16-bit Microcontroller cmos

F²MC-16LX MB90820B Series

MB90822B/823B/F822B/F823B/F828B/V820B

■ DESCRIPTION

The MB90820B series is a line of general-purpose, Fujitsu 16-bit microcontrollers designed for process control applications which require high-speed real-time processing, such as consumer products.

While inheriting the AT architecture of the F²MC family, the instruction set for the F²MC-16LX CPU core of the MB90820B series incorporates additional instructions for high-level languages, supports extended addressing modes, and contains enhanced multiplication and division instructions as well as a substantial collection of improved bit manipulation instructions. In addition, the MB90820B series has an on-chip 32-bit accumulator which enables processing of long-word data.

The peripheral resources integrated in the MB90820B series include: an 8/10-bit A/D converter, 8-bit D/A converters, UARTs (SCI) 0, 1, multi-functional timer (16-bit free-run timer, input capture units (ICUs) 0 to 3, output compare units (OCUs) 0 to 5, 16-bit PPG timer 0, waveform generator), 16-bit PPG timer 1, 2, PWC 0, 1, 16-bit reload timer 0, 1 and DTP/external interrupt.

Note: F2MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURES

- Minimum execution time of instruction: 42 ns / 4 MHz oscillation (uses PLL clock multiplication) maximum multiplier = 6
- · Maximum memory space 16 M bytes, Linear/bank access
- Instruction set optimized for controller applications

Supported data types: bit, byte, word, and long-word types

Standard addressing modes: 23 types

32-bit accumulator enhancing high-precision operations

Signed multiplication/division instructions and enhanced RETI instructions

(Continued)

For the information for microcontroller supports, see the following web site.

http://edevice.fujitsu.com/micom/en-support/

(Continued)

Enhanced high level language (C) and multi-tasking support instructions
 Use of a system stack pointer

Symmetrical instruction set and barrel shift instructions

- Program patch function (for two address pointers)
- Increased execution speed: 4-byte instruction queue
- Powerful interrupt function

Up to eight priority levels programmable

External interrupt inputs: 8 channels

• Automatic data transmission function independent of CPU operation

Up to 16 channels for the extended intelligent I/O service

DTP request inputs: 8 channels

Internal ROM

Flash memory: 64 K/128 K bytes with flash security

MASK ROM: 64 K/128 K bytes

Internal RAM

Evaluation product : 16 K bytes Flash memory : 4 K/8 K bytes

MASK ROM: 4 K bytes

General-purpose ports

Up to 66 channels (ports where pull-up resistor can be configured : 32 channels)

 A/D Converter (RC): 16 channels 8/10-bit resolution selectable

Conversion time: Min 3 µs (24 MHz operation, including sampling time)

• 8-bit D/A Converter: 2 channels

• UART : 2 channels

• 16-bit PPG timer: 3 channels

Mode switching function provided (PWM mode or one-shot mode) ch.0 can be worked with multi-functional timer or independently

- 16-bit reload timer: 2 channels
- 16-bit PWC timer: 2 channels
- Clock supervisor
- · Multi-functional timer

Input capture: 4 channels

Output compare with selectable buffer: 6 channels

Free-run timer with up or up-down mode selection and selectable buffer: 1 channel

16-bit PPG timer: 1 channel

Waveform generator: (16-bit timer: 3 channels, 3-phase waveform or dead time)

- Time-base timer/watchdog timer: 18-bit
- Low-power consumption mode :

Sleep mode

Stop mode

CPU intermittent operation mode

• Package:

LQFP-80 (FPT-80P-M21 : 0.50 mm pitch) LQFP-80 (FPT-80P-M22 : 0.65 mm pitch) QFP-80 (FPT-80P-M06 : 0.80 mm pitch)

CMOS technology

■ PRODUCT LINEUP

Part number Item	MB90V820B	MB90F822B	MB90F823B	MB90F828B	MB90822B	MB90823B			
Classification	Evaluation product	I MASK ROM product							
ROM size	_	64 K bytes	128 K bytes	128 K bytes	64 K bytes	128 K bytes			
RAM size	16 K bytes	4 K k	oytes	8 K bytes	4 K I	bytes			
CPU function	Minimum exec Addressing mo Data bit length	Number of instruction: 351 Minimum execution time: 42 ns / 4 MHz (PLL × 6) Addressing mode: 23 Data bit length: 1, 8, 16 bits Maximum memory space: 16 M bytes							
I/O port	I/O port (CMO	S) : 66							
PWC	Timer function Various pulse ving edge period	Pulse width counter timer: 2 channels Timer function (select the counter timer from three internal clocks) Various pulse width measuring function ("H" pulse width, "L" pulse width, rising edge to falling edge period, falling edge to rising edge period, rising edge to rising edge period and falling edge to falling edge period)							
UART	UART : 2 channels With full-duplex double buffer (8-bit length) Clock asynchronized or clock synchronized transmission (with start and stop bits) can be selected and used. Transmission can be one-to-one (bidirectional communication) or one-to-n (master-slave communication).								
16-bit reload timer	Reload timer : Reload mode,		de or event cou	nt mode selecta	ıble				
16-bit	PPG timer : 3 o	channels							
PPG timer		single-shot mo orked with mult		er or independer	ntly.				
Multi-functional timer (for AC/DC motor control)	16-bit output ca 16-bit input ca 16-bit PPG tim	16-bit free-run timer with up or up-down mode selection and buffer : 1 channel 16-bit output compare : 6 channels 16-bit input capture : 4 channels 16-bit PPG timer : 1 channel Waveform generator (16-bit timer : 3 channels, 3-phase waveform or dead time)							
8/10-bit A/D converter		tion (16 channe ne : Min 3 μs (24		clock, including	sampling time)				
8-bit D/A converter	8-bit resolution	8-bit resolution (2 channels)							
DTP/External interrupt	8 independent channels Interrupt trigger: Rising edge, falling edge, "L" level or "H" level								
Clock supervisor	No Yes No								
Low-power consumption	Stop mode / Sleep mode / CPU intermittent operation mode								

(Continued)

Part number Item	MB90V820B	MB90F822B	MB90F823B	MB90F828B	MB90822B	MB90823B	
Package	PGA-299	LQFP-80 (FPT-80P-M21 : 0.50 mm pitch) LQFP-80 (FPT-80P-M22 : 0.65 mm pitch) QFP-80 (FPT-80P-M06 : 0.80 mm pitch)					
Power supply voltage for operation	4.5 V to 5.5 V*1	3.5 V to 5.5 V : Normal operation when A/D converter and D/A converter are not used 4.0 V to 5.5 V : Normal operation when D/A converter is not used 4.5 V to 5.5 V : Normal operation when A/D converter and D/A converter are used					
Process		CMOS					
Emulator power supply*2	Included	_					

^{*1 :} MB90V820B is operating guaranteed temperature 0 $^{\circ}$ C to + 25 $^{\circ}$ C.

■ PACKAGE AND CORRESPONDING PRODUCTS

Package	MB90V820B	MB90F822B	MB90F823B	MB90F828B	MB90822B	MB90823B
PGA-299	0	Х	Х	Х	Х	Х
FPT-80P-M21	Х	0	0	0	0	0
FPT-80P-M22	X	0	0	0	0	0
FPT-80P-M06	Х	0	0	0	0	0

○ : AvailableX : Not available

Note: For more information about each package, refer to "■ PACKAGE DIMENSIONS".

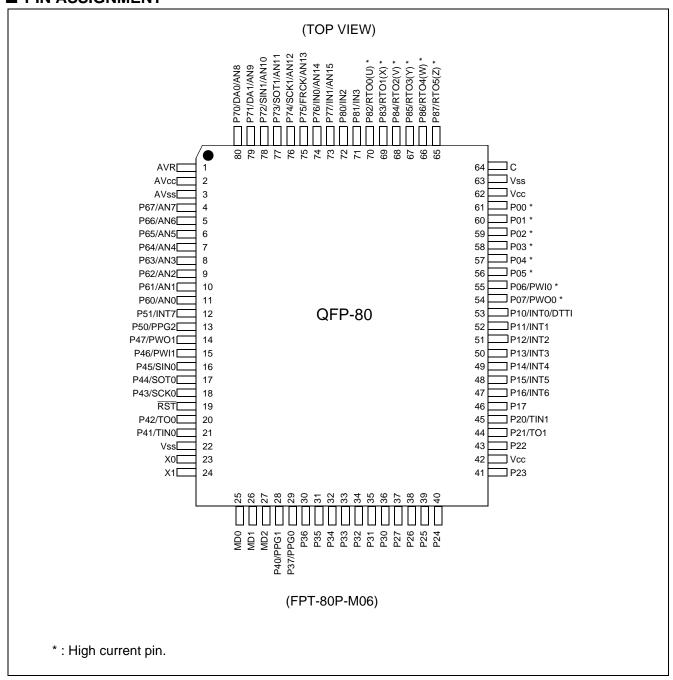
^{*2 :} Configured by a jumper switch (TOOL VCC) when emulator (MB2147-01) is used. Please refer to the MB2147-01 or MB2147-20 hardware manual (3.3 Emulator-dedicated Power Supply switching) about details.

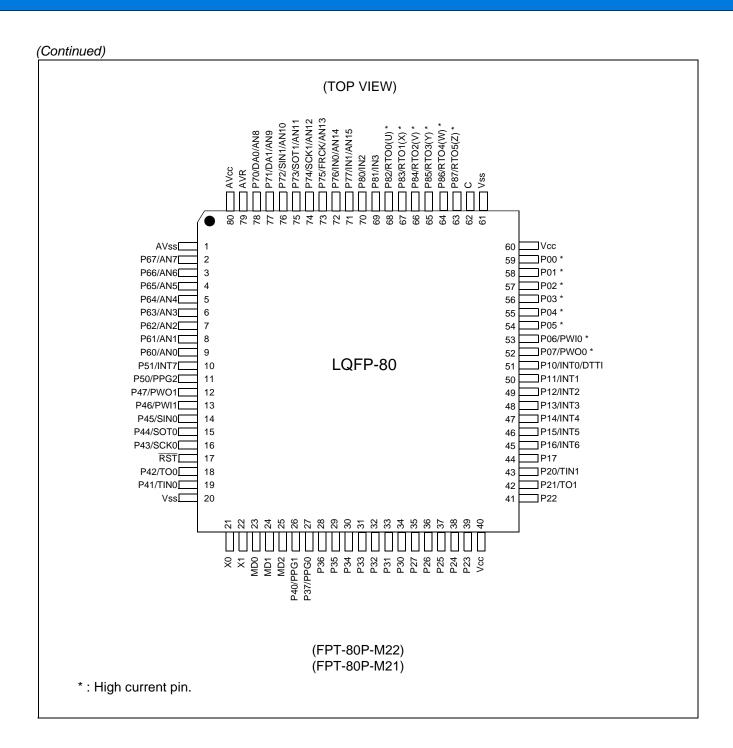
■ DIFFERENCES AMONG PRODUCTS

Memory Size

In evaluation with an evaluation product, note the difference between the evaluation product and the product actually used. The following items must be taken into consideration.

- The MB90V820B does not have an internal ROM, however, operations equivalent to chips with an internal ROM can be evaluated by using a dedicated development tool, enabling selection of ROM size by settings of the development tool.
- In the MB90V820B, images from FF8000H to FFFFFFH are mapped to bank 00, and FE0000H to FF7FFFH are mapped to bank FE and bank FF only. (This setting can be changed by configuring the development tool.)
- In the MB90822B/F822B/F828B, images from FF8000H to FFFFFFH are mapped to bank 00, and FF0000H to FF7FFFH are mapped to bank FF only. In the MB90823B/F823B/F828B, images from FF8000H to FFFFFFH are mapped to bank 00, and FE0000H to FF7FFFH are mapped to bank FF only.


Clock Supervisor Function


The clock supervisor is built-in in MB90F828B only. Note that the evaluation products and products actually used are different when evaluating evaluation products. Please contact the sales representatives for more information on evaluation of this function.

Modify ROM data

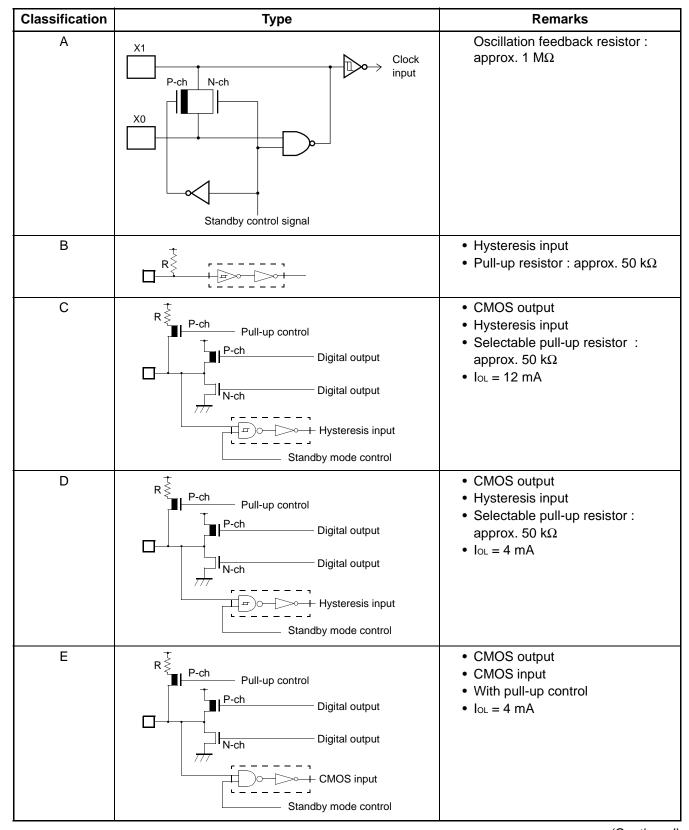
The registers include this function between 001FF0_H and 001FF5_H which overlap the RAM area of MB90F828B. Do not access to the RAM when using this function in MB90F282B.

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin	no.		I/O	Pin status	
LQFP *1	QFP *2	Pin name	circuit *3	during reset	Function
21, 22	23, 24	X0,X1	Α	Oscillating	Oscillation pins.
17	19	RST	В	Reset input	External reset input pin.
59 to 54	61 to 56	P00 to P05	С		General-purpose I/O ports.
53	55	P06	С		General-purpose I/O port.
55	55	PWI0	C		PWC ch.0 signal input pin.
52	54	P07	С		General-purpose I/O port.
52	54	PWO0	C		PWC ch.0 signal output pin.
		P10			General-purpose I/O port.
		INT0			External interrupt request input ch.0 pin.
51	53	DTTI	D		RTO0 to RTO5 pins for fixed-level input. This function is enabled when the waveform generator specifies its input bits.
50 to 45	52 to 47	P11 to P16	D		General-purpose I/O ports.
50 10 45	52 10 47	INT1 to INT6	D		External interrupt request input ch.1 to ch.6 pins.
44	46	P17	D		General-purpose I/O port.
43	45	P20	D	5	General-purpose I/O port.
43	7	TIN1	ם	Port input	External clock input pin for reload timer ch.1.
42	44	P21	D		General-purpose I/O port.
72	†	TO1	ם		Event output pin for reload timer ch.1.
41, 39 to 35	43, 41 to 37	P22 to P27	D		General-purpose I/O ports.
34 to 28	36 to 30	P30 to P36	Е		General-purpose I/O ports.
27	29	P37	Е		General-purpose I/O port.
21	29	PPG0	L		Output pin for PPG timer ch.0.
26	28	P40	F		General-purpose I/O port.
20	20	PPG1	'		Output pin for PPG timer ch.1.
19	21	P41	F		General-purpose I/O port.
18	۷۱	TIN0	I ⁻		External clock input pin for reload timer ch.0.
18	20	P42	F		General-purpose I/O port.
10	20	TO0	'		Event output pin for reload timer ch.0.

Pin	no.		I/O	Pin status			
LQFP *1	QFP *2	Pin name	circuit *3	during reset	Function		
16	18	P43	F		General-purpose I/O port.		
16	10	SCK0	Г		Serial clock I/O pin for UART ch.0.		
15	17	P44	F		General-purpose I/O port.		
13	17	SOT0	Г		Serial data output pin for UART ch.0.		
14	16	P45	G		General-purpose I/O port.		
14	10	SIN0	G		Serial data input pin for UART ch.0.		
13	15	P46	F	Dort Innut	General-purpose I/O port.		
13	15	PWI1	Г	Port Input	PWC ch.1 signal input pin.		
12	14	P47	F		General-purpose I/O port.		
12	14	PWO1	Г		PWC ch.1 signal output pin.		
11	13	P50	F		General-purpose I/O port.		
''	13	PPG2	Г		Output pin for PPG timer ch.2.		
10	12	P51	F		General-purpose I/O port.		
10	12	INT7	Г		External interrupt request input ch.7 pin.		
9 to 2	11 to 4	P60 to P67	Н		General-purpose I/O ports.		
9102	11104	AN0 to AN7			A/D converter analog input pins.		
		P70, P71					General-purpose I/O ports.
78, 77	80, 79	DA0, DA1	I	1	D/A converter analog output pins.		
		AN8, AN9			A/D converter analog input pins.		
		P72			General-purpose I/O port.		
76	78	SIN1	J		Serial data input pin for UART ch.1.		
		AN10			A/D converter analog input pin.		
		P73		Analog input	General-purpose I/O port.		
75	77	SOT1	K		Serial data output pin for UART ch.1.		
		AN11			A/D converter analog input pin.		
		P74			General-purpose I/O port.		
74	76	SCK1	K		Serial clock I/O pin for UART ch.1.		
		AN12			A/D converter analog input pin.		
		P75			General-purpose I/O port.		
73	75	FRCK	K		External clock input pin for free-run timer.		
		AN13			A/D converter analog input pin.		


Pin no.			I/O	Pin status	-	
LQFP *1	QFP *2	Pin name	in name circuit *3 during reset		Function	
		P76, P77			General-purpose I/O ports.	
72, 71	74, 73	INO, IN1	K	Analog input	Trigger input pins for input capture ch.0, ch.1.	
		AN14, AN15		put	A/D converter analog input pins.	
70.60	70 74	P80, P81	F		General-purpose I/O ports.	
70, 69	72, 71	IN2, IN3	Г		Trigger input pins for input capture ch.2, ch.3.	
		P82 to P87			Port input	General-purpose I/O ports.
68 to 63	70 to 65	RTO0 (U) to RTO5 (Z)	L		Waveform generator output pins. (U) to (Z) represent the coils for controlling a 3-phase motor.	
25	27	MD2	М	Mada input	Input pin for operation mode specification.	
24, 23	26, 25	MD1, MD0	N	Mode input	Input pins for operation mode specification.	
80	2	AVcc	_		Analog power supply pin.	
79	1	AVR	_		Vref + pin for the A/D converter. Vref - is fixed to AVss internally.	
1	3	AVss	_		Analog power supply (Ground) pin.	
20, 61	22, 63	Vss	_	_	Power (Ground) pins.	
40, 60	42, 62	Vcc	_		Power pins.	
62	64	С			Connect pin for smoothing capacitor to stabilize internal power supply.	

^{*1 :} FPT-80P-M21, FPT-80P-M22

^{*2:} FPT-80P-M06

^{*3 :} Refer to "■ I/O CIRCUIT TYPE" for details on the I/O circuit types.

■ I/O CIRCUIT TYPE

Classification	Туре	Remarks
F	P-ch Digital output N-ch Digital output Hysteresis input Standby mode control	 CMOS output Hysteresis input IoL = 4 mA
G	P-ch Digital output N-ch Digital output Hysteresis input CMOS input Standby mode control	 CMOS output Hysteresis input CMOS input (selectable for UART ch.0 data input pin) IoL = 4 mA
Τ	P-ch Digital output N-ch CMOS input Analog input control Analog input	 CMOS output CMOS input Analog input IoL = 4 mA
I	P-ch Digital output N-ch Hysteresis input Analog I/O control Analog output Analog input	 CMOS output Hysteresis input Analog output Analog input IoL = 4 mA

(Continued)

12

Classification	Туре	Remarks
J	P-ch Digital output N-ch Hysteresis input CMOS input Analog input control Analog input	 CMOS output Hysteresis input CMOS input (selectable for UART ch.1 data input pin) IoL = 4 mA
К	P-ch Digital output N-ch Digital output Hysteresis input Analog input control Analog input	 CMOS output Hysteresis input Analog input IoL = 4 mA
L	P-ch Digital output N-ch Digital output Hysteresis input Standby mode control	 CMOS output Hysteresis input IoL = 12 mA
M	R R	MASK ROM / evaluation product • Hysteresis input • Pull-down resistor : approx. 50 kΩ Flash memory product • CMOS input • No pull-down resistor
N		MASK ROM / evaluation product

■ HANDLING DEVICES

Special care is required for the following when handling the device :

- · Preventing latch-up
- · Stabilization of supply voltage
- Treatment of unused pins
- · Using external clock
- Power supply pins (Vcc /Vss)
- Pull-up/pull-down resistors
- · Crystal Oscillator Circuit
- Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs
- Connection of Unused Pins of A/D Converter
- · Notes on turning the power on
- · Notes on During Operation of PLL Clock Mode

1. Preventing latch-up

CMOS IC chips may suffer latch-up under the following conditions:

- A voltage higher than Vcc or lower than Vss is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between Vcc and Vss pins.
- The AVcc power supply is applied before the Vcc voltage.

Latch-up may increase the power supply current drastically, causing thermal damage to the device.

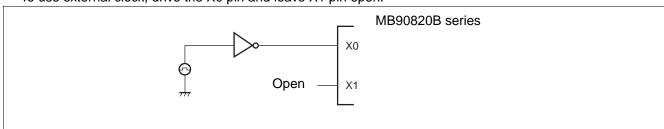
In using the devices, take sufficient care to avoid exceeding maximum ratings.

For the same reason, also be careful not to let the analog power-supply voltage (AVcc, AVR) exceed the digital power-supply voltage.

2. Stabilization of supply voltage

A sudden change in the supply voltage may cause the device to malfunction even within the specified Vcc supply voltage operation range. Therefore, the Vcc supply voltage should be stabilized.

For reference, the supply voltage should be controlled so that Vcc ripple variations (peak-to-peak values) at commercial frequencies (50 Hz/60 Hz) fall below 10% of the standard Vcc supply voltage and the coefficient of fluctuation does not exceed 0.1 V/ms at instantaneous power switching.

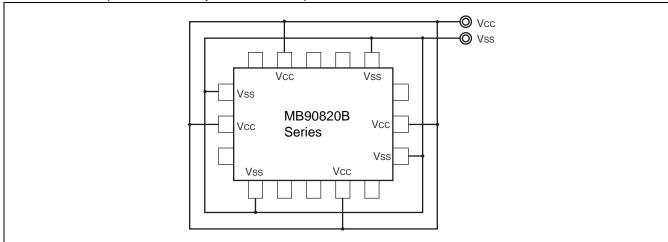

3. Treatment of unused pins

Leaving unused input pins open may result in misbehavior or latch up and possible permanent damage of the device. Therefore they must be pulled up or pulled down through resistors. In this case those resistors should be more than $2 \text{ k}\Omega$.

Unused bidirectional pins should be set to the output state and can be left open, or the input state with the above described connection.

4. Using external clock

To use external clock, drive the X0 pin and leave X1 pin open.



5. Power supply pins (Vcc/Vss)

• If there are multiple Vcc and Vss pins, from the point of view of device design, pins to be of the same potential are connected the inside of the device to prevent such malfunctioning as latch up.

To reduce unnecessary radiation, prevent malfunctioning of the strobe signal due to the rise of ground level, and observe the standard for total output current, be sure to connect the Vcc and Vss pins to the power supply and ground externally.

- Connect Vcc and Vss pins to the device from the current supply source at a low impedance.
- As a measure against power supply noise, connect a capacitor of about 0.1 μF as a bypass capacitor between Vcc and Vss pins in the vicinity of Vcc and Vss pins of the device.

6. Pull-up/pull-down resistors

The MB90820B series does not support internal pull-up/pull-down resistors option (Port 0 to Port 3 : built-in pull-up resistors) . Use external components where needed.

7. Crystal oscillator circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic oscillator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuit do not cross the lines of other circuits while you design a printed circuit board.

It is highly recommended to provide a printed circuit board art work surrounding X0 and X1 pins with a ground area for stabilizing the operation.

8. Turning-on sequence of power supply to A/D converter and D/A converter, and analog inputs

Make sure to turn on the A/D converter power supply, D/A converter power supply (AVcc, AVRH, AVR) and analog inputs (AN0 to AN15) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter power supply, D/A converter power supply, and analog inputs. In this case, make sure that the voltage not exceed AVR or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

9. Pin connections when A/D converter and D/A converter are unused

When the A/D converter and D/A converter are not used, connect AVcc = Vcc, AVss = AVRH = AVRL = Vss.

10. Notes on turning the power on

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during power on at 50 μ s or more (0.2 V to 2.7 V) .

11. Notes on During Operation of PLL Clock Mode

If the PLL clock mode is selected, the microcontroller may continue to operate at the free-running frequency of the self-oscillating circuit within the PLL even if the external oscillator is disconnected or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

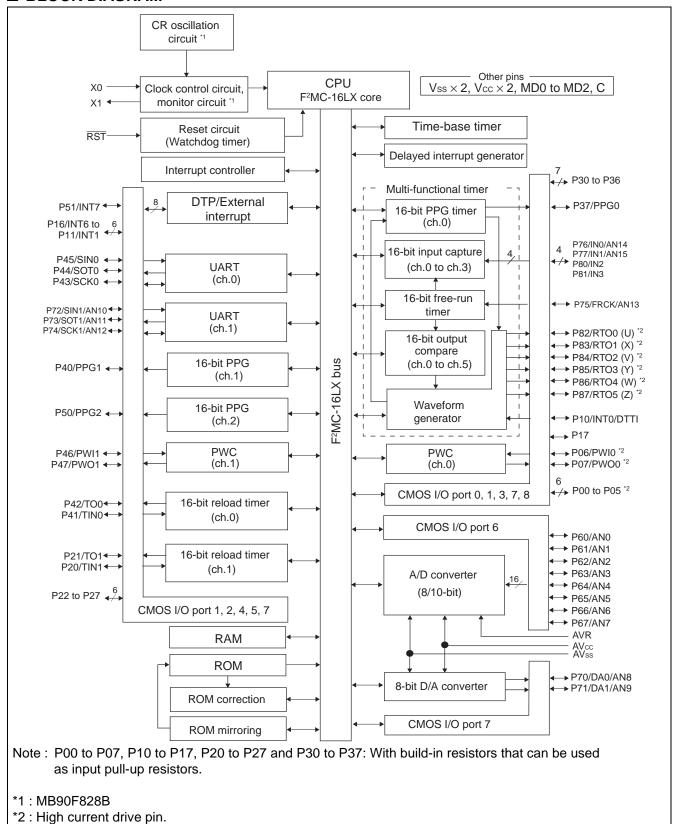
12. Internal CR Oscillation Circuit

Parameter	Symbol		Unit		
raiailletei	Зуппон	Min	Тур	Max	Offic
Oscillation frequency	frc	50	100	200	kHz
Oscillation stabilization waiting time	tstab	_	_	100	μs

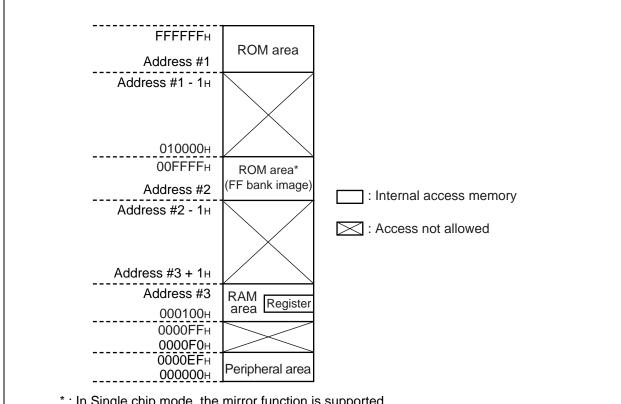
■ SECTOR CONFIGURATION OF FLASH MEMORY

The flash memory has the sector configuration illustrated below. The addresses in the illustration are the upper and lower addresses of each sector.

When 512K bits flash memory is accessed from the CPU, SA0 to SA3 are allocated in the FF bank.


Flash memory	CPU address	*Writer address
CA2 (4CK by 400)	FFFFFFH	7FFFF _H
SA3 (16K bytes)	FFC000 _H	7С000 _Н
SA2 (8K bytes)	FFBFFF _H	7BFFF _H
SA2 (8K bytes)	FFA000 _H	7A000 _H
SA1 (8K bytes)	FF9FFF _H	79FFF _H
<i>G.</i> (3. (3. (3. (3. (3. (3. (3. (3. (3. (3.	FF8000 _H	78000 _H
SA0 (32K bytes)	FF7FFF _H	77FFF _H
	FF0000 _H	70000 _H

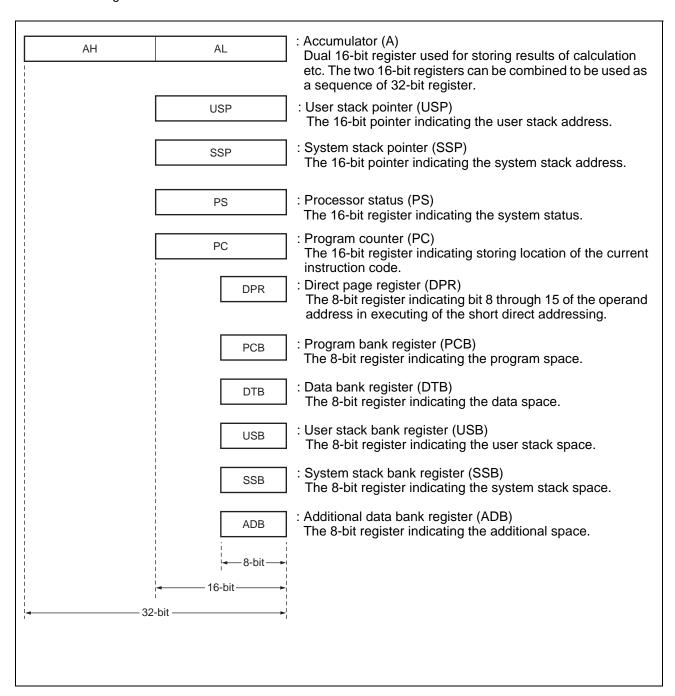
When 1024K bits flash memory is accessed from the CPU, SA0 to SA4 are allocated in the FE and FF bank.


	Flash memory	CPU address	*Writer address	
	0.0.4 (4.0)(1.5.2)	FFFFFFH	7FFFF _H	
	SA4 (16K bytes)	FFC000 _H	7С000 _Н	
	CA2 (0K by taa)	FFBFFF _H	7BFFF _H	
	SA3 (8K bytes)	FFA000 _H	7A000 _H	
	CA2 (OK butaa)	FF9FFF _H	79FFF _H	
	SA2 (8K bytes)	FF8000 _H	78000 _H	
	SA1 (32K bytes)	FF7FFF _H	77FFF _H	
	SAT (32K bytes)	FF0000 _H	70000 _H	
	CAO (CAK butoo)	FEFFFFH	6FFF _H	
	SA0 (64K bytes)	FE0000 _H	60000н	

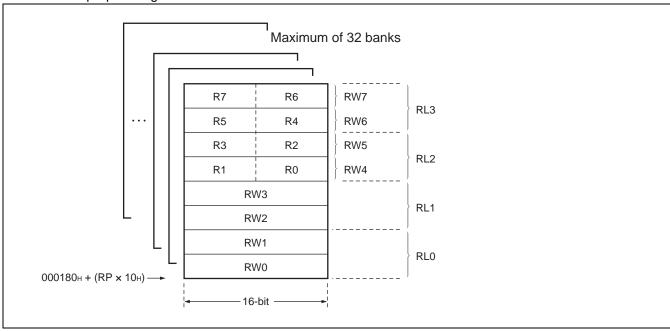
^{*:} The writer address is the address corresponding to the CPU address when writing data from a parallel flash memory writer. Use the writer address when programming or erasing using a general-purpose parallel writer.

■ BLOCK DIAGRAM

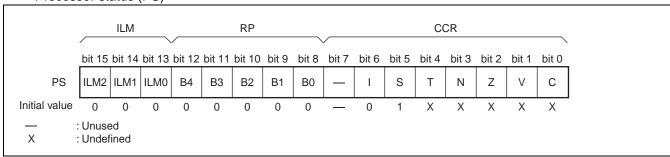
■ MEMORY MAP


*: In Single chip mode, the mirror function is supported.

Parts no.	Address#1	Address#2	Address#3
MB90822B	FF0000н	008000н	0010FFн
MB90823B	FE0000н	008000н	0010FFн
MB90F822B	FF0000н	008000н	0010FFн
MB90F823B	FE0000н	008000н	0010FFн
MB90F828B	FE0000н	008000н	0020FFн
MB90V820B	(FE0000 _H)	008000н	0040FFн


Note: The ROM data of bank FF is reflected to the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16-bit is assigned to the same address, enabling reference of the table on the ROM without stating "far". For example, if an attempt has been made to access 00C000H, the contents of the ROM at FFC000H are accessed actually. Since the ROM area of the FF bank exceeds 32 K bytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF8000H to FFFFFH looks, therefore, as if it were the image for 008000H to 00FFFFH. Thus, it is recommended that the ROM data table be stored in the area of FF8000_H to FFFFFF_H.

■ F²MC-16LX CPU PROGRAMMING MODEL


· Dedicated registers

• General-purpose registers

• Processor status (PS)

■ I/O MAP

Address	Abbreviation	Register	Byte access	Word access	Resource name	Initial value			
000000н	PDR0	Port 0 data register	R/W	R/W	Port 0	XXXXXXX			
000001н	PDR1	Port 1 data register	R/W	R/W	Port 1	XXXXXXX			
000002н	PDR2	Port 2 data register	R/W	R/W	Port 2	XXXXXXXXB			
000003н	PDR3	Port 3 data register	R/W	R/W	Port 3	XXXXXXXXB			
000004н	PDR4	Port 4 data register	R/W	R/W	Port 4	XXXXXXXXB			
000005н	PDR5	Port 5 data register	R/W	R/W	Port 5	XXXXXXXXB			
000006н	PDR6	Port 6 data register	R/W	R/W	Port 6	XXXXXXXXB			
000007н	PDR7	Port 7 data register	R/W	R/W	Port 7	XXXXXXXXB			
000008н	PDR8	Port 8 data register	R/W	R/W	Port 8	XXXXXXXXB			
000009н to 00000Fн		Prohibited area							
000010н	DDR0	Port 0 data direction register	R/W	Port 0	0000000в				
000011н	DDR1	Port 1 data direction register	R/W	R/W	Port 1	0000000в			
000012н	DDR2	Port 2 data direction register	R/W	R/W	Port 2	0000000в			
000013н	DDR3	Port 3 data direction register	R/W	R/W	Port 3	0000000в			
000014н	DDR4	Port 4 data direction register	R/W	R/W	Port 4	0000000в			
000015н	DDR5	Port 5 data direction register	R/W	R/W	Port 5	XXXXXX00 _B			
000016н	DDR6	Port 6 data direction register	R/W	R/W	Port 6	0000000в			
000017н	DDR7	Port 7 data direction register	R/W	R/W	Port 7	0000000в			
000018н	DDR8	Port 8 data direction register	R/W	R/W	Port 8	0000000в			
000019н to 00001Fн		Proh	nibited are	a					
000020н	SMR0	Serial mode register ch.0	R/W	R/W		0000000в			
000021н	SCR0	Serial control register ch.0	W, R/W	W, R/W		00000100в			
000022н	SIDR0 / SODR0	Serial input data register ch.0 / Serial output data register ch.0	R/W	R/W	UART ch.0	XXXXXXXXB			
000023н	SSR0	Serial status register ch.0	R, R/W	R, R/W		00001000в			
000024н	SMR1	Serial mode register ch.1	R/W	R/W		0000000в			
000025н	SCR1	Serial control register ch.1	W, R/W	W, R/W		00000100в			
000026н	SIDR1 / SODR1	Serial input data register ch.1 / Serial output data register ch.1	R/W	R/W	UART ch.1	XXXXXXXX			
000027н	SSR1	Serial status register ch.1	R, R/W	R, R/W		00001000в			

Address	Abbreviation	Register	Byte access	Word access	Resource name	Initial value		
000028н	PWCSL1	DMC control status register sh 1	R/W	R/W		0000000в		
000029н	PWCSH1	PWC control status register ch.1	R, R/W	R, R/W		0000000в		
00002Ан	PWC1	PWC data buffer register ch.1		R/W	PWC timer ch.1	XXXXXXXXB		
00002Вн	PVVCI	PVVC data buller register cri. i	_	I K/VV		XXXXXXXXB		
00002Сн	DIV1	Divide ratio control register ch.1	R/W	R/W		XXXXXX00 _B		
00002Dн, 00002Ен		Prohib	ited area					
00002Fн	PCKCR	PLL clock control register	W	W	PLL	ХХХХ0000в		
000030н	ENIR	DTP / Interrupt enable register	R/W	R/W		0000000в		
000031н	EIRR	DTP / Interrupt cause register	R/W	R/W	DTP/	XXXXXXXXB		
000032н	ELVRL	Request level setting register (lower byte)	R/W	R/W	external interrupt ch.0 to ch.7	00000000в		
000033н	ELVRH	Request level setting register (higher byte)	R/W	R/W		00000000в		
000034н		Prohibited area						
000035н	CDCR0	Clock division ratio control register ch.0	R/W	R/W	Communication prescaler ch.0	00XXX000в		
000036н		Prohib						
000037н	CDCR1	Clock division ratio control register ch.1	R/W	R/W	Communication prescaler ch.1	00ХХХ000в		
000038н	PDCR0	DDC down counter register sh 0		В		11111111в		
000039н	PDCRU	PPG down counter register ch.0	_	R		111111111		
00003Ан	PCSR0	PPG cycle setting register ch.0		W		XXXXXXX		
00003Вн	PUSKU	FFG cycle setting register cri.o		VV	16-bit PPG timer	XXXXXXXXB		
00003Сн	PDUT0	PPG duty setting register ch.0		W	ch.0	XXXXXXXXB		
00003Dн	10010	FFG duty setting register cri.o		VV		XXXXXXXXB		
00003Ен	PCNTL0	PPG control status register ch.0	R/W	R/W		ХХ000000в		
00003Fн	PCNTH0	1 1 O control status register cir.o	R/W	R/W		0000000в		
000040н	PDCR1	PPG down counter register ch.1		R		11111111		
000041н	1 DOK	11 O down counter register cir. 1		IX.		11111111в		
000042н	PCSR1	PPG cycle setting register ch.1		W		XXXXXXX		
000043н	1 001(1	Tropic setting register on. I		v v	16-bit PPG timer	XXXXXXXXB		
000044н	PDUT1	PPG duty setting register ch.1		W	ch.1	XXXXXXXX		
000045н	1 5011	Troducty setting register on. I		v v		XXXXXXXXB		
000046н	PCNTL1	PPG control status register ch.1	R/W	R/W		ХХ000000в		
000047н	PCNTH1	1. Cooming states register on 1	R/W	R/W		00000000B		

Address	Abbreviation	Register	Byte access	Word access	Resource name	Initial value
000048н	PDCR2	PPG down counter register		R		11111111в
000049н	PDCR2	ch.2		K		11111111в
00004Ан	PCSR2	DDC avala setting register of 2		W		XXXXXXXXB
00004Вн	PCSR2	PPG cycle setting register ch.2		VV	16-bit PPG timer	XXXXXXXXB
00004Сн	PDUT2	DDC duty potting register of 2		١٨/	ch.2	XXXXXXXXB
00004Дн	PD012	PPG duty setting register ch.2		W		XXXXXXXXB
00004Ен	PCNTL2	PPG control status register	R/W	R/W		ХХ000000в
00004Fн	PCNTH2	ch.2	R/W	R/W		0000000в
000050н	TMRR0	16 bit timer register ch 0		R/W		XXXXXXXXB
000051н	TWIKKU	16-bit timer register ch.0		I K/VV		XXXXXXXXB
000052н	TMRR1	16-bit timer register ch.1		R/W		XXXXXXXXB
000053н	HVIKKI	ro-bit timer register ch. i		R/VV		XXXXXXXXB
000054н	TMRR2	16 bit timer register of 2		R/W		XXXXXXXXB
000055н	TIVIKKZ	16-bit timer register ch.2		R/VV) A	XXXXXXXXB
000056н	DTCR0	16-bit timer control register ch.0	R/W	R/W	Waveform generator	00000000в
000057н	DTCR1	16-bit timer control register ch.1	R/W	R/W		00000000в
000058н	DTCR2	16-bit timer control register ch.2	R/W	R/W		00000000в
000059н	SIGCR	Waveform control register	R/W	R/W		00000000в
00005Ан	CPCLRB /	Compare clear buffer register/		R/W		11111111в
00005Вн	CPCLR	Compare clear register		R/VV		11111111в
00005Сн	TCDT	Timor data register		R/W		0000000в
00005Дн	TCDT	Timer data register		I K/VV	16-bit free-run timer	0000000в
00005Ен	TCCSL	Timer control status register (lower)	R/W	R/W		Х0100000в
00005Fн	TCCSH	Timer control status register (upper)	R/W	R/W		00000000в
000060н	IPCP0	Input capture data register ch.0		R		XXXXXXXXB
000061н	IFCFU	Imput capture data register cir.o				XXXXXXXXB
000062н	IPCP1	Input conture data register of 1		В		XXXXXXXXB
000063н	IPCPT	Input capture data register ch.1		R	16-bit input capture	XXXXXXXXB
000064н	IDCDa	Input conture data register ab 0		D	(ch.0 to ch.3)	XXXXXXXX
000065н	IPCP2	Input capture data register ch.2		R		XXXXXXXX
000066н	IPCP3	Input conture data register ch. 2		P		XXXXXXXX
000067н	IFUPS	Input capture data register ch.3	<u> </u>	R		XXXXXXXXB

Address	Abbreviation	Register	Byte access	Word access	Resource name	Initial value			
000068н	PICSL01	Input capture control status register ch.0,ch.1 (lower)	R/W	R/W		00000000в			
000069н	PICSH01	PPG output control / Input capture control status register ch.0,ch.1 (upper)	R, R/W	R, R/W	16-bit input capture (ch.0 to ch.3)	00000000в			
00006Ан	ICSL23	Input capture control status register ch.2,ch.3 (lower)	R/W	R/W	(61.0 to 61.5)	00000000в			
00006Вн	ICSH23	Input capture control status register ch.2,ch.3 (upper)	R	R		XXXXXX00 _B			
00006Сн to 00006Ен		Prohibited area							
00006Fн	ROMM	ROM mirroring function selection register	W	W	ROM mirroring function	XXXXXXX1 _B			
000070н 000071н	OCCPB0 / OCCP0	Output compare buffer register / Output compare register ch.0	_	R/W		XXXXXXXXB XXXXXXXXB			
000072н 000073н	OCCPB1 / OCCP1	Output compare buffer register / Output compare register ch.1	_	R/W		XXXXXXXXB XXXXXXXXB			
000074н 000075н	OCCPB2 / OCCP2	Output compare buffer register / Output compare register ch.2	_	R/W		XXXXXXXXB XXXXXXXXB			
000076н 000077н	OCCPB3 / OCCP3	Output compare buffer register / Output compare register ch.3	_	R/W		XXXXXXXXB XXXXXXXXB			
000079н 000079н	OCCPB4 / OCCP4	Output compare buffer register / Output compare register ch.4	_	R/W	Output compare (ch.0 to ch.5)	XXXXXXXXB XXXXXXXXB			
000079н 00007Ан 00007Вн	OCCPB5 / OCCP5	Output compare buffer register / Output compare register ch.5	_	R/W	(00 10 00)	XXXXXXXXB XXXXXXXXB			
00007Вн 00007Сн	OCS0	Compare control register ch.0	R/W	R/W		00001100в			
00007Dн	OCS1	Compare control register ch.1	R/W	R/W		Х1100000в			
00007Ен	OCS2	Compare control register ch.2	R/W	R/W		00001100в			
00007Fн	OCS3	Compare control register ch.3	R/W	R/W		Х1100000в			
000080н	OCS4	Compare control register ch.4	R/W	R/W		00001100в			
000081н	OCS5	Compare control register ch.5	R/W	R/W		Х1100000в			
000082н	TMCSRL0	Timer control status register ch.0 (lower)	R/W	R/W		00000000в			
000083н	TMCSRH0	Timer control status register ch.0 (upper)	R/W	R/W	16-bit reload timer (ch.0)	ХХХ10000в			
000084н	TMR0/	16 bit timer register ch.0 /		R/W		XXXXXXXXB			
000085н	TMRD0	16-bit reload register ch.0		FX/VV		XXXXXXXXB			
000086н	TMCSRL1	Timer control status register ch.1 (lower)	R/W	R/W	16-bit reload timer (ch.1)	00000000в			

Address	Abbrevia- tion	Register	Byte access	Word access	Resource name	Initial value			
000087н	TMCSRH1	Timer control status register ch.1 (upper)	R/W	R/W	16-bit reload timer	ХХХ10000в			
000088н	TMR1/	16 bit timer register ch.1 /		R/W	(ch.1)	XXXXXXXXB			
000089н	TMRD1	16-bit reload register ch.1	_	IN/VV		XXXXXXX			
00008Ан	CSVCR	Clock supervisor control register*	R, R/W	_	Clock supervisor	00011100в			
00008Вн		Prohibited area							
00008Сн	RDR0	Port 0 pull-up resistor setting register	Port 0	0000000в					
00008Dн	RDR1	Port 1 pull-up resistor setting register	R/W	R/W	Port 1	00000000в			
00008Ен	RDR2	Port 2 pull-up resistor setting register	R/W	R/W	Port 2	00000000в			
00008Fн	RDR3	Port 3 pull-up resistor setting register	R/W	R/W	Port 3	00000000в			
000090н to 00009Dн		Prohibited area							
00009Ен	PACSR	Program address detection control status register	R/W	R/W	Address match detection	ХХХХ0000в			
00009Fн	DIRR	Delayed interrupt cause / clear register	R/W	R/W	Delayed interrupt	XXXXXXX0 _B			
0000А0н	LPMCR	Low-power consumption mode control register	W, R/W	W, R/W	Low-power consumption	00011000в			
0000А1н	CKSCR	Clock selection register	R, R/W	R, R/W	control register	11111100в			
0000A2н to 0000A7н		Prof	nibited are	ea					
0000А8н	WDTC	Watchdog timer control register	R, W	R, W	Watchdog timer	XXXXX111 _B			
0000А9н	TBTC	Time-base timer control register	W, R/W	W, R/W	Time-base timer	1ХХ00100в			
0000AAн to 0000ADн		Prof	nibited are	ea					
0000АЕн	FMCS	Flash memory control status register	R, R/W	R, R/W	Flash memory interface circuit	000Х0000в			
0000АFн		Prof	nibited are	ea		(Continued			

Address	Abbreviation	Register	Byte access	Word access	Resource name	Initial value			
0000В0н	ICR00	Interrupt control register 00	R/W	R/W		00000111в			
0000В1н	ICR01	Interrupt control register 01	R/W	R/W		00000111в			
0000В2н	ICR02	Interrupt control register 02	R/W	R/W	Interrupt	00000111в			
0000ВЗн	ICR03	Interrupt control register 03	R/W	R/W	controller	00000111в			
0000В4н	ICR04	Interrupt control register 04	R/W	R/W		00000111в			
0000В5н	ICR05	Interrupt control register 05	R/W	R/W		00000111в			
0000В6н	ICR06	Interrupt control register 06	R/W	R/W		00000111в			
0000В7н	ICR07	Interrupt control register 07	R/W	R/W		00000111в			
0000В8н	ICR08	Interrupt control register 08	R/W	R/W		00000111в			
0000В9н	ICR09	Interrupt control register 09	R/W	R/W		00000111в			
0000ВАн	ICR10	Interrupt control register 10	R/W	R/W	Interrupt	00000111в			
0000ВВн	ICR11	Interrupt control register 11	R/W	R/W	controller	00000111в			
0000ВСн	ICR12	Interrupt control register 12	R/W	R/W		00000111в			
0000ВДн	ICR13	Interrupt control register 13	R/W	R/W		00000111в			
0000ВЕн	ICR14	Interrupt control register 14	R/W	R/W		00000111в			
0000ВFн	ICR15	Interrupt control register 15	R/W	R/W		00000111в			
0000С0н	PWCSL0	PWC control status register	R/W	R/W		0000000в			
0000С1н	PWCSH0	ch.0	R, R/W	R, R/W		0000000в			
0000С2н	DMCO	PWC data buffer register		D/M	PWC timer (ch.0)	XXXXXXXX			
0000СЗн	PWC0	ch.0		R/W	r vvo timer (cn.o)	XXXXXXXX			
0000С4н	DIV0	Divide ratio control register ch.0	R/W	R/W		XXXXXX00 _B			
0000С5н	ADER0	A/D input enable register 0	R/W	R/W	Port 6, A/D	11111111в			
0000С6н	ADCS0	A/D control status register 0	R/W	R/W		000XXXX0 _B			
0000С7н	ADCS1	A/D control status register 1	W, R/W	W, R/W		000000XB			
0000С8н	ADCR0	A/D data register 0	R	R	8/10-bit A/D converter	XXXXXXX			
0000С9н	ADCR1	A/D data register 1	R	R	6/10-bit A/D converter	XXXXXXX			
0000САн	ADSR0	A/D setting register 0	R/W	R/W		0000000в			
0000СВн	ADSR1	A/D setting register 1	R/W	R/W		0000000в			
0000ССн	DAT0	D/A data register 0	R/W	R/W		XXXXXXXX			
0000СDн	DAT1	D/A data register 1	R/W	R/W	8-bit D/A converter	XXXXXXXXB			
0000СЕн	DACR0	D/A control register 0	R/W	R/W	8-bit D/A converter	XXXXXXX0 _B			
0000СFн	DACR1	D/A control register 1	R/W	R/W		XXXXXXX0 _B			
0000D0н	ADER1	A/D input enable register 1	R/W	R/W	Port 7, A/D	11111111в			
0000D1н to 0000EFн	1н Prohibited area								

(Continued)

Address	Abbrevia- tion	Register	Byte access	Word access	Resource name	Initial value				
0000F0н to 0000FFн	External area									
001FF0н	PADRL0	Program address detection register 0 (lower)	R/W	R/W	Address match	XXXXXXXXB				
001FF1н	PADRM0	Program address detection register 0 (middle)	R/W	R/W	detection	XXXXXXX				
001FF2н	PADRH0	Program address detection register 0 (higher)	R/W	R/W		XXXXXXX				
001FF3н	PADRL1	Program address detection register 1 (lower)	R/W	R/W	Address match	XXXXXXX				
001FF4н	PADRM1	Program address detection register 1 (middle)	R/W	R/W	detection	XXXXXXX				
001FF5н	PADRH1	Program address detection register 1 (higher)	R/W	R/W		XXXXXXX				

- *: For MB90F828B only. Prohibited for the other products.
 - Meaning of abbreviations used for reading and writing

R/W: Read and write enabled

R : Read-only W : Write-only

• Explanation of initial values

0 : The bit is initialized to "0".1 : The bit is initialized to "1".

X : The initial value of the bit is undefined.

■ INTERRUPT FACTORS, INTERRUPT VECTORS, INTERRUPT CONTROL REGISTER

Interrupt cause	El ² OS	lı	nterrup	t vector		Interrupt control register		
	support	Nun	nber	Address	ICR	Address		
Reset	×	#08	08н	FFFFDC _H	_		High	
INT9 instruction	X	#09	09н	FFFFD8 _H	_	_	1 ▲	
Exception processing	X	#10	0Ан	FFFFD4 _H	_	_	† †	
A/D converter conversion complete	0	#11	0Вн	FFFFD0 _H	10000	000000	-	
Output compare ch.0 match	0	#12	0Сн	FFFFCC _H	ICR00	0000В0н		
End of measurement by PWC timer ch.0 / PWC timer ch.0 overflow	0	#13	0Дн	FFFFC8 _H	ICR01	0000В1н		
16-bit PPG timer ch.0	0	#14	0Ен	FFFFC4 _H				
Output compare ch.1 match	0	#15	0Гн	FFFFC0 _H			1	
16-bit PPG timer ch.1	0	#16	10н	FFFFBC _H	ICR02	0000В2н		
Output compare ch.2 match	0	#17	11н	FFFFB8 _H	10000	000000	-	
16-bit reload timer ch.1 underflow	0	#18	12н	FFFFB4⊦ı	ICR03	0000ВЗн		
Output compare ch.3 match	0	#19	13н	FFFFB0 _H			1	
DTP/ext. interrupt ch.0/ch.1 detection	0	"00	4.4	EEEE A O	ICR04	0000В4н		
DTTI	Δ	#20	14н	FFFFAC⊦				
Output compare ch.4 match	0	#21	15н	FFFFA8 _H	IODOE	000005	1	
DTP/ext. interrupt ch.2/ch.3 detection	0	#22	16н	FFFFA4 _H	ICR05	0000В5н		
Output compare ch.5 match	0	#23	17н	FFFFA0 _H			1	
End of measurement by PWC timer ch.1 / PWC timer ch.1 overflow	0	#24	18н	FFFF9C _H	ICR06	0000В6н		
DTP/ext. interrupt ch.4 detection	0	#25	19н	FFFF98⊦	10007	000007	1	
DTP/ext. interrupt ch.5 detection	0	#26	1Ан	FFFF94 _H	ICR07	0000В7н		
DTP/ext. interrupt ch.6 detection	0	#27	1Вн	FFFF90⊦	ICDOO	000000	1	
DTP/ext. interrupt ch.7 detection	0	#28	1Сн	FFFF8C _H	ICR08	0000В8н		
Waveform generator 16-bit timers ch.0/ ch.1/ch.2 underflow	Δ	#29	1Dн	FFFF88 _H	ICR09	0000В9н		
16-bit reload timer ch.0 underflow	0	#30	1Ен	FFFF84 _H]			
16-bit free-run timer zero detect	Δ	#31	1Fн	FFFF80 _H	ICR10	0000P A		
16-bit PPG timer ch.2	0	#32	20н	FFFF7C _H	ICKIU	0000ВАн		
Input capture ch.0/ch.1	0	#33	21н	FFFF78⊦	ICR11	000000		
16-bit free-run timer compare clear	Δ	#34	22н	FFFF74 _H	ICKII	0000ВВн		
Input capture ch.2/ch.3	0	#35	23н	FFFF70 _H	ICP12	000000]	
Time-base timer	Δ	#36	24н	FFFF6C _H	ICR12	0000ВСн		
UART ch.1 receive	0	#37	25н	FFFF68 _H	ICR13	0000ВДн]	
UART ch.1 send	Δ	#38	26н	FFFF64 _H	ICKIS	ООООБЫН		
UART ch.0 receive	0	#39	27н	FFFF60 _H	ICD14	00000]	
UART ch.0 send	Δ	#40	28н	FFFF5C _H	ICR14	0000ВЕн	₩	
Flash memory status	Δ	#41	29н	FFFF58⊦	ICR15	0000ВFн	1 104	
Delayed interrupt generator module	Δ	#42	2Ан	FFFF54 _H	101(15	ООООВГН	Low	

^{© :} Can be used and support the El²OS stop request.

O: Can be used and interrupt request flag is cleared by El²OS interrupt clear signal.

 $[\]times$: Cannot be used.

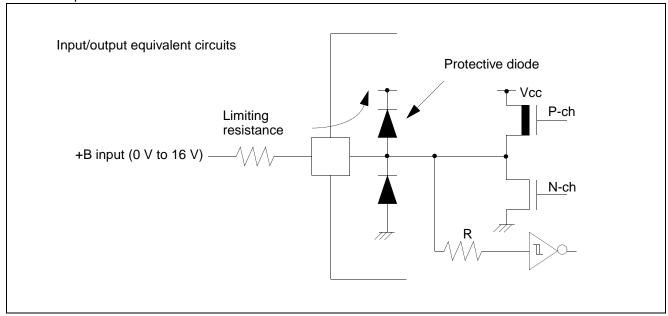
^{△ :} Usable when an interrupt cause that shares the ICR is not used.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Doromotor	Symbol	Rat	ing	Unit	Remarks
Parameter	Symbol	Min	Max	Unit	Remarks
	Vcc	Vss - 0.3	Vss + 6.0	V	
Power supply voltage*1	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc *2
	AVR	Vss - 0.3	Vss + 6.0	V	AVcc ≥ AVR, AVR ≥ AVss
Input voltage*1	Vı	Vss - 0.3	Vss + 6.0	V	*3
Output voltage*1	Vo	Vss - 0.3	Vss + 6.0	V	*3
Maximum clamp current	ICLAMP	- 2.0	+ 2.0	mA	*5
Total maximum clamp current	Σ ICLAMP	_	20	mA	*5
"L" level maximum output current	loL	_	15	mA	*4
"L" level average output current	lolav1	_	4	mA	Except for P00 to P07, P82 to P87
L level average output current	lolav2	_	12	mA	P00 to P07, P82 to P87
"L" level total maximum output current	ΣΙοι	_	100	mA	
"L" level total average output current	Σ lolav	_	50	mA	
"H" level maximum output current	Іон	_	-15	mA	*4
"H" level average output current	lohav	_	-4	mA	
"H" level total maximum output current	Σ loн	_	-100	mA	
"H" level total average output current	Σ lohav	_	-50	mA	
Power consumption	Po	_	430	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	-55	+150	°C	

^{*1 :} This parameter is based on Vss = AVss = 0.0 V.


^{*2 :} AVcc must never exceed Vcc when the power is turned on.

^{*3:} V_I and V_O must never exceed V_{CC} + 0.3 V. However if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating.

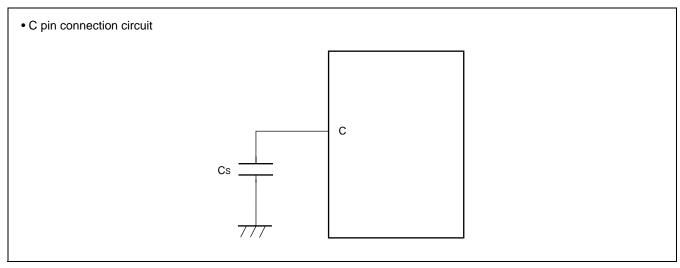
^{*4 :} The maximum output current is a peak value for a corresponding pin.

(Continued)

- *5: Applicable to pins: P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50, P51, P80 to P87.
 - Use within recommended operating conditions.
 - Use at DC voltage (current).
 - The +B signal is an input signal exceeding Vcc voltage. The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input
 potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect
 other devices.
 - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
 - Care must be taken not to leave the +B input pin open.
 - Note that analog system input/output pins (LCD drive pins and comparator input pins, etc.) other than the A/D input pins cannot accept +B input.
 - Sample recommended circuits:

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions


(Vss = AVss = 0.0 V)

Parameter	Sym-	Pin name	Condi-	Va	lue	Unit	Remarks		
Farameter	bol	i iii iiaiiie	tion	Min	Max		Kemarks		
		_	_	4.5	5.5	V	At normal operation T _A = -40 °C to +85 °C		
Power supply voltage	Vcc	_	_	4.0	5.5	V	Normal operation when D/A converter is not used $T_A = -40$ °C to $+85$ °C		
	AVcc	_	_	3.5	5.5	V	Normal operation when A/D converter and D/A converter are not used $T_A = -40$ °C to $+85$ °C		
		_	_	3.0	5.5	V	Maintains state in stop mode		
	VIH	P30 to P37, P60 to P67		0.7 Vcc	Vcc + 0.3	V	CMOS input		
"H" level input voltage	Vihs	P00 to P07, P10 to P17, P20 to P27, P40 to P44, P45*1, P46, P47, P50, P51, P70, P71, P72*1, P73 to P77, P80 to P87, RST		0.8 Vcc	Vcc + 0.3	V	CMOS hysteresis input		
	Vінм	MD0, MD1, MD2	Vcc=5V	Vcc - 0.3	Vcc + 0.3	V	MD input		
	VIL	P30 to P37, P60 to P67	± 10%	Vss - 0.3	0.3 Vcc	V	CMOS input		
"L" level input voltage	VILS	P00 to P07, P10 to P17, P20 to P27, P40 to P44, P45*1, P46, P47, P50, P51, P70, P71, P72*1, P73 to P77, P80 to P87, RST				Vss - 0.3	0.2 Vcc	V	CMOS hysteresis input
	VILM	MD0, MD1, MD2		Vss - 0.3	Vss + 0.3	V	MD input		
Smoothing capacitor	Cs	_	_	0.1	1.0	μF	*2		
Reference input voltage of A/D converter	AVR	_	_	2.7	AVcc	V			
Operating temperature	Та	_	_	-40	+85	°C			

^{*1:} UART ch.0/ch.1 data input pins P45/SIN0, P72/SIN1/AN10 can be used as CMOS input by the communication prescaler control register (CDRR).

^{*2:} Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. On the Vcc pin, connect a bypass capacitor that has a larger capacity than that of Cs. Refer to the following figure for connection of smoothing capacitor Cs.

(Continued)

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

3. DC Characteristics

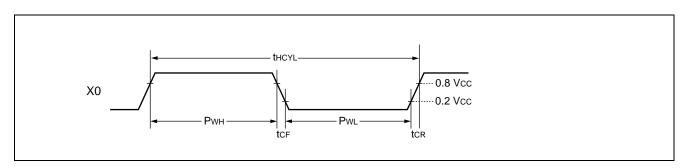
(Vcc = 5.0 V±10%, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)

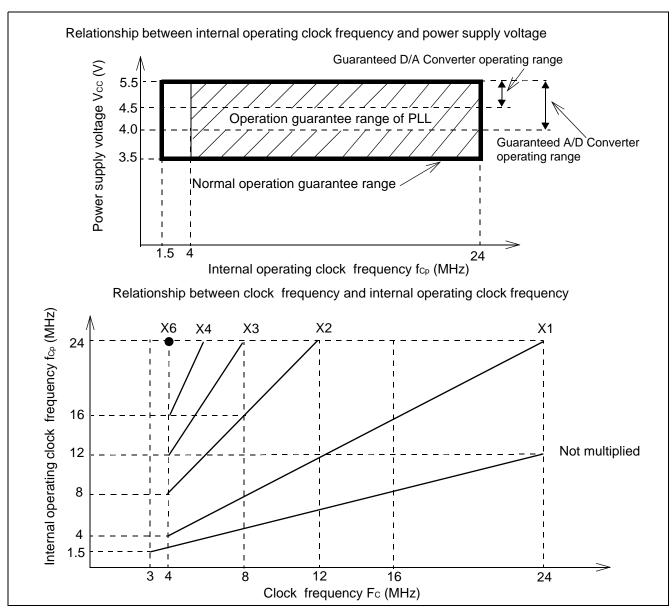
Parameter	Symbol	Pin name	Condition		Value		Unit	Remarks
Farailletei	Syllibol	riii iiaiiie	Condition	Min	Тур	Max	Oilit	Remarks
"H" level output voltage	Vон	All output pins	$V_{CC} = 4.5 \text{ V},$ $I_{OH} = -4.0 \text{ mA}$	Vcc - 0.5		_	V	
"L" level output voltage	V _{OL1}	All pins except P00 to P07 P82 to P87	$V_{CC} = 4.5 \text{ V},$ $I_{OL1} = 4.0 \text{ mA}$	_		0.4	V	
	V _{OL2}	P00 to P07 P82 to P87	Vcc = 4.5 V, lo _{L2} = 12.0 mA	_		0.4	V	
Input leakage current	I⊫	All input pins	Vcc = 5.5 V, Vss < V < Vcc	-5		+ 5	μА	At pull-up disabled
Pull-up resistance	Rup	P00 to P07, P10 to P17, P20 to P27, P30 to P37, RST	_	25	50	100	kΩ	MASK ROM product
Pull-down resistance	RDOWN	MD2	_	25	50	100	kΩ	MASK ROM product

(Continued)

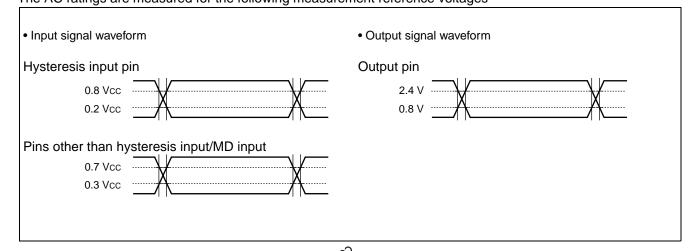
 $(Vcc = 5.0 V\pm 10\%, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)$

B	0	Pin name	Condition		Value		11	Bernale
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
			Vcc = 5.0 V,		35	50	mA	MASK ROM product
	Icc		Internal frequency: 24 MHz, At normal operation	_	45	60	mA	Flash memory prod- uct
			Vcc = 5.0 V, Internal frequency: 24 MHz, At writing in flash memory	_	60	75	mA	Flash memory prod- uct
			Vcc = 5.0 V, Internal frequency: 24 MHz, At erasing memory	_	65	80	mA	Flash memory prod- uct
Power supply			Vcc = 5.0 V,				mA	MASK ROM product
current*	Iccs	Vcc	Internal frequency: 24 MHz, At sleep mode	_	15	25	mA	Flash memory prod- uct
			Vcc = 5.0 V,				mA	MASK ROM product
	Істѕ		Internal frequency: 2 MHz, At main timer mode	_	0.3 0.8	mA	Flash memory prod- uct	
			Vcc = 5.0 V,	_			mA	MASK ROM product
	Ісст	Ісет	Internal frequency: 8 MHz, At timer mode, T _A = +25 °C	_	3	7	mA	Flash memory prod- uct
			In stop mode,	_			μΑ	MASK ROM product
	Іссн		Ta = $+25$ °C		5	20	mA	Flash memory prod- uct
Input capacitance	Cin	Except AVcc, AVss, AVR, C, Vcc and Vss	_		5	15	pF	


^{*:} The power supply current is regulated with an external clock.

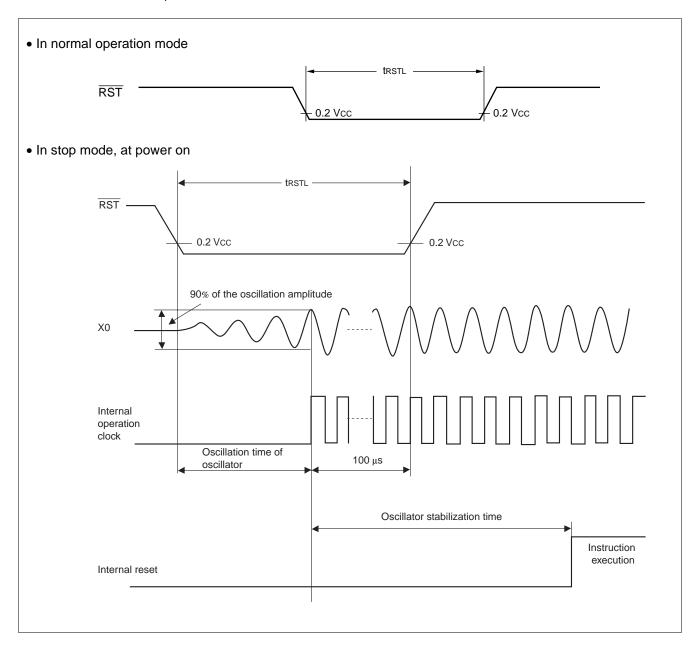

4. AC Characteristics

(1) Clock Timings


(Vcc = 5.0 V \pm 10%, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)

Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min	Тур	Max	Unit	Remarks
Clock frequency	Fc	X0, X1	3	_	16	MHz .	When using oscillation circuit
			3	_	24		When using external clock
			4		24		1 multiplied PLL
			4		12		2 multiplied PLL
			4	_	8		3 multiplied PLL
			4	_	6		4 multiplied PLL
			4		4		6 multiplied PLL
Clock cycle time	t HCYL	X0, X1	62.5	_	333	ns	When using oscillation circuit
			41.67	_	333	ns	When using external clock
Input clock pulse width	Pwh, PwL	X0	10	_	_	ns	When using external clock, duty ratio is about 30% to 70%.
Input clock rise/fall time	tcr tcf	Х0		_	5	ns	When using external clock
Internal operating clock frequency	f CP		1.5		24	MHz	
Internal operating clock cycle time	t cp		41.67	_	666	ns	

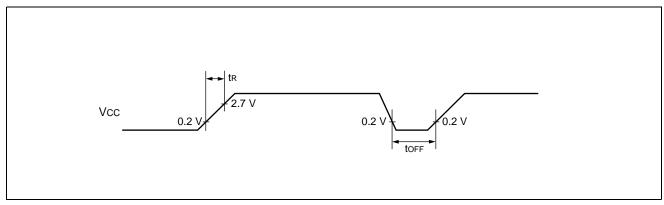
The AC ratings are measured for the following measurement reference voltages



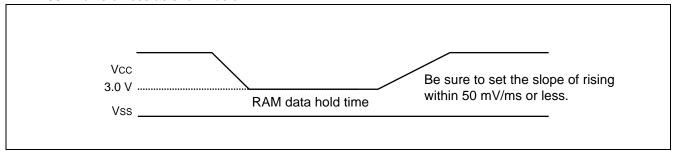
(2) External Reset

 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)$

Parameter	Symbol	Value Value				Remarks	
Parameter	Syllibol	riii iiaiiie	Min	Max	Unit	Remarks	
			500	_	ns	In normal operation	
Reset input time	t RSTL	RST	Oscillation time of oscillator* + 100	_	μs	In stop mode	
			100		μs	In time-base timer mode	


 * : Oscillation time of oscillator is the time to reach to 90% of the oscillation amplitude from stand still. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between hundreds of μ s to several ms. In the external clock, the oscillation time is 0 ms.

(3) Power-on Reset

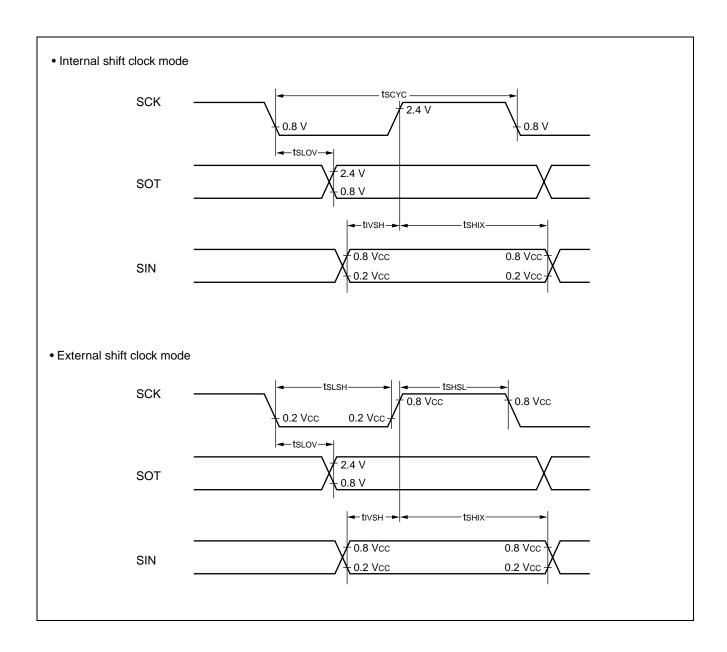

 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)$

Parameter	Symbol Pin name		Pin name Condition		Value		Remarks	
raiailletei	Syllibol	Fill Hallie	Condition	Min	Max	Unit	Nemarks	
Power supply rising time	t R	Vcc		0.05	30	ms		
Power supply cut-off time	toff	Vcc	_	1	_	ms	Waiting time for power supply on	

Note: Sudden changes in the power supply voltage may cause a power-on reset.

To change the power supply voltage while the device is in operation, be sure to set the slope of rising within 50 mV/ms or less as shown below.

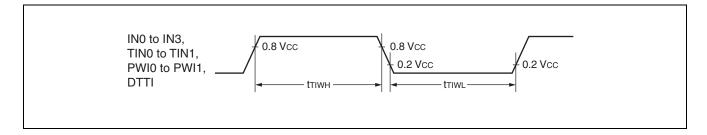
(4) UART


(Vcc = 5.0 V±10%, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)

Parameter	Symbol Pin name		Condition	Val	Unit		
raiailletei	Syllibol	Fili liallie	Condition	Min	Max		
Serial clock cycle time	t scyc	SCK0 to SCK1		8 tcp	_	ns	
$SCK \downarrow \to SOT$ delay time	tsLOV	SCK0 to SCK1 SOT0 to SOT1	C _L = 80 pF + 1 TTL	-80	+ 80	ns	
Valid SIN → SCK ↑	t ıvsh	SCK0 to SCK1 SIN0 to SIN1	for an output pin of internal shift clock mode	100	_	ns	
$SCK \uparrow \rightarrow valid SIN hold time$	t shix	SCK0 to SCK1 SIN0 to SIN1		60		ns	
Serial clock "H" pulse width	t shsl	SCK0 to SCK1		4 tcp		ns	
Serial clock "L" pulse width	t slsh	SCK0 to SCK1]	4 tcp		ns	
$SCK \downarrow \to SOT$ delay time	tsLOV	SCK0 to SCK1 SOT0 to SOT1	C∟ = 80 pF + 1 TTL for an output pin of ex-	_	150	ns	
Valid SIN → SCK ↑	t ıvsh	SCK0 to SCK1 SIN0 to SIN1	ternal shift clock mode	60	_	ns	
$SCK \uparrow \rightarrow valid SIN hold time$	tsнıх	SCK0 to SCK1 SIN0 to SIN1		60		ns	

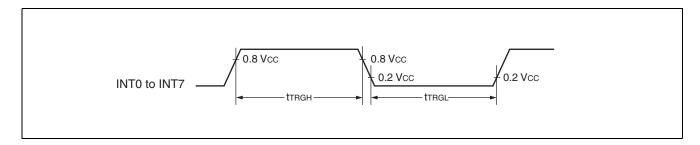
Notes: • These are AC ratings in the CLK synchronous mode.

• CL is the load capacitance value connected to pins while testing.


• tcp is machine cycle time (unit : ns).

(5) Resources Input Timing

 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)$


Parameter Symbol		Pin name	Condition	Va	Unit	
Faranielei	Syllibol	Filitianie	Condition	Min	Max	Oilit
Input pulse width	tтіwн tтіw∟	IN0 to IN3, TIN0 to TIN1, PWI0 to PWI1, DTTI	_	4 tcp	_	ns

(6) Trigger Input Timing

 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 ^{\circ}C to +85 ^{\circ}C)$

Parameter	Symbol Pin name		Condition	Va	Unit	
raiailletei	Syllibol	riii iiaiiie	Condition	Min	Max	Offic
Input pulse width	t trgh t trgl	INT0 to INT7	_	5 tcp	_	ns

5. A/D Converter Electrical Characteristics

 $(3.0 \text{ V} \le \text{AVR} - \text{AVss}, \text{Vcc} = \text{AVcc} = 5.0 \text{ V} \pm 10\%, \text{Vss} = \text{AVss} = 0.0 \text{ V}, \text{T}_{A} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C})$

D	,	Pin Condi- Value					TA = -40 °C (0 +65 °C)	
Parameter	Symbol	name	tion	Min	Тур	Max	Unit	Remarks
Resolution		_		_	10	_	bit	
Total error	_	_		_	_	±3.0	LSB	
Non-linearity error	_	_		_	_	±2.5	LSB	
Differential linearity error	_			_	_	±1.9	LSB	
Zero transition voltage	Vот	AN0 to AN15		AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	V	
Full-scale transition voltage	V _{FST}	AN0 to AN15		AVR – 3.5 LSB	AVR – 1.5 LSB	AVR + 0.5 LSB	V	
Compare time				1.0	_		μs	4.5 V ≤ AVcc ≤ 5.5 V
Compare time		_		2.0	_		μs	4.0 V ≤ AVcc < 4.5 V
Sampling time				0.5	_	_	μs	4.5 V ≤ AVcc ≤ 5.5 V
Sampling time				1.2	_	_	μs	4.0 V ≤ AVcc < 4.5 V
Analog port input current	Iain	AN0 to AN15		- 0.3		+ 0.3	μА	
Analog input voltage	Vain	AN0 to AN15		AVss		AVR	V	
Reference voltage	_	AVR		AVss + 2.7	_	AVcc	V	
Power supply	lΑ	AVcc		_	2.4	4.7	mA	
current	Іан	AVCC		_	_	5	μΑ	*
Reference voltage	IR	AVR		_	600	900	μΑ	
supply current	IRH	AVIX		_	_	5	μΑ	*
Offset between channels	_	AN0 to AN15		_	_	4	LSB	

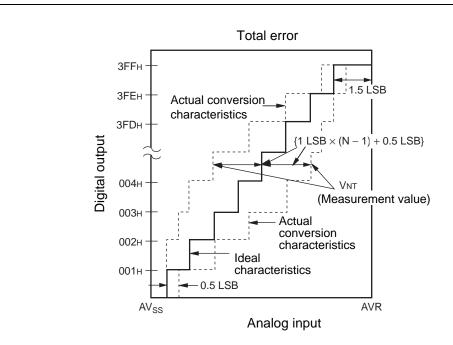
^{* :} The current when the A/D converter is not operating or the CPU is in stop mode (for Vcc = AVcc = AVR = 5.0 V) Note : The error increases proportionally as |AVR - AVss| decreases.

6. A/D Converter Glossary

Resolution : Analog variation that is recognized by an A/D converter.

Non linearity error : Deviation between a line across zero-transition line ("00 0000 0000" ↔

"00 0000 0001") and full-scale transition line ("11 1111 1110"↔"11 1111 1111") and

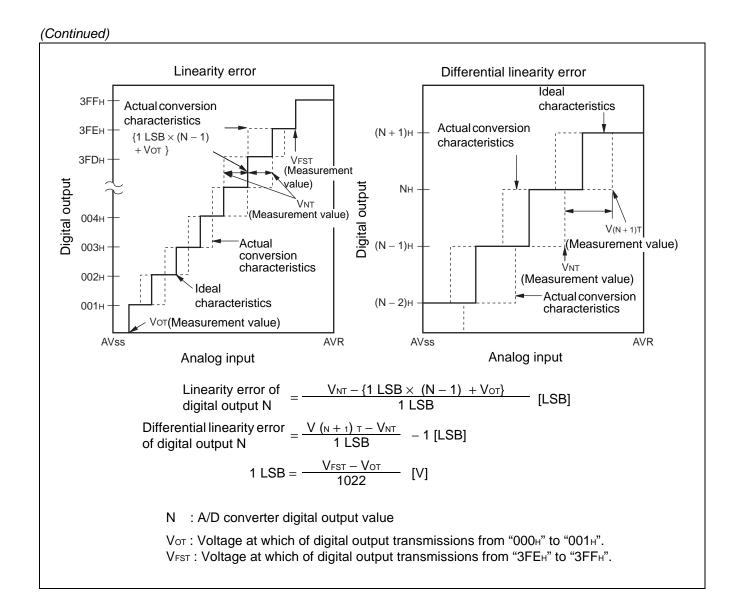

actual conversion characteristics.

Differential linearity error: Deviation of input voltage, which is required for changing output code by 1 LSB, from

an ideal value

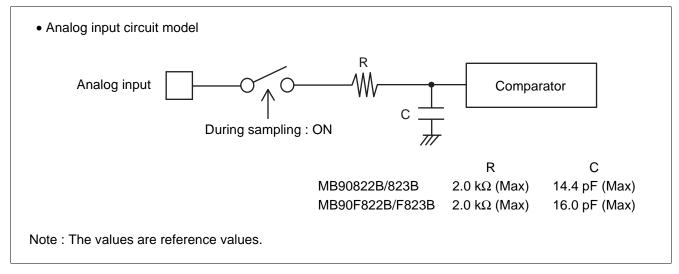
Total error : Difference between an actual value and an ideal value. A total error includes zero

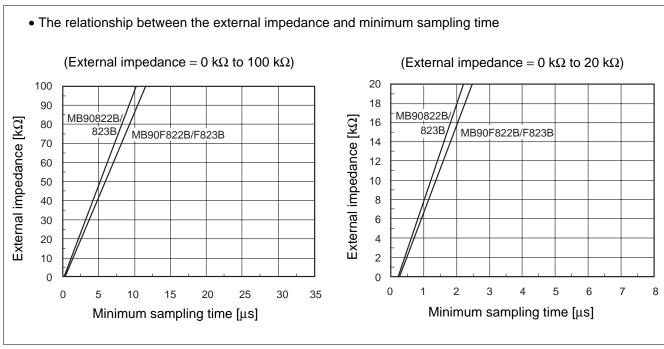
transition error, full-scale transition error, and linear error.


Total error for digital output N =
$$\frac{V_{NT} - \{1 \text{ LSB} \times (N-1) + 0.5 \text{ LSB}\}}{1 \text{ LSB}}$$
 [LSB]
$$1 \text{ LSB} = (\text{Ideal value}) \quad \frac{\text{AVR} - \text{AVss}}{1024} [V]$$

N : A/D converter digital output value Voτ(Ideal value) = AVss + 0.5 LSB [V]

VFST(Ideal value) = AVR - 1.5 LSB [V]


 V_{NT} : Voltage at which of digital output transitions from $(N-1)_H$ to N_H .


(Continued)

7. Notes on Using A/D Converter

- About the external impedance of the analog input and its sampling time
 - A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the resistor value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. And if the sampling time cannot be sufficient, connect a capacitor of about 0.1 μF to the analog input pin.

About the error
 The accuracy gets worse as | AVR-AVss | becomes smaller.

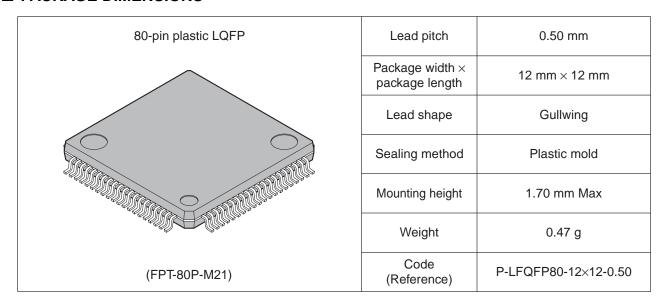
8. Electrical Characteristics of D/A convertor

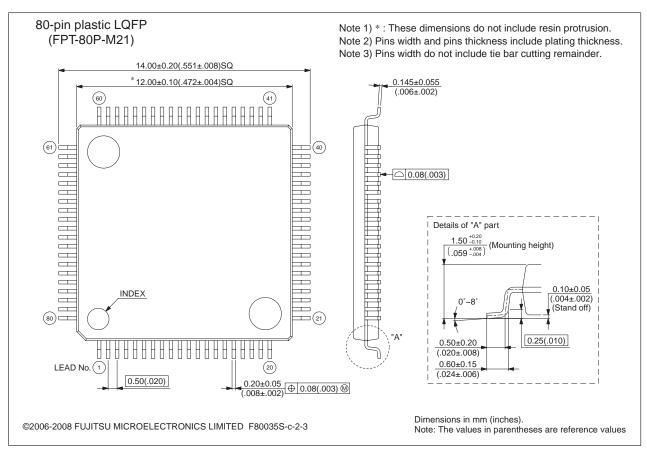
(Vcc = AVcc = 4.5 V to 5.5 V, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks		
raiametei	Syllibol	r III IIaiiie	Condition	Min	Тур	Max	Oilit	Remarks		
Resolution	_	_		_	8	_	bit			
Differential linearity error	_	_		_	_	±0.5	LSB			
Conversion time	_	_		_	0.45	_	μs	*		
Analog output impedance		_			2.9	3.8	kΩ			
Power supply current	I DVR	AVcc	۸۱/۵۵	۸\/مه		_	160	920	μΑ	
r ower supply current	Idvrs	AVCC			0.1		μΑ	D/A stops		

^{*:} With load capacitance 20 pF.

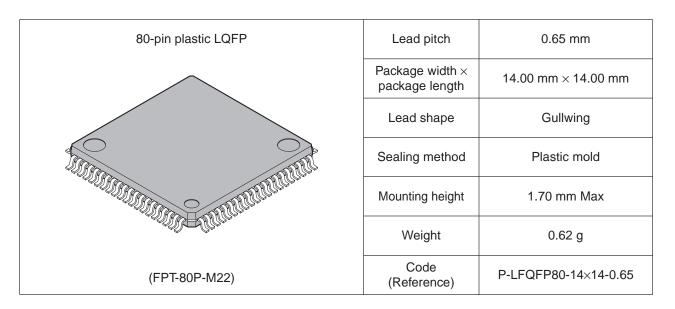
9. Flash Memory Program/Erase Characteristics

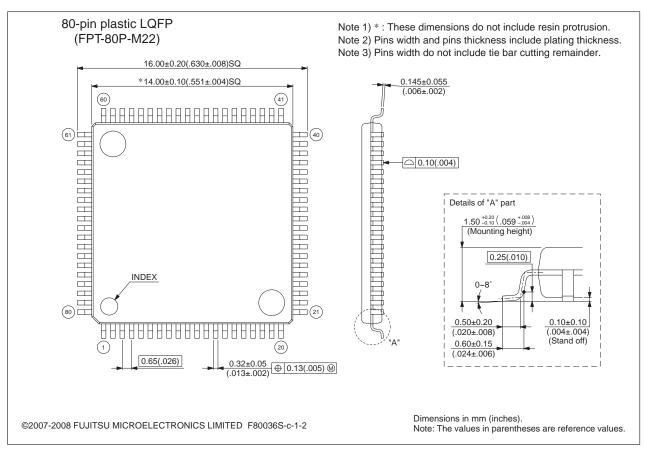

Parameter	Condition	Value			Unit	Remarks
Parameter	Min Typ Max	Remarks				
Sector erase time		_	1	15	S	Excludes programming prior to erasure
Chip erase time	T _A = +25 °C Vcc = 5.0 V		9		S	Excludes programming prior to erasure
Word (16 bit width) programing time			16	3,600	μs	Except for the overhead time of the system
Program/Erase cycle	_	10,000	_	_	cycle	
Flash data retention time	Average T _A = +85 °C	20	_	_	year	*


 $^{^*}$: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85 $^{\circ}$ C) .

■ ORDERING INFORMATION

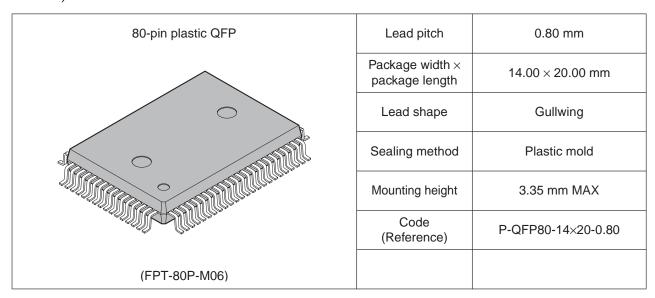
Part number	Package
MB90F823BPMC MB90F822BPMC MB90822BPMC MB90823BPMC MB90F828BPMC	80-pin plastic LQFP (FPT-80P-M21)
MB90F823BPMC1 MB90F822BPMC1 MB90822BPMC1 MB90823BPMC1 MB90F828BPMC1	80-pin plastic LQFP (FPT-80P-M22)
MB90F823BPF MB90F822BPF MB90822BPF MB90823BPF MB90F828BPF	80-pin plastic QFP (FPT-80P-M06)

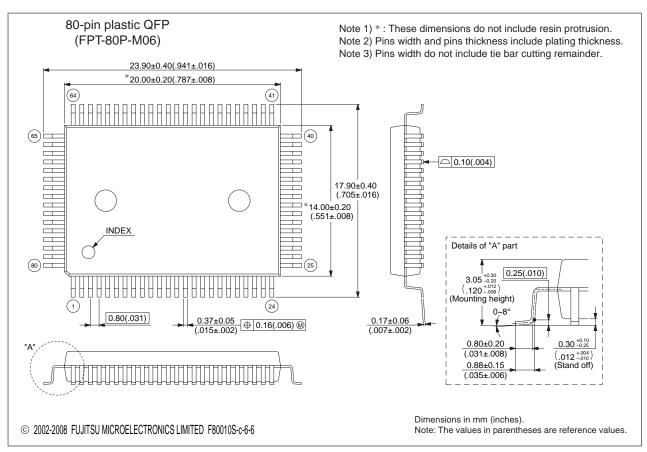

■ PACKAGE DIMENSIONS



Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

(Continued)

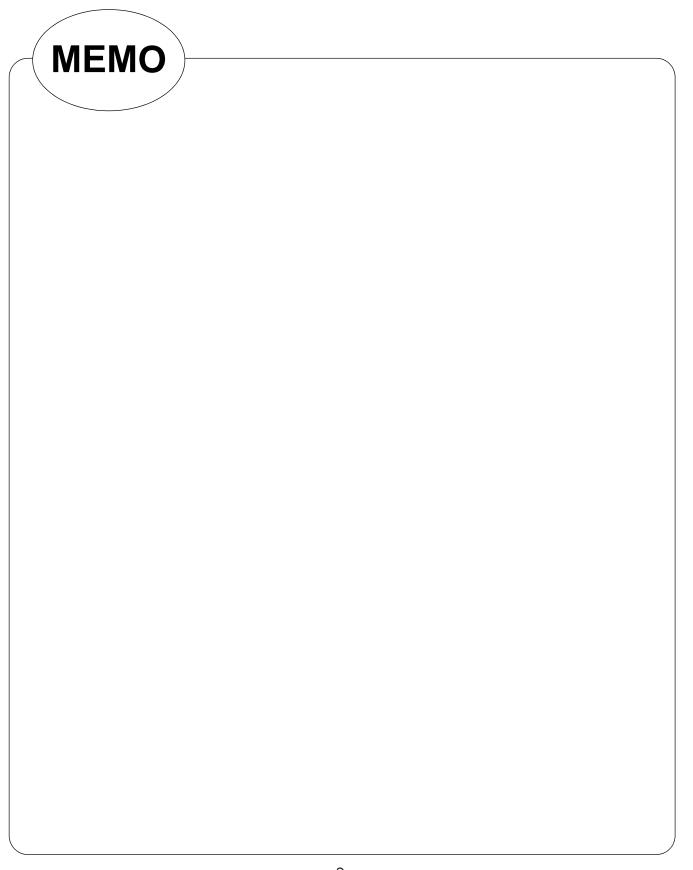


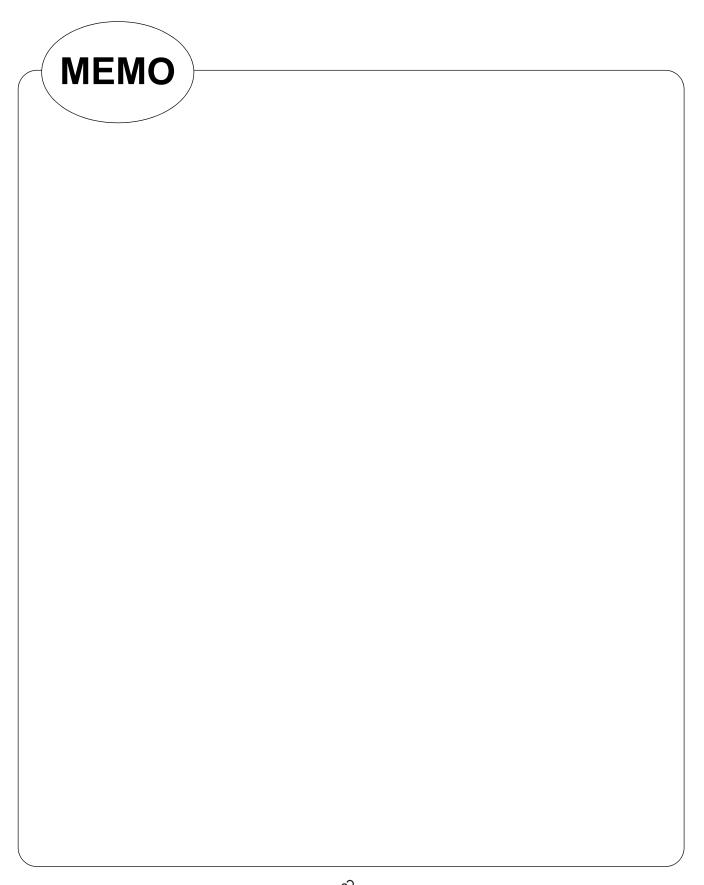


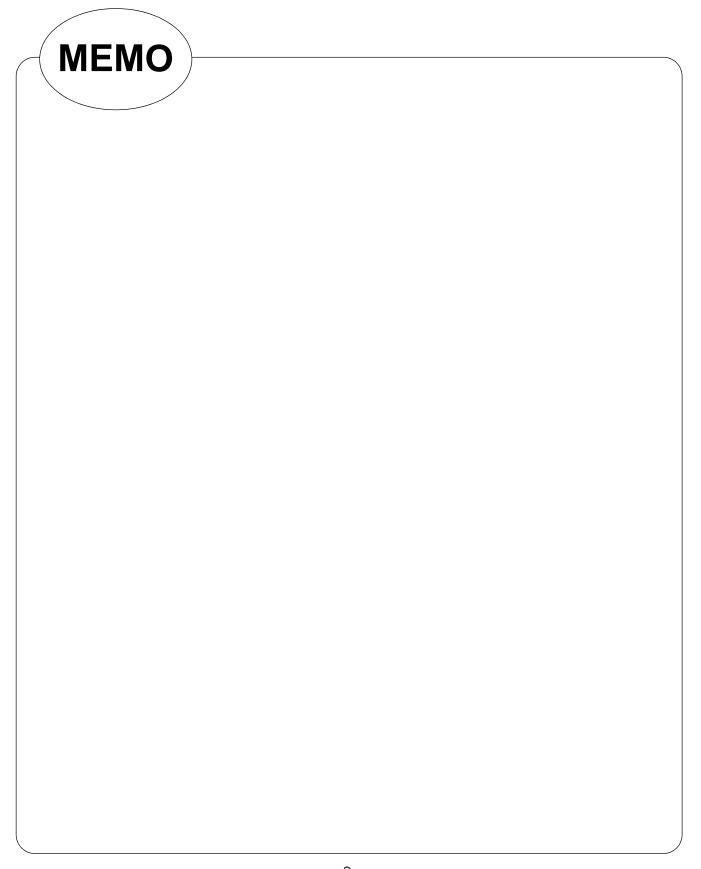
Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

(Continued)

(Continued)




Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/


■ MAIN CHANGES IN THIS EDITION

Page	Section	Change Results
4	■ PACKAGE AND CORRESPONDING PRODUCTS	Changed the MB90822B (FPT-80P-M21). X: Not available → ○: Available
43	■ ELECTRICAL CHARACTERISTICS 5. A/D Converter Electrical Characteristics	Changed the unit of zero transition voltage and full-scale transition voltage. $\mbox{mV} \rightarrow \mbox{V}$
48	■ ORDERING INFORMATION	Added the part number. MB90822BPMC MB90823BPMC

The vertical lines marked in the left side of the page show the changes.

FUJITSU MICROELECTRONICS LIMITED

Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0722, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3387 http://jp.fujitsu.com/fml/en/

For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 206 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea

http://emea.fujitsu.com/microelectronics/

Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

http://www.fmk.fujitsu.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD.
151 Lorong Chuan, #05-08 New Tech Park,
Singapore 556741
Tel: +65-6281-0770 Fax: +65-6281-0220
http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm.3102, Bund Center, No.222 Yan An Road(E), Shanghai 200002, China Tel: +86-21-6335-1560 Fax: +86-21-6335-1605 http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD.

10/F., World Commerce Centre, 11 Canton Road
Tsimshatsui, Kowloon
Hong Kong

Tel: +852-2377-0226 Fax: +852-2376-3269 http://cn.fujitsu.com/fmc/tw

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited Business & Media Promotion Dept.