Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

- - -

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

64/80-Pin High-Performance, Flash Microcontrollers with LCD Driver, 12-Bit ADC and nanoWatt Technology

LCD Driver Module Features:

- · Direct Driving of LCD Panel
- · Up to 192 Pixels: Software-Selectable
- · Programmable LCD Timing module:
 - Multiple LCD timing sources available
 - Up to four commons: Static, 1/2, 1/3 or 1/4 multiplex
 - Static, 1/2 or 1/3 bias configuration
- · Can Drive LCD Panel while in Sleep mode for Low-Power Operation

Power-Managed Modes:

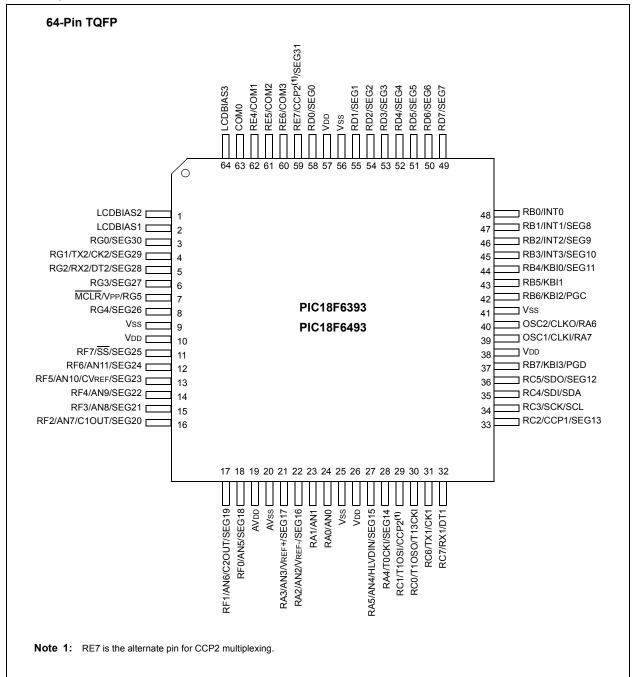
- Run: CPU On, Peripherals On
- Idle: CPU Off, Peripherals On
- Sleep: CPU Off, Peripherals Off
- Ultra Low 50 nA Input Leakage
- Run mode Current Down to 14 µA Typical
- Idle mode Currents Down to 2.3 uA Typical
- Sleep mode Currents Down to 0.1 µA Typical
- Timer1 Oscillator: 1.0 μA, 32 kHz, 2V Typical
- Watchdog Timer: 1.7 µA Typical
- Two-Speed Oscillator Start-up

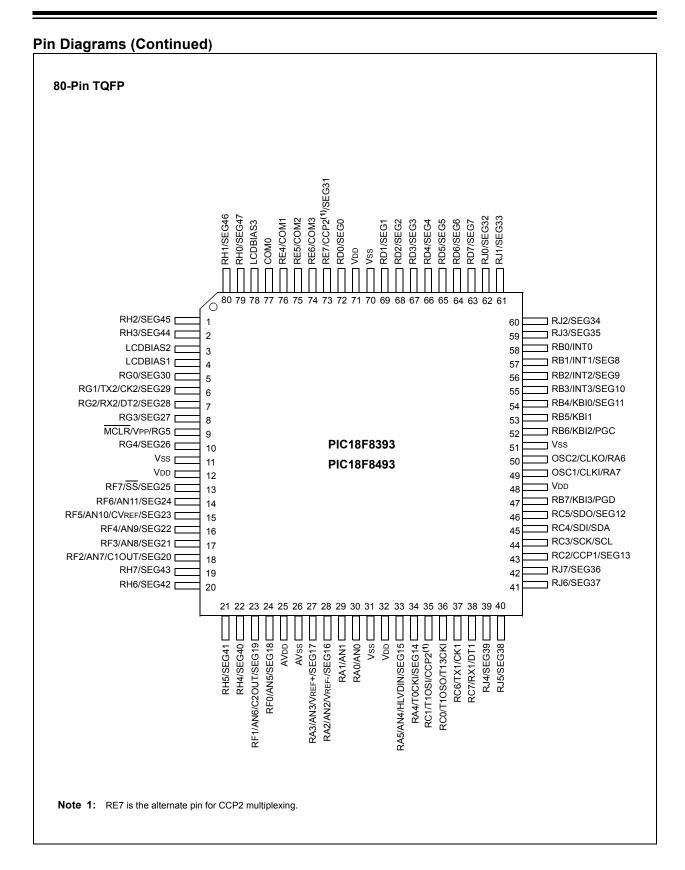
Flexible Oscillator Structure:

- · Four Crystal modes, up to 40 MHz
- 4x Phase Lock Loop (available for crystal and internal oscillators)
- Two External RC modes, up to 4 MHz
- Two External Clock modes, up to 40 MHz
- Internal Oscillator Block:
 - Fast wake from Sleep and Idle, 1 μs typical
 - Eight selectable frequencies, from 31 kHz to 8 MHz
 - Provides a complete range of clock speeds from 31 kHz to 32 MHz when used with PLL
 - User-tunable to compensate for frequency drift
- Secondary Oscillator Using Timer1 at 32 kHz
- Fail-Safe Clock Monitor:
 - Allows for safe shutdown if peripheral clock stops

Peripheral Highlights:

- 12-Bit, up to 12-Channel Analog-to-Digital (A/D) Converter module:
 - Auto-acquisition capability
 - Conversion available during Sleep
- High-Current Sink/Source 25 mA/25 mA
- Four External Interrupts
- Four Input Change Interrupts
- Four 8-Bit/16-Bit Timer/Counter modules
- Real-Time Clock (RTC) Software module:
- Configurable 24-hour clock, calendar, automatic 100-year or 12,800-year, day-of-week calculator
- Uses Timer1
- Up to Two Capture/Compare/PWM (CCP) modules
- Master Synchronous Serial Port (MSSP) module Supporting Three-Wire SPI (all four modes) and I²C[™] Master and Slave modes
- Addressable USART module:
 - Supports RS-485 and RS-232
- Enhanced Addressable USART module:
 - Supports RS-485, RS-232 and LIN/J2602
- Auto-wake-up on Start bit
- Auto-Baud Detect
- · Dual Analog Comparators with Input Multiplexing
- Programmable 16-Level High/Low-Voltage Detection (HLVD) module:
- Supports interrupt on High/Low-Voltage Detection


Special Microcontroller Features:


- C Compiler Optimized Architecture:
 - Optional extended instruction set designed to optimize re-entrant code
- 1000 Erase/Write Cycle Flash Program Memory, Typical
- Flash Retention: 100 Years Typical
- Priority Levels for Interrupts
- 8 x 8 Śingle-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
- Programmable period from 4 ms to 132s
- 2% stability over VDD and temperature In-Circuit Serial Programming™ (ICSP™) via Two Pins In-Circuit Debug (ICD) via Two Pins
- Wide Operating Voltage Range: 2.0V to 5.5V
- Programmable Brown-out Reset (BOR) with Software Enable Option

supplemented Note: This document by the "PIC18F6390/6490/8390/8490 Sheet' (DS39629). See Section 1.0 "Device Overview".

Device	Prog	ram Memory	Data Memory		LCD	12-Bit	ССР	MS	SSP	ART/ ART	Comparators	Timers
Device	Flash (bytes)	# Single-Word Instructions	SRAM (bytes)	I/O	(pixel)	A/D (channels)	(PWM)	SPI	Master I ² C™	EUS/ AUS/	Comparators	8/16-Bit
PIC18F6393	8K	4096	768	50	128	12	2	Υ	Y	1/1	2	1/3
PIC18F6493	16K	8192	768	50	128	12	2	Υ	Υ	1/1	2	1/3
PIC18F8393	8K	4096	768	66	192	12	2	Υ	Υ	1/1	2	1/3
PIC18F8493	16K	8192	768	66	192	12	2	Υ	Υ	1/1	2	1/3

Pin Diagrams

Table of Contents

1.0	Device Overview	9
2.0	12-Bit Analog-to-Digital Converter (A/D) Module	. 31
3.0	Special Features of the CPU	. 41
4.0	Electrical Characteristics	
5.0	Packaging Information	. 47
Appe	ndix A: Revision History	
	ndix B: Device Differences	
Appe	ndix C: Conversion Considerations	. 54
Appe	ndix D: Migration from Baseline to Enhanced Devices	. 54
	ndix E: migration from Mid-Range to Enhanced Devices	
	ndix F: Migration from High-End to Enhanced Devices	
	/licrochip Web Site	
Custo	omer Change Notification Service	. 59
Custo	omer Support	. 59
	er Response	
	uct Identification System	61

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- · Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

NOTES:

1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

PIC18F6393PIC18F8393PIC18F6493PIC18F8493

Note: This data sheet documents only the devices' features and specifications that are in addition to the features and specifications of the PIC18F6390/6490/8390/8490 devices. For information on the features and specifications shared by the PIC18F6393/6493/8393/8493 and PIC18F6390/6490/8390/8490 devices, see the "PIC18F6390/6490/8390/8490 Data Sheet" (DS39629).

This family offers the advantages of all PIC18 microcontrollers — namely, high computational performance at an economical price. In addition to these features, the PIC18F6393/6493/8393/8493 family introduces design enhancements that make these microcontrollers a logical choice for many high-performance, power-sensitive applications.

1.1 Special Features

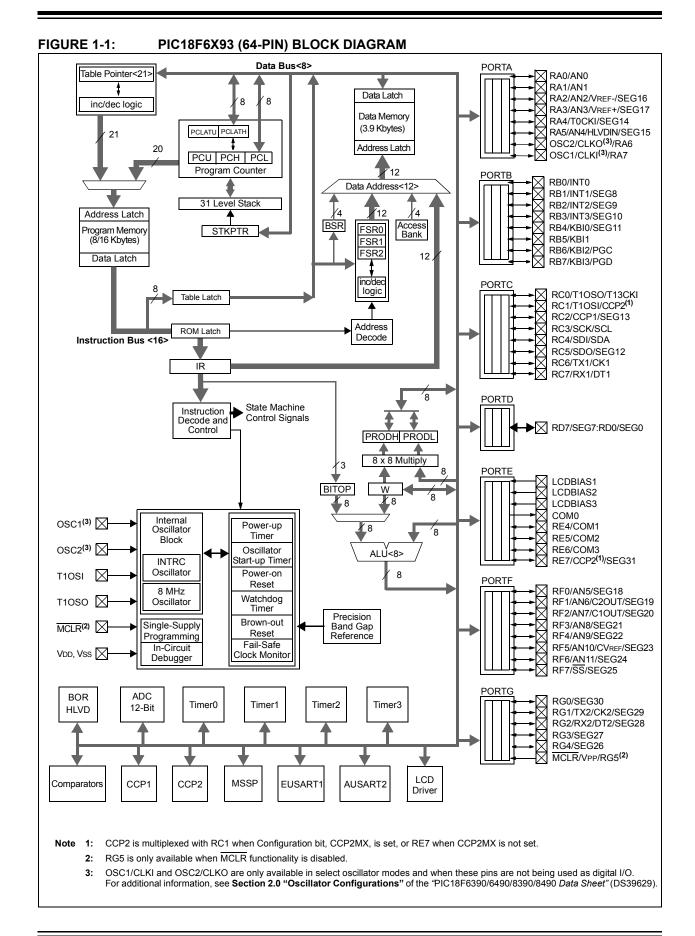
 12-Bit A/D Converter: This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period and thus, reduces code overhead.

1.2 Details on Individual Family Members

Devices in the PIC18F6393/6493/8393/8493 family are available in 64-pin (PIC18F6X93) and 80-pin (PIC18F8X93) packages. Block diagrams for the two groups are shown in Figure 1-1 and Figure 1-2, respectively.

The devices are differentiated from each other in the following ways:

- I/O Ports:
 - 64-pin devices 7 bidirectional ports
 - 80-pin devices 9 bidirectional ports
- · LCD Pixels:
 - 64-pin devices 128 (32 SEGs x 4 COMs) pixels can be driven
 - 80-pin devices 192 (48 SEGs x 4 COMs) pixels can be driven
- · Flash Program Memory:
 - PIC18FX393 devices 8 Kbytes
 - PIC18FX493 devices 16 Kbytes


All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in Table 1-2 and Table 1-3.

Like all Microchip PIC18 devices, members of the PIC18F6393/6493/8393/8493 family are available as both standard and low-voltage devices. Standard devices with Flash memory, designated with an "F" in the part number (such as PIC18F6393), accommodate an operating VDD range of 4.2V to 5.5V. Low-voltage parts, designated by "LF" (such as PIC18LF6490), function over an extended VDD range of 2.0V to 5.5V.

TABLE 1-1: DEVICE FEATURES

Features	PIC18F6393	PIC18F6493	PIC18F8393	PIC18F8493
Operating Frequency	DC – 40 MHz			
Program Memory (Bytes)	8K	16K	8K	16K
Program Memory (Instructions)	4096	8192	4096	8192
Data Memory (Bytes)	768	768	768	768
Interrupt Sources	22	22	22	22
I/O Ports	Ports A, B, C, D, E, F, G	Ports A, B, C, D, E, F, G	Ports A, B, C, D, E, F, G, H, J	Ports A, B, C, D, E, F, G, H, J
Number of Pixels the LCD Driver Can Drive	128 (32 SEGs x 4 COMs)	128 (32 SEGs x 4 COMs)	192 (48 SEGs x 4 COMs)	192 (48 SEGs x 4 COMs)
Timers	4	4	4	4
Capture/Compare/PWM Modules	2	2	2	2
Serial Communications	MSSP, AUSART, Enhanced USART	MSSP, AUSART, Enhanced USART	MSSP, AUSART, Enhanced USART	MSSP, AUSART, Enhanced USART
12-Bit Analog-to-Digital Module	12 Input Channels	12 Input Channels	12 Input Channels	12 Input Channels
Resets (and Delays)	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT	POR, BOR, RESET Instruction, Stack Full, Stack Underflow (PWRT, OST), MCLR (optional), WDT
Programmable Low-Voltage Detect	Yes	Yes	Yes	Yes
Programmable Brown-out Reset	Yes	Yes	Yes	Yes
Instruction Set	75 Instructions; 83 with Extended Instruction Set Enabled			
Packages	64-Pin TQFP	64-Pin TQFP	80-Pin TQFP	80-Pin TQFP

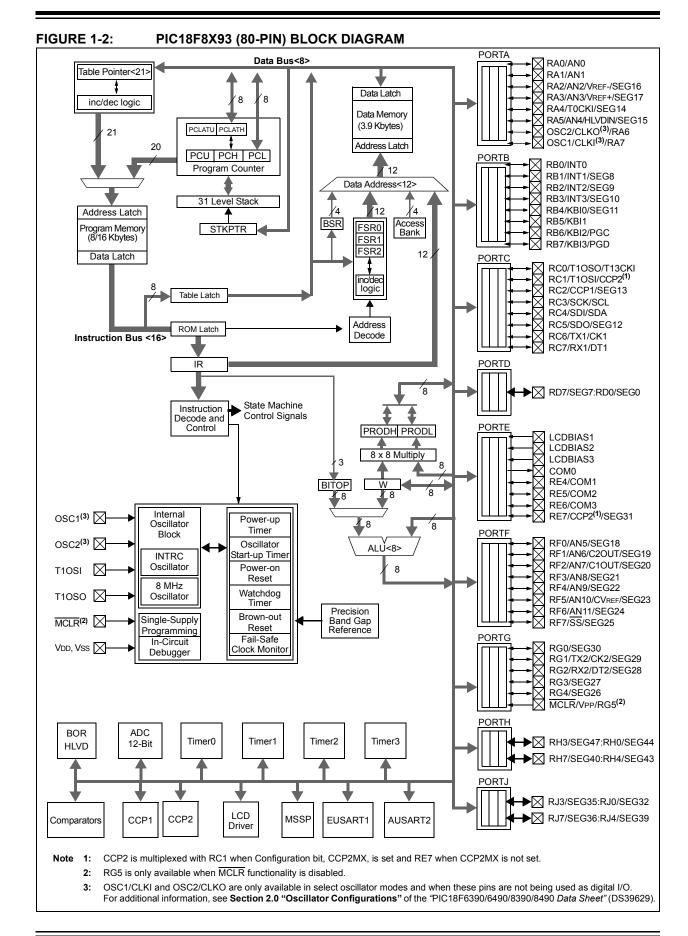


TABLE 1-2: PIC18F6X93 PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number Pin		Pin Buffer	Description
Pili Naille	TQFP	Type	Type	Description
MCLR/VPP/RG5 MCLR	7	I	ST	Master Clear (input) or programming voltage (input). Master Clear (Reset) input. This pin is an active-low Reset to the device.
VPP RG5		P I	ST	Programming voltage input. Digital input.
OSC1/CLKI/RA7 OSC1 CLKI	39	I	ST CMOS	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode; CMOS otherwise. External clock source input. Always associated
RA7		I/O	TTL	with pin function, OSC1. (See related OSC1/CLKI, OSC2/CLKO pins.) General purpose I/O pin.
OSC2/CLKO/RA6 OSC2	40	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
CLKO		0	_	In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
RA6		I/O	TTL	General purpose I/O pin.

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels Analog = Analog input
I = Input O = Output

P = Power I^2C = ST with I^2C^{TM} or SMB levels

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

TABLE 1-2: PIC18F6X93 PINOUT I/O DESCRIPTIONS (CONTINUED)

Din Name	Pin Number	Pin Buffer	Description			
Pin Name	TQFP	Type Type		Description		
				PORTA is a bidirectional I/O port.		
RA0/AN0 RA0 AN0	24	I/O I	TTL Analog	Digital I/O. Analog Input 0.		
RA1/AN1 RA1 AN1	23	I/O I	TTL Analog	Digital I/O. Analog Input 1.		
RA2/AN2/VREF-/SEG16 RA2 AN2 VREF- SEG16	22	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog Input 2. A/D reference voltage (Low) input. SEG16 output for LCD.		
RA3/AN3/VREF+/SEG17 RA3 AN3 VREF+ SEG17	21	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog Input 3. A/D reference voltage (High) input. SEG17 output for LCD.		
RA4/T0CKI/SEG14 RA4 T0CKI SEG14	28	I/O I O	ST ST Analog	Digital I/O. Timer0 external clock input. SEG14 output for LCD.		
RA5/AN4/HLVDIN/SEG15 RA5 AN4 HLVDIN SEG15	27	I/O 	TTL Analog Analog Analog	Digital I/O. Analog Input 4. Low-Voltage Detect input. SEG15 output for LCD.		
RA6				See the OSC2/CLKO/RA6 pin.		
RA7				See the OSC1/CLKI/RA7 pin.		

Legend: TTL = TTL compatible input

CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels

Analog = Analog input

I = Input

O = Output

P = Power

 I^2C = ST with I^2C^{TM} or SMB levels

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

TABLE 1-2: PIC18F6X93 PINOUT I/O DESCRIPTIONS (CONTINUED)

Din Nome	Pin Number	Pin	Buffer	Paramintian	
Pin Name	TQFP	Туре	Type	Description	
				PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.	
RB0/INT0 RB0 INT0	48	I/O I	TTL ST	Digital I/O. External Interrupt 0.	
RB1/INT1/SEG8 RB1 INT1 SEG8	47	I/O I O	TTL ST Analog	Digital I/O. External Interrupt 1. SEG8 output for LCD.	
RB2/INT2/SEG9 RB2 INT2 SEG9	46	I/O I O	TTL ST Analog	Digital I/O. External Interrupt 2. SEG9 output for LCD.	
RB3/INT3/SEG10 RB3 INT3 SEG10	45	I/O I O	TTL ST Analog	Digital I/O. External Interrupt 3. SEG10 output for LCD.	
RB4/KBI0/SEG11 RB4 KBI0 SEG11	44	I/O I O	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. SEG11 output for LCD.	
RB5/KBI1 RB5 KBI1	43	I/O I	TTL TTL	Digital I/O. Interrupt-on-change pin.	
RB6/KBI2/PGC RB6 KBI2 PGC	42	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP™ programming clock pin.	
RB7/KBI3/PGD RB7 KBI3 PGD	37	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.	

Legend: TTL = TTL compatible input

CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels

Analog = Analog input

I = Input

O = Output

P = Power

 I^2C = ST with I^2C^{TM} or SMB levels

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

TABLE 1-2: PIC18F6X93 PINOUT I/O DESCRIPTIONS (CONTINUED)

Din Name	Pin Number	Pin	Buffer	Description		
Pin Name	TQFP	Type	Туре	Description		
				PORTC is a bidirectional I/O port.		
RC0/T10SO/T13CKI RC0 T10SO T13CKI	30	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input.		
RC1/T1OSI/CCP2 RC1 T1OSI CCP2 ⁽¹⁾	29	I/O I I/O	ST Analog ST	Digital I/O. Timer1 oscillator input. Capture 2 input/Compare 2 output/PWM2 output.		
RC2/CCP1/SEG13 RC2 CCP1 SEG13	33	I/O I/O O	ST ST Analog	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output. SEG13 output for LCD.		
RC3/SCK/SCL RC3 SCK SCL	34	I/O I/O I/O	ST ST I ² C	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode.		
RC4/SDI/SDA RC4 SDI SDA	35	I/O I I/O	ST ST I ² C	Digital I/O. SPI data in. I ² C data I/O.		
RC5/SDO/SEG12 RC5 SDO SEG12	36	I/O O O	ST — Analog	Digital I/O. SPI data out. SEG12 output for LCD.		
RC6/TX1/CK1 RC6 TX1 CK1	31	I/O O I/O	ST — ST	Digital I/O. EUSART1 asynchronous transmit. EUSART1 synchronous clock (see related RX1/DT1).		
RC7/RX1/DT1 RC7 RX1 DT1	32	I/O I I/O	ST ST ST	Digital I/O. EUSART1 asynchronous receive. EUSART1 synchronous data (see related TX1/CK1).		

Legend: TTL = TTL compatible input

TL compatible input CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels Analog = Analog input
I = Input O = Output

P = Power $I^2C = ST$ with I^2C^{TM} or SMB levels

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

TABLE 1-2: PIC18F6X93 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number	Pin	Buffer	Description		
PIII Name	TQFP	Type	Туре	Description		
				PORTD is a bidirectional I/O port.		
RD0/SEG0 RD0 SEG0	58	I/O O	ST Analog	Digital I/O. SEG0 output for LCD.		
RD1/SEG1 RD1 SEG1	55	I/O O	ST Analog	Digital I/O. SEG1 output for LCD.		
RD2/SEG2 RD2 SEG2	54	I/O O	ST Analog	Digital I/O. SEG2 output for LCD.		
RD3/SEG3 RD3 SEG3	53	I/O O	ST Analog	Digital I/O. SEG3 output for LCD.		
RD4/SEG4 RD4 SEG4	52	I/O O	ST Analog	Digital I/O. SEG4 output for LCD.		
RD5/SEG5 RD5 SEG5	51	I/O O	ST Analog	Digital I/O. SEG5 output for LCD.		
RD6/SEG6 RD6 SEG6	50	I/O O	ST Analog	Digital I/O. SEG6 output for LCD.		
RD7/SEG7 RD7 SEG7	49	I/O O	ST Analog	Digital I/O. SEG7 output for LCD.		

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels Analog = Analog input
I = Input O = Output

P = Power I^2C = ST with I^2C^{TM} or SMB levels

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

TABLE 1-2: PIC18F6X93 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number	Pin	Buffer	Description		
Fill Name	TQFP	Type	Type	Description		
				PORTE is a bidirectional I/O port.		
LCDBIAS1 LCDBIAS1	2	I	Analog	BIAS1 input for LCD.		
LCDBIAS2 LCDBIAS2	1	I	Analog	BIAS2 input for LCD.		
LCDBIAS3 LCDBIAS3	64	I	Analog	BIAS3 input for LCD.		
COM0 COM0	63	0	Analog	COM0 output for LCD.		
RE4/COM1 RE4 COM1	62	I/O O	ST Analog	Digital I/O. COM1 output for LCD.		
RE5/COM2 RE5 COM2	61	I/O O	ST Analog	Digital I/O. COM2 output for LCD.		
RE6/COM3 RE6 COM3	60	I/O O	ST Analog	Digital I/O. COM3 output for LCD.		
RE7/CCP2/SEG31 RE7 CCP2 ⁽²⁾ SEG31	59	I/O I/O O	ST ST Analog	Digital I/O. Capture 2 input/Compare 2 output/PWM2 output. SEG31 output for LCD.		

Legend: TTL = TTL compatible input

= Schmitt Trigger input with CMOS levels

= Power

= Input

CMOS = CMOS compatible input or output

Analog = Analog input

0 = Output

I²C = ST with I^2C^{TM} or SMB levels

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

TABLE 1-2: PIC18F6X93 PINOUT I/O DESCRIPTIONS (CONTINUED)

Din Nama	Pin Number	Pin	Buffer	Description		
Pin Name	TQFP	Туре	Туре	Description		
				PORTF is a bidirectional I/O port.		
RF0/AN5/SEG18 RF0 AN5 SEG18	18	I/O I O	ST Analog Analog	Digital I/O. Analog input 5. SEG18 output for LCD.		
RF1/AN6/C2OUT/SEG19 RF1 AN6 C2OUT SEG19	17	I/O I O O	ST Analog — Analog	Digital I/O. Analog input 6. Comparator 2 output. SEG19 output for LCD.		
RF2/AN7/C1OUT/SEG20 RF2 AN7 C1OUT SEG20	16	I/O I O O	ST Analog — Analog	Digital I/O. Analog input 7. Comparator 1 output. SEG20 output for LCD.		
RF3/AN8/SEG21 RF3 AN8 SEG21	15	I/O I O	ST Analog Analog	Digital I/O. Analog input 8. SEG21 output for LCD.		
RF4/AN9/SEG22 RF4 AN9 SEG22	14	I/O I O	ST Analog Analog	Digital I/O. Analog input 9. SEG22 output for LCD.		
RF5/AN10/CVREF/SEG23 RF5 AN10 CVREF SEG23	13	I/O I O O	ST Analog Analog Analog	Digital I/O. Analog input 10. Comparator reference voltage output. SEG23 output for LCD.		
RF6/AN11/SEG24 RF6 AN11 SEG24	12	I/O I O	ST Analog Analog	Digital I/O. Analog input 11. SEG24 output for LCD.		
RF7/SS/SEG25 RF7 SS SEG25	11	I/O I O	ST TTL Analog	Digital I/O. SPI™ slave select input. SEG25 output for LCD.		

Legend: TTL = TTL compatible input

levels A

CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels
I = Input

Analog = Analog input

P = Power

O = Output I^2C = ST with I^2C^{TM} or SMB levels

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

TABLE 1-2: PIC18F6X93 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number	Pin	Buffer	Description
	TQFP	Туре	Туре	2000.1911011
				PORTG is a bidirectional I/O port.
RG0/SEG30 RG0 SEG30	3	I/O O	ST Analog	Digital I/O. SEG30 output for LCD.
RG1/TX2/CK2/SEG29 RG1 TX2 CK2 SEG29	4	I/O O I/O O	ST — ST Analog	Digital I/O. AUSART2 asynchronous transmit. AUSART2 synchronous clock (see related RX2/DT2). SEG29 output for LCD.
RG2/RX2/DT2/SEG28 RG2 RX2 DT2 SEG28	5	I/O I I/O O	ST ST ST Analog	Digital I/O. AUSART2 asynchronous receive. AUSART2 synchronous data (see related TX2/CK2). SEG28 output for LCD.
RG3/SEG27 RG3 SEG27	6	I/O O	ST Analog	Digital I/O. SEG27 output for LCD.
RG4/SEG26 RG4 SEG26	8	I/O O	ST Analog	Digital I/O. SEG26 output for LCD.
RG5				See MCLR/VPP/RG5 pin.
Vss	9, 25, 41, 56	Р	_	Ground reference for logic and I/O pins.
VDD	10, 26, 38, 57	Р		Positive supply for logic and I/O pins.
AVss	20	Р		Ground reference for analog modules.
AVDD	19	Р		Positive supply for analog modules.

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels Analog = Analog input
I = Input O = Output

P = Power I^2C = ST with I^2C^{TM} or SMB levels

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

TABLE 1-3: PIC18F8X93 PINOUT I/O DESCRIPTIONS

Pin Name	Pin Number	Pin	Buffer Type	Description
Pili Name	TQFP	Type		Description
MCLR/VPP/RG5	9			Master Clear (input) or programming voltage (input).
MCLR		I	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device
VPP		Р		Programming voltage input.
RG5		I	ST	Digital input.
OSC1/CLKI/RA7	49			Oscillator crystal or external clock input.
OSC1		I	ST	Oscillator crystal input or external clock source input.
CLKI			CMOS	ST buffer when configured in RC mode; CMOS otherwise. External clock source input. Always associated with
CLN		'	CIVIOS	pin function, OSC1. (See related OSC1/CLKI,
				OSC2/CLKO pins.)
RA7		I/O	TTL	General purpose I/O pin.
OSC2/CLKO/RA6	50			Oscillator crystal or clock output.
OSC2		0	_	Oscillator crystal output. Connects to crystal or
CLKO		0	_	resonator in Crystal Oscillator mode. In RC mode, OSC2 pin outputs CLKO, which has
OLINO				1/4 the frequency of OSC1 and denotes the
				instruction cycle rate.
RA6		I/O	TTL	General purpose I/O pin.

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels Analog = Analog input I = Input O = Output

P = Power I^2C = ST with I^2C^{TM} or SMB levels

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

TABLE 1-3: PIC18F8X93 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number	Pin	Buffer	Description
Pin Name	TQFP	Type	Туре	Description
				PORTA is a bidirectional I/O port.
RA0/AN0 RA0 AN0	30	I/O I	TTL Analog	Digital I/O. Analog Input 0.
RA1/AN1 RA1 AN1	29	I/O I	TTL Analog	Digital I/O. Analog Input 1.
RA2/AN2/VREF-/SEG16 RA2 AN2 VREF- SEG16	28	I/O 	TTL Analog Analog Analog	Digital I/O. Analog Input 2. A/D reference voltage (Low) input. SEG16 output for LCD.
RA3/AN3/VREF+/SEG17 RA3 AN3 VREF+ SEG17	27	I/O 	TTL Analog Analog Analog	Digital I/O. Analog Input 3. A/D reference voltage (High) input. SEG17 output for LCD.
RA4/T0CKI/SEG14 RA4 T0CKI SEG14	34	I/O I O	ST ST Analog	Digital I/O. Timer0 external clock input. SEG14 output for LCD.
RA5/AN4/HLVDIN/SEG15 RA5 AN4 HLVDIN SEG15	33	I/O 	TTL Analog Analog Analog	Digital I/O. Analog Input 4. Low-Voltage Detect input. SEG15 output for LCD.
RA6				See the OSC2/CLKO/RA6 pin.
RA7				See the OSC1/CLKI/RA7 pin.

Legend: TTL = TTL compatible input

CMOS = CMOS compatible input or output Analog = Analog input

= Schmitt Trigger input with CMOS levels = Input 0 = Output

= ST with I^2C^{TM} or SMB levels = Power I²C

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

TABLE 1-3: PIC18F8X93 PINOUT I/O DESCRIPTIONS (CONTINUED)

Din Nome	Pin Number	Pin	Buffer	Description		
Pin Name	TQFP	Туре	Type	Description		
				PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-ups on all inputs.		
RB0/INT0 RB0 INT0	58	I/O I	TTL ST	Digital I/O. External interrupt 0.		
RB1/INT1/SEG8 RB1 INT1 SEG8	57	I/O I O	TTL ST Analog	Digital I/O. External interrupt 1. SEG8 output for LCD.		
RB2/INT2/SEG9 RB2 INT2 SEG9	56	I/O I O	TTL ST Analog	Digital I/O. External interrupt 2. SEG9 output for LCD.		
RB3/INT3/SEG10 RB3 INT3 SEG10	55	I/O I O	TTL ST Analog	Digital I/O. External interrupt 3. SEG10 output for LCD.		
RB4/KBI0/SEG11 RB4 KBI0 SEG11	54	I/O I O	TTL TTL Analog	Digital I/O. Interrupt-on-change pin. SEG11 output for LCD.		
RB5/KBI1 RB5 KBI1	53	I/O I	TTL TTL	Digital I/O. Interrupt-on-change pin.		
RB6/KBI2/PGC RB6 KBI2 PGC	52	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP™ programming clock pin.		
RB7/KBI3/PGD RB7 KBI3 PGD	47	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pin.		

Legend: TTL = TTL compatible input

CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels

Analog = Analog input

I = Input

O = Output

P = Power

 I^2C = ST with I^2C^{TM} or SMB levels

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

TABLE 1-3: PIC18F8X93 PINOUT I/O DESCRIPTIONS (CONTINUED)

Din Name	Pin Number	Pin	Buffer	Description			
Pin Name	TQFP	Type	Туре	Description			
				PORTC is a bidirectional I/O port.			
RC0/T1OSO/T13CKI RC0 T1OSO T13CKI	36	I/O O I	ST — ST	Digital I/O. Timer1 oscillator output. Timer1/Timer3 external clock input.			
RC1/T1OSI/CCP2 RC1 T1OSI CCP2 ⁽¹⁾	35	I/O I I/O	ST CMOS ST	Digital I/O. Timer1 oscillator input. Capture 2 input/Compare 2 output/PWM2 output.			
RC2/CCP1/SEG13 RC2 CCP1 SEG13	43	I/O I/O O	ST ST Analog	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output. SEG13 output for LCD.			
RC3/SCK/SCL RC3 SCK SCL	44	I/O I/O I/O	ST ST I ² C	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode.			
RC4/SDI/SDA RC4 SDI SDA	45	I/O I I/O	ST ST I ² C	Digital I/O. SPI data in. I ² C data I/O.			
RC5/SDO/SEG12 RC5 SDO SEG12	46	I/O O O	ST — Analog	Digital I/O. SPI data out. SEG12 output for LCD.			
RC6/TX1/CK1 RC6 TX1 CK1	37	I/O O I/O	ST — ST	Digital I/O. EUSART1 asynchronous transmit. EUSART1 synchronous clock (see related RX1/DT1).			
RC7/RX1/DT1 RC7 RX1 DT1	38	I/O I I/O	ST ST ST	Digital I/O. EUSART1 asynchronous receive. EUSART1 synchronous data (see related TX1/CK1).			

Legend: TTL = TTL compatible input

CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels

Analog = Analog input

I = Input

O = Output

P = Power

 I^2C = ST with I^2C^{TM} or SMB levels

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

TABLE 1-3: PIC18F8X93 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number	Pin	Buffer	Description
Pili Name	TQFP	Type	Туре	Description
				PORTD is a bidirectional I/O port.
RD0/SEG0 RD0 SEG0	72	I/O O	ST Analog	Digital I/O. SEG0 output for LCD.
RD1/SEG1 RD1 SEG1	69	I/O O	ST Analog	Digital I/O. SEG1 output for LCD.
RD2/SEG2 RD2 SEG2	68	I/O O	ST Analog	Digital I/O. SEG2 output for LCD.
RD3/SEG3 RD3 SEG3	67	I/O O	ST Analog	Digital I/O. SEG3 output for LCD.
RD4/SEG4 RD4 SEG4	66	I/O O	ST Analog	Digital I/O. SEG4 output for LCD.
RD5/SEG5 RD5 SEG5	65	I/O O	ST Analog	Digital I/O. SEG5 output for LCD.
RD6/SEG6 RD6 SEG6	64	I/O O	ST Analog	Digital I/O. SEG6 output for LCD.
RD7/SEG7 RD7 SEG7	63	I/O O	ST Analog	Digital I/O. SEG7 output for LCD.

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels Analog = Analog input
I = Input O = Output

P = Power I^2C = ST with I^2C^{TM} or SMB levels

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

TABLE 1-3: PIC18F8X93 PINOUT I/O DESCRIPTIONS (CONTINUED)

Din Name	Pin Number	Pin	Buffer	Description
Pin Name	TQFP	Туре	Type	Description
				PORTE is a bidirectional I/O port.
LCDBIAS1 LCDBIAS1	4	1	Analog	BIAS1 input for LCD.
LCDBIAS2 LCDBIAS2	3	1	Analog	BIAS2 input for LCD.
LCDBIAS3 LCDBIAS3	78	1	Analog	BIAS3 input for LCD.
COM0 COM0	77	0	Analog	COM0 output for LCD.
RE4/COM1 RE4 COM1	76	I/O O	ST Analog	Digital I/O. COM1 output for LCD.
RE5/COM2 RE5 COM2	75	I/O O	ST Analog	Digital I/O. COM2 output for LCD.
RE6/COM3 RE6 COM3	74	I/O O	ST Analog	Digital I/O. COM3 output for LCD.
RE7/CCP2/SEG31 RE7 CCP2 ⁽²⁾ SEG31	73	I/O I/O O	ST ST Analog	Digital I/O. Capture 2 input/Compare 2 output/PWM2 output. SEG31 output for LCD.

Legend: TTL = TTL compatible input

ST = Schmitt Trigger input with CMOS levels

I = Input

P = Power

CMOS = CMOS compatible input or output

Analog = Analog input

O = Output

 I^2C = ST with I^2C^{TM} or SMB levels

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

TABLE 1-3: PIC18F8X93 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number	Pin	Buffer	Description
Pin Name	TQFP	Туре	Туре	Description
DECAME/OF O.40	0.4			PORTF is a bidirectional I/O port.
RF0/AN5/SEG18 RF0 AN5 SEG18	24	I/O I O	ST Analog Analog	Digital I/O. Analog Input 5. SEG18 output for LCD.
RF1/AN6/C2OUT/SEG19 RF1 AN6 C2OUT SEG19	23	I/O I O O	ST Analog — Analog	Digital I/O. Analog Input 6. Comparator 2 output. SEG19 output for LCD.
RF2/AN7/C1OUT/SEG20 RF2 AN7 C1OUT SEG20	18	I/O I O O	ST Analog — Analog	Digital I/O. Analog Input 7. Comparator 1 output. SEG20 output for LCD.
RF3/AN8/SEG21 RF3 AN8 SEG21	17	I/O I O	ST Analog Analog	Digital I/O. Analog Input 8. SEG21 output for LCD.
RF4/AN9/SEG22 RF4 AN9 SEG22	16	I/O I O	ST Analog Analog	Digital I/O. Analog Input 9. SEG22 output for LCD.
RF5/AN10/CVREF/SEG23 RF5 AN10 CVREF SEG23	15	I/O I O O	ST Analog Analog Analog	Digital I/O. Analog Input 10. Comparator reference voltage output. SEG23 output for LCD.
RF6/AN11/SEG24 RF6 AN11 SEG24	14	I/O I O	ST Analog Analog	Digital I/O. Analog Input 11. SEG24 output for LCD.
RF7/SS/SEG25 RF7 SS SEG25	13	I/O I O	ST TTL Analog	Digital I/O. SPI slave select input. SEG25 output for LCD.

Legend: TTL = TTL compatible input

CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels

Analog = Analog input

I = Input

O = Output

P = Power

 I^2C = ST with I^2C^{TM} or SMB levels

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

TABLE 1-3: PIC18F8X93 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number	Pin	Buffer	Description			
PIII Name	TQFP	Type	Туре	Description			
				PORTG is a bidirectional I/O port.			
RG0/SEG30 RG0 SEG30	5	I/O O	ST Analog	Digital I/O. SEG30 output for LCD.			
RG1/TX2/CK2/SEG29 RG1 TX2 CK2 SEG29	6	I/O O I/O O	ST — ST Analog	Digital I/O. AUSART2 asynchronous transmit. AUSART2 synchronous clock (see related RX2/DT2). SEG29 output for LCD.			
RG2/RX2/DT2/SEG28 RG2 RX2 DT2 SEG28	7	I/O - I/O O	ST ST ST Analog	Digital I/O. AUSART2 asynchronous receive. AUSART2 synchronous data (see related TX2/CK2). SEG28 output for LCD.			
RG3/SEG27 RG3 SEG27	8	I/O O	ST Analog	Digital I/O. SEG27 output for LCD.			
RG4/SEG26 RG4 SEG26	10	I/O O	ST Analog	Digital I/O. SEG26 output for LCD.			
RG5				See MCLR/VPP/RG5 pin.			

Legend: TTL = TTL compatible input

= Schmitt Trigger input with CMOS levels

ST = SCHMILL MIGGER INPUT WITH CMOS levels

P = Power

CMOS = CMOS compatible input or output

Analog = Analog input

O = Output

 I^2C = ST with I^2C^{TM} or SMB levels

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

TABLE 1-3: PIC18F8X93 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number	Pin	Buffer	Description
PIII Name	TQFP	Type	Туре	Description
				PORTH is a bidirectional I/O port.
RH0/SEG47 RH0 SEG47	79	I/O O	ST Analog	Digital I/O. SEG47 output for LCD.
RH1/SEG46 RH1 SEG46	80	I/O O	ST Analog	Digital I/O. SEG46 output for LCD.
RH2/SEG45 RH2 SEG45	1	I/O O	ST Analog	Digital I/O. SEG45 output for LCD.
RH3/SEG44 RH3 SEG44	2	I/O O	ST Analog	Digital I/O. SEG44 output for LCD.
RH4/SEG40 RH4 SEG40	22	I/O O	ST Analog	Digital I/O. SEG40 output for LCD.
RH5/SEG41 RH5 SEG41	21	I/O O	ST Analog	Digital I/O. SEG41 output for LCD.
RH6/SEG42 RH6 SEG42	20	I/O O	ST Analog	Digital I/O. SEG42 output for LCD.
RH7/SEG43 RH7 SEG43	19	I/O O	ST Analog	Digital I/O. SEG43 output for LCD.

Legend: TTL = TTL compatible input CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels Analog = Analog input
I = Input O = Output

P = Power I^2C = ST with I^2C^{TM} or SMB levels

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

TABLE 1-3: PIC18F8X93 PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Number	Pin	Buffer	Description			
Pili Naille	TQFP	Type	Туре	Description			
				PORTJ is a bidirectional I/O port.			
RJ0/SEG32 RJ0 SEG32	62	I/O O	ST Analog	Digital I/O. SEG32 output for LCD.			
RJ1/SEG33 RJ1 SEG33	61	I/O O	ST Analog	Digital I/O. SEG33 output for LCD.			
RJ2/SEG34 RJ2 SEG34	60	I/O O	ST Analog	Digital I/O. SEG34 output for LCD.			
RJ3/SEG35 RJ3 SEG35	59	I/O O	ST Analog	Digital I/O. SEG35 output for LCD.			
RJ4/SEG39 RJ4 SEG39	39	I/O O	ST Analog	Digital I/O. SEG39 output for LCD.			
RJ5/SEG38 RJ5 SEG38	40	I/O O	ST Analog	Digital I/O SEG38 output for LCD.			
RJ6/SEG37 RJ6 SEG37	41	I/O O	ST Analog	Digital I/O. SEG37 output for LCD.			
RJ7/SEG36 RJ7 SEG36	42	I/O O	ST Analog	Digital I/O. SEG36 output for LCD.			
Vss	11, 31, 51, 70	Р	_	Ground reference for logic and I/O pins.			
VDD	12, 32, 48, 71	Р		Positive supply for logic and I/O pins.			
AVss	26	Р	_	Ground reference for analog modules.			
AVDD	25	Р	_	Positive supply for analog modules.			

Legend: TTL = TTL compatible input

ST = Schmitt Trigger input with CMOS levels

I = Input

P = Power

CMOS = CMOS compatible input or output

Analog = Analog input

O = Output

 I^2C = ST with I^2C^{TM} or SMB levels

Note 1: Default assignment for CCP2 when Configuration bit, CCP2MX, is set.

2.0 12-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) Converter module converts an analog input signal to a 12-bit digital number. The module has 12 inputs for both PIC18F6393/6493 (64-pin) and PIC18F8393/8493 (80-pin) devices.

The module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)

The ADCON0 register, shown in Register 2-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 2-2, configures the functions of the port pins. The ADCON2 register, shown in Register 2-3, configures the A/D clock source, programmed acquisition time and justification.

REGISTER 2-1: ADCON0: A/D CONTROL REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	-	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0' bit 5-2 CHS<3:0>: Analog Channel Select bits 0000 = Channel 0 (AN0) 0001 = Channel 1 (AN1) 0010 = Channel 2 (AN2) 0011 = Channel 3 (AN3) 0100 = Channel 4 (AN4) 0101 = Channel 5 (AN5) 0110 = Channel 6 (AN6) 0111 = Channel 7 (AN7) 1000 = Channel 8 (AN8) 1001 = Channel 9 (AN9) 1010 = Channel 10 (AN10) 1011 = Channel 11 (AN11) 1100 = Unimplemented⁽¹⁾ 1101 = Unimplemented(1) 1110 = Unimplemented(1) 1111 = Unimplemented⁽¹⁾ bit 1 GO/DONE: A/D Conversion Status bit When ADON = 1: 1 = A/D conversion in progress 0 = A/D Idlebit 0 ADON: A/D On bit 1 = A/D Converter module is enabled 0 = A/D Converter module is disabled

Note 1: Performing a conversion on unimplemented channels will return a floating input measurement.

REGISTER 2-2: ADCON1: A/D CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7-6 **Unimplemented:** Read as '0'

bit 5-4 VCFG<1:0>: Voltage Reference Configuration bits

	A/D VREF+	A/D VREF-		
00	AVDD	AVss		
01	External VREF+	AVss		
10	AVDD	External VREF-		
11	External VREF+	External VREF-		

bit 3-0 **PCFG<3:0>:** A/D Port Configuration Control bits

PCFG<3:0>	AN11	AN10	AN9	AN8	AN7	AN6	AN5	AN4	AN3	AN2	AN1	ANO
0000	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0001	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0010	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0011	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0100	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0101	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
0110	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α	Α
0111	D	D	D	D	Α	Α	Α	Α	Α	Α	Α	Α
1000	D	D	D	D	D	Α	Α	Α	Α	Α	Α	Α
1001	D	D	D	D	D	D	Α	Α	Α	Α	Α	Α
1010	D	D	D	D	D	D	D	Α	Α	Α	Α	Α
1011	D	D	D	D	D	D	D	D	Α	Α	Α	Α
1100	D	D	D	D	D	D	D	D	D	Α	Α	Α
1101	D	D	D	D	D	D	D	D	D	D	Α	Α
1110	D	D	D	D	D	D	D	D	D	D	D	Α
1111	D	D	D	D	D	D	D	D	D	D	D	D

A = Analog input

D = Digital I/O

REGISTER 2-3: ADCON2: A/D CONTROL REGISTER 2

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	_	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified

0 = Left justified

bit 6 **Unimplemented:** Read as '0'

bit 5-3 ACQT<2:0>: A/D Acquisition Time Select bits

111 = 20 TAD

110 = 16 TAD

101 = 12 TAD 100 = 8 TAD

011 = 6 TAD

011 - 0 TAD010 = 4 TAD

001 = 2 TAD

000 = 0 TAD⁽¹⁾

bit 2-0 ADCS<2:0>: A/D Conversion Clock Select bits

111 = FRC (clock derived from A/D RC oscillator)⁽¹⁾

110 = Fosc/64

101 = Fosc/16

100 = Fosc/4

011 = FRC (clock derived from A/D RC oscillator)(1)

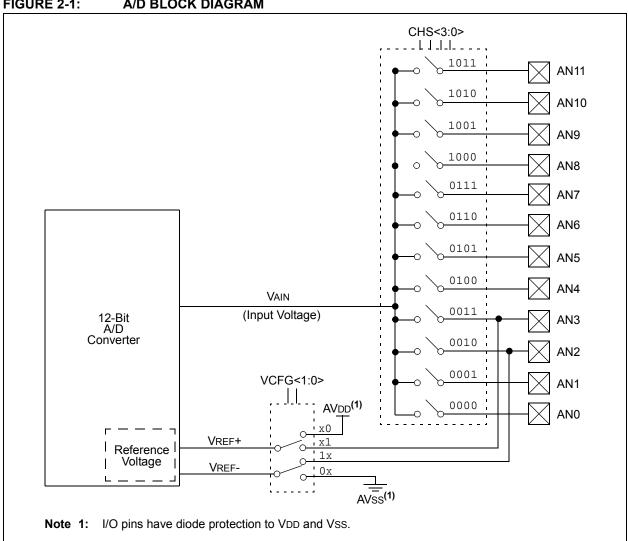
010 = Fosc/32

001 = Fosc/8

000 = Fosc/2

Note 1: If the A/D FRC clock source is selected, a delay of one Tcy (instruction cycle) is added before the A/D clock starts. This allows the SLEEP instruction to be executed before starting a conversion.

The analog reference voltage is software-selectable to either the device's positive and negative supply voltage (AVDD and AVSS), or the voltage level on the RA3/AN3/ VREF+/SEG17 and RA2/AN2/VREF-/SEG16 pins.


The A/D Converter has a unique feature of being able to operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

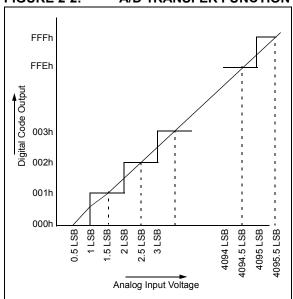
The output of the sample and hold is the input into the converter, which generates the result via successive approximation.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted.

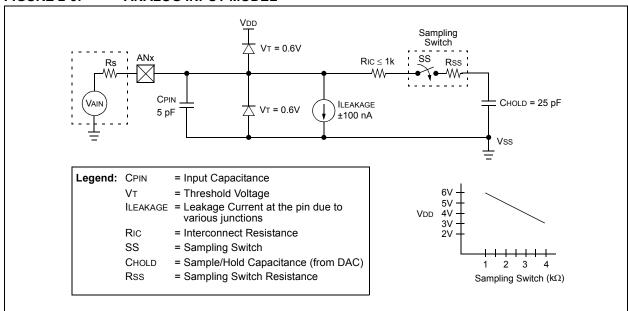
Each port pin associated with the A/D Converter can be configured as an analog input or a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0<1>) is cleared and the A/D Interrupt Flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 2-1.

FIGURE 2-1: A/D BLOCK DIAGRAM

The value in the ADRESH:ADRESL registers is unknown following Power-on and Brown-out Resets and is not affected by any other Reset.


After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see **Section 2.1** "A/D Acquisition Requirements". After this acquisition time has elapsed, the A/D conversion can be started. An acquisition time can be programmed to occur between setting the GO/DONE bit and the actual start of the conversion.

The following steps should be followed to perform an A/D conversion:


- 1. Configure the A/D module:
 - Configure analog pins, voltage reference and digital I/O (ADCON1)
 - · Select A/D input channel (ADCON0)
 - · Select A/D acquisition time (ADCON2)
 - Select A/D conversion clock (ADCON2)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - · Clear ADIF bit
 - · Set ADIE bit
 - · Set GIE bit
- 3. Wait the required acquisition time (if required).
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0<1>)

- 5. Wait for A/D conversion to complete by either:
 - Polling for the GO/DONE bit to be cleared OR
 - · Waiting for the A/D interrupt
- 6. Read A/D Result registers (ADRESH:ADRESL); clear bit, ADIF, if required.
- For the next conversion, go to Step 1 or Step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2 TAD is required before the next acquisition starts.

2.1 A/D Acquisition Requirements

For the A/D Converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 2-3. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor, CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 2.5 k Ω . After the analog input channel is selected (changed), the channel must be sampled for at least the minimum acquisition time before starting a conversion.

Note:

When the conversion is started, the holding capacitor is disconnected from the input pin.

To calculate the minimum acquisition time, Equation 2-1 may be used. This equation assumes that 1/2 LSb error is used (4096 steps for the 12-bit A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

Equation 2-3 shows the calculation of the minimum required acquisition time, TACQ. This calculation is based on the following application system assumptions:

CHOLD = 25 pF Rs = 2.5 k Ω Conversion Error \leq 1/2 LSb

VDD = $3V \rightarrow Rss = 4 \text{ k}\Omega$ Temperature = 85°C (system max.)

EQUATION 2-1: A/D ACQUISITION TIME

```
TACQ = Amplifier Settling Time + Holding Capacitor Charging Time + Temperature Coefficient
= TAMP + TC + TCOFF
```

EQUATION 2-2: A/D MINIMUM CHARGING TIME

```
V_{HOLD} = (V_{REF} - (V_{REF}/4096)) \cdot (1 - e^{(-T_{C}/C_{HOLD}(R_{IC} + R_{SS} + R_{S}))})
or
T_{C} = (C_{HOLD})(R_{IC} + R_{SS} + R_{S}) \ln(1/4096)
```

EQUATION 2-3: CALCULATING THE MINIMUM REQUIRED ACQUISITION TIME

2.2 Selecting and Configuring Acquisition Time

The ADCON2 register allows the user to select an acquisition time that occurs each time the GO/DONE bit is set. It also gives users the option to use an automatically determined acquisition time.

Acquisition time may be set with the ACQT<2:0> bits (ADCON2<5:3>), which provide a range of 2 to 20 TAD. When the GO/DONE bit is set, the A/D module continues to sample the input for the selected acquisition time, then automatically begins a conversion. Since the acquisition time is programmed, there may be no need to wait for an acquisition time between selecting a channel and setting the GO/DONE bit.

Manual acquisition is selected when ACQT<2:0> = 000. When the GO/DONE bit is set, sampling is stopped and a conversion begins. The user is responsible for ensuring the required acquisition time has passed between selecting the desired input channel and setting the GO/DONE bit. This option is also the default Reset state of the ACQT<2:0> bits and is compatible with devices that do not offer programmable acquisition times.

In either case, when the conversion is completed, the GO/DONE bit is cleared, the ADIF flag is set and the A/D begins sampling the currently selected channel again. If an acquisition time is programmed, there is nothing to indicate if the acquisition time has ended or if the conversion has begun.

2.3 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 13 TAD per 12-bit conversion. The source of the A/D conversion clock is software-selectable. There are seven possible options for TAD:

- 2 Tosc
- 4 Tosc
- 8 Tosc
- 16 Tosc
- 32 Tosc
- 64 Tosc
- · Internal RC Oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be as short as possible, but greater than the minimum TAD. (See parameter 130 for more information.)

Table 2-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

TABLE 2-1: TAD vs. DEVICE OPERATING FREQUENCIES

A/D Clock Sou	Assumes TAD Min. = 0.8 μs		
Operation	ADCS<2:0>	Maximum Fosc	
2 Tosc	000	2.5 MHz	
4 Tosc	100	5 MHz	
8 Tosc	001	10 MHz	
16 Tosc	101	20 MHz	
32 Tosc	010	40 MHz	
64 Tosc	110	40 MHz	
RC ⁽¹⁾	x11	1 MHz ⁽²⁾	

Note 1: The RC source has a typical TAD time of 2.5 μ s.

2: For device frequencies above 1 MHz, the device must be in Sleep for the entire conversion or a Fosc divider should be used instead; otherwise, the A/D accuracy specification may not be met.

2.4 Operation in Power-Managed Modes

If the A/D is expected to operate while the device is in a power-managed mode, the ACQT<2:0> and ADCS<2:0> bits in ADCON2 should be updated in accordance with the clock source to be used in that mode. After entering the mode, an A/D acquisition or conversion may be started. Once started, the device should continue to be clocked by the same clock source until the conversion has been completed.

If desired, the device may be placed into the corresponding Idle mode during the conversion. If the device clock frequency is less than 1 MHz, the A/D RC clock source should be selected.

Operation in Sleep mode requires the A/D FRC clock to be selected. If bits, ACQT<2:0>, are set to '000' and a conversion is started, the conversion will be delayed one instruction cycle to allow execution of the SLEEP instruction, and entry to Sleep mode. The IDLEN bit (OSCCON<7>) must have already been cleared prior to starting the conversion.

2.5 Configuring Analog Port Pins

The ADCON1, TRISA, TRISF and TRISH registers all configure the A/D port pins. The port pins needed as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS<3:0> bits and the TRIS bits.

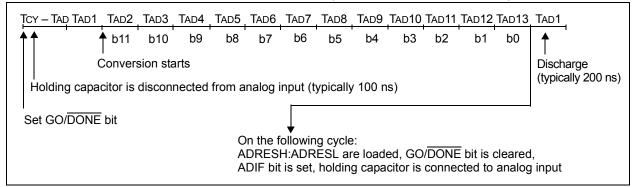
- Note 1: When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Analog conversion on pins configured as digital pins can be performed. The voltage on the pin will be accurately converted.
 - 2: Analog levels on any pin defined as a digital input may cause the digital input buffer to consume current out of the device's specification limits.

2.6 A/D Conversions

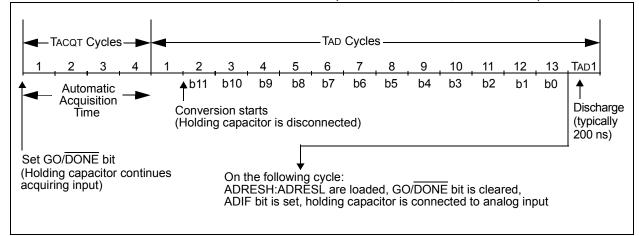
Figure 2-4 shows the operation of the A/D Converter after the GO/DONE bit has been set and the ACQT<2:0> bits are cleared. A conversion is started after the following instruction to allow entry into Sleep mode before the conversion begins.

Figure 2-5 shows the operation of the A/D Converter after the GO/DONE bit has been set, the ACQT<2:0> bits are set to '010' and a 4 TAD acquisition time has been selected before the conversion starts.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D Result register pair will not be updated with the partially completed A/D conversion sample. This means the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers).


After the A/D conversion is completed or aborted, a 2 TAD wait is required before the next acquisition can be started. After this wait, acquisition on the selected channel is automatically started.

Note: The GO/DONE bit should NOT be set in the same instruction that turns on the A/D. Code should wait at least 2 μs after enabling the A/D before beginning an acquisition and conversion cycle.


2.7 Discharge

The discharge phase is used to initialize the value of the holding capacitor. The array is discharged before every sample. This feature helps to optimize the unity gain amplifier, as the circuit always needs to charge the capacitor array, rather than charge/discharge based on previous measure values.

FIGURE 2-4: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 000, TACQ = 0)

FIGURE 2-5: A/D CONVERSION TAD CYCLES (ACQT<2:0> = 010, TACQ = 4 TAD)

2.8 Use of the ECCP2 Trigger

An A/D conversion can be started by the Special Event Trigger of the ECCP2 module. This requires that the CCP2M<3:0> bits (CCP2CON<3:0>) be programmed as '1011' and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D acquisition and conversion, and the Timer1 (or Timer3) counter will be reset to zero. Timer1 (or Timer3) is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving ADRESH:ADRESL to the desired location).

The appropriate analog input channel must be selected and the minimum acquisition period is either timed by the user, or an appropriate TACQ time selected before the Special Event Trigger sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), the Special Event Trigger will be ignored by the A/D module, but will still reset the Timer1 (or Timer3) counter.

TABLE 2-2: REGISTERS ASSOCIATED WITH A/D OPERATION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	(3)
PIR1	_	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	(3)
PIE1	_	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	(3)
IPR1	_	ADIP	RC1IP	TX1IP	SSP1IP	CCP1IP	TMR2IP	TMR1IP	(3)
PIR2	OSCFIF	CMIF	_	_	BCL1IF	HLVDIF	TMR3IF	CCP2IF	(3)
PIE2	OSCFIE	CMIE	_	_	BCL1IE	HLVDIE	TMR3IE	CCP2IE	(3)
IPR2	OSCFIP	CMIP	_	_	BCL1IP	HLVDIP	TMR3IP	CCP2IP	(3)
ADRESH	A/D Result	Register Hig	h Byte						(3)
ADRESL	A/D Result	Register Lov	w Byte						(3)
ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	(3)
ADCON1	_	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	(3)
ADCON2	ADFM	_	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	(3)
TRISA	TRISA7 ⁽¹⁾	TRISA6 ⁽¹⁾	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	(3)
TRISF	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	(3)
TRISH ⁽²⁾	TRISH7	TRISH6	TRISH5	TRISH4	TRISH3	TRISH2	TRISH1	TRISH0	(3)

Legend: — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: PORTA<7:6> and their direction bits are individually configured as port pins based on various primary oscillator modes. When disabled, these bits read as '0'.

- **2:** These registers are not implemented on 64-pin devices.
- 3: For these Reset values, see the "PIC18F6390/6490/8390/8490 Data Sheet" (DS39629).

3.0 SPECIAL FEATURES OF THE CPU

Note:

For additional details on the Configuration bits, refer to **Section 23.1 "Configuration Bits" in** the "PIC18F6390/6490/8390/8490 *Data Sheet"* (DS39629). Device ID information presented in this section is for the PIC18F6393/6493/8393/8493 devices only.

PIC18F6393/6493/8393/8493 devices include several features intended to maximize reliability and minimize cost through elimination of external components. These include:

· Device ID Registers

3.1 Device ID Registers

The Device ID registers are "read-only" registers. They identify the device type and revision to device programmers and can be read by firmware using table reads.

TABLE 3-1: DEVICE IDs

File N	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
3FFFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	xxxx xxxx(1)
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	xxxx xxxx(1)

Legend: x = unknown

Note 1: See Register 3-1 and Register 3-2 for DEVID values. DEVID registers are read-only and cannot be programmed by the user.

REGISTER 3-1: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F6393/6493/8393/8493 DEVICES

R	R	R	R	R	R	R	R
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0
bit 7							bit 0

Legend:

R = Read-only bit P = Programmable bit U = Unimplemented bit, read as '0'
-n = Value when device is unprogrammed u = Unchanged from programmed state

bit 7-5 **DEV<2:0>:** Device ID bits

See Register 3-2 for a complete listing.

bit 4-0 **REV<4:0>:** Revision ID bits

These bits are used to indicate the device revision.

REGISTER 3-2: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F6393/6493/8393/8493 DEVICES

R	R	R	R	R	R	R	R
DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
bit 7							bit 0

Legend:

R = Read-only bit P = Programmable bit U = Unimplemented bit, read as '0'
-n = Value when device is unprogrammed u = Unchanged from programmed state

bit 7-0 **DEV10:DEV3:** Device ID bits

Device	DEV<10:3> (DEVID2<7:0>)	DEV<2:0> (DEVID1<7:5>)
PIC18F6393	0001 1010	000
PIC18F6493	0000 1110	000
PIC18F8393	0001 1010	001
PIC18F8493	0000 1110	001

4.0 ELECTRICAL CHARACTERISTICS

Note: Other than some basic data, this section documents only the PIC18F6393/6493/8393/8493 devices' specifications that differ from those of the PIC18F6390/6490/8390/8490 devices. For detailed information on the electrical specifications shared by the PIC18F6393/6493/8393/8493 and PIC18F6390/6490/8390/8490 devices, see the "PIC18F6390/6490/8390/8490 Data Sheet" (DS39629).

Absolute Maximum Ratings(†)

Storage temperature65°C to +150°C Voltage on any pin with respect to Vss (except VDD and $\overline{\text{MCLR}}$)0.3V to (VDD + 0.3V) Voltage on VDD with respect to Vss0.3V to +7.5V Voltage on $\overline{\text{MCLR}}$ with respect to Vss (Note 2) 0V to +13.25V
Voltage on VDD with respect to Vss0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)
Total power dissipation (Note 1)
Maximum current out of Vss pin
Maximum current into VDD pin
Input clamp current, lik (Vi < 0 or Vi > VDD) $\pm 20 \text{ mA}$
Output clamp current, lok (Vo < 0 or Vo > VDD) ± 20 mA
Maximum output current sunk by any I/O pin
Maximum output current sourced by any I/O pin
Maximum current sunk by all ports
Maximum current sourced by all ports

- Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD Σ IOH} + Σ {(VDD VOH) x IOH} + Σ (VOL x IOL)
 - 2: Voltage spikes below Vss at the $\overline{MCLR}/VPP/RG5$ pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{MCLR}/VPP/RG5$ pin, rather than pulling this pin directly to Vss.

† **NOTICE:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

FIGURE 4-1: PIC18F6393/6493/8393/8493 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

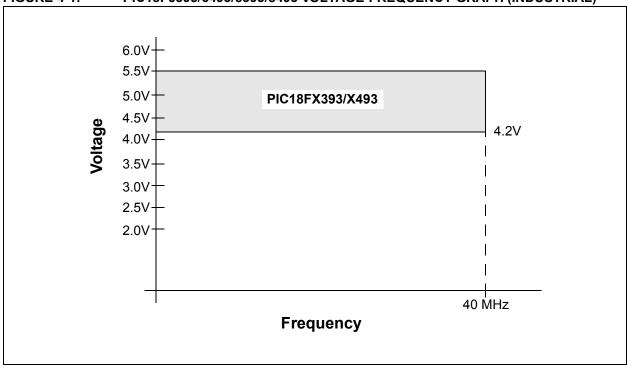


FIGURE 4-2: PIC18LF6393/6493/8393/8493 VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)

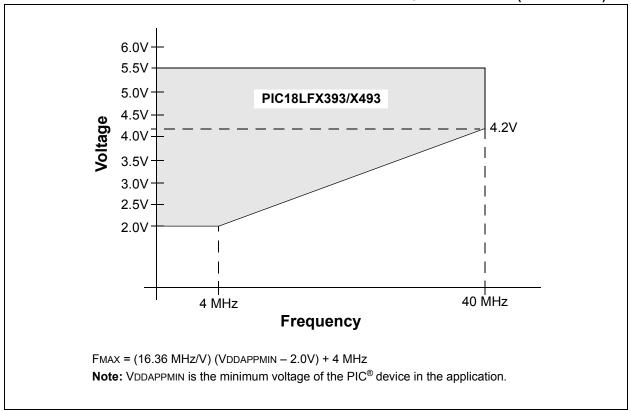


TABLE 4-1: A/D CONVERTER CHARACTERISTICS: PIC18F6393/6493/8393/8493 (INDUSTRIAL)

Param No.	Sym	Characteristic	Min	Тур	Max	Units		Conditions	
A01	NR	Resolution	_	_	12	bit		ΔV REF $\geq 3.0V$	
A03	EIL	Integral Linearity Error	_	<±1	±2.0	LSB	VDD = 3.0V	ΔVREF ≥ 3.0V	
			_	_	±2.0	LSB	VDD = 5.0V	1∆VREF ≥ 3.0V	
A04	EDL	Differential Linearity Error	_	<±1	+1.5/-1.0	LSB	VDD = 3.0V	ΔVREF ≥ 3.0V	
			_	_	+1.5/-1.0	LSB	VDD = 5.0V	ΔVREF ≥ 3.0V	
A06	Eoff	Offset Error	_	<±1	±5	LSB	VDD = 3.0V	ΔVREF ≥ 3.0V	
			_	_	±3	LSB	VDD = 5.0V	ΔVREF ≥ 3.UV	
A07	Egn	Gain Error	_	<±1	±2.00	LSB	VDD = 3.0V	AVREF > 3.0V	
			_	_	±2.00	LSB	VDD = 5.0V	ΔVREF ≥ 3.0V	
A10	_	Monotonicity	Gu	uarantee	d ⁽¹⁾	_		$Vss \leq Vain \leq Vref$	
A20	ΔVREF	Reference Voltage Range (VREFH – VREFL)	3	-	VDD – VSS	V		For 12-bit resolution	
A21	VREFH	Reference Voltage High	Vss + ΔVREF	_	VDD	V		For 12-bit resolution	
A22	VREFL	Reference Voltage Low	Vss	_	VDD – ΔVREF	V		For 12-bit resolution	
A25	Vain	Analog Input Voltage	VREFL	_	VREFH	V			
A30	ZAIN	Recommended Impedance of Analog Voltage Source	_	_	2.5	kΩ			
A50	IREF	VREF Input Current ⁽²⁾		_	5 150	μ Α μ Α		During VAIN acquisition. During A/D conversion cycle.	

Note 1: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

^{2:} VREFH current is from the RA3/AN3/VREF+/SEG17 pin or VDD, whichever is selected as the VREFH source. VREFL current is from the RA2/AN2/VREF-/SEG16 pin or Vss, whichever is selected as the VREFL source.

FIGURE 4-3: A/D CONVERSION TIMING

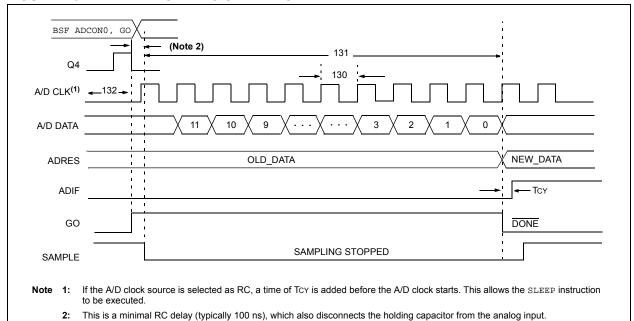
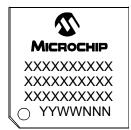


TABLE 4-2: A/D CONVERSION REQUIREMENTS

Param No.	Symbol	Characteristic		Min	Max	Units	Conditions
130	TAD	A/D Clock Period	PIC18 F XXXX	0.8	12.5 ⁽¹⁾	μS	Tosc based, VREF ≥ 3.0V
			PIC18 LF XXXX	1.4	25.0 ⁽¹⁾	μS	VDD = 3.0V; Tosc based, VREF full range
			PIC18FXXXX	_	1	μS	A/D RC mode
			PIC18 LF XXXX	_	3	μS	VDD = 3.0V; A/D RC mode
131	TCNV	Conversion Time (not including acquisition	on time) ⁽²⁾	13	14	TAD	
132	TACQ	Acquisition Time ⁽³⁾		1.4	_	μS	
135	Tswc	Switching Time from Convert → Sample		_	(Note 4)		
137	TDIS	Discharge Time		0.2	_	μS	


Note 1: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

- 2: ADRES registers may be read on the following TcY cycle.
- 3: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to VSS or VSS to VDD). The source impedance (RS) on the input channels is 50Ω.
- 4: On the following cycle of the device clock.

5.0 PACKAGING INFORMATION

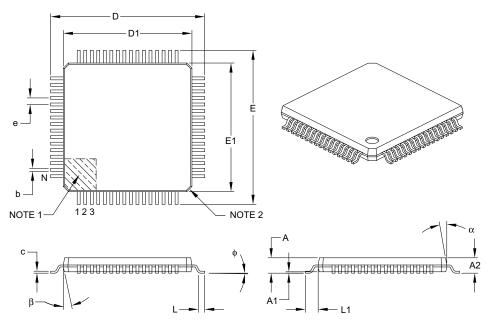
5.1 Package Marking Information

64-Lead TQFP (10x10x1mm)

80-Lead TQFP (12x12x1mm)

Example

Example



Legend: XX...X Customer-specific information
Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator (@3))
can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

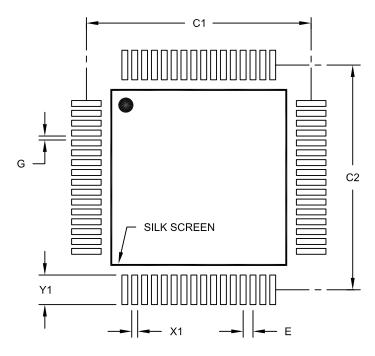
64-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dime	MIN	NOM	MAX				
Number of Leads	N		64				
Lead Pitch	е		0.50 BSC				
Overall Height	А	-	_	1.20			
Molded Package Thickness	A2	0.95	1.00	1.05			
Standoff	A1	0.05	_	0.15			
Foot Length	L	0.45	0.60	0.75			
Footprint	L1	1.00 REF					
Foot Angle	ф	0° 3.5° 7°					
Overall Width	E		12.00 BSC				
Overall Length	D		12.00 BSC				
Molded Package Width	E1		10.00 BSC				
Molded Package Length	D1	10.00 BSC					
Lead Thickness	С	0.09 – 0.20					
Lead Width	b	0.17	0.22	0.27			
Mold Draft Angle Top	α	11° 12° 13°					
Mold Draft Angle Bottom	β	11°	12°	13°			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

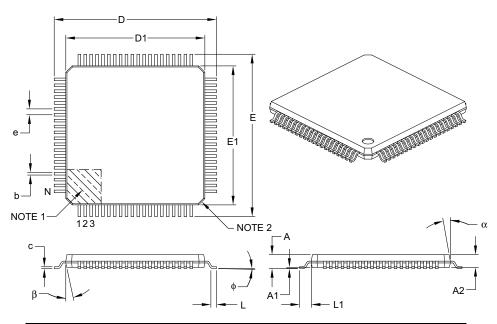
64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIM	ETERS		
Dimension	MIN	NOM	MAX	
Contact Pitch	Е		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

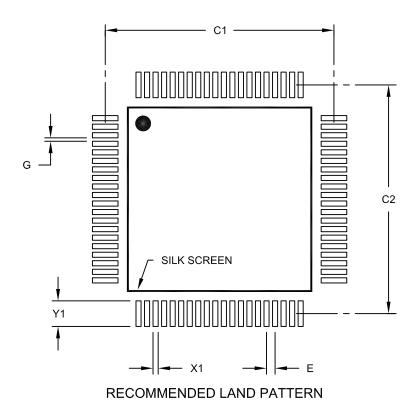
BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085A

80-Lead Plastic Thin Quad Flatpack (PT) - 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Leads	N		80		
Lead Pitch	е		0.50 BSC		
Overall Height	А	_	_	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	_	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	ф	0° 3.5° 7°			
Overall Width	E		14.00 BSC		
Overall Length	D		14.00 BSC		
Molded Package Width	E1		12.00 BSC		
Molded Package Length	D1		12.00 BSC		
Lead Thickness	С	0.09	_	0.20	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11° 12° 13°			
Mold Draft Angle Bottom	β	11°	12°	13°	


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-092B

80-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

ote: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch		0.50 BSC		
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X80)	X1			0.30
Contact Pad Length (X80) Y				1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2092A

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (September 2007)

Original data sheet for the PIC18F6393/6493/8393/8493 devices.

Revision B (October 2009)

Removed "Preliminary" marking.

Revision C (August 2010)

Changes and additions were made to the "Power-Managed Modes", "Flexible Oscillator Structure", "Peripheral Highlights" and "Special Microcontroller Features" sections. Changes were made to Figure 1-1, Figure 1-2, Table 1-2 and Table 1-3, including edits to the

legends of those tables. New text has replaced all in 2.4 "Operation in Power-Managed Modes". Corrections have been made to 4.0 "Electrical Characteristics". The extended temperature has been removed from the "Product Identification System" information. New packaging diagrams were added because the diagrams referenced in the document, "PIC18F6390/6490/8390/8490 Data Sheet" (DS39629), have not been updated. Minor typographical edits throughout the document.

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

TABLE B-1: DEVICE DIFFERENCES

Features	PIC18F6393	PIC18F6493	PIC18F8393	PIC18F8493	
Number of Pixels the LCD Driver Can Drive	128 (4 x 32)	128 (4 x 32)	192 (4 x 48)	192 (4 x 48)	
I/O Ports	Ports A, B, C, D, E, F, G	Ports A, B, C, D, E, F, G	Ports A, B, C, D, E, F, G, H, J	Ports A, B, C, D, E, F, G, H, J	
Flash Program Memory	8 Kbytes	16 Kbytes	8 Kbytes	16 Kbytes	
Packages	64-Pin TQFP	64-Pin TQFP	80-Pin TQFP	80-Pin TQFP	

APPENDIX C: CONVERSION CONSIDERATIONS

This appendix discusses the considerations for converting from previous versions of a device to the ones listed in this data sheet. Typically, these changes are due to the differences in the process technology used. An example of this type of conversion is from a PIC16C74A to a PIC16C74B.

Not Applicable

APPENDIX D: MIGRATION FROM BASELINE TO ENHANCED DEVICES

This section discusses how to migrate from a Baseline device (i.e., PIC16C5X) to an Enhanced MCU device (i.e., PIC18FXXX).

The following are the list of modifications over the PIC16C5X microcontroller family:

Not Currently Available

APPENDIX E: MIGRATION FROM MID-RANGE TO ENHANCED DEVICES

A detailed discussion of the differences between the mid-range MCU devices (i.e., PIC16CXXX) and the enhanced devices (i.e., PIC18FXXX) is provided in AN716, "Migrating Designs from PIC16C74A/74B to PIC18C442". The changes discussed, while device-specific, are generally applicable to all mid-range to enhanced device migrations.

This Application Note is available as Literature Number DS00716.

APPENDIX F: MIGRATION FROM HIGH-END TO ENHANCED DEVICES

A detailed discussion of the migration pathway, and differences between the high-end MCU devices (i.e., PIC17CXXX), and the enhanced devices (i.e., PIC18FXXX) is provided in *AN726, "PIC17CXXX to PIC18CXXX Migration"*. This Application Note is available as Literature Number DS00726.

NOTES:

INDEX

A/D	
A/D	31
A/D Converter Interrupt, Configuring	35
Acquisition Requirements	36
ADCON0 Register	31
ADCON1 Register	
ADCON2 Register	
ADRESH Register	
ADRESL Register	
Analog Port Pins, Configuring	
Associated Registers	
Configuring the Module	
Conversion Clock (TAD)	
Conversion Requirements	
Conversion Status (GO/DONE Bit)	
Conversions	
Converter Characteristics	
Discharge	
Operation in Power-Managed Modes	38
Selecting and Configuring Acquisition Time	
Special Event Trigger (ECCP2)	40
Transfer Function	35
Use of the ECCP2 Trigger	40
Absolute Maximum Ratings	
ADCON0 Register	
GO/DONE Bit	
ADCON1 Register	
ADCON2 Register	
ADRESH Register	
<u> </u>	
ADRESL Register	31, 34
Analog-to-Digital Converter. See A/D.	
_	
В	
_	
Block Diagrams	0.4
Block Diagrams A/D	
Block Diagrams A/DAnalog Input Model	35
Block Diagrams A/D Analog Input Model PIC18F6X93 (64-Pin)	35 11
Block Diagrams A/DAnalog Input Model	35 11
Block Diagrams A/D Analog Input Model PIC18F6X93 (64-Pin) PIC18F8X93 (80-Pin)	35 11
Block Diagrams A/D Analog Input Model PIC18F6X93 (64-Pin) PIC18F8X93 (80-Pin)	35 11
Block Diagrams A/D	35 11 12
Block Diagrams A/D Analog Input Model PIC18F6X93 (64-Pin) PIC18F8X93 (80-Pin)	35 11 12
Block Diagrams A/D	35 11 12
Block Diagrams A/D	35 11 12
Block Diagrams A/D Analog Input Model PIC18F6X93 (64-Pin). PIC18F8X93 (80-Pin). C C Compare (ECCP2 Module) Special Event Trigger. Conversion Considerations	35 12 40 54
Block Diagrams A/D Analog Input Model PIC18F6X93 (64-Pin) PIC18F8X93 (80-Pin). C C Compare (ECCP2 Module) Special Event Trigger. Conversion Considerations Customer Change Notification Service	35 12 40 54 59
Block Diagrams A/D	35 12 40 54 59
Block Diagrams A/D Analog Input Model PIC18F6X93 (64-Pin) PIC18F8X93 (80-Pin). C C Compare (ECCP2 Module) Special Event Trigger. Conversion Considerations Customer Change Notification Service Customer Notification Service	35 12 40 54 59
Block Diagrams A/D	35 11 40 54 59 59
Block Diagrams A/D	35 11 40 54 59 59
Block Diagrams A/D	35 11 40 54 59 59 59
Block Diagrams A/D	35 11 40 54 59 59 59
Block Diagrams A/D	35 11 40 54 59 59 59
Block Diagrams	351112
Block Diagrams	351112
Block Diagrams	35 11 12 40 54 59 59 59 59 9
Block Diagrams	35 11 12 40 54 59 59 59 59 59 9 9

E	
Electrical Characteristics	43
A/D Converter	45
Absolute Maximum Ratings	43
Low-Power Voltage-Frequency Graph	44
Voltage-Frequency Graph	44
Equations	
A/D Acquisition Time	36
A/D Minimum Charging Time	36
Calculating the Minimum Required	
Acquisition Time	36
Errata	7
1	
1	
Internet Address	59
Interrupt Sources	
A/D Conversion Complete	35
L	
LCD Driver	_
Features	3
M	
	
Microchip Internet Web Site	58
Microcontroller	_
Special Features	
Migration from Baseline to Enhanced Devices	
Migration from High-End to Enhanced Devices	
Migration from Mid-Range to Enhanced Devices	55
0	
Oscillator Structure	
Features	9
r catares	
P	
Packaging	
Information	47
Marking	
Peripheral Highlights	
Pin Diagrams	
64-Pin TQFP	_
80-Pin TQFP	
Pin Functions	
AVDD	30
AVDD	
AVss	
AVss	
COM0	
LCDBIAS1	
LCDBIAS2	
LCDBIAS3	
MCLR/VPP/RG5	
OSC1/CLKI/RA7	
OSC2/CLKO/RA6	
RA0/AN0	
RA1/AN1	14 22
RA2/AN2/\/REF-/SEG16	

RA3/AN3/VREF+/SEG17	.14,	22
RA4/T0CKI/SEG14	.14,	22
RA5/AN4/HLVDIN/SEG15	14,	22
RB0/INT0		
RB1/INT1/SEG8	15,	23
RB2/INT2/SEG9	15,	23
RB3/INT3/SEG10	15,	23
RB4/KBI0/SEG11		
RB5/KBI1	15,	23
RB6/KBI2/PGC	15,	23
RB7/KBI3/PGD	15,	23
RC0/T10S0/T13CKI		
RC1/T1OSI/CCP2	16,	24
RC2/CCP1/SEG13	16,	24
RC3/SCK/SCL	16,	24
RC4/SDI/SDA	16,	24
RC5/SDO/SEG12	16,	24
RC6/TX1/CK1	16,	24
RC7/RX1/DT1		
RD0/SEG0	.17,	25
RD0/SEG1		. 17
RD1/SEG1		
RD2/SEG2		
RD3/SEG3		
RD4/SEG4		
RD5/SEG5		
RD6/SEG6		
RD7/SEG7		
RE4/COM1		
RE5/COM2		
RE6/COM3		
RE7/CCP2/SEG31	18,	26
RF0/AN5/SEG18		
RF1/AN6/C2OUT/SEG19		
RF2/AN7/C1OUT/SEG20		
RF3/AN8/SEG21		
RF4/AN9/SEG22	. 19,	27
RF5/AN10/CVREF/SEG23	19,	27
RF6/AN11/SEG24	.19,	27
RF7/SS/SEG25		
RG0/SEG30		
RG1/TX2/CK2/SEG29	20,	28
RG2/RX2/DT2/SEG28		
RG3/SEG27		
RG4/SEG26		
RG5		
RH0/SEG47		. 29

RH2/SEG45	. 29
RH3/SEG44	29
RH4/SEG40	29
RH5/SEG41	29
RH6/SEG42	29
RH7/SEG43	29
RJ0/SEG32	
RJ1/SEG33	30
RJ2/SEG34	30
RJ3/SEG35	30
RJ4/SEG39	30
RJ5/SEG38	30
RJ6/SEG37	
RJ7/SEG36	30
VDD	
VDD	
Vss	30
Vss	20
Pinout I/O Descriptions	
PIC18F6X93	. 13
PIC18F8X93	21
Power-Managed Modes	
and A/D Operation	. 38
Features	
Product Identification System	61
R	
•	
Reader Response	. 60
Registers	24
ADCONG (A/D Control 0)	
ADCON1 (A/D Control 1)	
ADCON2 (A/D Control 2)	
DEVID1 (Device ID 1)	
DEVID2 (Device ID 2)	
Revision History	. ၁၁
S	
Special Features of the CPU	41
Device ID Registers	
•	
Т	
Timing Diagrams	
A/D Conversion	46
W	
WWW Address	50
WWW, On-Line Support	
vv vv vv, OII-LIIIE Suppoit	/

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- · Technical Support
- · Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

RE:	Reader Response				
From	Name Company Address City / State / ZIP / Country FAX: ()				
App	cation (optional):				
Wo	d you like a reply?YN				
Dev	be: PIC18F6393/6493/8393/8493 Literature Number: DS39896C				
Que	ations:				
1.	Vhat are the best features of this document?				
2.	low does this document meet your hardware and software development needs?				
3.	Oo you find the organization of this document easy to follow? If not, why?				
4.	What additions to the document do you think would enhance the structure and subject?				
5.	What deletions from the document could be made without affecting the overall usefulness?				
6.	6. Is there any incorrect or misleading information (what and where)?				
7.	low would you improve this document?				

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	X Temperature Range	/XX Package	XXX Pattern	Example (a)	mples: PIC18LF6393-I/PT 301 = Industrial temp., TQFP package, Extended VDD limits, QTP pattern #301. PIC18LF6393-I/PT = Industrial temp., TQFP
Device ^{(1), (2)}	VDD range: 4.	2V to 5.5V IC18LF6493,	C18F8393, PIC18F849 PIC18LF8393, PIC18L	,	package, Extended VDD limits.
Temperature Range	I = -40°C	to +85°C	(Industrial)		
Package	PT = TQI	P (Thin Quad	l Flatpack)		
Pattern	QTP, SQTP, Coc (blank otherwise		Requirements	Note :	1: F = Standard Voltage Range LF = Wide Voltage Range 2: T = in Tape and Reel TQFP packages only.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 Technical Support:

http://support.microchip.com

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca. IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara

Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto

Mississauga, Ontario,

Canada Tel: 905-673-0699

Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2401-1200

Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing

Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040

Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu

Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065

Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830

Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350 **EUROPE**

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869

Fax: 44-118-921-5820

07/15/10