
Functional Block Diagrams

DC-DC Converter Block Diagram

The case shown has both the DC-DC converter and series regulator enabled.

To enable ONLY the series regulator, tie SWO to VPWR. External components are unnecessary.

TABLE OF CONTENTS

<u>Section</u>	<u>Page</u>
1. Electrical Specifications	4
2. Typical Performance Characteristics	
3. Functional Description	18
3.1. Octal High-Voltage PSE Port Interfaces	
3.2. Operating Modes	19
3.3. VDD Ramp Time	
3.4. I ² C Protocol	
3.5. DC-to-DC Converter Description	24
4. Register Map	
4.1. Register Set	
4.2. Detailed Register Descriptions	30
5. Pin Descriptions	46
6. Ordering Guide	49
7. Package Outline	50
8. Recommended Land Pattern	
9. Top Marking	54
9.1. Si3459 Top Marking (QFN)	54
9.2. Top Marking Explanation	
10. Firmware Revision Release Notes	
Document Change List	56
Contact Information	

1. Electrical Specifications

Table 1. PSE Port Interface Recommended Operating Conditions¹

Parameter	Symbol	Symbol Test Condition		Тур	Max	Unit
Power Supply Voltages		,	l	II.	ll.	1
VPWR Input Supply Voltage	V _{PWR}	When generating IEEE-compliant output voltage	44	48	57	V
VPWR UVLO Input Voltage (to turn on) ²	V _{UVLO_ON}		_	32	_	V
VPWR UVLO Input Voltage (to turn off) ²	V _{UVLO_OFF}		_	44	_	V
VDD Supply Voltage	V _{DD}		3.0	3.3	3.6	V
VDD UVLO Voltage ²	V _{DD_UVLO}	VDD – AGND	_	2.8	_	V
Hardware Reset Voltage	V _{RESET}	VDD voltage causing an MCU reset	_	1.8	_	V

Notes:

- 1. Port voltages are referenced with respect to VPWR. All other voltages are referenced with respect to GND. These specifications apply over the recommended operating voltage and temperature ranges of the device unless noted otherwise. Typical performance is for $T_A = 25$ °C, $V_{DD} = AGND + 3.3$ V, AGND and DGND = 0 V, and VPWR at 48 V.
- 2. For a description of the detailed behavior of VDD UVLO, see "4.2.2. Global Event Register and Global Event COR (0x02, 0x03)".
- 3. Positive values indicate currents flowing into the device; negative currents indicate current flowing out of the device.

Table 1. PSE Port Interface Recommended Operating Conditions¹ (Continued)

Parameter	Symbol	ol Test Condition		Тур	Max	Unit
Power Supply Currents ³			1	1	1	
VPWR Supply Current	I _{VPWR}	During normal operation	_	2	5	mA
VDD Supply Current	I _{DD}		_	18	25	mA
Detection Specification			ı	I	·	
Detection Voltage	M	Primary detection voltage	_	-4.0	-2.8	V
when $R_{DET} = 25.5 k\Omega$	V_{PORTn}	Secondary detection voltage	-10	-8.0	_	V
Detection Current Limit	I _{DET}	Measured when V _{PORTn} = 0 V	_	3	4.9	mA
Minimum Signature Resistance @ PD	R _{DET_MIN}		15	_	19	kΩ
Maximum Signature Resistance @ PD	R _{DET_MAX}		26.5	_	33	kΩ
Shorted Port Threshold	R _{SHORT}		150	_	400	Ω
Open Port Threshold	R _{OPEN}		100	_	400	kΩ
Classification Specifications				11	1	1
Classification Voltage	V _{CLASS}	0 mA < ICLASS < 45 mA	-20.5	_	-15.5	V
Classification Current	I _{CLASS}	Measured when V _{PORTn} = 0 V	55	_	95	mA
		Class 0	0	_	5	mA
		Class 1	8	_	13	mA
Classification Current Region	I _{CLASS_RE} - GION	Class 2	16	_	21	mA
	GION	Class 3	25	_	31	mA
		Class 4	35	_	45	mA

- Port voltages are referenced with respect to VPWR. All other voltages are referenced with respect to GND. These specifications apply over the recommended operating voltage and temperature ranges of the device unless noted otherwise. Typical performance is for T_A = 25 °C, V_{DD} = AGND + 3.3 V, AGND and DGND = 0 V, and VPWR at 48 V.
 For a description of the detailed behavior of VDD UVLO, see "4.2.2. Global Event Register and Global Event COR
- For a description of the detailed behavior of VDD UVLO, see "4.2.2. Global Event Register and Global Event COR (0x02, 0x03)".
- 3. Positive values indicate currents flowing into the device; negative currents indicate current flowing out of the device.

Table 1. PSE Port Interface Recommended Operating Conditions¹ (Continued)

Parameter	Symbol	ol Test Condition		Тур	Max	Unit
Classification Mark Specifica	ntions			I	I.	
Mark Voltage	V	I _{PORT} = 0 mA	-10	_	_	V
wark vollage	V _{MARK}	I _{PORT} = 5 mA	_	_	-7	V
Output Voltage Sense						
Threshold Voltage for Power Good Sense V _{PGOOD}		Measured at V _{DRAINn} to AGND	1	_	3	V
Bias Current of DRAINn Pin	I _{DRAINn}	V _{DRAINn} = 0 V	_	-25	_	μΑ
Current Sense						
Sense resistor value	R _{SENSE}	1% tolerance	0.2475	0.25	0.2525	Ω
Sense Voltage	.,,	V _{SENSEn} -V _{KSENSEn} 1x Power Mode	100	106.25	112.5	mV
at Current Limit	V _{ILIM}	V _{SENSEn} -V _{KSENSEn} 2x Power Mode	200	212.5	225	mV
DC Disconnect Sense Voltage	V _{DC_MIN}	V _{SENSEn} – V _{KSENSEn}	1.25	1.875	2.5	mV
SENSEn Pin Bias Current	I _{SENSE}	V _{SENSEn} – AGND	_	-1	_	μA
MOSFET Gate Drive			1	1	ı	
Drive Current from GATEn Pin (Active)		GATEn pin active V _{GATEn} = AGND 1x Power Mode	-60	-40	-20	μΑ
Drive Current from GATEn Pin (Off)		GATEn pin shut off V _{GATEn} = AGND + 5 V	_	50	_	mA
Voltage Difference Between any GATEn and AGND Pin		I _{GATEn} = −1 μA	10.5	12	13	V

- 1. Port voltages are referenced with respect to VPWR. All other voltages are referenced with respect to GND. These specifications apply over the recommended operating voltage and temperature ranges of the device unless noted otherwise. Typical performance is for $T_A = 25$ °C, $V_{DD} = AGND + 3.3$ V, AGND and DGND = 0 V, and VPWR at 48 V.
- 2. For a description of the detailed behavior of VDD UVLO, see "4.2.2. Global Event Register and Global Event COR (0x02, 0x03)".
- 3. Positive values indicate currents flowing into the device; negative currents indicate current flowing out of the device.

Table 1. PSE Port Interface Recommended Operating Conditions¹ (Continued)

Parameter	Symbol Test Condition		Min	Тур	Max	Unit			
Measurement Accuracy									
Voltage Measurement	V _{PWR}	V _{PWR} = 50 V	47.5	_	52.5	V			
	I (I _{PORT})	I _{PORT} = 7.5 mA	5	7.5	10	mA			
Current Measurement		I _{PORT} = 350 mA	335	350	365	mA			
		I _{PORT} = 700 mA	670	_	730	mA			
Bad FET Measurement (Port	V _{PORTn}	Force port voltage	-20	-15	-10	V			
Voltage at the Beginning of Detection that Causes a Bad FET Indication)	I _{PORTn}	Force current through sense resistor	0.5	2.0	4.0	mA			

- 1. Port voltages are referenced with respect to VPWR. All other voltages are referenced with respect to GND. These specifications apply over the recommended operating voltage and temperature ranges of the device unless noted otherwise. Typical performance is for $T_A = 25$ °C, $V_{DD} = AGND + 3.3$ V, AGND and DGND = 0 V, and VPWR at 48 V. **2.** For a description of the detailed behavior of VDD UVLO, see "4.2.2. Global Event Register and Global Event COR
- (0x02, 0x03)".
- 3. Positive values indicate currents flowing into the device; negative currents indicate current flowing out of the device.

Table 2. DC-DC Converter Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Regulator Input Voltage	V _{CAP}	_	3.6	4.3	4.6	V
DC-DC Switcher Output Current	I _{LOAD}	_	0.1	_	200	mA
Regulator Output Voltage	V_{DDA}	55 mA load	3.0	3.3	3.6	V
Regulator Output Current	I _{DDA}	_	0.1	_	55	mA

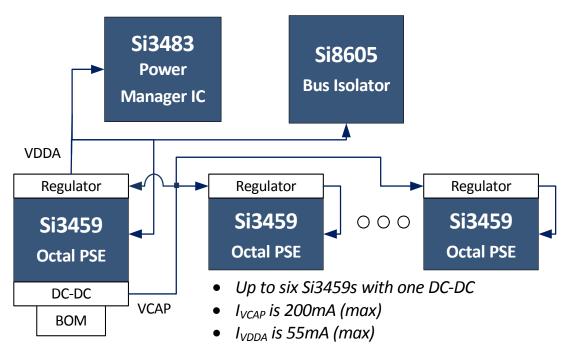


Figure 1. 55 mA and 200 mA Budget Load Components

Table 3. Digital Pin Recommended Operating Conditions¹

Parameter	Symbol	Test Condition	Pins	Min	Тур	Max	Unit
Input low Voltage	V _{IL}		RESET, SCL, SDAI, A4, A3, A2, A1	_	_	0.8	V
Input High Voltage	V _{IH}		RESET, SCL, SDAI, A4, A3, A2, A1	2.0	_	_	V
	I _{IH}	V _{DD} = 4.2 V, Vpin = 4.2 V	RESET, SCL, SDAI, A3, AIN, INT, DCEN	_	_	6	μΑ
			SHDN	_	_	10	μΑ
Input Leakage	I _{IL}	V _{DD} = 4.2 V, Vpin = 0 V	SHDN	_	85		μΑ
	I _{IL}	V _{DD} = 3.3 V, Vpin = 0 V	RESET, SCL, SDAI, A4, A3, A2, A1, INT, DCEN	_	15	50	μΑ
Output Low Voltage ²	V _{OL}	$I_{SDAO} = 8 \text{ mA},$ $I_{\overline{INT}} = 8 \text{ mA}$ $I_{AOUT} = 8 \text{ mA}$		_	_	0.6	V

2. SDAO and $\overline{\text{INT}}$ are open drain outputs. Tie each pin to V_{DD} with a 1 k Ω resistor for normal operation.

^{1.} All specification voltages are referenced with respect to DGND. These specifications apply over the recommended operating voltage and temperature ranges of the device unless noted otherwise.

Table 4. AC Timing Specifications

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Detection Delay Cycle	t _{DET_CYCLE}	Time from detect command or when PD is connected to port to when detection process is completed.* See Figure 6.	70		400	ms
Detection Time	t _{DETECT}	Time required to measure PD signature resistance.* See Figure 6.		70	_	ms
Classification Delay Cycle	t _{CLASS_CYCLE}	Time from successful detect in Semi-AUTO mode to classifica- tion complete.* See Figure 6.	10	l	30	ms
		Time from classify command in manual mode to class complete.* See Figure 6.	10	_	30	ms
Classification Time	t _{CLASS}	See Figure 6*	10		20	ms
Inrush Time	t _{INRUSH}			60	_	ms
Overload Time Limit	t _{CUT}			60	70	ms
Disconnect Delay	t _{CMPS}			360	_	ms
Timer Duration	t _{LIM}	1.71 ms times the value of TLIM12 (TLIM34) field rounded to nearest integer.	0	_	26	ms
DC Disconnect Minimum Pulse Width Sensitivity	t _{DC_SEN}	$V_{DRAINn} = -48 \text{ V},$ $V_{SENSEn} - AGND > 5 \text{ mV}$	_	_	3	ms
SHDN Pin Assertion Threshold (Time from SHDN falling edge to port turn off)	T _{SHDN}	Shutdown Priority Mode	1	_	50	μs

*Note: This timing is determined by the MCU, and the clock reference is guaranteed to be 1 ms ±5%.

Table 5. I²C Bus Timing Specifications 1,2,3,4,5,6

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Serial Bus Clock Frequency	f _{SCL}	See Figure 5	0	_	800	kHz
SCL High Time	t _{SKH}	See Figure 5	300	_	_	ns
SCL Low Time	t _{SKL}	See Figure 5	650	_	_	ns
Bus Free Time	t _{BUF}	Between STOP and START conditions. See Figure 5	650	_	_	ns
Start Hold Time	t _{STH}	Between START and first low SCL. See Figure 5	300	_	_	ns
Start Setup Time	t _{STS}	Between SCL high and START condition. See Figure 5	300	_	_	ns
Stop Setup Time	t _{SPS}	Between SCL high and STOP condition. See Figure 5	300	_	_	ns
Data Hold Time	t _{DH}	See Figure 5 ⁷	75	_	_	ns
Data Setup Time	t _{DS}	See Figure 5	100	_	_	ns
Time from Hardware or Software Reset until Start of I ² C Traffic	t _{RESET}	Reset to start condition	5	_	_	ms

- 1. All specification voltages are referenced with respect to AGND and DGND at ground. Currents are defined as positive flowing into a pin and negative flowing out of a pin.
- 2. Not production tested (guaranteed by design).
- 3. All timing references measured at VIL and VIH.
- 4. SDAI must be low within ½ SCL clock cycle of SDAO going low for the following reasons:
 - a.) During a read transaction, if the Si3459 is letting SDAO go high and another device is driving SDAO low, this should be recognized as bus contention, and the Si3459 should release the bus. If SDAO low is not present on SDAI within ½ clock cycle, the Si3459 will not recognize this as bus contention and will not release the bus.
 - b.) During any I²C transaction, the Si3459 will ACK (SDAO low) when its address is sent. The Si3459 "expects" that SDAI will follow within ½ of the SCL clock cycle. If SDAI is not low, the Si3459 will release the bus.
- 5. SCL and SDA rise and fall times depend on bus pullup resistance and bus capacitance.
- **6.** The time from a fault event to the INT pin being driven is software-defined. The Si3459 produces a new measurement result for the Port voltage or current every 3 msec and every 6 msec for the power supplies and temperature. After each port is monitored, the port status, port event registers, INT register, and INT pin are updated in sequence. For this reason, the INT pin can lag the contents of the event registers by approximately 5 ms.
- 7. 250 ns minimum and 350 ns maximum for the case where the Si3459 is transmitting data.

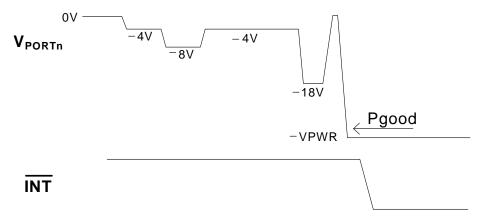
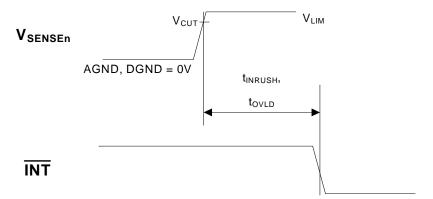
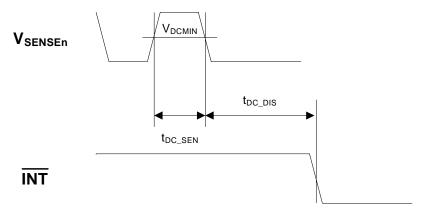




Figure 2. Semi-Auto Timing for Detect, Classification, and Power-Up Sequence

Figure 3. Current Limit Timing

Figure 4. DC Disconnect Timing

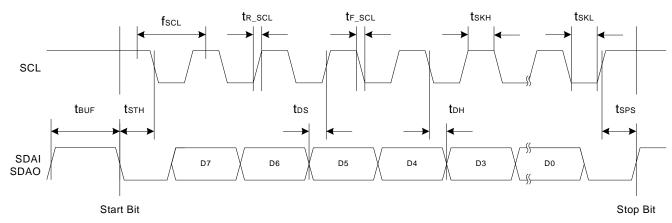


Figure 5. I²C Bus Interface Timing

Table 6. Thermal Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating Temperature	T _A		-40		85	°C
Thermal Impedance	θ_{JA}	4-Layer PCB, no airflow	_	24	_	°C/W
Junction Temperature	TJ		-40	_	125	°C

Table 7. Absolute Maximum Ratings¹

Туре	Parameter	Rating	Unit
O and Mallana	VPWR to AGND ²	-0.3 to 70	V
Supply Voltages	VDD to DGND ²	-0.3 to 4.2	V
Voltage on Digital Pins	INT, RESET, A4, A3, A2, A1, SCL, SDAI, SDAO, SHDN, AUTO	DGND-0.3 to DGND+5.8	V
	SENSEn	AGND-0.6 to AGND+0.6	V
	GATEn ^{3,4}	AGND-0.3 to AGND+12	V
Voltage on Analog Pins	DRAINn	-0.3 to VPWR	V
	KSENSA, KSENSB	AGND-0.6 to AGND+0.6	V
	ISENSE	VPWR-5 to VPWR	V
ESD HBM (Human Body	Model ⁵) Tolerance	-2 to +2	kV
Maximum Junction Temp	erature ⁶	125	°C
Operating temperature ra	ange	-40 to +85	°C
Ambient Storage Temper	ature	-65 to 150	°C
Lead Temperature (Solde	ering, 10 Seconds Maximum)	260	°C

Notes:

- 1. Stresses beyond the absolute maximum ratings may cause permanent damage to the device. Functional operation or specification compliance is not implied at these conditions. Functional operation should be constrained to those conditions specified in Table 1, "PSE Port Interface Recommended Operating Conditions¹," on page 4 and Table 3, "Digital Pin Recommended Operating Conditions¹," on page 9.
- 2. AGND is shorted to DGND inside the package.
- 3. The GATE pins include an integrated clamp to limit the pins to a minimum of 12 V above AGND, GATE voltages in excess of AGND+12 V may cause permanent disconnect of the affected port.
- 4. The Si3459 includes protection circuitry to tolerate up to 80 mA of transient current for a maximum of 5 ms.
- 5. Charged Device Model (CDM), and Cable Discharge Event (CDE) electrical stress tolerance are typically 500 V and 3 kV.
- **6.** Thermal overload protection shuts down the device when the silicon junction temperature exceeds 165 °C, including a temperature hysteresis of 20 °C.

2. Typical Performance Characteristics

This section shows various waveforms that describe typical behaviors and performance of the Si3459. The waveform in Figure 6 shows the part in semi-auto mode with Rgood and Cgood. The Si3459 uses a multi-point detection algorithm. Typically, a Cbad of >10 μ F causes an Rlow indication. The Detection Signature is calculated for two measurements at the primary voltage and two measurements at the secondary voltage. For there to be an Rgood indication, the signature must be Rgood in all steps.

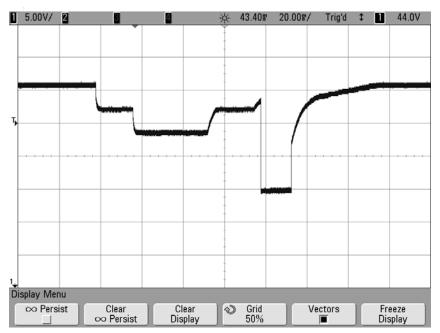


Figure 6. Typical Detect and Classify Sequence (Semi-Auto Mode)

Figure 7 shows the FET gate drive set to 50 μ A for FET turn-on. The slew time is about 40 μ s with this FET gate drive and is not strongly load-dependent.

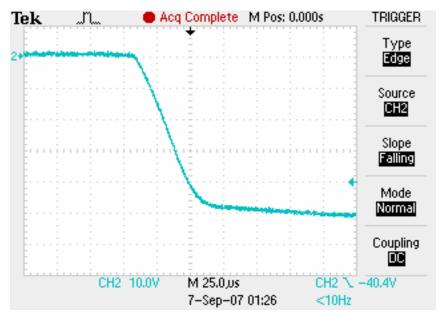


Figure 7. Typical Powerup (220 Ω Load)

The waveform in Figure 8 shows power down when the load is switched to 100 k Ω .

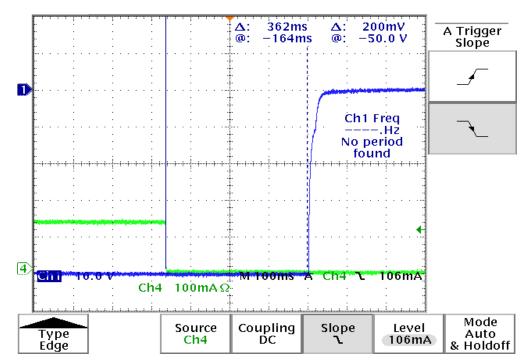


Figure 8. Typical DC Disconnect and Powerdown Sequence

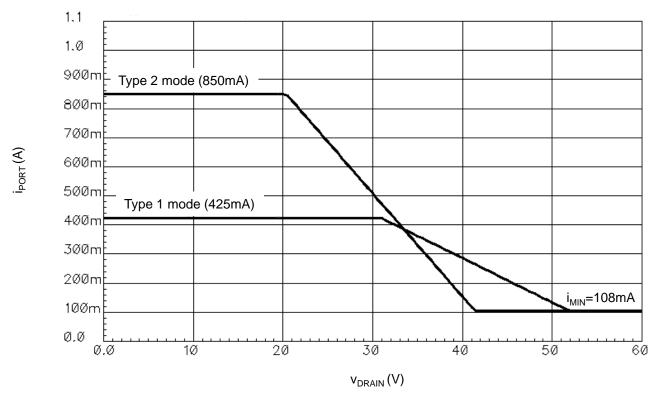


Figure 9. Foldback Current in IEEE 802.3at Type 1 (1X) and Type 2 (2X) Current Limit Modes

Short Circuit Response

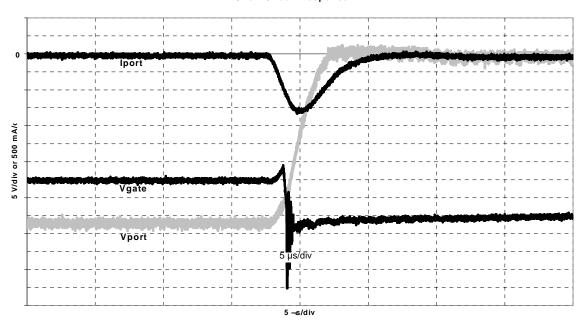


Figure 10. Short Circuit Response

3. Functional Description

Integrating a high-performance microcontroller with high-resolution A/D and D/A capabilities, along with eight independent, high-voltage PSE port interfaces, the Si3459 enables an extremely flexible solution for virtually any PoE switch application. The Si3459 integrates all PSE controller functions needed for an octal-port PoE design.

The Si3459 includes many additional features that can be individually enabled or disabled by programming the extended register set appropriately.

- Per-port current / voltage monitoring and measurement
- Multipoint detection algorithms
- 802.3at support
- Programmable gate drive for external MOSFETs
- Watchdog timer (WDT)

3.1. Octal High-Voltage PSE Port Interfaces

In addition to the IEEE 802.3at detection and classification functionality, the high-voltage port interfaces provide accurate voltage and current control and measurement for each of the eight output ports. The high-voltage port interface circuitry is controlled by the internal microcontroller and includes the following features beyond the 802.3at standard's base requirements.

3.1.1. Per-Port Measurement and Monitoring

The measurement function supports the following capabilities, which enable flexible per-port voltage and current monitoring.

- Detection and classification current measurement with on-chip sense resistors.
- **FET** current measurement through 0.25 Ω sense resistor with 1 A full-scale.
 - FET current scaling is changed dynamically so as to allow sensitive and accurate dc disconnect, even for a 2x current limit.
- Current measurement offset calibration circuitry.
- V_{PWR} and output voltage measurement.
 - Each channel and range is factory-calibrated.
 - Channel parameters can be read from each port's corresponding registers (output voltage, and current) and are sampled approximately every three milliseconds.
- Supply monitors on V_{DD} and V_{PWR}.

3.1.2. DC Disconnect

DC disconnect may be enabled on any port. If dc disconnect is not enabled when the load is disconnected, the port will not shut off except in response to other fault conditions.

3.1.3. Programmable MOSFET Gate Drivers

To provide maximum system-level design flexibility and optimal EMI performance when interfacing to external high-current MOSFET devices, the Si3459 provides eight independent MOSFET gate drivers with the following features:

- Drive current is 50 µA nominal.
- A 100 mA pull-down that is automatically activated if a current transient of 25% over the programmed current limit is sensed.
- Current limit circuit that can be programmed to 425 or 850 mA typical.
 - Current limit is based on voltage sensed across 0.25 Ω sense resistor.
 - Each channel and range is internally trimmed to ±5% accuracy.
 - Linear foldback behaves as shown in Figure 9 on page 16.

3.2. Operating Modes

The Si3459 normally operates in manual or semi-automatic mode when the AUTO pin is held low. If a valid set voltage level (described in Table 8) is applied to the AUTO pin, the Si3459 enters into fully autonomous operation, independent of a host. When setup voltages indicated as "Reserved" are applied to the AUTO pin, the Si3459 does not enter into fully autonomous mode but remains instead in Shutdown mode. The Si3459 also features do disconnect detection algorithms to determine when a PD device is disconnected from any of the eight independent ports.

The AUTO mode can be set via the AUTO pin or from the host via I²C.

At power-up, the Si3459 reads the voltage on the AUTO pin (which can be set by a resistor divider from VDD to GND). If a valid setup voltage is applied, the Si3459 enters into AUTO mode (all ports operate fully autonomously). The AUTO pin voltage level configures the Si3459's behavior through the register default values as summarized in Table 8 below.

In Host-controlled mode, any port can be configured to AUTO mode through the confp_x register. In this case the Host should set the proper port configuration.

Table 8. Auto Pin Configurations

Voltage on the AUTO Pin	IEEE	Endpoint	Restart	Detect+Classify	Registe	r Default	Values
	Class	vs. Midspan		Looping	confp_x	tlimp_x	icutp_x
0 (AUTO pin pulled to GND)	Shutdown				0x00	0x00	0x54
0.22	Reserved						
0.44	Reserved						
0.66	3	Mid	Auto after 2 s	Automatic detect/ class loop	0x7f	0x00	0x54
0.88	Reserved						
1.10	Reserved						
1.32	Reserved						
1.54	3	End	Auto after 2 s	Automatic detect/ class loop	0x3f	0x00	0x54
1.76	Reserved						
1.98	Reserved						
2.20	Reserved						
2.42	4	Mid	Auto after 2 s	Automatic detect/ class loop	0x7f	0x20	0x54
2.64	Reserved						
2.86	Reserved						
3.08	Reserved						
3.30 (AUTO pin pulled to VDD)	4	End	Auto after 2 s	Automatic detect/ class loop	0x3f	0x20	0x54

3.2.1. Additional Operating Modes Notes

■ By default the lcut limit is set to 375 mA (icutp_x = 0x54; Class 0 or Class 3 limits) initially for all operating modes

3.2.1.1. AUTO Mode-Specific Behaviors

- The "hpen" bit will be set automatically, but only if the 2-event classification was successful
- If there was a successful 2-event classification, then the lcut limit will be increased to 638 mA (Nominal) automatically (icutp $\mathbf{x} = 0x62$)
- The intmask register is set to 0xff in all pin configured AUTO modes

3.2.1.2. Manual and Semi-Auto Mode Behaviors

- To enable IEEE Type 2 Class 4 operation only the "pongen" bit need be set (tlimp $\mathbf{x} = 0x20$)
- It is the host role to set the "hpen" bit, but only if the 2-event classification was successful (the "pongpd" bit is set in the **pwrstatp_x** register)
- It is the host role to set the lcut limit properly

3.2.2. Port ON/OFF Control

The Si3459 offers various options for the Host to control the state of the ports. There is also logic in the part which controls the port state in response to an event.

3.2.2.1. HOST Controlled Port Turn ON

A port can be turned ON in the following ways:

- 1. In manual Mode, the port can be unconditionally turned on using the proper pushbutton register (set the "on_x" bit (Bit 0) in the **pb_p_x** register).
- 2. In Semi-Auto mode the port can be also turned on using the proper pushbutton register, but the port will not turn on until a valid PD signature is detected.
- 3. In Host controlled Auto mode (the AUTO pin is held low), the port will turn on automatically if detection and classification is enabled, a valid signature is detected, and the classification is successful. Otherwise the port can also be turned on using the proper pushbutton register, but in this Mode, the port will not turn on until a valid PD signature is detected. The following steps detail how a port can be turned on in the IEEE Std 802.3at-2012 Type 2 high-power manner:
 - a. Enable detection and classification by setting the "detena_x" bit (Bit 2) "classena_x" bit (Bit 3) in the **confp**_x register
 - b. Set the "hpen_x" bit (Bit 7) and the "pongen_x" bit (Bit 6) in the **tlimp**_x register to enable the 2-Event classification on the port, and
 - c. Set the lcut limit in the icutp x register according to the available power
- 4. In the Host independent Auto mode (positive voltage is applied to the AUTO pin), the detection and 2-event classification is enabled by default, so the port will turn on automatically if a valid signature is detected and the classification is successful. The current limits are set according to the classification result, so both Type 1 and Type 2 PDs are handled correctly.

3.2.2.2. Autonomous port turn ON

The only occurrence when the port could be turned ON automatically by the Si3459 is when the port is in Auto Mode and the detection and the classification were successful.

3.2.2.3. HOST controlled port turn OFF

A port can be turned OFF at any time using one of the following methods:

1. By setting the "off_x" bit (Bit 1) in the **pb_p_x** registers (0x17, 0x27, 0x37, 0x47): The port is shut down, the event and status registers of the port are set to their default value, and the classification enable and detection enable bits are also cleared in the corresponding **confp_x** register (0x14, 0x24, 0x34, 0x44). The value of the other bits of the **confp_x** register are retained. The associated measurement data registers are also cleared.

SILICON LARS

2. By setting the "rst_x" bit (Bit 4) in the pb_p_x register: The port is shut down, and all associated events and configurations are cleared (all port registers are set to their default state)

3.2.2.4. Autonomous Port Turn OFF

In the following cases, a port is (or all ports are) turned OFF automatically by the Si3459:

- 1. In response to the over-temperature event all ports are turned OFF by using the "offall" bit in the **pb_global** register (0x0B). This is equivalent to the situation where the "off_x" of **pb_p**_x registers (0x17, 0x27, 0x37 and 0x47 for ports 1–4, respectively) were set.
- 2. In response to a UVLO event (either VDD or VPWR UVLO), all ports are reset by using the "rstall" bit in the **pb_global** register (0x0B). This is equivalent to the situation where the "rst_x" of the **pb_p**_x registers were set.
- 3. In response to the SHDN pin assertion the low priority ports are turned OFF by using the "off_x" bit (Bit 1) of **pb_p**_x register.
- 4. In response to an over-current event the port is shut down, i.e.: power is removed from the DRAINn pin, and the "pe_x" (Penable bit; Bit 0) and the "pg_x" (Pgood bit, Bit 1) for that port is set. The events are not cleared, and the full port configuration is retained.

3.3. V_{DD} Ramp Time

It is recommended that V_{DD} ramp into the operational range within 1 ms if reset is not held low. Slow ramp times are acceptable if reset is held low until V_{DD} is in the operational range. For additional detail on VDD and undervoltage lockout, refer to "4.2.2. Global Event Register and Global Event COR (0x02, 0x03)".

3.4. I²C Protocol

Controlling the features of the Si3459 is possible by programming a series of registers identified in the Register Map (see "4. Register Map" on page 25). Registers are accessible through a three-wire, I²C-compatible serial interface.

3.4.1. Slave Address

The Si3459 slave base address is pin-assigned by logical ORing HW pins {A[4:1]} with value 0x20.

The complete base address is formed as "01[A4][A3][A2][A1]A0b".

A0 is not a hardware bit. The device acts as two "virtual" quad devices with the address of the first quad being A0 = 0 and the address of the second quad being A0 = 1 in the I^2C protocol (see Figure 11 on page 22).

3.4.1.1. Available I²C Transfer Types

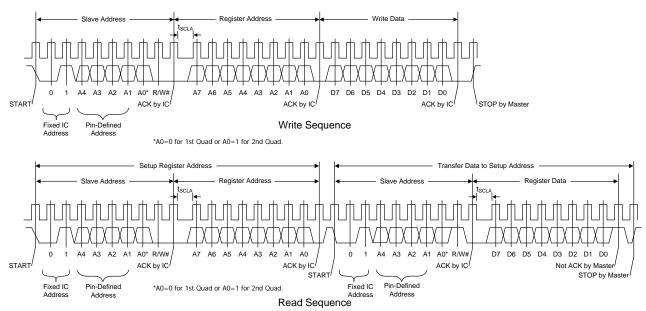


Figure 11. I²C Read and Write Sequences

8-Bit Read

All registers can be accessed this way, but it is not recommended for reading registers storing parametric measurement data (Iport and Vport, registers 0x19–0x1c, 0x29–0x2c, 0x39–0x3c, 0x49–0x4c).

Example Sequence

- 1. START condition, followed by the target slave's 7-bit address, and a write flag. The sequence is ACKed by the Si3459.
- 2. Then an 8-bit Si3459 register address is provided followed by an ACK. These steps set up a pointer register within the Si3459 that points to the address of an internal register to be read.
- 3. The transaction continues by sending a repeated START condition, followed by the target slave's 7-bit address, and a read flag. This sequence is ACKed by the Si3459.
- 4. Then the 8-bit IC register data is provided by the Si3459 (slave). This occurrence is followed by a master NACK (Not ACK).
- 5. Then the master frees the bus by sending a STOP condition.

See Figure 11, "I2C Read and Write Sequences," on page 22 for more details.

8-Bit Write

All registers can be accessed this way (except the read only registers).

Example Sequence

- 1. START condition, followed by the Si3459 7-bit address, and a write flag. This is ACKed by the IC.
- 2. Then an 8-bit IC register address is provided followed by an ACK by the Si3459.
- 3. The transaction is completed by sending 8-bits of register data. This is ACKed by the Si3459.
- 4. Then the master frees the bus by sending a STOP condition.

See Figure 11, "I2C Read and Write Sequences," on page 22 for more details.

16-Bit Read

This is the recommended access mode for reading registers storing parametric measurement data (Iport and Vport, registers 0x19–0x1c, 0x29–0x2c, 0x39–0x3c, 0x49–0x4c). Only these registers can be accessed this way in this mode.

The two byte (16-bit) read follows the same protocol described in the 8-bit read paragraph above, with the extra byte appended to the data field before the STOP condition. In this case, the Master should ACK the first byte, and NACK the second byte.

Example: Reading 2 Bytes from Offset 0x19 Gives the Current Measurement of Port 1

- 1. Start condition, followed by the target slave's 7-bit address, and a write flag. The sequence is ACKed by the Si3459.
- 2. Then an 8-bit Si3459 register address is provided followed by an ACK. These steps set up a pointer register within the Si3459 that points to the address of an internal register to be read.
- 3. The transaction continues by sending a repeated START condition, followed by the target slave's 7-bit address, and a read flag. This sequence is ACKed by the Si3459.
- 4. Then the LSB of PORT1 CURRENT MEASUREMENT (8-bit) data is provided by the Si3459 (slave). This occurrence is followed by a master ACK.
- 5. Then the MSB of PORT1 CURRENT MEASUREMENT (8-bit) data is provided by the Si3459 (slave). This occurrence is followed by a master NACK.
- 6. Then the master frees the bus by sending a STOP condition.

See Figure 11, "I2C Read and Write Sequences," on page 22 for more details.

Quick Access to the Interrupt Register

Whenever a STOP is detected by the slave, its internal register address pointer is reset. Therefore, the next I²C Read transaction will return the contents of the Interrupt register (0x00).

The transaction has to be executed on both quads using the A0 address bit to read the Interrupt register of both quads.

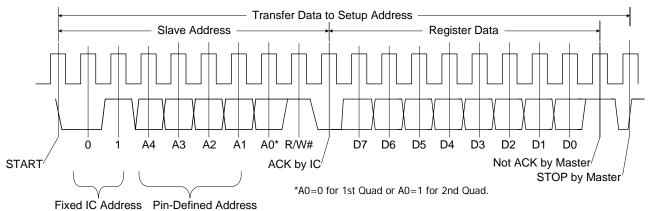


Figure 12. Quick Access Transaction

3.4.1.2. Global Address

Each device on the bus will respond to the global address (100 0000b) in exactly the same way it would to a read or write transaction using its specific slave address. The global address is primarily used to configure (write) all slaves the same after the PSE system is powered up. Global read transactions should be avoided.

3.4.1.3. Alert Response Address (ARA)

The ARA is used by the master as a quick way to determine which slaves are asserting (pulling low) the nINT line. The ARA address is 000 1100b

Each IC ("slave") implements the following protocol:

- Only slaves that are asserting the nINT line respond when the master uses the ARA in a read cycle. All slaves that are not asserting nINT ignore read cycles that use the ARA.
- Each slave responding to the ARA transmits a byte consisting of its address in the upper 7 bits, and a 1 in the least significant bit.

Si3459

- As each bit in the byte is transmitted, the slave determines whether to continue transmitting the remainder of the byte or terminate transmission. The slave terminates when it sees a 0 on SDA at a time when it's attempting to send a 1; otherwise it continues transmitting bits until the entire byte has been sent.
- If a slave completes transmission of the entire byte without terminating, it releases (stops asserting) the nINT line. Any slave that terminated transmission continues to assert the nINT line.

The result of this protocol is that the slave with the lowest address will complete the transmission and won't respond to subsequent ARA read transactions until its event registers have been cleared. Other slaves, with higher addresses, terminate but will respond to the next ARA read cycle. Therefore, each time the master performs a read cycle using the ARA it receives the address of a different slave until all slaves have sent their addresses without terminating.

3.5. DC-to-DC Converter Description

The Si3459 includes a dc-dc converter for generation of an approximately 4.3 V intermediate power rail, which is further down-regulated to create the 3.3 V VDD power rail necessary for MCU operation and other support.

The dc-dc converter consists of a buck converter with accompanying external components to step down VPWR to approximately 4.3 V on the enabled "primary" converter. This voltage, called VCAP, can also be bussed to up to five adjacent "secondary" controllers. Each controller includes a series regulator for generation of 3.3 V for local use by that controller and an optional digital bus isolator.

The converter is enabled by asserting (tying low) DCEN. In fact, DCEN should be asserted on the primary and all secondary controllers.

While the primary controller requires several external components to enable the dc-dc (see " DC-DC Converter Block Diagram" on page 2), the secondary controllers do not require those external components. On the secondary controllers, the SWO pin should be direct-tied to VPWR.

If DCEN is left floating the dc-dc converter is disabled, which eliminates excess current draw by the VPWR pin. To disable the dc-dc converter, the related pins (DCENb, CAP, and SWO) should be left floating.

The ISENSE pin implements a cycle-by-cycle current limit by comparing a sensed voltage to an internal reference. When the external power FET is conducting, if ISENSE drops more than 200 mV below VPWR, the FET will be shut off immediately to limit excessive currents. An appropriate external resistor should be selected to set the desired peak current level (i.e., Ipeak = 200 mV/Rsense). If ISENSE is left floating, an internal pull-up will effectively disable the current limit feature.

In the event of an extreme overcurrent event (e.g., short-circuit), the dc-dc output voltage, CAP, will drop below its target level of 3.6 V. If CAP falls below 90% of that level (i.e., 3.24 V) a dc-dc fault will be declared and the dc-dc and LDO will power down. The dc-dc will then attempt to restart in 4 ms intervals until the overcurrent fault is removed.

4. Register Map

4.1. Register Set

Table 9 lists the Si3459 registers. The Si3459 appears to software as two "virtual quads" in that there is a complete, independent set of the below registers associated with each virtual quad. The A0 1²C address bit distinguishes the two virtual quads. A0 is not a hardware pin; it is reported as either 0 or 1 according to which virtual quad is being addressed via the I²C protocol.

Table 9. Si3459 Registers

			,	1			ì				:	d
	Register	¥ }	Port ²	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
Addr ¹	Name											Auto Tied to DGND
Interrupt	*											
00×0	int	RO	Global	Overtemp	fetbad	uvlo3	uvlo48	p_4_ev	p_3_ev	p_2_ev	p_1_ev	0010 0000
0x01	intmask	R/W	Global	Status	ifault	startfault	dis	class	det	pwrgd	pwrena	1000 0000
Global	Global Event Registers											
0x02	evn_global	RO	Global	Overtemp	fetbad	uvlo3	uvlo48	psı	Reserved	Reserved	Reserved	0010 0000
0x03	evn_global_cor	COR	Global	Overtemp	fetbad	uvlo3	uvlo48	psı	Reserved	Reserved	Reserved	0010 0000
Global	Global Status Registers											
0x05	Status	RO	Global	tsd		S	slave_addr[4:0]	[0:		Reserved	Auto	0000 0000
90×0	Temperature	RO	Global				Die Temperature	berature				0000 0000
0×07	VPWR_LSB	RO	Global				Vmain_LSB	_LSB				0000 0000
0x08	VPWR_MSB	RO	Global				Vmain_MSB	_MSB				0000 0000
1												

Notes:

- Register addresses not listed in the table are reserved and should not be written to.
 The PORT column indicates which ports are associated with each register. For example, "2" means the register is associated with Port 2 only; "Global" refers to slave-level status and control registers.

Si3459

Table 9. Si3459 Registers (Continued)

)						
	Register	8	Port ²	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
Addr ¹	Name											Auto Tied to DGND
Global (Global Configuration Registers	gisters										
0x0A	config	R/W	Global	intena	detchg	tsddisa		wdd	wddis[3:0]		wdstat	1001 0110
0x0B	pb_global	WO	Global	intclr	pinclr	lowpri	swrst	Reserved	Reserved	rstall	offall	0000 0000
0×0C	devid_sirev	RO	Global		Device_ID	Q			Si_Re	Si_Revision		See "4.2.4.3.
0x0D	firmware	RO	Global				firmware_rev	re_rev				Device ID and Revi-
0x0E	manufid_dever	RO	Global		Manufacturer_ID	er_ID			Device_	Device_Version		sion Regis- ters (0x0C, 0x0D, 0x0E)"
Port 1 R	Port 1 Registers											
0x10	evnp_1	RO	_	t_LIM_1	t _{CUT_1}	tSTART_1	dis_1	cls_1	det_1	pwrgd_1	pwrena_1	0000 0000
0x11	evnp_1_cor	COR	1	1_ML1	t _{CUT_1}	^t START_1	dis_1	cls_1	det_1	pwrgd_1	pwrena_1	0000 0000
0x12	statp_1	RO	1	Reserved)	class_1[2:0]		Reserved		detect_1[2:0]		0000 0000
0x13	pwrstatp_1	RO	1	Reserved	ty	type2flt_1[2:0]	Į.	fetbad_1	pongpd_1	1_gq	pe_1	0000 0000
0x14	confp_1	R/W	-	legen_1	midsp_1	disena_1	priority_1	classena_1	detena_1	opmd_1[1:0]	[1:0]	0000 0000
0x15	tlimp_1	R/W	1	Reserved	hpen_1	pongen_1	Reserved		t_LIM_	t _{LIM_1} [3:0]		0000 0000
0x16	icutp_1	R/W	1	Reserved	cutrng_1			l _{cut_}	l _{cut_1} [5:0]			0101 0100
0x17	pb_p_1	WO	1	Reserved	Reserved	Reserved	rst_1	cls_1	det_1	off_1	on_1	0000 0000
0x19	ip_1_lsb	RO	1				ip_1_lsb[7:0]	[0:2]qs				0000 0000
0x1A	ip_1_msb	RO	1				ip_1_msb[7:0]	sb[7:0]				0000 0000
0x1B	vp_1_lsb	RO	1				vp_1_lsb[7:0]	sb[7:0]				0000 0000
0x1C	vp_1_msb	RO	1				vp_1_msb[7:0]	[0:2]qsı				0000 0000
0x1D	detresp_1	RO	1				p_1_detres[7:0]	res[7:0]				0000 0000
Notes:												

- Register addresses not listed in the table are reserved and should not be written to.
 The PORT column indicates which ports are associated with each register. For example, "2" means the register is associated with Port 2 only; "Global" refers to slave-level status and control registers.

Rev. 1.1

Table 9. Si3459 Registers (Continued)

	Register	R/W	Port ²	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
Addr ¹	Name											Auto Tied to DGND
Port 2 R	Port 2 Registers											
0x20	evnp_2	RO	2	t _{LIM_2}	tcuT_2	tSTART_2	dis_2	cls_2	det_2	pwrgd_2	pwrena_2	0000 0000
0x21	evnp_2_cor	COR	2	t LIM_2	tcuT_2	^t START_2	dis_2	cls_2	det_2	pwrgd_2	pwrena_2	0000 0000
0x22	statp_2	RO	2	Reserved	0	class_2[_2:0]]	Reserved		detect_2[_2:0]		0000 0000
0x23	pwrstatp_2	RO	2	Reserved	Reserved	Reserved	Reserved	fetbad_2	pongpd_2	5_pq	pe_2	0000 0000
0x24	confp_2	R/W	2	legen_2	midsp_2	disena_2	priority_2	classena_2	detena_2	opmd_2[1:0]	2[1:0]	0000 0000
0x25	tlimp_2	R/W	2	Reserved	hpen_2	pongen_2	Reserved		t_LIM	t _{LIM_2} [3:0]		0000 0000
0x26	icutp_2	R/W	2	Reserved	cutrng_2			l _{cut_}	I _{cut_2} [5:0]			0101 0100
0x27	pb_p_2	MO	2	Reserved	Reserved	Reserved	rst_2	cls_2	det_2	off_2	on_2	0000 0000
0x29	ip_2_lsb	RO	2				ip_2_lsb[7:0]	[0:2]q				0000 0000
0x2A	ip_2_msb	RO	2				ip_2_msb[7:0]	[0: /]qs				0000 0000
0x2B	vp_2_lsb	RO	2				vp_2_lsb[7:0]	[0: /]qs				0000 0000
0x2C	vp_2_msb	RO	2				vp_2_msb[7:0]	[0:2]qsı				0000 0000
0x2D	detresp_2	RO	2				p_2_detres[7:0]	res[7:0]				0000 0000

Notes:

- Register addresses not listed in the table are reserved and should not be written to.
 The PORT column indicates which ports are associated with each register. For example, "2" means the register is associated with Port 2 only; "Global" refers to slave-level status and control registers.

Si3459

Table 9. Si3459 Registers (Continued)

	Register	R/W	Port ²	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
Addr ¹	Name	Ţ										Auto Tied to DGND
Port 3 R	Port 3 Registers											
0x30	evnp_3	RO	3	£_IMI_³	tcuT_3	tSTART_3	dis_3	cls_3	det_3	pwrgd_3	pwrena_3	0000 0000
0x31	evnp_3_cor	COR	3	£LIM_3	tcuT_3	tSTART_3	dis_3	cls_3	det_3	pwrgd_3	pwrena_3	0000 0000
0x32	statp_3	RO	3	Reserved		class_3[2:0]		Reserved		detect_3[2:0]		0000 0000
0x33	pwrstatp_3	RO	3	Reserved	Reserved	Reserved	Reserved	fetbad_3	pongpd_3	pg_3	pe_3	0000 0000
0x34	confp_3	R/W	3	legen_3	midsp_3	disena_3	priority_3	classena_3	detena_3	opmd_3[1:0]	3[1:0]	0000 0000
0x35	tlimp_3	R/W	3	Reserved	hpen_3	pongen_3	Reserved		t _{LIM_3} [3:0]	3[3:0]		0000 0000
0x36	icutp_3	R/W	3	Reserved	cutrng_3			lout	l _{cut_3} [5:0]			0101 0100
0x37	bd_dq	WO	3	Reserved	Reserved	Reserved	rst_3	cls_3	det_3	off_3	on_3	0000 0000
0x39	dsl_8_qi	RO	3				[0:7]dsl_8_qi	[0: /]q:				0000 0000
0x3A	dsm_S_qi	RO	3				[0:7]dsm_8_qi	sb[7:0]				0000 0000
0x3B	vp_3_lsb	RO	3				vp_3_lsb[7:0]	[0: /]qs				0000 0000
0x3C	dsm_8_qv	RO	3				vp_3_msb[7:0]	[0:2]qsı				0000 0000
0x3D	detresp_3	RO	8				p_3_detres[7:0]	res[7:0]				0000 0000
Notoe.												

Notes:

- Register addresses not listed in the table are reserved and should not be written to.
 The PORT column indicates which ports are associated with each register. For example, "2" means the register is associated with Port 2 only; "Global" refers to slave-level status and control registers.

Table 9. Si3459 Registers (Continued)

	Register	R/W	Port ²	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
Addr ¹	Name	Г										Auto Tied to DGND
Port 4 R	Port 4 Registers	1										
0x40	evnp_4	RO	4	t _{LIM_4}	t _{CUT_4}	tSTART_4	dis_4	cls_4	det_4	pwrgd_4	pwrena_4	0000 0000
0x41	evnp_4_cor	COR	4	t_MLJ	t _{CUT_4}	^t START_4	dis_4	cls_4	det_4	pwrgd_4	pwrena_4	0000 0000
0x42	statp_4	RO	4	Reserved		class_4[2:0]		Reserved		detect_4[2:0]		0000 0000
0x43	pwrstatp_4	RO	4	Reserved	Reserved	Reserved	Reserved	fetbad_4	pongpd_4	pg_4	pe_4	0000 0000
0x44	confp_4	R/W	4	legen_4	midsp_4	disena_4	priority_4	classena_4	detena_4	opmd_4[1:0]	4[1:0]	0000 0000
0x45	tlimp_4	R/W	4	Reserved	hpen_4	pongen_4	Reserved		t _{LIM_} ,	t _{LIM_4} [3:0]		0000 0000
0x46	icutp_4	R/W	4	Reserved	cutrng_4			lcut	I _{cut_4} [5:0]			0101 0100
0x47	pb_p_4	ОМ	4	Reserved	Reserved	Reserved	rst_4	cls_4	det_4	off_4	on_4	0000 0000
0x49	ip_4_lsb	RO	4				ip_4_lsb[7:0]	[0:2]q				0000 0000
0x4A	ip_4_msb	RO	4				ip_4_msb[7:0]	[0:2]qs				0000 0000
0x4B	vp_4_lsb	RO	4				vp_4_lsb[7:0]	[0: /]qs				0000 0000
0x4C	vp_4_msb	RO	4				vp_4_msb[7:0]	[0:2]qsı				0000 0000
0x4D	detresp_4	RO	4				p_4_detres[7:0]	res[7:0]				0000 0000

Notes:

- Register addresses not listed in the table are reserved and should not be written to.
 The PORT column indicates which ports are associated with each register. For example, "2" means the register is associated with Port 2 only; "Global" refers to slave-level status and control registers.

4.2. Detailed Register Descriptions

Note that, in the following Register Definition Descriptions, the term "set" means that a bit is a logical 1 (or high) value, and the term "clear" means that a bit is a logical 0 (or low) value.

4.2.1. Interrupt Registers

These registers either report (0x00) or mask (0x01) interrupts. The Si3459 monitors all interrupt sources and sets the appropriate bit(s) in the **int** register (0x00).

The **intmask** register (0x01) controls the masking of groups of events, enabling or blocking those events from affecting the state of the INT pin. The **intmask** register only affects the INT pin behavior.

4.2.1.1. Interrupt Status Register (Address 0x00)

Read only. When set to logic 1 by various interrupt events, bits in this register report the source of a particular interrupt. Assuming the corresponding bit in the **intmask** register is set, when bits in this register are asserted, the INT pin is asserted (pulled to ground). Each bit of the bottom nibble (the 4 least significant bits) in this register is the logical OR of all bits in the corresponding port's event register (**evnp_x**: 0x10, 0x20, 0x30, 0x40) bits. The upper nibble (the 4 most significant bits) in this register reflects the status of the upper nibble bits of the **evn_global** register (0x02). Clearing bits in the **int** register requires that the corresponding bits in the **evn_global** register (0x02) or all bits in the corresponding port event registers be cleared. Alternatively, all bits in the **int** register can be cleared by setting bit 7 in the **pb_global** register (0x0B) to a logical 1 value. The INT pin can be deasserted by setting bit 6 in the **pb_global** register (0x0B) to a logical 1 value. Additional detail is found in the register description below.

Re	gister	R/W	Port	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State	
Addr	Name											Auto tied to DGND	
0x00	Int	RO	Global	overtemp	fetbad	uvlo3	uvlo48	p_4_ev	p_3_ev	p_2_ev	p_1_ev	0010 0000	
Bit	Name						Fund	tion					
7	overtemp	Interr	upt statu	s bit for over	tempera	ture eve	ent.						
		0:	the "ove	ertemp" bit is	not set i	n the ev	n_globa	I register.					
		1:	the "ove	ertemp" bit is	set in the	e evn_g	global reg	gister.					
6	fetbad	Interr	upt statu	s bit for exte	nal MOS	FET fai	lure even	t.					
		0:	the "fetl	bad" bit is no	t set in th	ne evn _	global re	gister.					
		1:	the "fetl	bad" bit is se	t in the e	vn_glol	oal registe	er.					
5	uvlo3	Interr	nterrupt status bit for VDD Over Voltage Lock Out failure event.										
		0:	the "uvl	o3" bit is not	set in the	e evn_g	lobal reg	ister.					
		1:	the "uvl	o3" bit is set	in the ev	n_glob	al registe	r.					
4	uvlo48	Interr	upt statu	s bit for VPW	/R Over \	/oltage	Lock Out	failure ev	ent.				
		0:	the "uvl	o48" bit is no	t set in th	ne evn _	global re	gister.					
		1:	the "uvl	o48" bit is se	t in the e	vn_glo	bal regist	er.					

Re	egister	R/W	Port	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State	
Addr	Name											Auto tied to DGND	
0x00	Int	RO	Global	overtemp	fetbad	uvlo3	uvlo48	p_4_ev	p_3_ev	p_2_ev	p_1_ev	0010 0000	
Bit	Name						Func	tion					
3	p_4_ev	Interr	upt statu	s bit for Port	4 events	•							
		0:	Port 4 h	as no active	event.								
		1:	Port 4 h	as at least or	ne active	event.							
2	p_3_ev	Interr	upt statu	s bit for Port	3 events								
		0:	Port 3 h	as no active	event.								
		1:	Port 3 h	as at least or	ne active	event.							
1	p_2_ev	Interrupt status bit for Port 2 events.											
		0:	Port 2 h	as no active	event.								
		1:	Port 2 h	as at least or	ne active	event.							
0	p_1_ev	Interr	upt statu	s bit for Port	1 events	•							
		0:	Port 1 h	as no active	event.								
		1:	Port 1 h	as at least or	ne active	event.							

4.2.1.2. Interrupt Mask Register (0x01)

Writing a logic 1 to any bit in the **intmask** register allows the specified event type to propagate to the INT pin. Writing a logical 0 to any bit of the **intmask** register stops the specified event type from propagating to the INT pin. The INT pin can be de-asserted by setting bit 6 in the **pb_global** register (0x0B) to a logical 1 value. Additional details can be found in the register description below.

Re	gister	R/W	Port	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
Addr	Name											Auto tied to DGND
0x01	intmask	R/W	Global	status	ifault	startfault	dis	class	det	pwrgd	pwrena	1000 0000
Bit	Name		•				Funct	ion	•	•	•	•
7	status	Interru	pt mask b	it for ove	rtemp, F	ETBAD, UV	LO3 and	UVLO48	global ev	ents.		
		0:		the over		TBAD, UVI	_O3 and	UVLO48 6	events in	the evn _	global reg	ister from
		1:		the overt ne INT pi	-	TBAD, UVL	O3 and L	JVLO48 e	vents in t	he evn_ ç	global regi	ster to propa-
6	ifault	Interru	pt mask b	it for Tcu	t and Tlir	m events on	all ports					
		0:	Disables	the Tcut	and Tlim	events fror	n propag	ating to th	e INT pir	٦.		
		1:	Enables	the Tcut	and Tlim	events to p	ropagate	to the IN	Γ pin.			
5	startfault	Interru	pt mask b	it for Sta	rt Fault e	vent on all p	orts.					
		0:	Disables	the Start	Fault ev	ent from pr	opagating	to the IN	T pin.			
		1:	Enables	the Start	Fault ev	ent to propa	gate to th	ne INT pin	l.			
4	dis	Interru	pt mask b	oit for disc	connect e	event on all	ports.					
		0:	Disables	the disc	onnect e	vent from pr	opagatin	g to the IN	NT pin.			
		1:	Enables	the disco	nnect ev	ent to propa	agate to t	he INT pir	٦.			
3	class	Interru	pt mask b	oit for clas	ssification	n completed	event or	all ports.				
		0:										
		1:	Enables	the class	ification	completed 6	event to p	ropagate	to the IN	T pin.		
2	det	Interru	pt mask b	oit for det	ection co	mpleted eve	ent on all	ports.				
		0:	Disables	the dete	ction cor	npleted eve	nt from p	ropagating	g to the II	NT pin.		
		1:	Enables	the detec	ction com	pleted ever	nt to prop	agate to t	he INT pi	n.		
1	pwrgd	Interru	pt mask b	it for the	Power G	Good event	on all por	ts.				
		0:	Disables	the Pow	er Good	event from	propagat	ing to the	INT pin.			
		1:				event to pro	. •		oin.			
0	pwrena	Interru	<u>-</u>			nabled eve						
		0:				ed event fro				n.		
		1:	Enables	the Powe	er Enable	ed event to p	oropagate	e to the IN	IT pin.			

4.2.2. Global Event Register and Global Event COR (0x02, 0x03)

Device-related events can be polled using these registers. The content of register 0x03 is identical to that of 0x02, however, if 0x03 is read, both registers will clear momentarily. The register bits are set again every few milliseconds if the fault is still present. Additional details can be found in the register description below.

R	egister	R/W	Port	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State	
Addr	Name											Auto tied to DGND	
0x02	evn_global	RO	Global	overtemp	fetbad	uvlo3	uvlo48	tsd	Reserved	Reserved	Reserved	0010 0000	
Bit	Name							Function					
7	Overtemp	Over t	emperatu	ıre event bi	t.								
		until re	egister 0x	03 is read.	All ports	are po	owered o	lown as des		aragraph 3.	2.2.4, point	np" bit is set 1, if the shut- ig register).	
		0:	The par	t's die temp	erature	is unde	er the ove	er-temperat	ure thresho	ld (135 °C)	-		
		1:	The par	t's die temp	erature	is abov	e the ov	er-tempera	ture thresho	old (135 °C)			
6	fetbad	Extern	al MOSF	ET failure	event bit								
		cleare detect	d by read ion cycle	ling the cor . Note that	respond the "fetb	ing CC ad_x" l	R registoit in the	er (0x03). T individual p	he leaky Fl	ET test is perstatp_x reg	erformed at isters are u	I specifically the start of a pdated at the est limits.	
		0:	The dete	ection proc	ess foun	d the e	external I	MOSFET of	perating cor	rectly.			
		1:	The dete	ection proc	ess foun	d the e	external I	MOSFET is	damaged.				
5	uvlo3	VDD (Over Volta	age Lock O	ut failure	e event	bit						
		Indicates a VDD supply fault event. This event bit remain latched until cleared by reading the COR register (0x03), and only "good" to "bad" transitions are reported. Notes: 1. Measured values, such as temperature, port voltages, and currents are inaccurate if VDD<2.6 V. 2. Until VDD exceeds 2.8 V, all ports are powered down as described in paragraph 3.2.2.4, point 2. Writing to the confp_x, tlimp_x, icutp_x and pb_p_x registers is prohibited.											
		0:	VDD > 2	2.8 V (Typ).									
		1:	VDD < 2	2.8 V (Typ).									
4	uvlo48	VPWR	R Over Vo	oltage Lock	Out fail	ıre eve	ent bit.						
		COR betwe	register en 32 V Until VP	(0x03), ar and 44 V WR excee	d only	"good' all ports	to "bac s are pov	l" transition	main latchens are repense as describe	orted. This ed in parag	event has	s hysteresis	
		0:	VPWR >	> 44 V (TYF	P).								
		1:	VPWR <	< 32 V (TYF	P) if VPV	VR is d	ecreasin	g; VPWR <	: 44V if VPV	VR is increa	asing.		

Si3459

3	tsd	Therm	nal shutdown event bit.
			a logical 1 value when all powered ports have been shut down due to an over-temperature tion. This event bit remains latched until cleared by reading the COR register (0x03).
		0:	The part's die temperature is under the over-temperature threshold if the shutdown on over-temperature is enabled; otherwise, it is under the safe-temperature threshold.
		1:	All powered ports have been shut down due to the fact that the part's die temperature is above the over-temperature or the safe-temperature threshold.
2:0	Reserved		

4.2.3. Global Status Registers

These registers provide status information (I²C address, Die Temperature, VPWR Voltage) valid for the full device.

4.2.3.1. Status (0x05)

This register provides information about global (all four ports) status. Additional details can be found in the register description below.

	Register	R/W	Port	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
Addr	Name											Auto Tied to DGND
0x05	Status	RO	Global	Reserved		slav	e_addr	[4:0]		Reserved	auto	0000 0000
Bit	Name						Fu	nction				
7	Reserved											
6:2	slave_addr[4:0]	I ² C sla	ave addr	ess.								
				mprised of t ed quad add								nated with the fter reset).
1	Reserved											
0	auto	Initial	status of	the AUTO	oin (sar	mpled c	nce aft	er reset	t).			

4.2.3.2. Temperature (0x06)

This register provides information about the die temperature. The actual temperature can be calculated using the following equation:

 $T = -20 + N \times 0.652$ °C, where N is the binary value contained in this register.

The resulting temperature is in the range of -20 to 146.3 °C

4.2.3.3. VPWR Voltage (0x07, 0x08)

VPWR voltage can be accessed via registers 0x07 and 0x08. The voltage measurement are 16-bit words, divided into two bytes: the Most Significant Byte (MSB, register 0x08) contains the upper 8 bits; and the Least Significant Byte (LSB, register 0x07) contains the lower 8 bits. Reading the lower byte latches the upper byte until it is read, to assure they are both from the same sample; therefore, the lower byte should always be read first. After concatenating the upper and lower bytes, multiply by 5.835 mV/count to obtain the VPWR voltage.

4.2.4. Global Configuration Registers

The device related configuration is related to all ports and can be set using these registers.

4.2.4.1. config (0x0A)

Additional details can be found in the register description below.

R	egister	R/W	Port	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
Addr	Name											Auto Tied to DGND
0x0A	config	R/W	Global	intena	detchg	tsddisa		wddis	[3:0]		wdstat	1001 0110
Bit	Name						Function	on				
7	intena	Enable	or disabl	e the inte	errupt pin							
		0:	The INT register.	•	sserted w	hen there is	an interr	rupt even	t which i	s not ma	sked by t	he intmask
		1:	The INT	pin is n	ot active a	and remains	unasser	ted (logic	level 1)	:		
6	detchg	Detect	event rep	orting co	ontrol bit							
		0:				vent bits , as set every ti					evnp_x (0	x10, 0x20,
		1:	The dete		mplete e	vent bits are	only set	if there is	s a chan	ge in the	result fro	om the last
5	tsddisa	Disable	shutdow	n on ove	er-temper	ature event						
		0:				be shut do hold (135 °		n the pa	rt's die	tempera	iture is a	above the
		1:				be shut do hold (146 °		n the pa	rt's die	tempera	iture is a	above the
4:1	wddis[3:0]											
		reset fo WD sta dog tim 1011b (r approxi tus bit ('w er is disa disabled)	mately 2	2.5 second it 0) can d writing a d D timer c	ds, all ports only be clea 1011b to the	will be po red by wi WD disa	owered of riting a zeable field.	ff, and the ero to this The PO	e WD sta s bit or b R reset v	atus bit w y a RESE /alue of \	timer is not rill be set. The ET. The Watch- VD disable is ield; for exam-
0	wdstat	Watchd	og status	bit.								
		0:	The wat	chdog tii	mer is eit	her not runn	ing (disal	bled) or h	as not ti	med out		
		1:	The wat	chdog ti	mer has t	imed out.						

4.2.4.2. Global PushButton Register (0x0B)

This is a write only register.

Additional details can be found in the register description below.

Register		R/W	Port	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
Addr	Name											Auto Tied to DGND
0x0B	pb_global	WO	Global	intclr	pinclr	lowpri	swrst	Reserved	Reserved	rstall	offall	0000 0000
Bit	Name	Function										
7	intclr Clear interrupt status.											
	All bits in the int register will be cleared.											
6	pinclr	Clear	Clear INT pin									
		De-assert the INT pin. Setting Bit 6 to a logical 1 value does not clear any interrupt sources.										
5	lowpri	Turn off the low priority ports										
		1: Turn off any already-powered low priority ports (as identified by the per-port confp register "priority" bits).									ort confp_x	
4	swrst	Software reset										
		1: Resets the address bit A0-selected Quad of the Si3459 completely. All ports and registers are reset to their default state. The config register is not reset; this register controls shared resources (INT pin, watchdog timer) between the Quads. The MCU is not reset (setting the 'swrst' bit is not equivalent to a HW reset caused by the RESET/ pin).										
3	Reserved											
2	Reserved											
1	rstall	Single bit control to reset all ports within the address bit A0-selected Quad.										
		1: The ports are reset to the shutdown state as it is described in section 3.2.2.3, po									.2.3, point 2.	
0	0 offall Single bit control to turn off all ports within the address bit A0-selected							ted Qu	ad.			
		1:	The po	rts are t	urned c	off as it is	s descri	bed in secti	on 3.2.2.3,	point 1	١.	

4.2.4.3. Device ID and Revision Registers (0x0C, 0x0D, 0x0E)

These Registers are Read only.

Register 0x0C is the device identification and silicon revision register. The "Device_ID" bitfield is 0010b for Si3459 devices. The "Si_Revision" bitfield indicates the silicon revision number and contains 0000b.

Register 0x0D is the firmware revision register. Firmware revision is coded as two bytes with only decimal characters. As an example: Revision 0.3 would be coded as 0x03. See "6. Ordering Guide" for the current Firmware Revision number.

Register 0x0E is the Manufacturer ID and Device Version register. The Manufacturer ID for Silicon Labs is 0100b. The Device Version is 0001b.

4.2.5. Port-Specific Registers

Per-port events, status information, and configuration settings are grouped together in the register set. Each port has its own register group with exactly the same content.

4.2.5.1. Event Register (evnp_x; 0x10, 0x20, 0x30, 0x40)

This Register is Read only, and each bit has relevance only when it is set.

If any bit is set in this register, then the corresponding p_x_ev bit in the int register (0x00) is also set.

The INT pin will also be asserted if the corresponding mask bit in the **intmask** register (0x01) is set. For example, if the "pwrgd" mask bit in the **intmask** register is set, then when the "pwrgd_x" bit (Bit 1 of **evnp_**x) becomes one, the INT pin will be asserted.

Exception: bit 6 and bit 7 of this register have common mask bit 6 (called "ifault") in the **intmask** register (0x01), so the INT pin will be asserted if the ifault mask bit is set in the **intmask** register and any of the tcut_x or the tlim_x bits becomes one.

When a bit in this register is set, it latches, and only clears when the corresponding **evnp**_x_cor (Clear-on-Read) register is read at the following addresses: **0x11**, **0x21**, **0x31**, **0x41**.

Additional details can be found in the register description below.

Re	egister	R/W	Port	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
Addr	Name											Auto Tied to DGND
0x10, 0x20, 0x30, 0x40	evnp_x	RO	1, 2, 3, 4	t _{LIM_x}	t _{CUT_x}	t _{START_x}	dis_x	cls_x	det_x	pwrgd_x	pwrena_x	0000 0000
Bit	Name						Fı	ınction				
7	t _{LIM_x}	I _{LIM} fa	fault event bit									
		1:	I _{LIM} fault (alternatively called a current limit timeout, with symbol t _{LIM}) has occurred on the port.									
6	t _{CUT_x}	t _{CUT} fa	ault event bit									
		1:	I _{CUT} fa	ault (alte	rnatively	called a cut	off curre	nt timeo	ut, with s	symbol t _{CUT}) has occurre	d on the port.
5	t _{START_x}	t _{START}	fault e	vent bit								
		1:				t the end of e at the end			al due to	an overloa	d, which is in	turn indicated
4	dis_x	Discor	nnect e	vent bit								
		1:		already t e) test.	urned ON	l) port has b	een disc	connecte	ed due to	missing an	MPS (Mainta	ain Power Sig-
3	cls_x	Classi	fication	comple	te event b	oit						
		1:	1: One Classification cycle for the corresponding port has completed. Note: In Semi-auto mode, when this bit read as logical one, this indicates that the Class Status bit-field in the Port Status registers (statp_x) are valid.									
2	det_x	Detec	tion cor	mplete e	vent bit							
		One Detection cycle for the corresponding port has completed. Note: In Semi-auto mode, when this bit read as logical one, this indicates that the Detect Status bit field in the Port Status registers (statp_x) are valid.							tect Status bit-			

Re	egister	R/W	Port	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
Addr	Name											Auto Tied to DGND
0x10, 0x20, 0x30, 0x40	evnp_x	RO	1, 2, 3, 4	t _{LIM_x}	t _{CUT_x}	t _{START_x}	dis_x	cls_x	det_x	pwrgd_x	pwrena_x	0000 0000
Bit	Name		Function									
1	pwrgd_x	Power	ver Good event bit.									
		1:	The port's Power Good status bit (Bit 1 in the powerstatp_x register) has changed.									
0	pwrena_x	Power	ower Enabled event bit.									
		1:	The p	ort's Pov	ver Enabl	e status bit	(Bit 0 in	the pow	erstatp_	_x register)	has changed	l.

4.2.5.2. Status Register (statp_x; 0x12, 0x22, 0x32, 0x42)

This Register is Read only.

Detection and classification status are reported in this register. The encoding is listed in Table 9.

The "detect_ $x_{[2:0]}$ " bit field shows the detection status and similarly the "class_ $x_{[2:0]}$ " bit field shows the classification status.

Code **Class Status Detection Status** 000b Unknown—POR value and also value after a Unknown—POR value and also value after a port is disconnected. port is disconnected. 001b Class 1 Short circuit Capacitive¹ 010b Class 2 011b Class 3 Rlow 100b Class 4 Rgood 101b Reserved Rhigh 110b Class 0 Open circuit PSE to PSE² 111b Over current

Table 10. Classification and Detection Encoding

Notes:

- 1. Capacitive status is reported when the load capacitance is bigger than 0.5 μ F (Cpd > 0.5 μ F).
- 2. The Si3459 is capable of detecting whether it is cross-connected to another PSE controller of a different type. In this case, the PSE to PSE Status is reported. Detection of another PSE is based on verifying the voltage level on the output (DRAINn pin) during the detection cycle.

In Semi-Auto and Auto modes, the classification process is not initiated unless Rgood is reported. In this case, the classification status can be unknown, or it can be the last classification status after the last Rgood.

4.2.5.3. Power Status Register (pwrstatp_x; 0x13, 0x23, 0x33, 0x43)

This Register is Read only.

Additional details can be found in the register description below.

	Register		Port	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
Addr	Name											Auto Tied to DGND
0x13, 0x23, 0x33, 0x43	pwrstatp_x	RO	1, 2, 3, 4	Reserved	type2flt_x[2:0]			fetbad_x	pongpd_x	pg_x	pe_x	0000 0000
Bit	Name			Function								
7	Reserved											
6:4	type2flt_x[2:0]	Detect	tion and	on and classification extended status (see the table below for the encoding).								
3	fetbad_x	Extern	al MOSFET failure event bit.									
		0:	The de	tection proc	ess fou	ınd the	externa	al MOSFET	operating c	orrectly.		
		1:	The de	tection proc	ess fou	ınd the	externa	al MOSFET	is possibly	damage	ed.	
2	pongpd_x	Type 2	2 classif	ication statu	S.							
		0:	Either	not Type 2 F	D, or tl	he 2-ev	ent cla	ssification v	vas not succ	essful.		
		1:	2-even	t classification	on has	occurre	ed.					
1	pg_x	Power	Good	status.								
		0:	The voltage on the DRAINx pin is >2 V of AGND; due to an overload or if the port is turned off for any reason.							ort is turned off		
		1:	: The voltage on the DRAINx pin is within ~2 V of AGND, i.e.: the port voltage is almost equal to VPWR (within 2 V).									
0	pe_x	Power	ower Enable status.									
		0:	The po	ort is turned o	off for a	ny reas	son (ov	erload, disc	connect, or p	ushbutt	on).	
		1:	The port is powered.									

Further details for type2flt_x bitfield encoding are described in Table 11.

Table 11. type2flt_x Bitfield Encoding

Code	Code Det/Cls Status						
000	unknown						
001	Detect and 2-event classification was successful						
010	Invalid detection						
011	Classification overcurrent						
100	2-event classification current mismatch						

4.2.5.4. Configuration Register (confp_x; 0x14, 0x24, 0x34, 0x44)

This register controls the Port configuration including its operation mode.

Additional details can be found in the register description below.

R	egister	R/W	Port	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
Addr	Name											Auto Tied to DGND
0x14, 0x24, 0x34, 0x44	confp_x	R/W	1, 2, 3, 4	legen_x	midsp_x	disena_x	priority_x	classena_x	detena_x	opmd_x[1:0]		0000 0000
Bit	Name						F	unction				
7	legen_x	Lega	acy PD detection enable									
		0:	Only IEEE standard 802.3at-compliant PD signatures are recognized during detection									
		1:	The detection status of a PD with large common-mode capacitance is reported as valid (code 100b in the stat- p_x register). Note that this behavior does not comply with the IEEE standard while this bit is set because the IEEE standard specifically declares these legacy PDs to be invalid.									
6	midsp_x	midsp	oan fun	ctionality	support ena	able						
		Contr	ols the	lenght of	the delay a	fter each de	etection cyc	e before initia	ting the nex	t detection cycl	е	
		0:	back (off delay =	~400ms							
		1:	back (off delay >	2s							
5	disena_x	DC di	sconne	ect enable								
		0:	no ac	tive monito	oring for the	disconnec	tion of a PD	l				
		1:	active	monitorin	g for the di	sconnection	of a PD					
4	priority_x	Port s	Port shutdown priority when the SHDN pin is asserted									
		shut of This a A high priorit Wher	If there is a minimum 5 µs low pulse on pin 36 (SHDN), then any port with the priority bit set to 1 (low priority) will be shut down if it is ON (previously OFF ports are unaffected). This action is equivalent to a pushbutton power off as it is described in paragraph 3.2.2.3, point 1 A high priority port or a port that is not turned on is unaffected by SHDN. Port turn off is enforced for any port with the priority bit set to 1 (low priority) as long as SHDN is asserted. When SHDN is de-asserted, port configuration remains intact; however, detect and classify control bits were cleared during the SHDN assertion, and thus must be re-enabled.								port with the	
		0:	The p	ort's priori	ty is High							
		1:	The p	ort's priori	ty is Low							

F	Register	R/W	Port	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
Addr	Name											Auto Tied to DGND
0x14, 0x24, 0x34, 0x44	confp_x	R/W	1, 2, 3, 4	legen_x	midsp_x	disena_x	priority_x	classena_x	detena_x	opmd_x[1:0]		0000 0000
Bit	Name		•				F	unction			•	
3	classena_x	Class	assification enable									
		port. I and re succe Each 0x22, Each (tlimp • If po Type Wher for IC	If the pepeats essful of time a 0x32, classiful of time a 0x32, regongen = 1 PSE a portion a por	ort is turned the classification cyclisters 0x11 the classification cyclisters ox11 the cycliste	ed on, then fication cycle classification cycle is orts 1–4, receive consists 5, 0x25, 0x sification cysecond pul sification cycle 1 PSE mode the lend on the	classification classi	on will not be the success abled. , the result if . or two pulse 5 for ports for ports the PD pre s of one pulse to a PSE LIM are set a	e attempted. I sful detection s indicated in as, depending 1–4, respective wo pulses in a sented a class se in accordar built to the or automatically wn in Table 1:	this bit is sicycles. In Author the status running on the state ely) at the tire accordance is 4 signature with the riginal IEEE after the por	ne the classific with the IEEE 8 during the firs IEEE 802.3at r	omatica fort will at address address address address address address address address address address address address address address at address at address	ally performs turn on after a esses 0x12, "pongen_x" bit ycle is initiated: requirements . ments for a
		0:	Conti	nuous clas	sification is	disabled						
		1:	Conti	nuous clas	sification is	enabled						
2	detena_x	Detec	ction er	nable								
		the po the de Each	ort is tu etection time a	irned on, t n cycle. In detection	hen detecti Auto-mode cycle is coi	on will not be, the port wanted, the	e attempte ill turn on af e result is in	d. If this bit is ter a success dicated in the	set, the port ful detection status regis	automatically p	perform ication Idresse	is not enabled.
		0: Continuous detection is disabled										
		1: Continuous detection is enabled										
1:0	opmd_x[1:0]	Port operation mode configuration										
		classi	ification	n enable b	its in this re	gister are r		tdown mode,		n or Manual mo tons will not res		
		00:	Shutd	own								
		01:	Manu	al								
		10:	Semi-	Auto								
		11:	Auto									

4.2.5.5. Current Limit Register (tlimp_x; 0x15, 0x25, 0x35, 0x45)

Additional details can be found in the register description below.

Re	egister	R/W	Port	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
Addr	Name											Auto Tied to DGND
0x15, 0x25, 0x35, 0x45	tlimp_x	R/W	1, 2, 3, 4	Reserved	hpen_x	pongen_x	Reserved	t _{LIM_x} [3:0]				0000 0000
Bit	Name		Function									
7	Reserved											
6	hpen_x	High	n Power Enable									
		This I	bit cont	rols the curr	ent limit and	foldback se	tting for the	port				
		0:	The I _{LIM} threshold is 425 mA ± 5%.									
		1:	The I _L	_{IM} threshold	is 850 mA ±	: 5%.						
5	pongen_x	2-eve	ent cals	sification en	able.							
		0:		lassification	cycle consist	ts of one pul	se in accord	lance with th	ie IEEE	802.3	at requ	irements for a
		1:	1: The classification cycle consists of one or two pulses in accordance with the IEEE 802.3at requirements for a Type 2 PSE; the second pulse occurs if the PD presented a class 4 signature during the first pulse.									
4	Reserved											
3:0	t _{LIM_x} [3:0]	Curre	ent limit	time								
		The T_{lim} Timer duration is 1.71 ms (typ) times the value of ' t_{LIM_x} [3:0]' bitfield, rounded to the nearest mser Possible returned values in this register are: 0, 2, 3, 5, 7, 9, 10, 12, 14, 15, 17, 19, 21, 22, 24 26. When the field is written to 0, the T_{lim} timer is disabled, and the T_{cut} timer limits the duration of overloads to 60 ms.								26. When this		

4.2.5.6. Cutoff Current Register (icutp_x; 0x16, 0x26, 0x36, 0x46)

This register controls the cutoff current threshold (I_{CUT}) on the port.

Bit 6 "cutrng_x" controls the cutoff current scaling.

Bits 5:0 (" $t_{cut_x}[5:0]$ ") set the I_{CUT} . The conversion scale is: 37.5 mA/count when cutrng = 0; 18.75 mA/count when cutrng = 1.

4.2.5.7. Pushbutton Register (pb_p_x; 0x17, 0x27, 0x37, 0x47)

This Register is Write only.

Additional details can be found in the register description below.

Re	egister	R/W	Port	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
Addr	Name											Auto Tied to DGND
0x17, 0x27, 0x37, 0x47	pb_p_x	WO	1, 2, 3, 4	Reserved	Reserved	Reserved	rst_x	cls_x	det_x	off_x	on_x	0000 0000
Bit	Name					Fu	ınction					
7	Reserved											
6	Reserved											
5	Reserved											
4	rst_x	Reset	the por	t								
		1:		s the port to e refer to Ste								s are cleared.
3	cls_x	Turn o	n class	ification								
		1:	"class	le a single cl ena_x" bit of ted classifica	the confp_x	x register wil						
2	det_x	Turn o	Turn on detection									
		1:	1: Provide a single detection cycle in manual mode. If it is used in semi-auto mode, then the "detena_x" bit of the confp_x register will automatically be set (i.e. this action will turn on repeated detection for the port).									
1	off_x	Turn o	ff the p	ort								
		1:	Please	e refer to Ste	p 1 in "3.2.2	.3. HOST co	ntrolled	port turn	OFF" fo	or furthe	r details	3
0	on_x	Turn o	Turn on the port									
		1:	Please	e refer to "3.2	2.2.1. HOST	Controlled F	Port Turr	ON" fo	r further	details		

4.2.6. Port-Specific Parametric Measurements Registers

These registers provide real time port voltage, current and detection resistance measurements.

4.2.6.1. Port Current and Voltage (0x19-0x1C, 0x29-0x2C, 0x39-0x3C, 0x49-0x4C)

Once a channel is powered on, port voltage and port current can be accessed via registers 0x19 through 0x1C (using port 1 as an example). These registers do not give valid information for a port that is off. Each measurement of voltage is the average of 16 consecutive 10-bit samples taken at 3 ms intervals. Port current is updated once per 100 ms, and the update is the average of all (up to 400) samples taken in the prior 100 ms interval.

The voltage and current measurements are 16-bit words, divided into two bytes: the Most Significant Byte (MSB) contains the upper 8 bits; and the Least Significant Byte (LSB) contains the lower 8 bits. Reading the lower byte latches the upper byte to assure they are both from the same sample; therefore, the lower byte should always be read first. After concatenating the upper and lower bytes, the following conversion factors are used to derive the meaning of the readings: for current measurements multiply by 122.07 μ A/count; and, for voltage measurements, multiply by 5.835 mV/count.

4.2.6.2. Port Detection Resistance (detresp_x; 0x1D, 0x2D, 0x3D, 0x4D)

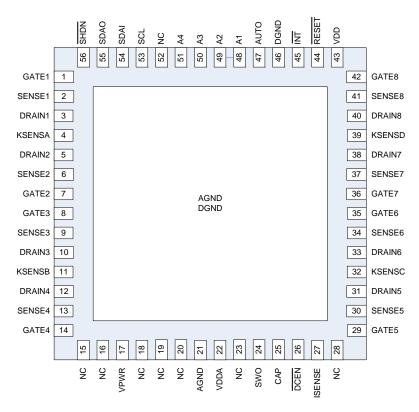
This register contains an approximate resistance value (in kOhm), measured during the rising voltage period of the detection cycle.

4.2.6.3. VPWR Voltage (0x07, 0x08)

VPWR voltage can be accessed via registers 0x07 and 0x08. The voltage measurement are 16-bit words, divided into two bytes: the Most Significant Byte (MSB, register 0x08) contains the upper 8 bits; and the Least Significant Byte (LSB, register 0x07) contains the lower 8 bits. Reading the lower byte latches the upper byte until it is read, to assure they are both from the same sample; therefore, the lower byte should always be read first. After concatenating the upper and lower bytes multiply by 5.835 mV/count to obtain the VPWR voltage.

4.2.6.4. Supply Event and Supply Event CoR (0x0A, 0x0B)

When there is a leaky FET on any port, bit6 will be set. It will remain set until specifically cleared with a CoR. The leaky FET test is performed at the start of a detection cycle. See the "Bad FET Measurement" parameter in Table 1 for test limits.


The event register, 0x0A, indicates a VDD or VPWR supply fault or over-temperature event. The supply event's bits are latched until cleared, but only "good" to "bad" transitions are reported.

VDD UVLO: set if VDD goes below 2.8 V (TYP). All ports are powered down when this event occurs. Note: Measured values, such as temperature, port voltages, and currents, are inaccurate if VDD<2.6 V.

In the event of thermal shutdown, the Overtemp bit is set until CoR occurs. Content of register 0x0B is identical to that of 0x0A, however, if 0x0B is read, both registers will clear momentarily. The register bits are set again every few milliseconds if the fault is still present.

5. Pin Descriptions

Table 12. Pin Descriptions

Pin#	Name	Туре	Description						
1	GATE1		Gate drive outputs to external MOSFETs. Connect the GATEn out-						
7	GATE2		puts to the external MOSFET gate node gate. A 50 µA pull-up						
8	GATE3	Analog output	source is used to turn on the external MOSFET. When a current						
14	GATE4		limit is detected, the GATEn voltage is reduced to maintain con-						
29	GATE5		stant current through the external MOSFET. If the fault timer limit is						
35	GATE6		reached, GATEn pulls down, shutting off the external MOSFET.						
36	GATE7		GATEn will clamp to 11.5 V (typical) above AGND. If the port is						
42	GATE8		unused, leave the GATEn pin disconnected or tie to AGND.						
2 6 9 13 30 34 37 41	SENSE1 SENSE2 SENSE3 SENSE4 SENSE5 SENSE6 SENSE7 SENSE8	Analog input	Current sense inputs for external MOSFETs. The SENSEn pin measures current through an external 0.25 Ω resistor tied between the AGND supply rail and the SENSEn input. If the I _{CUT} limit (the overcurrent limit) is exceeded, the current limit fault timer is incremented. If the voltage across the sense resistor subsequently triggers (the overcurrent limit), the voltage driven onto the GATEn pin is modulated to provide constant current through the external MOSFET. Tie the SENSEn pin to AGND when the port is not used. To accommodate 802.3at (PoE Plus) classification, both the I _{CUT} and Ilim values can be scaled.						

Table 12. Pin Descriptions (Continued)

Pin #	Name	Туре	Description
3 5 10 12 31 33 38 40	DRAIN1 DRAIN2 DRAIN3 DRAIN4 DRAIN5 DRAIN6 DRAIN7 DRAIN8	Analog input with 25 μΑ pull-up to VPWR	MOSFET drain output voltage sense. The Power Good bit is set on each port when the voltage between DRAINn and AGND drops below 2 V (typical). DRAINn pins should be left floating if the port is unused.
4	KSENSA	Input	Kelvin points for accurate measurement of voltage across 0.25 Ω sense resistor for ports 1 and 2.
11	KSENSB	Input	Kelvin points for accurate measurement of voltage across 0.25 Ω sense resistor for ports 3 and 4.
15 16 18 19 20 23 27 28 52	NC	No Connect	No connections or nets allowed. Leave floating.
17	VPWR	Analog power	Positive PoE voltage (+44 to +56 V) relative to AGND.
21, ePAD	AGND	Analog ground	Ground connection for VPWR supply. DGND and AGND are tied together inside the Si3459 package
24	swo	Output	Gate driver output for the external MOSFET component of the dc-dc converter. If using only the local regulator of the part, tie SWO to VPWR. If not using the dc-dc converter or local regulator, leave this pin floating.
25	CAP	Input	Input from the dc-dc converter. This elevated voltage can be bussed to up to five additional Si3459's, where it will be down-regulated to VDD for local use.
26	DCEN	Digital input with 25 µA pull-up to VDD	Tie DCEN to DGND to enable the dc-dc converter and local regulator. If using only the local regulator of the part, DCEN must also be tied to DGND. If not using the dc-dc converter or local regulator, leave this pin floating.
27	ISENSE	Input	Current sense input for dc-dc converter to detect overcurrent and short circuit conditions.
32	KSENSC	Input	Kelvin points for accurate measurement of voltage across 0.25 Ω sense resistor for ports 5 and 6.

Table 12. Pin Descriptions (Continued)

Pin #	Name	Туре	Description
39	KSENSD	Input	Kelvin points for accurate measurement of voltage across 0.25 Ω sense resistor for ports 7 and 8.
43	VDD	Digital power	3.3 V digital supply (relative to DGND). Bypass VDD with a 0.1 μF capacitor to DGND as close as possible to the Si3459 power supply pins; tied with VDDA.
44	RESET	Digital input with 25 μΑ pull-up to VDD	Active low device reset input. Generally, RESET is used at initial power up. If RESET is asserted (pulled to DGND), the MCU is disabled, all internal registers of the device are set to their default (power-up) state, and all output ports are shut off. Valid RESET timing pulses must be >10 μs . If RESET is not used, RESET should either be tied directly to VDD or through a 10 $k\Omega$ resistor to VDD.
45	ĪNT	Digital output (open drain)	Interrupt output. This open drain output pin is asserted low (to \overline{DGND}) if a fault condition occurs on any of the four ports. The state of \overline{INT} is updated for use by the host controller between valid I^2C commands. Note: When the chip is in Auto mode, this pin should be left unconnected.
46, ePAD	DGND	Digital ground	Ground connection for 3.3 V digital supply (VDD). DGND and AGND are tied together inside the Si3459 package.
47	AUTO	Analog input with 25 µA pull-up to VDD	Tie to DGND for Manual or Semi-Auto Mode, or leave floating or tied to VDD for default Auto Mode. This pin can also be resistor programmed for other startup configurations.
48 49 50 51	A1 A2 A3 A4	Digital input with 25 μA pull-up to VDD	I ² C address input. Used to set the base I ² C address for the Si3459 in the following (binary) format: 01[A4][A3][A2][A1]A0. Note that A0 is not a physical pin, but rather the address for a "virtual quad" in the I ² C addressing scheme. The two MSB bits of the address are set to 01. Address values are latched after the deassertion of RESETB or when VDD ramps and VPWR exceeds the UVLO threshold voltage. Each address pin should be floating (internal pull-up pulls high) or tied to either VDD or DGND.
53	SCL	Digital input	Serial clock input. Should be tied directly to the SCL (clock) connection on the I ² C bus.
54	SDAI	Digital input with 25 µA pull-up to VDD	Serial data input. Tie SDAO and SDAI together if a two-wire version of the I ² C bus is available.
55	SDAO	Digital output (open drain)	Serial data output. This open drain output pin is intended to drive data isolators directly. Tie SDAO and SDAI together if a 2-wire version of the I ² C bus is available.
56	SHDN	Digital input with 25 μA pull-up to VDD	This signal, when driven low, will initiate a shutdown of low-priority ports. Note: When the chip is in Auto mode, this pin should be left unconnected.

6. Ordering Guide

Ordering Part	Product	Firmware	Firmware	Package	Temperature
Number*	Revision	Revision	Revision Notes		Range (Ambient)
Si3459-B02-IM	В	3.9	See "10. Firmware Revision Release Notes" on page 55.	56-pin QFN RoHS-compliant	–40 to 85 °C

*Note: Add an "R" to the end of the part number for tape and reel option (e.g., Si3459-B02-IM or Si3459-B02-IMR).

7. Package Outline

Figure 13 illustrates the package details for the Si3459. Table 13 lists the values for the dimensions shown in the illustration. The Si3459 is packaged in an industry-standard, RoHS-compliant, 56-pin QFN package. The lead plating material is matte tin.

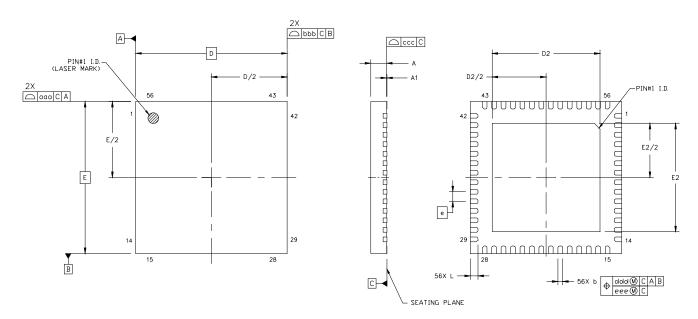


Figure 13. Package Drawing

Table 13. Package Diagram Dimensions

Dimension	Min	Nom	Мах
Α	0.80	0.85	0.90
A1	0.00	0.02	0.05
b	0.18	0.25	0.30
D	8.00 BSC.		
D2	5.55	5.70	5.85
е	0.50 BSC.		
E	8.00 BSC.		
E2	5.55	5.70	5.85
L	0.30	0.40	0.50
m	0.63	0.68	0.73
n	0.21	0.26	0.31
R	0.26 REF		
aaa	_	_	0.15
bbb	_	_	0.15
ccc	_	_	0.08
ddd	_	_	0.10
eee	_	_	0.05

Notes

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- 3. This drawing conforms to the JEDEC Solid State Outline MO-220.
- Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8. Recommended Land Pattern

Figure 14 illustrates the land pattern details for the Si3459. Table 14 lists the values for the dimensions shown in the illustration.

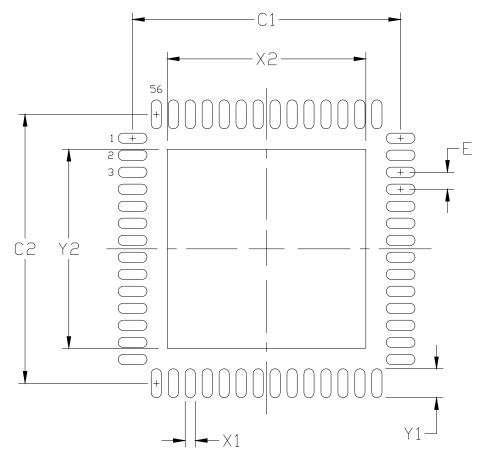


Figure 14. Si3459 Recommended Land Pattern

Table 14. PCB Land Pattern Dimensions

Symbol	mm
C1	7.90
C2	7.90
E	0.50
X1	0.30
Y1	0.85
X2	5.85
Y2	5.85

Notes:

General

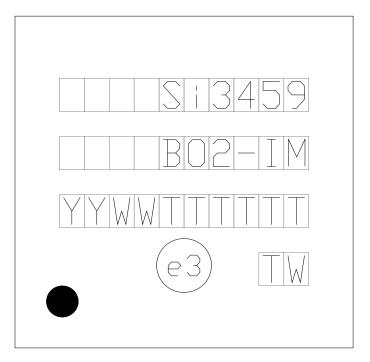
- 1. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.

Solder Mask Design

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

Stencil Design

- **4.** A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- **5.** The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pins.
- 7. A 3x3 array of 1.4 mm square openings on 2.0 mm pitch should be used for the center ground pad to achieve a target of ~50% solder coverage.


Card Assembly

- 8. A No-Clean, Type-3 solder paste is recommended.
- 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9. Top Marking

9.1. Si3459 Top Marking (QFN)

9.2. Top Marking Explanation

Mark Method:	Laser	
Pin 1 Mark:	Circle = 0.75 mm Diameter (Bottom-Left-Justified)	
Line 1 Mark Format:	Device Part Number	Si3459
Line 2 Mark Format:	Device Rev / Type	B02-IM
Line 3 Mark Format:	YY = Year WW = Work Week	Year and Work Week of Assembly
	TTTTTT = Mfg Code	Manufacturing Code
Line 4 Mark Format:	Circle = 1.3 mm Diameter	"e3" Pb-Free Symbol
	Country of Origin	TW = Taiwan

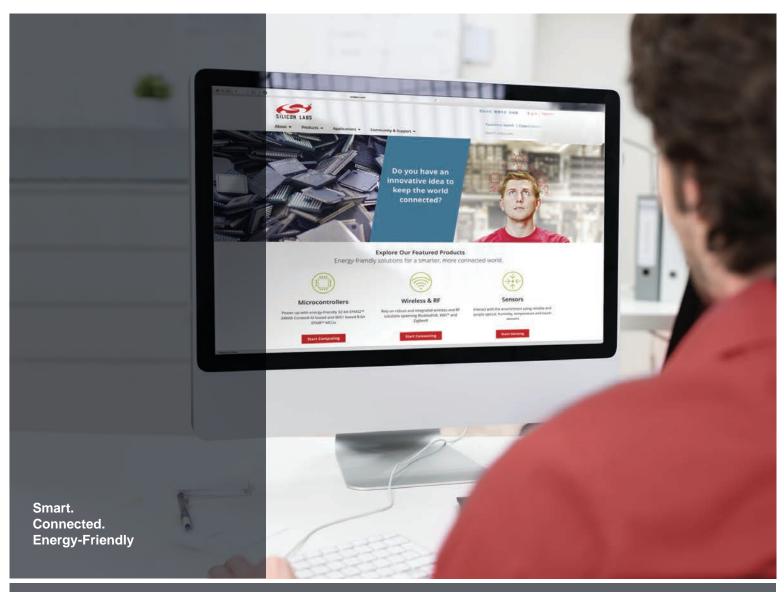
10. Firmware Revision Release Notes

- Initial release
- Register set redefinition
- Register definition descriptions updates

DOCUMENT CHANGE LIST

Revision 0.1 to Revision 0.2

■ This document revision addresses register set redefinition and register definition description updates.


Revision 0.2 to Revision 1.0

- Updated Table 1 on page 4.
 - Updated Sense Voltage at Current Limit specs.
- Updated Figure 9 on page 16.
- Updated "3.2. Operating Modes" on page 19 to clarify AUTO mode operation.
- Added "3.4.1.2. Global Address" and "3.4.1.3. Alert Response Address (ARA) " on page 23.

Revision 1.0 to Revision 1.1

- Updated Table 1 on page 4 to reduce minimum voltage on "Voltage Difference Between any GATEn and AGND Pin" and to increase maximum current on Bad FET Measurement IPORTn parameters.
- Updated Table 2 on page 7 to expand Regulator Output Voltage Mix and Max slightly.
- Updated Table 3 on page 9 to increase Input Leakage IIH Max by 1 µA.
- Updated icutp_x register default values in Table 8 on page 19.
- Updated the default value (reset state; Auto tied to DGND) of the icutp_x registers (0x16, 0x26, 0x36, 0x46) to 0101 0100.

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, Bluegiga, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, Telegesis, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701

http://www.silabs.com