Page 2

Positive Fixed Voltage Regulator

PRODUCT DATASHEET

ABSOLUTE MAXIMUM RATINGS

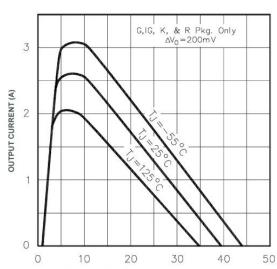
Device Output Voltage	Input Voltage	Input Voltage (Transient)(Note 3)	Input Voltage Differential (Output Shorted to Ground)
5V	35V	50V	35V
12V	35V	50V	35V
15V	35V	50V	35V
Operating Junction Temper	ature		150°C
1 0			65°C to 150°C

Note: Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of specified terminal.

Note 3: Operation at high input voltages is dependent upon load current. When load current is less than 5mA, output will rise out of regulation as inputoutput differential increases beyond 30V. Note also from figure 1, that maximum load current is reduced at high voltages. The 50V input rating of the SG78xxA series refers to ability to withstand high line or transient conditions without damage. Since the regulator's maximum current capability is reduced, the output may fall out of regulation at high input voltages under nominal loading.

THERMAL DATA

THERMAL RESISTANCE-JUNCTION TO CASE, θ_{JC}	3.0°C/W
THERMAL RESISTANCE-JUNCTION TO $f A$ MBIENT, $f heta_{JA}$	35°C/W
TO-39 3-Pin Metal Can	
THERMAL RESISTANCE-JUNCTION TO CASE, θ_{JC}	15°C/W
THERMAL RESISTANCE-JUNCTION TO $f A$ MBIENT, $f heta_{JA}$	120°C/W
G TO-257 3-Pin Hermetic	
THERMAL RESISTANCE-JUNCTION TO CASE, θ_{JC}	3.5°C/W
THERMAL RESISTANCE-JUNCTION TO $f A$ MBIENT, $f heta_{JA}$	42°C/W
TO-257 3-Pin Hermetic (Isolated)	
THERMAL RESISTANCE-JUNCTION TO CASE, θ_{JC}	4.0°C/W
THERMAL RESISTANCE-JUNCTION TO AMBIENT, $ heta_{JA}$	42°C/W
Leadless Chip Carrier 20-Pin Ceramic	
THERMAL RESISTANCE-JUNCTION TO CASE, θ_{JC}	35°C/W
THERMAL RESISTANCE-JUNCTION TO AMBIENT, θ ₁ ,	120°C/W


Junction Temperature Calculation: $T_J = T_A + (P_D x \theta_{JA})$.

The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.

PRODUCT DATASHEET

CHARACTERISTIC CURVES

INPUT - OUTPUT VOLTAGE DIFFERENTIAL (V)

Figure 1 — Peak Output Current vs.
Input — Output Differential

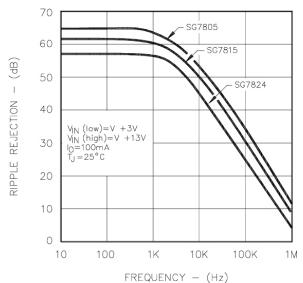


Figure 3 - Ripple Rejection vs. Frequency

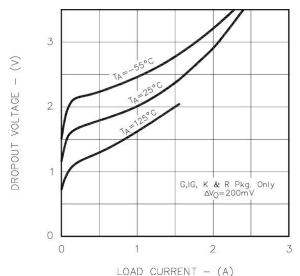


Figure 2 – Minimum Input – Output Voltage vs.
Load Current

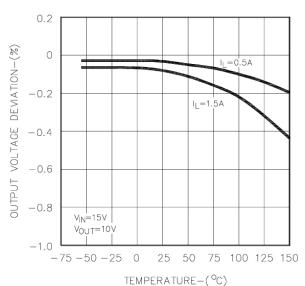
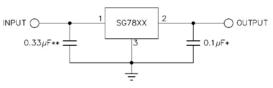



Figure 4 – Temperature Coefficient of Output Voltage

PRODUCT DATASHEET

APPLICATIONS

- * INCREASING VALUE OF OUTPUT CAPACITOR IMPROVES SYSTEM TRANSIENT RESPONSE
- ** REQUIRED ONLY IF REGULATOR IS LOCATED AN APPRECIABLE DISTANCE FROM POWER SUPPLY FILTER

Figure 5 - Fixed Output Regulator

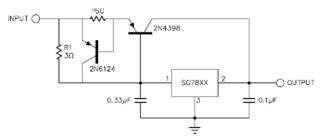


Figure 7 - High Output Current, Short Circuit Protected

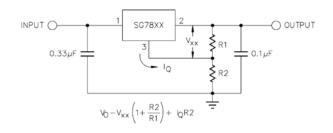


Figure 6 - Circuit for Increasing Output Voltage

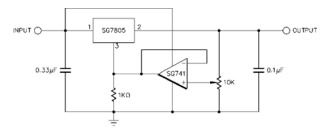


Figure 8 - Adjustable Output Regulator, 7V to 30V

RECOMMENDED OPERATING CONDITIONS

Parameter		SG78xx / 78xxA				
Farameter	Min	Тур	Max	Units		
Operating Junction Temperature Range (Note 2)	55		150	°C		

Note 2: Range over which the device is functional.

PRODUCT DATASHEET

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, these specifications apply over the operating ambient temperatures for SG7805A / SG7805 with -55°C \leq T_A \leq 125°C, V_{IN} = 10V, I_O = 500mA for the K, G and IG – Power Packages, I_O = 100mA for the T and L packages, C_{IN} = 0.33 μ F, and C_{OUT} = 0.1 μ F. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.

Parameter	Test Conditions	SG7805A			SG7805			Units
Parameter	rest Conditions		Тур	Max	Min	Тур	Max	
Output Voltage	T _J = 25°C	4.92	5.00	5.08	4.80	5.00	5.20	V
Line Regulation (Note 1)	$V_{IN} = 7.5V \text{ to } 20V, T_J = 25^{\circ}C$		5	25		5	25	mV
	$V_{IN} = 8V \text{ to } 12V, T_{J} = 25^{\circ}C$		2	12		2	25	mV
Load Regulation (Note 1)	Power Pkgs: I_O = 5mA to 1.5A, T_J = 25°C		15	50		15	50	mV
	$I_{\rm O}$ = 250mA to 750mA, $T_{\rm J}$ = 25°C		5	25		5	25	mV
	T – Pkg: I_0 = 5mA to 500mA, T_J = 250°C		5	25		20	25	mV
Total Output Voltage	VIN = 8V to 20V							
Tolerance	Power Pkgs: I_0 = 5mA to 1.0A, P \leq 20W	4.85	5.00	5.15	4.65	5.00	5.35	V
	T – Pkg: I_0 =5mA to 500mA, P \leq 20W	4.85	5.00	5.15	4.65	5.00	5.35	V
Quiescent Current	Over Temperature Range			7			7	mA
	$T_J = 25^{\circ}C$		4	6		4	6	mA
Quiescent Current Change	With Line: V _{IN} = 8V to 25V			0.8			8.0	mA
	With Load: I_0 = 5mA to 1.0A (Power Pkgs.)			0.5			0.5	mA
	I _O = 5mA to 500mA (T)			0.5			0.5	mA
Dropout Voltage	$\Delta V_{O} = 100 \text{mV}, T_{J} = 25 ^{\circ}\text{C}$							
	Power Pkgs: I_0 = 1.0A, T-Pkg: I_0 = 500mA		2	2.5		2	2.5	V
Peak Output Current	Power Pkgs: $V_{IN} = 10V$, $T_J = 25$ °C	1.5	2.0	3.3	1.5	2.0	3.3	Α
	$T - Pkg: V_{IN} = 10V, T_{J} = 25^{\circ}C$	0.5	1.0	2.0	0.5	1.0	2.0	Α
Short Circuit Current	Power Pkgs: V _{IN} = 35V, T _J = 25°C			1.2			1.2	Α
	$T - Pkg: V_{IN} = 35V, T_{J} = 25^{\circ}C$			0.7			0.7	Α
Ripple Rejection	$\Delta V_{IN} = 10V$, f = 120Hz, $T_{J} = 25$ °C	68			68			dB
Output Noise Voltage (rms)	f = 10Hz to 100kHz (Note 2)			40			40	μV/V
Long Term Stability	1000 hours @ T _J = 125°C		20			20		mV
Thermal Shutdown	I _O = 5mA		175			175		°C

Note 1: All regulation tests are made at constant junction temperature with low duty cycle testing.

2: This test is guaranteed but is not tested in production.

PRODUCT DATASHEET

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, these specifications apply over the operating ambient temperatures for SG7812A / SG7812 with -55°C \leq T_A \leq 125°C, V_{IN} = 19V, I_O = 500mA for the K, G and IG – Power Packages, I_O = 100mA for the T and L packages, C_{IN} = 0.33 μ F, and C_{OUT} = 0.1 μ F. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.

Danamatan	Took Conditions	SG7812A			SG7812			Units
Parameter	Test Conditions		Тур	Max	Min	Тур	Max	
Output Voltage	T _J = 25°C	11.8	12.0	12.2	11.5	12.0	12.5	V
Line Regulation (Note 1)	V _{IN} = 14.5V to 30V, T _J = 25°C		12	60		12	120	mV
	V _{IN} = 16V to 22V, T _J = 25°C		6	30		6	60	mV
Load Regulation (Note 1)	Power Pkgs: $I_O = 5$ mA to 1.5A, $T_J = 25$ °C		28	80		28	120	mV
	$I_{\rm O}$ = 250mA to 750mA, $T_{\rm J}$ = 25°C		10	40		10	60	mV
	$T - Pkg: I_O = 5mA \text{ to } 500mA, T_J = 25^{\circ}C$		10	40		10	60	mV
Total Output Voltage	V _{IN} = 15.5V to 27V							
Tolerance	Power Pkgs: I_0 = 5mA to 1.0A, P \leq 20W	11.7	12.0	12.3	11.4	12.0	12.6	V
	T – Pkg: I_0 = 5mA to 500mA, P \leq 2W	11.7	12.0	12.3	11.4	12.0	12.6	V
Quiescent Current	Over Temperature Range			7			7	mA
	$T_J = 25^{\circ}C$		4	6		4	6	mA
Quiescent Current Change	With Line: V _{IN} = 15V to 30V			0.8			0.8	mA
	With Load: I _O = 5mA to 1.0A (Power Pkgs.)			0.5			0.5	mA
	$I_{O} = 5 \text{mA to } 500 \text{mA (T)}$			0.5			0.5	mA
Dropout Voltage	$\Delta V_{O} = 100 \text{mV}, \text{ TJ} = 25 ^{\circ}\text{C}$							
-	Power Pkgs: $I_O = 1.0A$, T – Pkg: $I_O = 500$ mA		2	2.5		2	2.5	V
Peak Output Current	Power Pkgs: T _J = 25°C	1.5	2.0	3.3	1.5	2.0	3.3	Α
	$T - Pkg: T_J = 25^{\circ}C$	0.5	1.0	1.7	0.5	1.0	1.7	Α
Short Circuit Current	Power Pkgs: V _{IN} = 35V, T _J = 25°C			1.2			1.2	Α
	$T - Pkg: V_{IN} = 35V, T_{J} = 25^{\circ}C$			0.7			0.7	Α
Ripple Rejection	$\Delta V_{IN} = 10V$, f = 120Hz, $T_J = 25$ °C	61			61			dB
Output Noise Voltage (rms)	f = 10Hz to 100kHz (note 2)			40			40	μV/V
Long Term Stability	1000 hours @ T _J = 125°C		48			48		mV
Thermal Shutdown	$I_0 = 5mA$		175			175		°C

Note 1: All regulation tests are made at constant junction temperature with low duty cycle testing.

2: This test is guaranteed but is not tested in production.

PRODUCT DATASHEET

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, these specifications apply over the operating ambient temperatures for SG7815A / SG7815 with -55°C \leq T_A \leq 125°C, V_{IN} = 23V, I_O = 500mA for the K, G and IG – Power Packages, I_O = 100mA for the T and L packages, C_{IN} = 0.33 μ F, and C_{OUT} = 0.1 μ F. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.

Parameter	Test Conditions	SG7815A			SG7815			Units
Parameter	rest Conditions		Тур	Max	Min	Тур	Max	
Output Voltage	T _J = 25°C	14.8	15.0	15.2	14.4	15.0	15.6	V
Line Regulation (Note 1)	V _{IN} = 17.5V to 30V, T _J = 25°C		15	75		15	150	mV
	$V_{IN} = 20V \text{ to } 26V, T_J = 25^{\circ}C$		8	40		8	75	mV
Load Regulation (Note 1)	Power Pkgs: I_0 = 5mA to 1.5A, T_J = 25°C		30	100		30	150	mV
	I_{O} = 250mA to 750mA, T_{J} = 25°C		12	50		12	75	mV
	T – Pkg: I_0 = 5mA to 500mA, T_J = 25°C		12	50		12	75	
Total Output Voltage	$V_{IN} = 18.5V \text{ to } 30V$							
Tolerance	Power Pkgs: I_0 = 5mA to 1.0A, P \leq 20W	14.6	15.0	15.4	14.3	15.0	15.7	V
	T – Pkg: I_0 = 5mA to 500mA, P \leq 2W	14.6	15.0	15.4	14.3	15.0	15.7	V
Quiescent Current	Over Temperature Range			7			7	mA
	$T_J = 25^{\circ}C$		4	6		4	6	mA
Quiescent Current Change	With Line: $V_{IN} = 18.5V$ to 30V			0.8			0.8	mA
	With Load: I _O = 5mA to 1.0A (Power Pkgs)			0.5			0.5	mA
	I _O = 5mA to 500mA (T)			0.5			0.5	mA
Dropout Voltage	$\Delta V_{O} = 100 \text{mV}, T_{J} = 25 ^{\circ}\text{C}$							
	Power Pkgs: I_0 = 1.0A, T – Pkg: I_0 = 500mA		2	2.5		2	2.5	V
Peak Output Current	Power Pkgs: T _J = 25°C	1.5	2.2	3.3	1.5	2.2	3.3	Α
	T – Pkg: T _J = 25°C	0.5	0.9	1.7	0.5	0.9	1.7	Α
Short Circuit Current	Power Pkgs: V _{IN} = 35V, T _J = 25°C			1.2			1.2	Α
	$T - Pkg: V_{IN} = 35V, TJ = 25^{\circ}C$			0.7			0.7	Α
Ripple Rejection	$\Delta V_{IN} = 10V$, f = 120Hz, $T_J = 25$ °C	60			60			dB
Output Noise Voltage (rms)	f = 10Hz to 100kHz (note 2)			40			40	μV/V
Long Term Stability	1000 hours @ TJ = 125°C		60			60		mV
Thermal Shutdown	$I_0 = 5mA$		175			175		

Note 1: All regulation tests are made at constant junction temperature with low duty cycle testing.

2: This test is guaranteed but is not tested in production.

NOTES

PRODUCT DATASHEET

CONNECTION DIAGRAMS & ORDERING INFORMATION (SEE NOTES BELOW)

Package	Part No.	Ambient Temperature Range	Connection Diagram
	SG78xxAK/883B	-55°C to 125°C	
	SG7805AK/DESC	-55°C to 125°C	V _{IN}
	SG7812AK/DESC	-55°C to 125°C	V IN
	SG7815AK/DESC	-55°C to 125°C	
3-Terminal TO-3 Metal Can	SG78xxAK	-55°C to 125°C	$(\bigcirc (\bigcirc ($
K – Package	SG78xxK/883B	-55°C to 125°C	
	JAN7805K	-55°C to 125°C	N.
	JAN7812K	-55°C to 125°C	V _{out}
	JAN7815K	-55°C to 125°C	Case is Ground
	SG78xxK	-55°C to 125°C	
	SG78xxAT/883B	-55°C to 125°C	
	SG7805AT/DESC	-55°C to 125°C	
	SG7812AT/DESC	-55°C to 125°C	
	SG7815AT/DESC	-55°C to 125°C	V _{IN} O
3-Pin TO-39 Metal Can	SG78xxAT	-55°C to 125°C	
T – Package	SG78xxT/883B	-55°C to 125°C	$V_{OUT} \bigcirc^2 \bigcirc^3 / GND$
-	JAN7805T	-55°C to 125°C	001
	JAN7812T	-55°C to 125°C	Case is Ground
	JAN7815T	-55°C to 125°C	
	SG78xxT	-55°C to 125°C	
	SG78xxAIG/883B	-55°C to 125°C	
	SG7805AIG/DESC	-55°C to 125°C	
0 Dia 11 anno atia TO 057	SG7812AIG/DESC	-55°C to 125°C	V _{out}
3-Pin Hermetic TO-257	SG7815AIG/DESC	-55°C to 125°C	GROUND
IG – Package (Isolated)	SG78xxAIG	-55°C to 125°C	V _{IN}
	SG78xxIG/883B	-55°C to 125°C	
	SG78xxIG	-55°C to 125°C	
	SG7805AL/DESC	-55°C to 125°C	0
	SG7812AL/DESC	-55°C to 125°C	3 2 1 20 19
	SG7815AL/DESC	-55°C to 125°C	N.C.)4 18 (N.C.
20-Pin Ceramic Leadless Chip	SG78xxL/883B	-55°C to 125°C	N.C.) 5 17 C V _{IN}
Carrier			N.C. 06 16 (N.C.
L – Package			GND 7 15 V _o SENSE
L Tuollago			N.C. 08 14 N.C.
			\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	SG78xxAG/883B	-55°C to 125°C	
	SG7805AG/DESC	-55°C to 125°C	
3-Pin Hermetic TO-257	SG7812AG/DESC	-55°C to 125°C	V _{OUT} GROUND
G – Package (Case is Ground)	SG7815AG/DESC	-55°C to 125°C	GROUND V _{IN}
G - rackage (Case is Ground)	SG78xxAG	-55°C to 125°C	Case is Ground
	SG78xxG/883B	-55°C to 125°C	Case is Giouilu
	SG78xxG	-55°C to 125°C	

Note

- 1: Contact factory for JAN and DESC product availability.
- 2: All parts are viewed from the top.
- 3: "xx" to be replaced by output voltage of specific fixed regulator.
- 4: Some products will be available in hermetic flat pack (F). Consult factory for price and availability.
- 5: Both inputs and outputs must be externally connected together at the device terminals.
- 6: For normal operation, the V_{O} SENSE pin must be externally connected to the load.