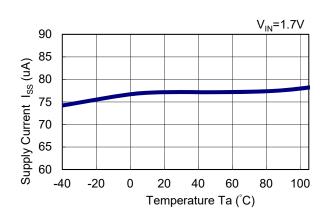
4) Output Voltage vs. Temperature (C1 = Ceramic 1.0 μ F, C2 = Ceramic 1.0 μ F, I_{OUT} = 1 mA)



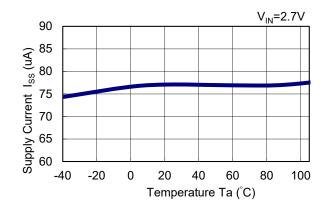
RP111x071x


RP111x171x

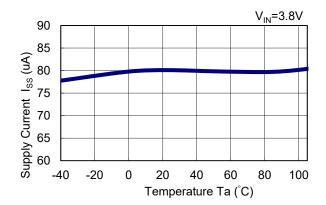




RP111x361x

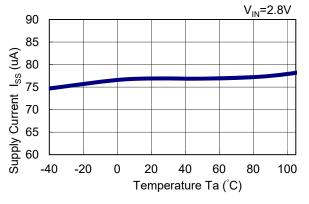

NO.EC-241-200630

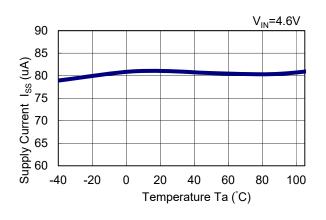
5) Supply Current vs. Temperature (C1 = Ceramic 1.0 μ F, C2 = Ceramic 1.0 μ F, I_{OUT} = 0 mA)

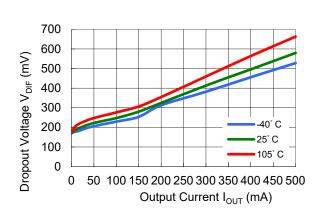


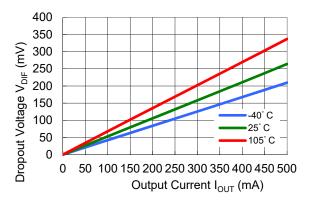
RP111x071x

RP111x171x

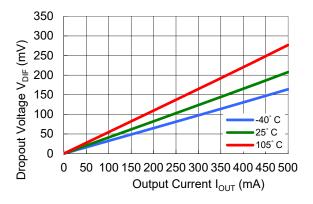




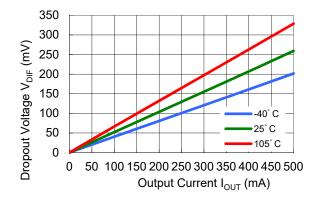

RP111x181x

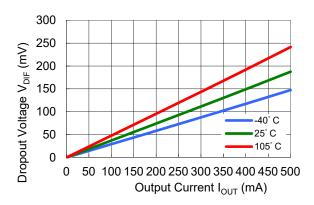


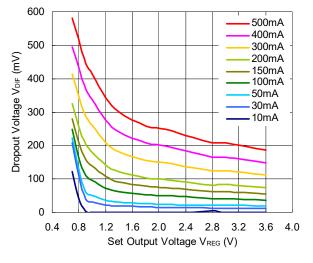
6) Dropout Voltage vs. Output Current (C1 = Ceramic 1.0 μ F, C2 = Ceramic 1.0 μ F)



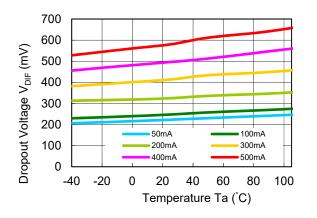
RP111x071x

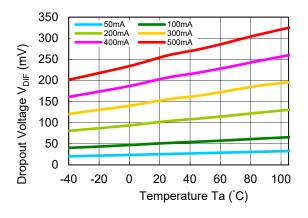

RP111x171x


RP111x281x

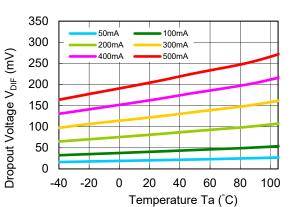

RP111x181x

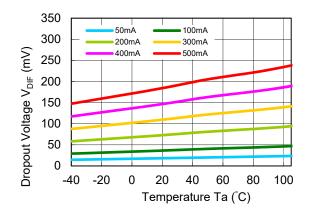

RP111x361x

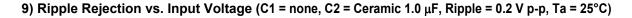

NO.EC-241-200630

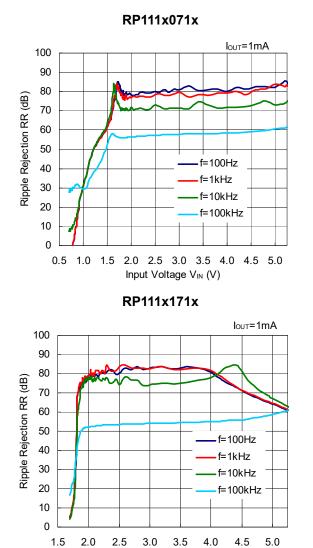

7) Dropout Voltage vs. Set Output Voltage (C1= Ceramic 1.0 µF, C2 = Ceramic 1.0 µF, Ta = 25°C)

RP111x071x

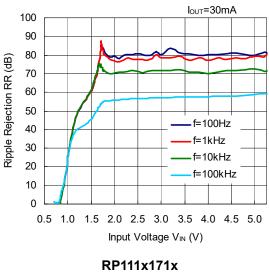


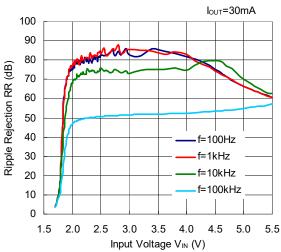


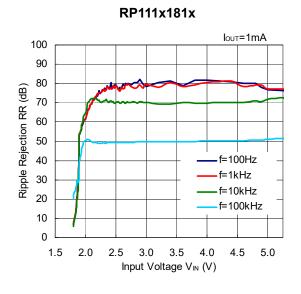


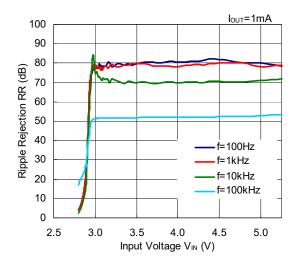

34

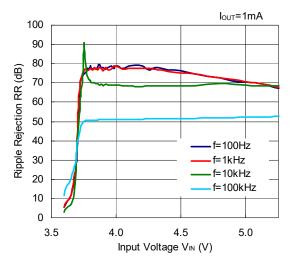
RP111x NO.EC-241-200630

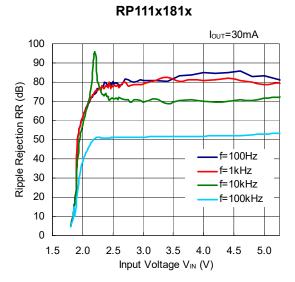

RP111x361x



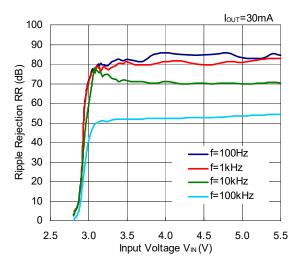

Input Voltage V_{IN} (V)

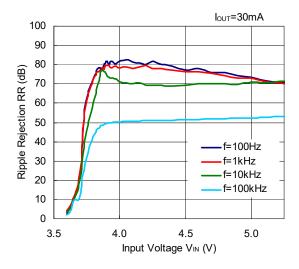

RP111x071x


NO.EC-241-200630

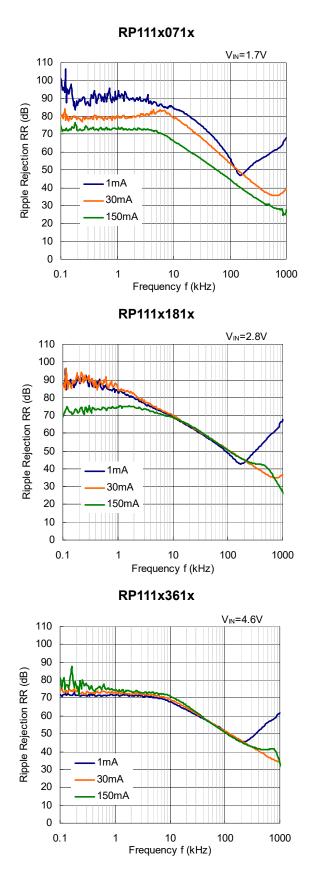


RP111x281x

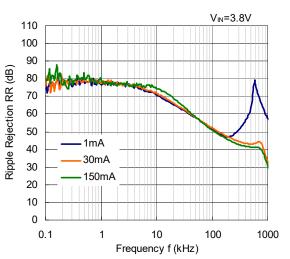




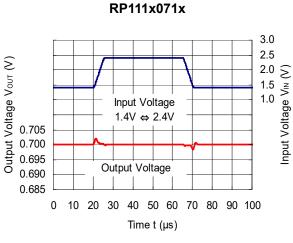
RP111x281x



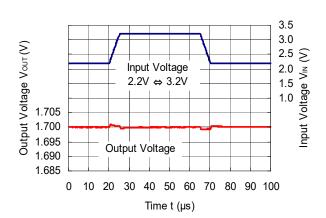
RP111x361x


RICOH

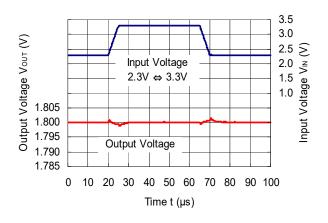
10) Ripple Rejection vs. Frequency (C1 = none, C2 = Ceramic 1.0 μ F, Ripple = 0.2 Vp-p, Ta = 25°C)

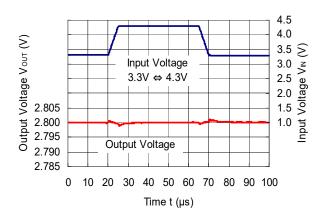

RP111x171x V_{IN}=2.7V 110 100 90 Ripple Rejection RR (dB) 80 70 60 50 40 1mA 30 30mA 20 150mA 10 0 10 Frequency f (kHz) 0.1 1 100 1000

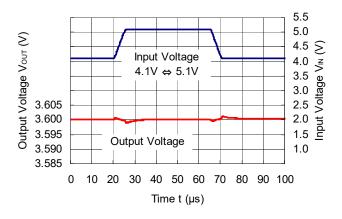
RP111x281x



NO.EC-241-200630


11) Input Transient Response (C1= none, C2 = Ceramic 1.0 μ F, Iout = 30 mA, tr = tf = 5 μ s, Ta = 25°C)


RP111x171x


RP111x181x

RP111x281x

RP111x361x

RP111x NO.EC-241-200630

150 100

50

0

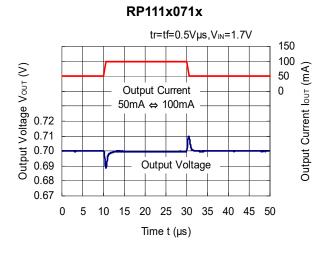
Output Current lour (mA)

12) Load Transient Response (C1 = Ceramic 1.0 μ F, C2 = Ceramic 1.0 μ F, Ta = 25°C)

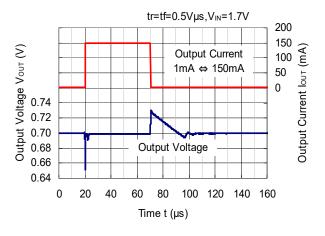
Output Voltage Vour (V)

0.72

0.71


0.70

0.69


0.68

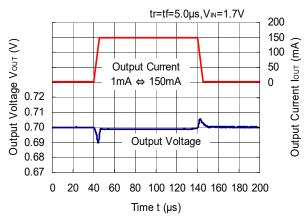
0.67

0 20 40 60

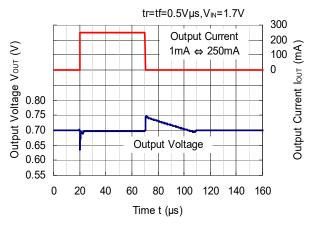
RP111x071x

Time t (µs)

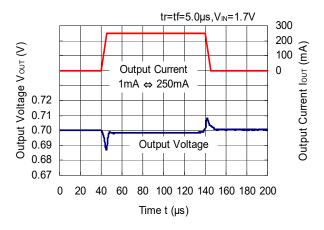
Output Voltage

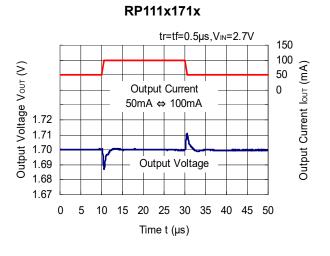

RP111x071x

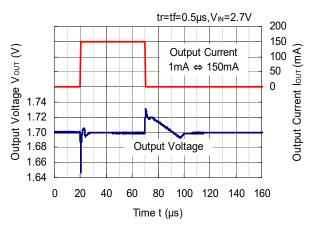
Output Current

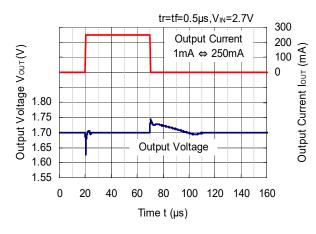

50mA ⇔ 100mA

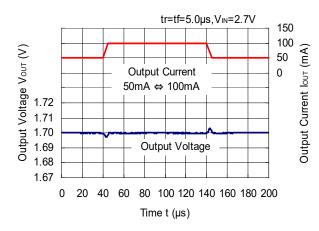
tr=tf=5.0µs,V_{IN}=1.7V

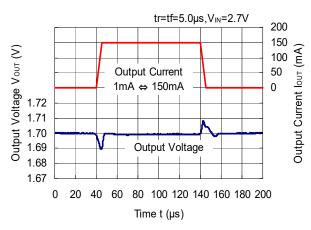

80 100 120 140 160 180 200

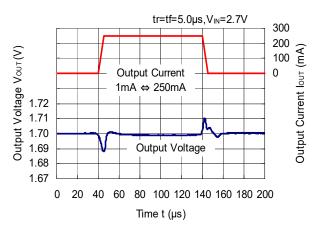



RP111x071x

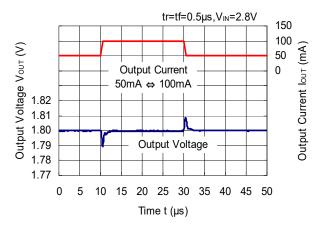


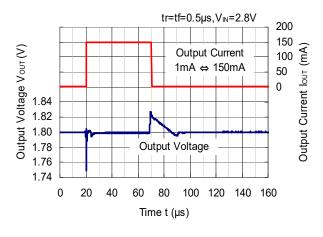



RP111x171x

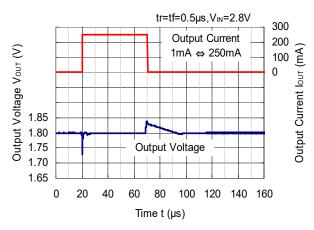

RP111x171x

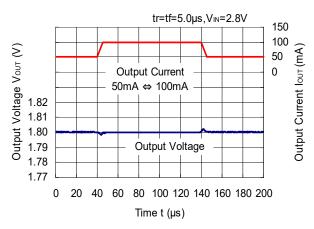
RP111x171x

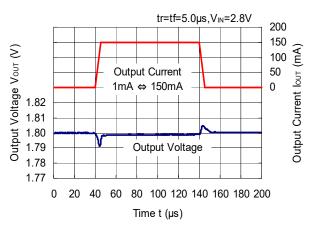


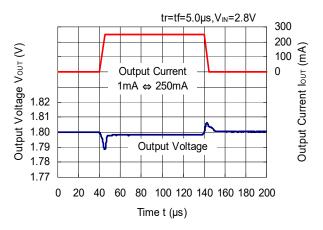


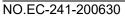
NO.EC-241-200630

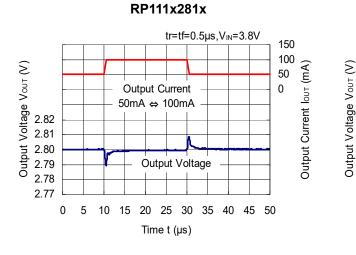

RP111x181x

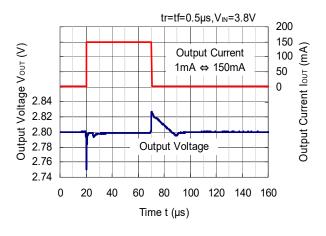

RP111x181x

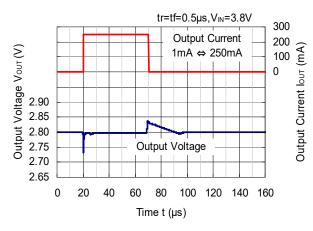

RP111x181x


RP111x181x



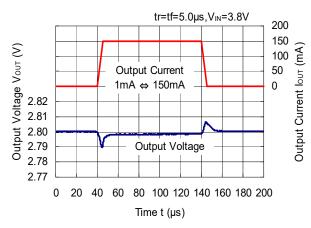

RP111x181x

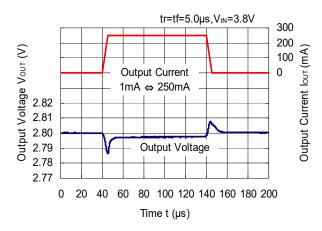

RP111x181x



RP111x281x

RP111x281x




Output Voltage

20 40 60 80 100 120 140 160 180 200

Time t (µs)

RP111x281x

RP111x281x

Output Current 50mA ⇔ 100mA

2.82

2.81

2.80 2.79

2.78

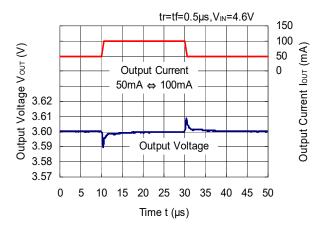
2.77

0

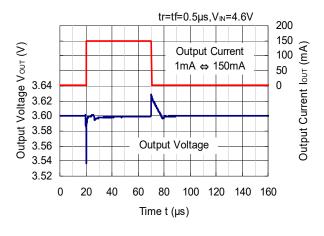
tr=tf=5.0µs,ViN=3.8V

150

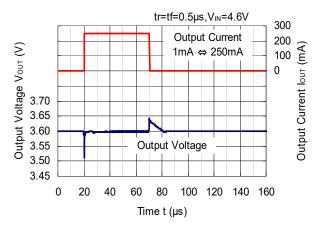
100

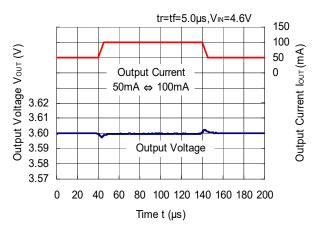

50

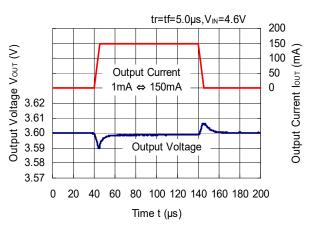
0

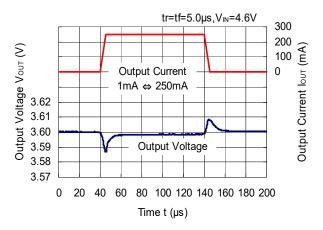

Output Current lour (mA)

NO.EC-241-200630

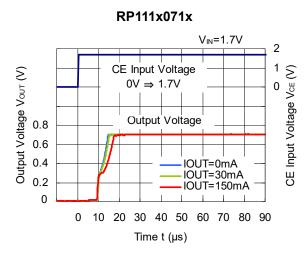

RP111x361x


RP111x361x

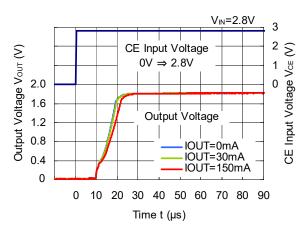

RP111x361x


RP111x361x

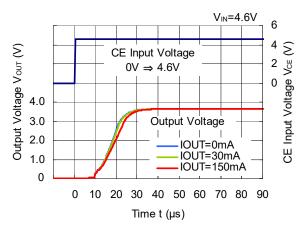
RP111x361x

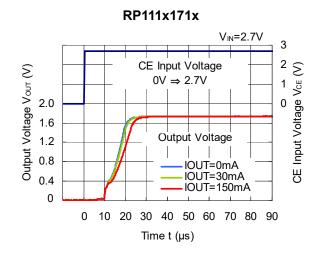


RP111x361x

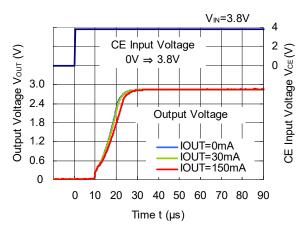


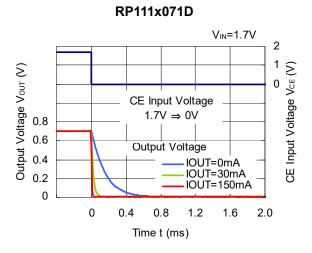
NO.EC-241-200630


13) Turn on Speed with CE pin (C1 = Ceramic 1.0 μ F, C2 = Ceramic 1.0 μ F, Ta = 25°C)

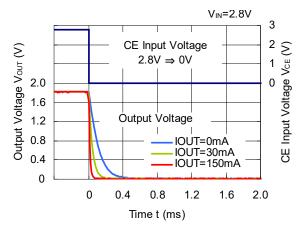


RP111x181x

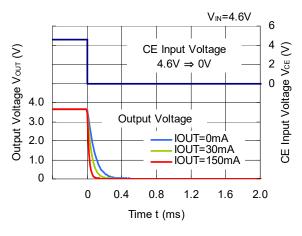


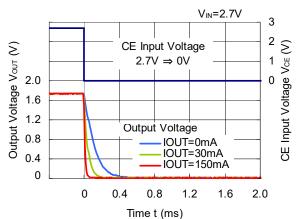


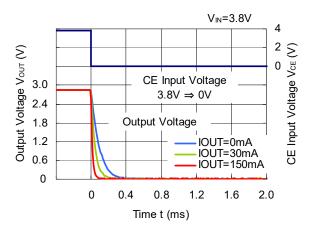
RP111x281x



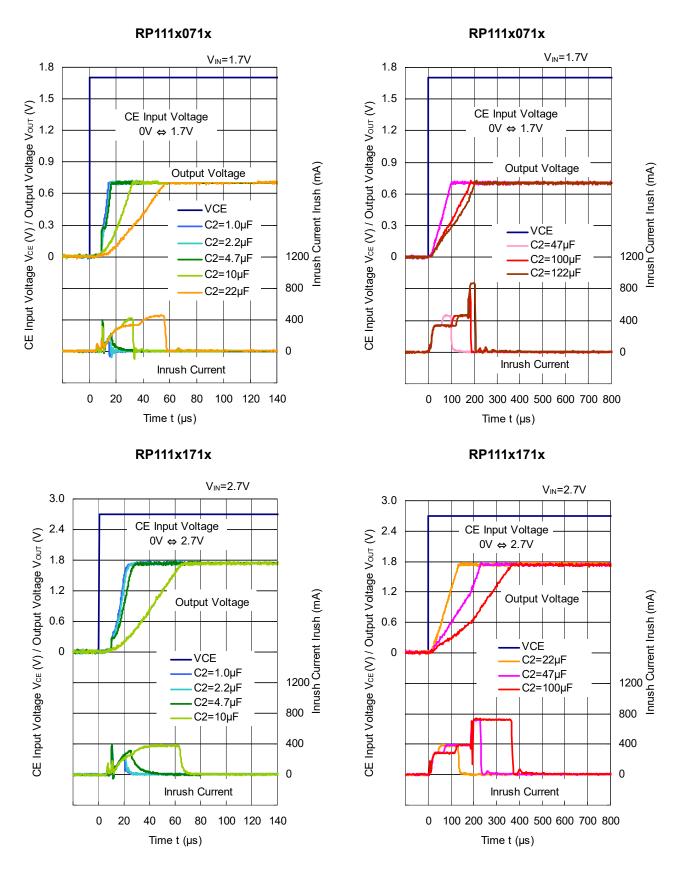
RP111x NO.EC-241-200630


14) Turn off Speed with CE pin (C1 = Ceramic 1.0 μ F, C2 = Ceramic 1.0 μ F, Ta = 25°C)



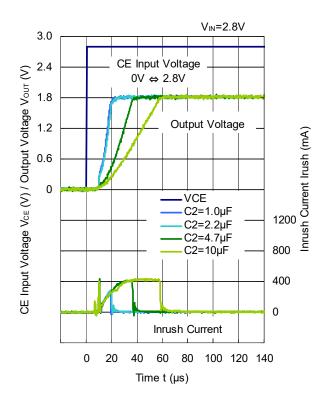


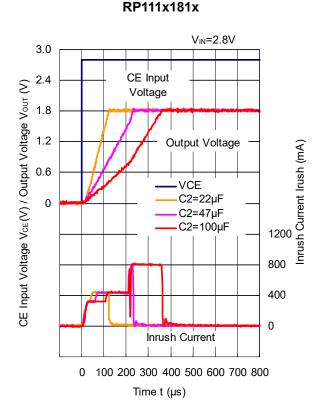
RP111x171D



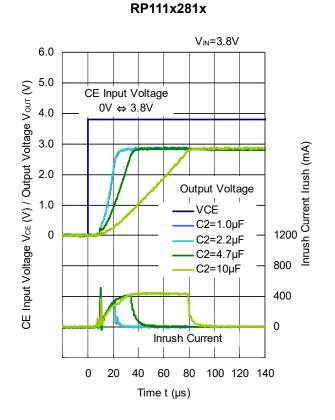
RP111x281D

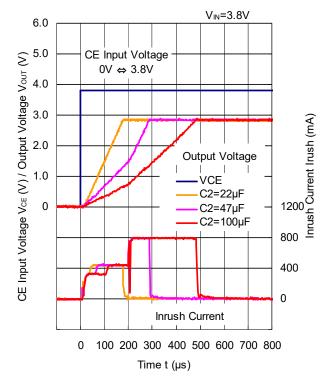
NO.EC-241-200630

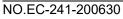

15) Inrush Current (C1 = Ceramic 1.0 μF, Iout = 0 mA, Ta = 25°C)

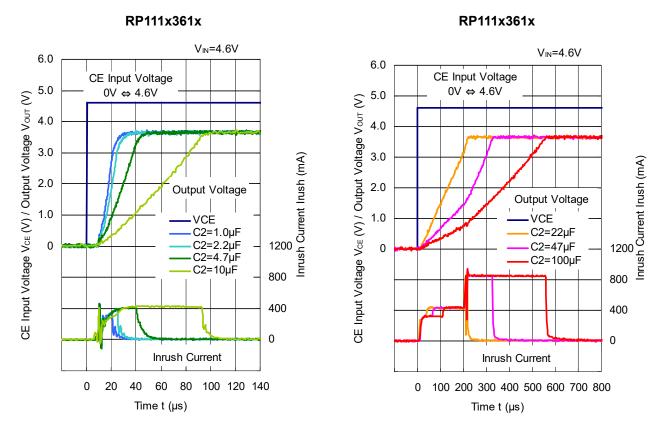


RICOH


NO.EC-241-200630


RP111x181x



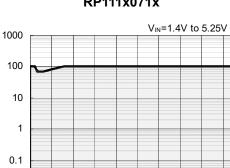


RP111x281x

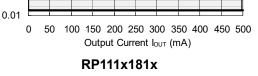
Measurement Components of	^T Typical Characteristics
----------------------------------	--------------------------------------

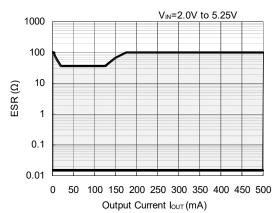
Symbol	Capacitance	Test item	Manufacture	Parts number
C1	1.0 µF	All	Murata	GRM155B31A105KE15
C2	1.0 µF	All except Inrush Current	Murata	GRM155B31A105KE15

ESR vs. Output Current


When using these ICs, consider the following points: The relations between IOUT (Output Current) and ESR of an output capacitor are shown below. The conditions when the white noise level is under 40 µV (Avg.) are marked as the hatched area in the graph.

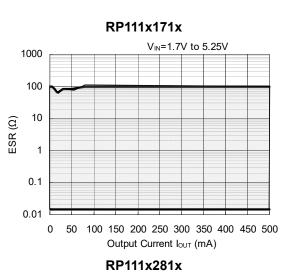
Measurement Conditions

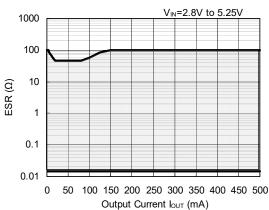

ESR (Ω)


Frequency Band : 10 Hz to 2 MHz Temperature : -40°C to 85°C

C1, C2	:1.0 μF or more




RP111x071x



RP111x361x


- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products in this document are designed for automotive applications. However, when using the products for automotive applications, please make sure to contact Ricoh sales representative in advance due to confirming the quality level.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting to use AOI.
- 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012.

RICOH RICOH ELECTRONIC DEVICES CO., LTD.

Official website https://www.n-redc.co.jp/en/ Contact us https://www.n-redc.co.jp/en/buy/

