Contents L9907 # **Contents** | 1 | Bloc | k diagra | m and pin description | . 6 | |---|------|-----------|---|-----| | | 1.1 | Block d | iagram | . 6 | | | 1.2 | Pin des | cription | . 7 | | 2 | Fund | ctional d | escription | 10 | | | 2.1 | Power | supply VB, VCC | 10 | | | 2.2 | Voltage | regulator VDD | 10 | | | 2.3 | EN1 an | d EN2 pins (ENABLE) | 10 | | | 2.4 | Boost o | converter | .11 | | | | 2.4.1 | BstDis (boost disable) function | 12 | | | 2.5 | MOSFE | ET drivers | 13 | | | | 2.5.1 | GCR pin | 13 | | | | 2.5.2 | Shoot through protection | 13 | | | | 2.5.3 | Drain source monitoring | 14 | | | 2.6 | Current | Sense Amplifier (CSA) | 14 | | | 2.7 | System | clock | 15 | | | 2.8 | Genera | ll SPI usage | 15 | | | 2.9 | Device | and FET fault handling | 16 | | | | 2.9.1 | SPI and PWM faults | 17 | | 3 | Elec | trical sp | ecifications | 18 | | | 3.1 | Maximu | um operating ranges | 18 | | | 3.2 | Absolut | te maximum ratings | 18 | | | 3.3 | ESD pr | otection | 19 | | | 3.4 | Temper | ature ranges and thermal data | 20 | | | 3.5 | Electric | al characteristics | 20 | | | | 3.5.1 | Supply | 20 | | | | 3.5.2 | Voltage regulator VDD | 21 | | | | 3.5.3 | Logic input pins (PWM_H1 to 3, PWM_L1 to 3, SCK, CS, SDI, BST_DI EN1 and EN2) | | | | | 3.5.4 | Logic output pins (FS_FLAG, SDO, TO3) | 22 | | | | 3.5.5 | Boost converter | 22 | | | | 3.5.6 | MOSFET drivers | 23 | | | | 3.5.7 Current sense amplifier | 25 | |---|------|---|------------| | 4 | SPI | peration 2 | 29 | | | 4.1 | SPI bits mapping | 30 | | | | 4.1.1 SDO | 37 | | 5 | Арр | cation circuit | ! 1 | | | 5.1 | 12 V/24 V system | 11 | | | 5.2 | 48 V system | 12 | | | 5.3 | Bill of materials | 12 | | 6 | Pack | age information | 1 5 | | | 6.1 | TQFP64 (10x10x1 mm exp. pad down) package mechanical data 4 | 15 | | | | 6.1.1 TQFP64 exposed pad dimensions for L9907 | 47 | | 7 | Revi | ion history | 18 | List of tables L9907 # List of tables | Table 1. | Device summary | 1 | |-----------|--|------| | Table 2. | Pin function | | | Table 3. | Offset bit configuration | | | Table 4. | Gain bit configuration | . 15 | | Table 5. | System clock frequency | | | Table 6. | Device and FET fault handling | . 16 | | Table 7. | SPI and PWM faults | . 17 | | Table 8. | Maximum operating conditions | . 18 | | Table 9. | Absolute maximum ratings | . 18 | | Table 10. | ESD protection | | | Table 11. | Temperature ranges and thermal data | . 20 | | Table 12. | Supply electrical characteristics | . 20 | | Table 13. | Voltage regulator VDD | | | Table 14. | Logic I/O pins electrical characteristics | | | Table 15. | Logic output pins (FS_FLAG, SDO, TO3) electrical characteristics | | | Table 16. | Boost converter electrical characteristics | | | Table 17. | MOSFET drivers electrical characteristics | . 23 | | Table 18. | External MOSFET overcurrent drop voltage sense | | | Table 19. | Gate voltage monitoring | | | Table 20. | Phase current sense amplifier (SPI select: Offx=1, where x=1,2) | | | Table 21. | Ground current sense amplifier | | | Table 22. | SPI timing specifications | | | Table 23. | SDI bit map definition | | | Table 24. | SDI frame structure | | | Table 25. | Dead time parameter | | | Table 26. | Turn on/off current | | | Table 27. | Current sense amplifier 2 gain | . 31 | | Table 28. | Current sense amplifier 1 gain | | | Table 29. | Short circuit detection threshold for low-side external MOSFET | | | Table 30. | Short circuit detection threshold for low-side external MOSFET | | | Table 31. | VB over voltage threshold for single or double battery application | | | Table 32. | CMD1 SDI SPI bits vs. enabled fault | | | Table 33. | VCC over voltage threshold | | | Table 34. | Current sense amplifier input offset calibration | | | Table 35. | CMD4 SDI SPI bits vs. enabled fault | | | Table 36. | SDO bit map definition | | | Table 37. | Application circuit - BOM | | | Table 38. | TQFP64 (10x10x1 mm exp. pad down) package mechanical data | | | Table 39. | TQFP64 exposed pad dimensions for L9907 | . 47 | | Table 40 | Document revision history | 48 | L9907 List of figures # List of figures | Figure 1. | Block diagram | 6 | |-----------|--|----| | Figure 2. | Pin connection diagram | 7 | | Figure 3. | MOSFET drivers supply structure | 11 | | Figure 4. | Case of T_BOOST_OFF < T_BOOST_OFF_MAX | 12 | | Figure 5. | Case of T_BOOST_OFF > T_BOOST_OFF_MAX | | | Figure 6. | CSA simplified circuit diagram | 14 | | Figure 7. | Timing diagram for the SPI operation | 29 | | Figure 8. | Application circuit, 12 V/24 V system | 41 | | Figure 9. | Application circuit, 48 V system | 42 | | Figure 10 | TOFP64 (10x10x1 mm exp. pad down) package mechanical drawing | 45 | DS11800 Rev 5 5/49 # 1 Block diagram and pin description # 1.1 Block diagram Figure 1. Block diagram DS11800 Rev 5 47/ # 1.2 Pin description Figure 2. Pin connection diagram Table 2. Pin function | Pin# | Pin name | Description | I/O Type | |------|----------|--|----------| | 1 | NC | NC | - | | 2 | GLS_3 | Gate connection for low-side MOSFET, phase 3 | 0 | | 3 | SLS_3 | Source connection for low-side MOSFET, phase 3 | I | | 4 | NC | NC | - | | 5 | GLS_2 | Gate connection for low-side MOSFET, phase 2 | 0 | | 6 | SLS_2 | Source connection for low-side MOSFET, phase 2 | I | | 7 | NC | NC | - | | 8 | GLS_1 | Gate connection for low-side MOSFET, phase 1 | 0 | | 9 | SLS_1 | Source connection for low-side MOSFET, phase 1 | I | | 10 | AGND | Analog ground | GND | | 11 | IS1+ | Positive input for current sense amplifier 1 | I | | 12 | IS1- | Negative input for current sense amplifier 1 | I | | 13 | NC | NC | - | | 14 | IB1 | Output for current sense amplifier 1 (Test mode digital output #1) | 0 | | 15 | IB2 | Output for current sense amplifier 2 (Test mode digital output #2) | 0 | | 16 | SGND2 | Substrate (and ESD_GND) connection 2 | GND | DS11800 Rev 5 7/49 **Table 2. Pin function (continued)** | Pin# | Pin name | Description | I/O Type | | |------|-------------------|--|----------|--| | 17 | IS2- | Negative input for current sense amplifier 2 | I | | | 18 | IS2+ | Positive input for current sense amplifier 2 | | | | 19 | NC | NC | | | | 20 | CBS_3 | Bootstrap capacitor for high-side MOSFET, phase 3 | I | | | 21 | GHS_3 | Gate connection for high-side MOSFET, phase 3 | 0 | | | 22 | SHS_3 | Source connection for high-side MOSFET, phase 3 | I | | | 23 | NC | NC | - | | | 24 | CBS_2 | Bootstrap capacitor for high-side MOSFET, phase 2 | I | | | 25 | GHS_2 | Gate connection for high-side MOSFET, phase 2 | 0 | | | 26 | SHS_2 | Source connection for high-side MOSFET, phase 2 | I | | | 27 | NC | NC | - | | | 28 | CBS_1 | Bootstrap capacitor for high-side MOSFET, phase 1 | I | | | 29 | GHS_1 | Gate connection for high-side MOSFET, phase 1 | 0 | | | 30 | SHS_1 | Source connection for high-side MOSFET, phase 1 | I | | | 31 | NC | NC | - | | | 32 | NC | NC | - | | | 33 | TM ⁽¹⁾ | Test mode enable input | 1 | | | 34 | PWM_H1 | PWM command input for high-side phase 1 | 1 | | | 35 | PWM_H2 | PWM command input for high-side phase 2 | I | | | 36 | PWM_H3 | PWM command input for high-side phase 3 | I | | | 37 | FS_FLAG | Fault status flag output | 0 | | | 38 | CS | SPI chip select input | I | | | 39 | SCK | SPI serial clock input | I | | | 40 | SDI | SPI Serial data input | I | | | 41 | SDO | SPI serial data output | 0 | | | 42 | TO3 | Test output | 0 | | | 43 | EN2 | Enable Input 2 (ANDed with EN1 to enable any gate drive output). | I | | | 44 | EN1 | Enable Input 1 (ANDed with EN2 to enable any gate drive output). | I | | | 45 | PWM_L1 | PWM command input for low-side phase 1 | I | | | 46 | PWM_L2 | PWM command input for low-side phase 2 | I | | | 47 | PWM_L3 | PWM command input for low-side phase 3 | I | | | 48 | SGND1 | Substrate (and ESD_GND) connection 1 | GND | | | 49 | Vcc | 5 V / 3.3 V power supply input | I | | | 50 | NC | NC | - | | | 51 | GCR | Connection to resistor for current selection of gate driver | 0 | | Table 2. Pin function (continued) | Pin# | Pin name | Description | I/O Type | |------|----------|---|----------| | 52 | Vdd | 3.3 V power supply output (for IC internal purpose only) | 0 | | 53 | DGND | Digital ground | GND | | 54 | VB | Protected battery monitor | I | | 55 | NC | NC | - | | 56 | BST_L | Boost regulator inductance connection | 0 | | 57 | BGND | Boost ground | | | 58 | BST_DIS | Boost disable | I | | 59 | NC | NC | - | | 60 | BST_C | Boost regulator capacitance connection | I | | 61 | NC | NC | - | | 62 | VCAP | Decoupling capacitor for power supply of low-side drivers | I | | 63 | NC | NC | - | | 64 | VDH | High-side drain voltage sense | I | ^{1.} TM pin has to be connected to ground in the application. DS11800 Rev 5 9/49 # 2 Functional description #### 2.1 Power supply VB, VCC Voltage present at VB and VCC pins is monitored in order to inhibit driver and/or boost functionality in case of under/over voltage detection. A VCC over voltage self test is embedded for safety integrity check: VCC over voltage threshold can be reduced on purpose to a level that is always triggered with nominal values on VCC rail. The device is self protected in case of ground disconnections versus both SGNDx pins. SGND1 and SGND2 pins are internally shorted and connected to substrate: at least one of these pins must be connected to board ground. In case of AGND loss, a dedicated comparator will lead to a POR state for logic, where boost regulator and MOSFET drivers are disabled. This fault doesn't set any SPI error bit. In case of DGND loss the device is automatically disabled:
MOSFET drivers go in tri-state condition and external FETs are kept off using integrate passive pull down. In case of BGND ground loss the boost regulator cannot work properly: the effect is an undervoltage on HS and/or LS side gate voltage monitor. The ground reference for all the voltages and thresholds available in the device is AGND. The Exposed Pad (EP) is mainly used for thermal dissipation. It should be grounded and connected together with SGNDx pins. # 2.2 Voltage regulator VDD The internal 3.3 V voltage regulator is used to supply the internal logic and all internal blocks. For stability reasons a 100 nF capacitor has to be connected to VDD pin. This regulator is to be intended for IC internal use only. Suggested limits for external capacitor are min = 100 nF -20% ma x= 220 nF +20%. All tests are performed with a 100 nF capacitor, unless otherwise specified. # 2.3 EN1 and EN2 pins (ENABLE) To enable the gate driver functionality EN1 and EN2 have to be pulled high. These pins are by default internally logically ANDed. In case REGOFF_EN bit in CMD4 SPI frame is set to 1 (refer to SPI mapping, *Table 23*), EN1 and EN2 have different meanings: EN2 stays the same as a gate driver functionality enabler, while EN1 will also become an enabler for all the regulators supplying the pre-driver circuitries. In this way, EN1 becomes a safety control pin that implements an additional switch-off path. These pins are also used to enable the SPI write to CMD1 and CMD4. These registers contain gate driver sensitive to failure management bits which just can be written when at least one of the ENx pins is pulled low (gate driver disabled). Nevertheless the pins are used as well to reactivate the gate driver in case of device internal switch off. Therefore a low cycle of at least 3µs has to be applied after fault condition is removed to one or both of the ENx pins. On both pins internal pull down currents are implemented. #### 2.4 **Boost converter** The purpose of the Boost converter is to generate a voltage around 10 V higher than the one present at VDH monitor pin. This voltage is used to supply HS drivers (through dedicated regulators) and LS drivers (through VCAP regulator). The regulated voltage is present at BST_C pin. BST_L pin is the drain of an integrated NDMOS switch. VCAP regulator is a current limited voltage regulator, fed by Boost and referred to SLS3 voltage, used to supply LS drivers. Each HS driver has a current limited voltage regulator that is fed by Boost, referred to SHSx pins and with regulated voltage present at CBSx pins. These regulators limit VGS of the external FETs. Overvoltage at BST_C pin (e.g. due to low current demand) is limited by skipping turn on pulses until over voltage condition is removed. A fixed voltage threshold on BST C is implemented, in order to avoid the boost voltage exceeding a safety level in case of high voltage on VDH monitor pin. In case the user would not need this over voltage protection (e.g. for applications where high voltage is present on the VDH rail), L9907 provides a disabling bit in CMD3 SPI command (DIS_BST_{ov}). The Boost converter is disabled in case of validated Fault (see Table 6) and reactivated by fault removal and cleared after SPI reading. Figure 3. MOSFET drivers supply structure DS11800 Rev 5 11/49 In case Boost converter is disabled, but voltage at BST_C pin is present, Current Sense Amplifiers are active but with degraded performances at least in common mode dynamic range. In order to improve EMC behaviour an external RC series snubber can be added between BST_L and BGND pins. RC~1/(6.28*fSW BST). #### 2.4.1 BstDis (boost disable) function In case noise-free CSA measuring is needed, a special functionality that temporarily disables Boost regulator is implemented, with the purpose to reduce PCB coupling between CSA output and boost PCB metal stripes that can act as antennas. Once BST_DIS pin is asserted, boost regulator is disabled starting from the next complete boost cycle (maximum delay T BOOST OFF FILT). Boost is re-enabled in two ways: - internal timer expired (T_BOOST_OFF_MAX time is reached) - BstDis pin deasserted In both cases boost starts working again from the beginning of the next complete boost cycle. $$T_{BOOST_OFF_MAX} = 6*T_{BOOS}T = 96*T_{CK}$$ $T_{BOOST_OFF_FILT} = 3*T_{CK} min, 21*T_{CK} max$ Internal sync signal BOOST DIS PIN BOOST CLK MASK **BOOST CLK** T BOOST OFF MAX = 96*TCK = 6 BOOST periods GAPGPS0083 Figure 5. Case of T_BOOST_OFF > T_BOOST_OFF_MAX When BST_DIS_EN bit of CMD2 SPI frame is set to 1 (refer to SPI mapping, *Table 23*), BST_DIS becomes a full-time control of the boost operation: the boost will be disabled as long as the BST_DIS pin is high. This implements a boost permanent disabler that can be used for different reasons, e.g. to allow more precise and less noisy measurements, to decrease power dissipation or current load on battery in all conditions when the boost is not strictly necessary. #### 2.5 MOSFET drivers MOSFET drivers are programmable current mirrors used to limit gate charge/discharge current without gate series resistors (which can be used anyway). Programmability has two degrees of freedom: SPI programmability (25, 50, 75, 100% of max. available current IG) for MOSFET gate current adjustment during running application and via external resistor at GCR pin to adjust the gate current among different applications. External MOSFETs are protected against over current in on-state monitoring their Vds voltage. Maximum Vgs of external MOSFETs is limited using VCAP regulator for LS drivers and dedicated floating regulators referred to sources for HS drivers. #### 2.5.1 GCR pin At GCR pin a resistor has to be connected which defines in combination with the IGx SPI bits the gate current for charge and discharge. Minimum value for GCR resistor is GCR(min) = 1 k Ω - 10% (maximum allowable gate current), maximum is GCR(max) = 22 k Ω +10% (minimum allowable gate current), but with degraded precision performances with GCR > 6 k Ω + 10%. Tested values are GCR = 1 k Ω and GCR = 6 k Ω GCR pin circuitry implements an open/short protection in case of a too high/low resistive load connected to it. If one of the above conditions occurs, the device switches to an internally generated current, equivalent to approximately 15 k Ω . The current reference can be switched to the internal reference by using the GCR_INT_I bit of CMD2 frame (refer to SPI mapping, *Table 23*); this can be used when a reduced power dissipation is needed. #### 2.5.2 Shoot through protection Shoot through protection's aim is to avoid destructive cross current conduction between high-side and low-side FETs of the same phase in case of unwanted condition when PWM_Hx and PWM_Lx signals are set to logic '1' at the same time (e.g. because of a controller fault). With every activation of either PWM_Hx or PWM_Lx the cross current protection time is activated and switches off the corresponding half bridge for the programmed Dead time. The shoot through condition is validated via an up-down counter which is proportional to the programmed dead time. With this feature, continuous activation of HS and LS and also high frequency oscillations of the PWMx input signals (HS and LS) are detected and the shoot through failure state is set. If the fault condition is validated, all external FETs are switched OFF and FS_FLAG is asserted low. No SPI SDO diagnostic bit is set, since the hypothesis is that the controller is not able to work properly. In case the SHT_PH bit of CMD2 SPI frame would be set to 1 (refer to SPI mapping, *Table 23*), the device allows the switching off of the only phase for which the shoot through occurred. The phase that experienced the fault is reported on DIAG2 SPI frame (SDO bits B<2:0>). In order to re-enable FET pre-drivers, at least one Enable signal EN1 or EN2 must be toggled. DS11800 Rev 5 13/49 In order to unlatch also FS_FLAG status a SPI communication with diagnostic frame must be performed. #### 2.5.3 Drain source monitoring To monitor the external MOSFET a Drain Source monitoring for all HS and LS is implemented. In case the drain source voltage exceeds a certain threshold (e.g. MOSFET short) during gate ON mode, all drivers will be disabled and the fail will be reported via FS_FLAG and SPI. In case the ShortPH bit of CMD2 SPI frame would be set to 1 (refer to SPI mapping, *Table 23*), the device allows the switching off of the only phase for which the drain-source short occurred. # 2.6 Current Sense Amplifier (CSA) L9907 is equipped with two SPI-programmable Current Sense Amplifiers to measure the motor current by converting and amplifying the voltage drop across an external shunt resistor. A simplified CSA circuit diagram is showed in *Figure 6*. Figure 6. CSA simplified circuit diagram Each CSA can be used for phase (bidirectional) or ground (unidirectional) current monitoring by properly selecting the output zero-current offset via dedicated bits in the SPI register CMD0; Off1 for CSA1 and Off2 for CSA2. Table 3. Offset bit configuration | Offx | S _{OFS1} | S _{OFS2} | Output Offset | |------|-------------------|-------------------|---------------------| | 0 | Open | Closed | 20% V _{CC} | | 1 | Closed | Open | 50% V _{CC} | The gain of each CSA can be independently configured selecting between four different values via dedicated bits in the SPI register CMD0; G10, G11 for CSA1 and G20, G21 for CSA2. Table 4. Gain bit configuration | Gx1 | Gx0 | S _{G1} | S _{G2} | S _{G3} | S _{G4} | Gain | |-----|-----|-----------------|-----------------|-----------------|-----------------|------| | 0 | 0 | Closed | Open | Open | Open | 10 | | 0 | 1 | Closed | Closed | Open | Open | 30 | | 1 | 0 | Open | Open | Closed | Open | 50 | | 1 | 1 | Open | Open | Open | Closed | 100 | Current Sense Amplifier is active if IC is active (VCC and VDD present and within spec range), despite the EN status. In
case Boost converter is disabled, but voltage at BST_C pin is present, Current Sense Amplifiers work but with degraded performances at least in common mode dynamic range. ### 2.7 System clock Table 5. System clock frequency | Symbol | Parameter | Min | Тур | Max | Unit | |----------|------------------------|-----|-----|-----|------| | CLK_freq | System Clock Frequency | - | 5.6 | - | MHz | # 2.8 General SPI usage For device programmability a four-wire SPI is used. The device acts as SPI slave. Data will be latched on the negative clock edge and shifted out on the positive edge (μ C setting: CPHA =1; CPOL = 0). To perform an SPI write the WE bit has to be set and a correct ODD parity bit has to be written. A data read out is always performed on the following SPI frame (after power-up CMD0 is read). That means sending data to a certain register will lead to shift out the content of the addressed register in the following SPI frame. In case of wrong SPI communication (e.g. due to stuck at 0 or at 1 of SDI) the current command is rejected and an error message (0xB001) is presented as SDO response at the following SPI cycle. DS11800 Rev 5 15/49 # 2.9 Device and FET fault handling All internal fault events are filtered to achieve noise immunity. After filter-time they are latched in the corresponding SPI register and the FS_FLAG (active low) becomes low. In case the related driver-disable-bit (EN_x) is set, additionally the gate driver will be disabled and actively discharged (see: Fault Effect enabling; *Table 35* and *32*). In case EN_x is disabled the μ C takes fully response to react on any errors immediately indicated by the FS_FLAG. Neither the boost nor the FET drivers will be disabled on deselected faults. Table 6. Device and FET fault handling | Fault | Diagnosis | Device action when EN_x enabled | Exit from fault condition | |---------------------------------|--|---|---| | Overtemperature | FS_FLAG = low;
THSD SPI bit set | FET driver functionality disabled | Remove fault => auto recoverySPI read clears the Fault Flags and sets FS_FLAG to high | | VB or VCC over- or undervoltage | FS_FLAG = low;
VBOV or VBUV or
VCCOV or VCCUV SPI
bit set | FET driver functionality and Boost disabled | Remove fault => auto recovery of Boost EN cycling toggle reactivates the FET driver SPI read clears the Fault Flags and sets FS_FLAG to high | | Boost HS or LS undervoltage | FS_FLAG = low;
UV_HS or UV_LS SPI
bit set | FET driver functionality disabled | Remove fault EN cycling toggle reactivates the FET driver SPI read clears the Fault Flags and sets FS_FLAG to high | | VSC_HSx
overcurrent | FS_FLAG = low;
VSC_HSx SPI bit set | FET driver functionality disabled | Remove fault EN cycling toggle reactivates the FET driver SPI read clears the Fault Flags and sets FS_FLAG to high | | VSC_LSx
overcurrent | FS_FLAG = low;
VSC_LSx SPI bit set | FET driver functionality disabled | Remove fault EN cycling toggle reactivates the FET driver SPI read clears the Fault Flags and sets FS_FLAG to high | # 2.9.1 SPI and PWM faults Table 7. SPI and PWM faults | Fault | Diagnosis | Device Action | Exit from Fault Condition | |--|---|-----------------------------------|---| | SPI Error (wrong
address access;
parity error; SCK
count error) | SPI_Error bit set and 0xB001 return frame | Faulty SPI frame is ignored | - | | PWM_Hx and
PWM_Lx shoot
through protection | FS_FLAG = low; | FET driver functionality disabled | Remove faultEN cycling toggle reactivates the FET driverSPI read sets FS_FLAG to high | # 3 Electrical specifications ### 3.1 Maximum operating ranges The device may not operate properly if the maximum operating condition is exceeded. Table 8. Maximum operating conditions | Symbol | Parameter | Value | Unit | |-----------------|---|---|------| | V _B | Protected battery monitor voltage | 4.2 to 54 ⁽¹⁾ | V | | V _{CC} | 5 V / 3.3 V power supply | 3 to 5.5 | ٧ | | V _{DH} | High-side drain voltage sense | 4.2 to 54 ^{(1) (2)} | V | | SHS_1 to 3 | High-side source voltage | -7 to 54 ^{(1) (3)} | ٧ | | ISxx | Current sense amplifier input pin voltage | -2 to V _{DH} +4 ⁽⁴⁾ | V | - 1. Maximum operating voltage is 75 V in dynamic conditions. - 2. V_{DH} maximum operating voltage range is limited by V(BST_C)-15 V. - 3. SHS maximum operating voltage range is limited by V(CBSxmax)-15 V. - 4. Maximum operating voltage is V_{DH} +20 V in dynamic conditions. # 3.2 Absolute maximum ratings Maximum ratings are absolute ratings; exceeding any one of these values may cause permanent damage to the integrated circuit. Table 9. Absolute maximum ratings | Parameter | Pin | Min | Max | Unit | |-------------------------------------|--------------------------------|------|-------------------|------| | Monitor supply pin | VB | -0.3 | 75 | V | | Worldor Supply pill | VB | -10 | +10 | mA | | | BST_C | -0.3 | 90 | V | | Power supply pins | | -100 | 100 | mA | | | BST_L | -0.3 | 90 | ٧ | | | B31_L | -100 | 100 | mA | | | Vcc | -0.3 | 35 | ٧ | | Fower supply pills | VCC | -10 | 25 | mA | | | Vdd | -0.3 | 4.6 | V | | | Vdd | -10 | 15 | mA | | | VCAP | -0.3 | 20 | V | | | VCAF | -100 | 100 | mA | | Miscellaneous Analog/Digital input | PWM_H1 to 3, PWM_L1 to 3, EN1, | -0.3 | 35 | V | | pins | EN2, BST_DIS,TM, CS, SCK, SDI | -100 | 100 | mA | | Miscellaneous Analog/Digital output | IB1, IB2, FS FLAG, SDO, TO3 | -0.3 | 35 ⁽¹⁾ | V | | pins | 151, 152, 1 3_1 LAG, 300, 103 | -100 | 100 | mA | | Parameter | Pin | Min | Max | Unit | |--|---|------|-----|------| | Gate current coloction pin | GCR | -0.3 | 4.6 | V | | Gate current selection pin | GCK | -10 | +10 | mA | | Current sense amplifier pins | IS1+,IS1-,IS2+,IS2- | -7 | 75 | V | | Current sense ampliner pins | 131+,131-,132+,132- | -10 | 10 | mA | | Differential voltage between ISx +/- | Abs ISx+ - ISx- | - | 15 | V | | High-side drain sense | VDH | -4 | 75 | V | | | VDH | -10 | 10 | mA | | | HS Bootstrap Cap pins: CBS_1 to 3 | -0.3 | 90 | V | | FET-driver pins | Differential gate to source HS pins: V(GHS_x) - V(SHS_x), x = 1 to 3 ⁽²⁾ | -0.3 | 20 | V | | | Source HS pins: SHS_1 to 3 | -7 | 75 | V | | | Source LS pins: SLS_1 to 3 | -7 | 10 | V | | FET driver pins | Differential gate to source LS pins: V(GLS_x) - V(SLS_x), x = 1 to 3 ⁽²⁾ | -0.3 | 20 | V | | Current sense amplifier differential voltage | BST_C-ISxx | -0.3 | 90 | V | | GND pins | BGND and DGND | -0.3 | 4.6 | V | | ΟΝΟ ΡΙΠΟ | AGND and EP | -0.3 | 0.3 | V | Table 9. Absolute maximum ratings (continued) # 3.3 ESD protection Table 10. ESD protection | Parameter | Condition | Min | Max | Unit | |--------------------------|---------------------|------|-----|------| | Logic and power pins | Human body model | -2 | 2 | kV | | FET driver pins | Human body model | -2 | 2 | kV | | All pins but corner pins | Charge device model | -250 | 250 | V | | Corner pins | Charge device model | -750 | 750 | V | HBM according to MIL 883C, Method 3015.7 or EIA/JESD22-A114_A. HBM with all unzapped pins grounded. DS11800 Rev 5 19/49 In standard battery level application (12 V systems) the I/O pins and Vcc pin can stand a short to battery up to 35 V. A short to 35 V battery on any output pin also forces the Vcc to approximately 35 V. Care must be taken in order to avoid that under such conditions the Vcc pin is strongly pulled down to 5 V (or 3.3 V) with a current exceeding the absolute maximum ratings level. ^{2.} Negative AMR is -0.3 V or -20 mA. # 3.4 Temperature ranges and thermal data Table 11. Temperature ranges and thermal data | Symbol | Parameter | Min | Max | Unit | |------------------------|--|-----|-----|------| | т | Operating junction temperature | -40 | 150 | °C | | T _j | 100 hours over lifetime temperature ⁽¹⁾ | - | 175 | °C | | T _{stg} | Storage temperature | -55 | 150 | °C | | T _{ot} | Thermal shutdown temperature | 175 | 205 | °C | | T _{hys} | Thermal shutdown temperature hysteresis ⁽²⁾ | 10 | - | °C | | R _{th j-amb} | Thermal resistance junction-to-ambient (3) | - | 23 | °C/W | | R _{th j-case} | Thermal resistance junction-to-case | - | 3 | °C/W | ^{1.} Functionality is guaranteed, the specified limits may be exceeded. #### 3.5 Electrical characteristics All voltages referred to ground (SGNDx ground) and currents are assumed to be positive when current flows into the pin. #### **3.5.1** Supply The device is operated in the specified operating range, unless otherwise specified (V_{CC} = 3.20 V to 5.25 V, VB = 4.2 V to 54 V, T_i = -40 °C to 150 °C). Table 12. Supply electrical characteristics | Symbol | Parameter | Test condition | Min | Тур | Max | Unit | |----------------------|---|--|------|-----|------|------| | V _B | Operating supply voltage range | - | 4.2 | - | 54 | V | | VB OV_1 | Overvoltage threshold for double battery applications (L9907) | VB _{OV2} ,VB _{OV1} = 01 | 36 | - | 42 | V | | VB
OV_2 | Overvoltage threshold for single battery application | VB _{OV2} ,VB _{OV1} = 10 | 27.5 | 31 | 34.5 | V | | Td VB | Overvoltage time delay for noise rejection | (guaranteed through scan) | 30 | - | 80 | μs | | VB UV | Undervoltage disable threshold | - | 4.2 | 4.6 | 5 | V | | Td _{UV} | Undervoltage time delay for noise rejection | (guaranteed through scan) | 30 | - | 80 | μs | | I _{VB(dis)} | Supply current | VB= 13V, V _{cc} < 0.5 V, room temperature | - | 1 | 10 | μΑ | ^{2.} Guaranteed by design. ^{3.} IC soldered on 2s2p PCB thermally enhanced. Table 12. Supply electrical characteristics (continued) | Symbol | Parameter | Test condition | Min | Тур | Max | Unit | |--------------------|---|--|------|------|------|------| | I _{VB} | VB supply current | VB= 13V, Vcc= 3.3V, open outputs, fPWM =0 | - | - | 10 | mA | | I _{BST_C} | | VB = 13 V, drivers off, boost off | - | - | 10 | mA | | V _{CC} | Operating supply voltage range | - | 3.20 | - | 5.25 | V | | loc | Icc Vcc DC supply current | VB= 13 V, Vcc = 3.3 V | - | - | 20 | mA | | icc | | VB= 13 V, Vcc = 5 V | - | - | 25 | mA | | Vcc UV | Vcc undervoltage monitor | - | 2.9 | 3.05 | 3.2 | V | | VCC OV
3.3V | Vcc overvoltage monitor for 3.3V supply system | VCC _{OV2} ,VCC _{OV1} =10,
Default on 3.3V | 3.4 | 3.55 | 3.7 | V | | VCC OV
5V | Vcc overvoltage monitor for 5V supply system | VCC _{OV2} ,VCC _{OV1} =01 | 5.45 | 5.75 | 6.0 | V | | VCC OV
test | Vcc overvoltage monitor for safety integrity check | VOV _{TST} = 1 (CMD2, B6) | 2.6 | 2.8 | 3.0 | V | | Td Vcc | Overvoltage and undervoltage time delay for noise rejection | (guaranteed through scan) | 30 | - | 80 | μs | | VDD UV | VDD undervoltage monitor and reset | - | 2.5 | 2.7 | 2.8 | V | | AGNDloss | AGND loss threshold | Ramp AGND starting from 0 V | 150 | 220 | 290 | mV | ### 3.5.2 Voltage regulator VDD The device is operated in the specified operating range, unless otherwise specified (V $_{CC}$ = 3.20 V to 5.25 V, VB = 4.2 V to 54 V, T $_{i}$ = -40 °C to 150 °C). Table 13. Voltage regulator VDD | Symbol | Parameter | Test condition | Min | Тур | Max | Unit | |-------------------|----------------------------|--|-----|-----|-----|------| | VDD | - | No external current load | 3.0 | 3.3 | 3.6 | V | | T _{wuae} | Wake up time (design info) | Time from V_{CC} to steady state to V_{dd} power on reset release (with 100 nF on V_{dd}) | - | - | 100 | μs | 47/ DS11800 Rev 5 21/49 # 3.5.3 Logic input pins (PWM_H1 to 3, PWM_L1 to 3, SCK, CS, SDI, BST_DIS, EN1 and EN2) The device is operated in the specified operating range, unless otherwise specified (V_{CC} = 3.20 V to 5.25 V, VB = 4.2 V to 54 V, T_i = -40 °C to 150 °C). Table 14. Logic I/O pins electrical characteristics | Symbol | Parameter | Test condition | Min | Max | Unit | |------------------------------------|---|---|------|-----|------| | Vin(HL) | High level input voltage | - | 1.9 | - | V | | Vin(LL) | Low level input voltage | - | - | 0.8 | V | | Vhin | Input voltage hysteresis | - | 0.1 | - | V | | Twuae | Wake up time (design info) | Time from V _{CC} to
steady state to V _{dd}
power on reset
release (with 100 nF
on V _{dd}) | - | 100 | μs | | I _{in(PD)} ⁽¹⁾ | PWM_H1 to 3, PWM_L1 to 3, SDI, BST_DIS, EN1 and EN2 | V _{in} = 0.8 V | 15 | 45 | μΑ | | I _{in(PU)} ⁽¹⁾ | Input pins pull up current at CS pin | V _{in} = 2 V | -45 | -15 | μA | | td_EN | EN1, EN2 falling edge deglitch time | Delay time from
EN=(EN1 AND EN2)
falling edge to gate
drive switch off
(guaranteed through
scan) | 1.36 | 3 | μs | ^{1.} No PU/PD current at SCK pin. #### 3.5.4 Logic output pins (FS_FLAG, SDO, TO3) The device is operated in the specified operating range, unless otherwise specified (V_{CC} = 3.20 V to 5.25 V, VB = 4.2 V to 54 V, T_i = -40 °C to 150 °C). Table 15. Logic output pins (FS_FLAG, SDO, TO3) electrical characteristics | Symbol | Parameter | Test condition | Min | Max | Unit | |----------|---------------------------|----------------------------|-----------|-----|------| | Vout(HL) | High level output voltage | I _{sink} = -1 mA | Vcc-300mV | - | mV | | Vout(LL) | Low level output voltage | I _{source} = 1 mA | - | 300 | mV | #### 3.5.5 Boost converter The device is operated in the specified operating range, unless otherwise specified (V_{CC} = 3.20 V to 5.25 V, VB = 4.2 V to 54 V, T_i = -40 °C to 150 °C). Table 16. Boost converter electrical characteristics | Symbol | Parameter | Test condition | Min | Тур | Max | Unit | |------------------|--------------------------------|--------------------------|---------|--------|--------|------| | V _{bst} | Boost regulator output voltage | I _{bst} = 50 mA | VDH+8.5 | VDH+10 | VDH+15 | V | | I _{bst} | Boost regulator output current | V _B = 14 V | - | 50 | 70 | mA | 18 mΑ **Symbol Parameter Test condition** Min Тур Max Unit Boost switch current limit 250 500 mΑ I_{LIM} 47 Lbst Boost regulator inductance μH Cbst Boost regulator capacitance 2 μF Boost regulator switching frequency 280 350 420 kHz f_{SW BST} BST_HOV V Boost over voltage threshold 63 73 BST HOV Boost over voltage hysteresis 8 10 V HYST Boost regulator start-up time (design info) $C_{bst} = 2 \mu F$ 1 T_{bst} ms V(SLS3) V(SLS3) **VCAP** ٧ Supply voltage for the LS gate driver $I_{CAP} = 25 \text{ mA}$ +8.5 +15 Output current for the voltage regulator $V_{B} = 14 \text{ V}$ -65 -20 mΑ I_{CAP} for the LS Bootstrap capacitor voltage V(SHSx) = 14 V, 8.5 15 ٧ V_{CBSX} Table 16. Boost converter electrical characteristics (continued) #### 3.5.6 MOSFET drivers **CBSx** I_{CBSX} V(CBSx)-V(SHSx) Bootstrap capacitor charge current at pin The device is operated in the specified operating range, unless otherwise specified $(V_{CC} = 3.20 \text{ V to } 5.25 \text{ V}, \text{ VB} = 4.2 \text{ V to } 54 \text{ V}, \text{ T}_i = -40 ^{\circ}\text{C} \text{ to } 150 ^{\circ}\text{C}).$ ICBSX = -6 mA 6 **Symbol Parameter Test condition** Max Unit Min Тур 100 250 $V_{GS}(L)$ Low level output voltage VGx-VSx @ I= 50 mA mV V $V_{GS}(H)$ High level output voltage VGx-VSx @ I= -5 mA 7.5 15 750 IG 1,IG 0 = 11 100% Imax 450 600 mΑ Turn-on/off current with GCR = 1 IG 1,IG 0 = 10 75% Imax 337 450 563 mΑ I_{Gxx_1} kO (1) $IG_1,IG_0 = 0150\%$ Imax 225 300 375 mΑ IG 1,IG 0 = 00 25% Imax 112 150 188 mΑ 75 IG_1,IG_0 = 11 100% Imax 100 125 mΑ IG_1,IG_0 = 10 75% Imax 56 75 94 mΑ Turn-on/off current with GCR = 6 I_{Gxx 2} IG 1,IG 0 = 01 50% Imax 37 50 63 mΑ IG 1,IG 0 = 00 25% Imax 32 18 25 mΑ I_{SLSx}⁽²⁾ Low-side driver SLS output current GCR = 1 k Ω , PWM signals low 3.3 mΑ --I_{SHSx}⁽²⁾ GCR = 1 k Ω , PWM signals low High-side driver SHS output current 3.3 mΑ GCR STG Gate driver over current protection 880 Ω 22 kΩ GCR_OL Gate driver under current protection GCR = $1 k\Omega$, IG_1 , IG_0 =11, I = **RGxxON** ON-resistance of SINK stage 5 Ω 25 mA injected into Gate pin Table 17. MOSFET drivers electrical characteristics **Table 17. MOSFET drivers electrical characteristics (continued)** | Symbol | Parameter | Test condition | Min | Тур | Max | Unit | |-----------------|--|-------------------------|------|-----|------|------| | RGxx | Gate source passive discharge resistance | - | 100 | 200 | 500 | kΩ | | tGHxlh | Propagation delay time low to high | VB = 13.5 V, Cg = 22 nF | - | - | 300 | ns | | tGLxlh | Propagation delay time low to high | VB = 13.5 V, Cg = 22 nF | - | - | 300 | ns | | tGHxhl | Propagation delay time high to low | VB = 13.5 V, Cg = 22 nF | - | - | 300 | ns | | tGLxhl | Propagation delay time high to low | VB = 13.5 V, Cg = 22 nF | - | - | 300 | ns | | fPWM | PWM Switching frequency | - | - | - | 20 | kHz | | Q | Drivable gate charge ⁽³⁾ | VGS = 10 V, 20 kHz | 300 | - | 900 | nC | | | | DT1, DT0 = 00 (default) | 100 | - | 200 | ns | | + | Dead time (adjustable in 4 steps via | DT1, DT0 = 01 | 300 | - | 500 | ns | | t _{DT} | 2-bit SPI Register) | DT1, DT0 = 10 | 700 | - | 1000 | ns | | | | DT1, DT0 = 11 | 1000 | - | 1500 | ns | Only for turn-on currents with GCR = 1 kW: parameter is tested at hot temperature only; other temperatures are granted by design. Table 18. External MOSFET overcurrent drop voltage sense | Symbol | Parameter | Test condition ⁽¹⁾ | Min | Тур | Max | Unit | |----------|---|----------------------------------|------|------|-------------------|------| | | Short circuit detection threshold low- | SC_LS1, SC_LS0 = 00 (default) | 0.4 | 0.5 | 0.6 | V | | Vsc_ls | side (adjustable in 4 steps via 2 bits | SC_LS1, SC_LS0 = 01 | 0.7 | 0.8 | 0.9 | V | | | SPI register) | SC_LS1, SC_LS0 = 10 | 0.9 | 1 | 1.1 | V | | | | SC_LS1, SC_LS0 = 11 | 1.17 | 1.3 | 1.43 | V | | | Short Circuit detection threshold high | SC_HS1, SC_HS0 = 00 (default) | 0.4 | 0.5 | 0.6 | V | | Vsc_hs | Short Circuit detection threshold high-
side (adjustable in 4 steps via 2 bits | SC_HS1, SC_HS0 = 01 | 0.7 | 0.8 | 0.9 | V | | | SPI register) | SC_HS1, SC_HS0 = 10 | 0.9 | 1 | 1.1 | V | | | | SC_HS1, SC_HS0 = 11 | 1.17 | 1.3 | 1.43 | V | | TSCoff | Short Circuit shut down delay (the circuit shuts down by short circuit | Masking time at switch ON | 9 | 12 | 14 ⁽²⁾ | μs | | TSCOII | longer than TSCoff; guaranteed through scan) | Filter Time in normal operation | 1 | ı | 2 | μs | | VSC TEST | Test functions for short circuit detection level (SCDL) ⁽³⁾ | VSC _{TST} =1 (CMD2, B7) | -0.7 | -0.5 | -0.3 | V | ^{1.} The accuracy of SC detection thresholds for HS and LS is guaranteed for VB ≥ 6 V. In
case VB < 6 V the accuracy for each configuration, both for HS and LS, is 22.5%. ^{2.} $I = 400 \mu A + 2.872/GCR$. ^{3.} Design information. The IC does not provide any active internal Gate Charge limit. The PWM ON time must be longer than this Short Circuit shutdown delay, else the short circuit condition cannot be detected. Security Level test function. If this function is selected via SPI, the short circuit detection threshold is set to the specified negative level. In this way a short circuit is detected even if the current in the external MOSFET is zero, that is Vds=0. Table 19. Gate voltage monitoring | Symbol | Parameter | Test condition | Min | Тур | Max | Unit | |----------------------|---|---------------------------|-----|-----|-----|------| | V _{G UV HS} | Undervoltage threshold for HS gate driver. It monitors the voltage difference between boost output pin BST_C and HS FET drain connection VDH | V(BST_C)-V(VDH) | 4.6 | - | 6.8 | ٧ | | V _{G UV LS} | Undervoltage threshold for
LS gate driver. It monitors the
voltage difference between
low-side gate driver supply
pin VCAP and LS FET 3
source connection SLS3 | V(VCAP)-V(SLS3) | 7.4 | 8.2 | 9.0 | ٧ | | t _{UV VG} | Undervoltage filter time | (guaranteed through scan) | 3.5 | 5 | 7 | μs | ### 3.5.7 Current sense amplifier The device is operated in the specified operating range, unless otherwise specified (V_{CC} = 3.20 V to 5.25 V, VB = 4.2 V to 54 V, T_i = -40 °C to 150 °C). Note: Table 20 is referred to bidirectional current measurement (shunt resistors on the phase of the motor). Table 20. Phase current sense amplifier (SPI select: Offx=1, where x=1,2) | Symbol | Parameter | Test condition | Min | Тур | Max | Unit | |---------------------------------|--|--|---|---------------------|---|-------| | Vin_off | Differential input offset voltage | - | -5 | - | 5 | mV | | Vio_step | Calibration step of
Differential input offset
voltage ⁽¹⁾ | - | 0.5 | 1 | 1.5 | mV | | VICM | Common mode input | Operating | -2 | - | VB+4 | ٧ | | VICIVI | voltage range | Transient (t < 1 μs) | -7 | - | VB+20 | V | | V _{obias} | Output bias voltage | V(Isx+) -V(Isx-) = 0 | 0.5*V _{cc} -
0.5 ⁽²⁾ | 0.5*V _{cc} | 0.5*V _{cc} +
0.5 ⁽³⁾ | V | | IOD | Input offset drift (3) | Vcc = 5V | - | 7 | 14 | μV/°C | | CMRR | Input common mode rejection ratio | - | 70 | 86 | - | dB | | I _{SX+} ⁽⁴⁾ | Positive input pin current | Gain = 10 to 100,
V _{CC} = 5 V | -200 | - | - | μΑ | | I _{SX-} ⁽⁴⁾ | Negative input pin current | Gain = 10 to 100,
V _{CC} = 5 V | -1 | - | - | mA | | BST_C PSRR | Rejection ratio for Boost output power supply to amplifier Input | V(BST_C) / V(IBx)
f=350KHz | 40 ⁽⁵⁾ | - | - | dB | DS11800 Rev 5 25/49 **Symbol Test condition** Min Unit **Parameter** Тур Max Gx1,Gx0 = 11 (x = 1,2)-2% +2% 100 Gx1,Gx0 = 10 (x = 1,2)-2% 50 +2% Gain Gx1,Gx0 = 01 (x = 1,2)-2% 30 +2% Gain Gx1,Gx0 = 00 (x = 1,2)-2% 10 +2% (default) ppm/ Gain temperature drift (3) 100 °C V(Isx+) - V(Isx-) > 500mVV_{cc} -0.12V $I_{out} = 100 \mu A, V_{CC} = 3.3 V$ IBx output voltage high $\rm V_{oh}$ V(Isx+) - V(Isx-) > 500mVV_{cc} - $I_{out} = 100 \mu A, V_{CC} = 5V$ 0.15V V(Isx+) - V(Isx-) <100 V_{ol} IBx output voltage low level mV -500mV, I_{out} = 100 μA RL = 1 kOhm, CL = 20 pF 2 **SRCSO** CSO slew rate 0.5 V/µs Gain = 10,30, 50 and 100, Output settling time from 10% to 90% 5.0 μs t_{SETTLING} $R_1 = 1 \text{ kOhm}, C_1 = 20 \text{ pF}$ Table 20. Phase current sense amplifier (SPI select: Offx=1, where x=1,2) (continued) - 1. 30 calibration steps (15 for positive and 15 for negative direction) are available through SPI command for offset calibration. - Worst case, if gain = 100 is selected. - 3. Guaranteed by design. $$4. \quad I_{\text{SxHI}} = - \left(\frac{0.8 \cdot V_{\text{CC}}}{2000 \cdot \text{Gnom}} + I(\text{trim}, \text{HI}) \right) \cdot \frac{\left[2 + (3 \cdot \text{Phase})\right]}{8} + 10 \, \mu \text{A}$$ $$I_{\text{SxLO}} = - \!\! \left(\frac{0.8 \cdot V_{\text{CC}}}{2000 \cdot \text{Gnom}} + I(\text{trim}, \text{LO}) \right) \cdot \frac{2}{8} + 10 \mu \text{A} + I(\text{rail})$$ Where: I_{SHI} is current flowing out from ISxHI pin I_{SXLO} is current flowing out from ISxLO pin Vcc = reference supply [5 V or 3.3 V] Gnom = nominal programmed gain [10, 30, 50, 100] I(trim,HI/LO) = offset trimming current (w.c. $\pm 8~\mu A$ see expression below) Phase = programmed phase configuration [1 if selected, otherwise 0] I(rail) = current from auxiliary rail (used for floating OpAmp) [typ ~145 $\mu A\pm 35\%$ T+Models] $$I(trim, HI) = \pm \frac{Vbg}{15} \cdot \frac{\left[trimming \ bit \frac{weight}{2}\right]}{10300 \cdot [5 + (3 \cdot Ground)]} \cdot \frac{[2 + (3 \cdot Phase)]}{8}$$ $$I(trim, LO) = \pm \frac{Vbg}{15} \cdot \frac{\left[trimming \ bit \frac{weight}{2}\right]}{10300 \cdot [5 + (3 \cdot Ground)]} \cdot \frac{2}{8}$$ #### Where: Vivig = band gap reference (1.2371 V nominal) Ground = programmed ground configuration [1 if selected, otherwise 0] Trimming bit weight= how many mV offset trimming are programmed. The ± depends on offset trim direction (+: bit7=1, -: bit7=0) A 350 kHz, 100 mVpp, ripple at the boost regulator output, generates 1 mVpp noise at the amplifier input. It represents a 2 App current noise on a $0.5 \text{ m}\Omega$ current sense resistor. Note: Table 21 is referred to current sense amplifier configuration for unidirectional current measurement (shunt resistors to ground). SPI select: Offx=0 (Power up default), where x=1,2 in CMD0 command frame. Table 21. Ground current sense amplifier | Symbol | Parameter | Test condition | Min | Тур | Max | Unit | |---------------------------------|--|--|---|---------------------|---|-----------------| | Vin_off | Differential input offset voltage | - | -5 | - | 5 | mV | | Vio_step | Calibration step of differential input offset voltage ⁽¹⁾ | - | - | 1 | - | mV | | VICM | Common Mode Input | Operating | -2 | - | +2 | V | | VIOW | Voltage Range | Transient (t<1μs) | -7 | - | +7 | V | | V _{obias} | Output bias voltage | V(lsx+) - V(lsx-) = 0 | 0.2*V _{cc} -
0.5 ⁽²⁾ | 0.2*V _{cc} | 0.2*V _{cc} +
0.5 ⁽³⁾ | V | | IOD | Input offset drift ⁽³⁾ | Vcc = 5V | - | 7 | 14 | μV/°C | | CMRR | Input common mode rejection ratio | - | 70 | 86 | - | dB | | I _{SX+} ⁽⁴⁾ | Positive input pin current | Gain = 10 to 100,
V _{CC} = 5 V | -200 | - | - | μA | | I _{SX-} ⁽⁴⁾ | Negative input pin current | Gain = 10 to 100,
V _{CC} = 5 V | -1 | - | - | mA | | BST_C PSRR | Rejection ratio for Boost output power supply to Amplifier Input | V(BST_C) / V(IBx)
f=350KHz | 40 ⁽⁵⁾ | - | - | dB | | | | Gx1,Gx0 = 11 (x=1,2) | -2% | 100 | +2% | - | | | | Gx1,Gx0 = 10 (x=1,2) | -2% | 50 | +2% | - | | | Gain | Gx1,Gx0 = 01 (x=1,2) | -2% | 30 | +2% | - | | Gain | | Gx1,Gx0 = 00 (x=1,2)
(default) | -2% | 10 | +2% | - | | | Gain temperature drift ⁽³⁾ | - | - | - | 100 | ppm/
°C | | V | IBx output voltage high | V(Isx+) - V(Isx-) > 500 mV,
$I_{out} = 100 \mu A, V_{CC} = 3.3 \text{ V}$ | V _{cc} - 0.12V | - | - | M | | V _{oh} | level | V(lsx+) -V(lsx-) > 500 mV,
l _{out} = 100 μA, V _{CC} = 5 V | V _{cc} -
0.15V | - | - | V _{oh} | | V _{ol} | IBx output voltage low level | V(lsx+) -V(lsx-) < -500 mV,
l _{out} = 100 μA | - | - | 100 | mV | | SRCSO | CSO slew rate | $R_L = 1 \text{ k}\Omega, C_L = 20 \text{ pF}$ | 1 | 2 | - | V/µs | | t _{SETTLING} | Output settling time | Gain = 10,30, 50 and 100, from 10% to 90% $R_L = 1 k\Omega$, $C_L = 20 pF$ | - | - | 5 | μs | ^{1. 30} calibration steps (15 for positive and 15 for negative direction) are available through SPI command for offset calibration. ^{2.} Worst case, if gain=100 is selected. DS11800 Rev 5 27/49 3. Guaranteed by design. 4. $$I_{SxHI} = -\left(\frac{0.8 \cdot V_{CC}}{2000 \cdot Gnom} + I(trim, HI)\right) \cdot \frac{\left[2 + (3 \cdot Phase)\right]}{8} + 10 \,\mu\text{A}$$ $$I_{SxLO} = - \!\! \left(\frac{0.8 \cdot V_{CC}}{2000 \cdot Gnom} + I(trim, LO) \right) \cdot \frac{2}{8} + 10 \mu A + I(rail)$$ Where: Where: I_{SxHI} is current flowing out from ISxHI pin I_{SxLO} is current flowing out from ISxLO pin V_{CC} = reference supply [5 V or 3.3 V] Gnom = nominal programmed gain [10, 30, 50, 100] I(trim,HI/LO) = offset trimming current (w.c. \pm 8 μ A see expression below) Phase = programmed phase configuration [1 if selected, otherwise 0] I(rail) = current from auxiliary rail (used for floating OpAmp) [typ ~145 μ A \pm 35% T+Models] $$I(trim,HI) = \pm \frac{Vbg}{15} \cdot \frac{\left[trimming\ bit \frac{weight}{2}\right]}{10300 \cdot [5 + (3 \cdot Ground)]} \cdot \frac{[2 + (3 \cdot Phase)]}{8}$$ $$I(trim, LO) = \pm \frac{Vbg}{15} \cdot \frac{\left[trimming \ bit \frac{weight}{2}\right]}{10300 \cdot [5 + (3 \cdot Ground)]} \cdot \frac{2}{8}$$ Where: Vbg = band gap reference (1.2371 V nominal) Ground = programmed ground configuration [1 if selected, otherwise 0] Trimming bit weight= how many mV offset trimming are programmed. The ± depends on offset trim direction (+: bit7=1, -: bit7=0) A 350 kHz, 100 mVpp, ripple at the boost regulator output, generates 1 mVpp noise at the amplifier input. It represents a 2 App current noise on a 0.5 m Ω current sense resistor. L9907 SPI operation # 4 SPI operation The L9907 SPI is a standard 16-bit, four wire interface. By means of the SPI most device parameters can be internally
set and the fault diagnostic can be read. The timing diagram for the SPI operation is reported in *Figure 7* below. The IC reads the input data at SDI pin on the falling edge of the SPI clock (SCK). The IC outputs the SPI data at SDO pin on the rising edge of the SPI clock (SCK). Figure 7. Timing diagram for the SPI operation. The SPI protocol integrates an internal check to add robustness to the communication: a writing attempt of a not allowed register, an incorrect parity frame or a wrong number of bits (different than 16) results in a "SPI error bit", that is available at SDO immediately after asserting CS the next time and before starting the SCK toggling. If the current SPI cycle is affected by a communication error, the current SDI command is rejected and a SPI error message (0xB001) is presented as SDO response at the following SPI cycle. | # | Parameter | Condition | Min. | Тур. | Max. | Unit | |---|--|--------------------------------|----------|------|------|------| | 1 | SCK Frequency (f _{SCK}) | 1 | - | - | 8 | MHz | | 2 | SCK High/low time (t _{SCK-high} , t- _{SCK-low}) | 1a, 1b | 60 | - | - | ns | | 3 | Enable lead time (t _{lead}) | 2 | 740 | - | - | ns | | 4 | Enable lag time (t _{lag}) | 3 | 200 | - | - | ns | | 5 | Data valid time (t _{valid}) | 4
Cload<60pF
@ fSCK=8MHz | - | - | 50 | ns | | 6 | Data set up time (t _{SI-set}) Data hold time (t _{SI-hold}) | 5
6 | 30
30 | - | - | ns | | 7 | Disable time (t _{disable}) | 7 | | | 120 | ns | | 8 | SCK, SI rise/fall time (t _{rise} , t _{fall}) | - | _ | 5 | _ | ns | Table 22. SPI timing specifications 47/ DS11800 Rev 5 29/49 SPI operation L9907 # **Parameter** Condition Min. Тур. Max. Unit Cload < 60 pF 9 SDO rise/fall time ($t_{SDO\text{-rise}}$, $t_{SDO\text{-fall}}$) 35 ns @ fSCK =8 MHz CS 8 50 ns t_{CS-select} 10 9 3.58 us t_{CS-access} 10 640 ns t_{CS-negated} 11 SDO Access Time (t_a) 11 80 ns Table 22. SPI timing specifications (continued) #### 4.1 SPI bits mapping The L9907 provides the instructions to decide which kind of strategy to adopt for faults managing: the strategy can be selected by toggling the enable fault flags available in CMD4 and CMD1 registers. When a fault has been validated, the corresponding diagnostic flag is set and FS_FLAG is asserted low. The device can perform shut-off or take no action depending on the value of the enable fault flag. In the case where shut-off for a fault is disabled, micro becomes fully responsible for the shut-off management for the disabled fault. As default value, all the enable fault flags are asserted high, so the device will take the actions described in the section related to each of them. AND (EN1, B0 **B15 B14 B13 B12 B11 B10 B9 B8** B2 **B7 B6 B5 B4 B**3 **B1** Item EN2) CMD0 0 0 0 Par WE DT1 DT0 IG_1 IG_0 G21 G20 Off2 G11 G10 Off1 EN_THSD VB LS0 HS0 LS VBOV2 VB0V1 CMD1 0 0 WE 0 Par 1 EN SC SC SC Ш SC EN(1) <u>=</u> SHT_PH⁽¹⁾ ShortPH⁽¹⁾ /SCTST VOVTST Ē <u>S</u> CMD2 WE 0 1 0 Par GCR BST BSTov⁽¹⁾ TRIM12 TRIM22 TRIM20 TRIM11 TRIM23 TRIM13 TRIM10 TRIM21 TRIM24 TRIM14 CMD3 WE 0 1 1 Par DIS VSCLS2 VSCLS3 H, VSCHS2 **VSCHS3** EN UV HS EN_VSCHS1 VSCLS1 EN Vccov REGOFF 3 CMD4 0 0 WE 0 1 Par A N Z Z Ш Π N Ш DIAG 1 1 0 Par -DIAG2 1 1 Par Table 23. SDI bit map definition ^{1.} Writable only if AND(EN1,EN2) low else command ignored. L9907 SPI operation Table 24. SDI frame structure | Bit position | Description | |--------------|---| | B(15:13) | SDI command selection bits, used to select the SPI operation to be implemented | | B11 (Par) | odd parity bit | | B10 (WE) | Write Enable bit. A SPI cycle with WE=1 transfers the SDI data to the addressed CMDx register. A SPI cycle with WE=0 transfers the content of the addressed CMDx register to the SDO data of the following SPI cycle. | | B(9:0) | the SDI setting bits to be internally stored for device operation in case of writing SPI cycle | #### 1. CMD0 register - Driver settings: B(15:13) = 000 a) DT1 and DT0 (B9,B8) are used to select dead time (tDT) parameter: ('00' default condition at Power-On Reset) Table 25. Dead time parameter | Dead time | B9 = DT1 | B8 = DT0 | |--------------|----------|----------| | 100-200ns | 0 | 0 | | 300-500 ns | 0 | 1 | | 700-1000 ns | 1 | 0 | | 1000-1500 ns | 1 | 1 | b) IG_1 and IG_0 (B7,B6) are used to select turn on/off current value: ('00' default condition at Power-On Reset) Table 26. Turn on/off current | Percentage | B7 = IG_1 | B6 = IG_0 | |------------|-----------|-----------| | 25% | 0 | 0 | | 50% | 0 | 1 | | 75% | 1 | 0 | | 100% | 1 | 1 | c) G21 and G20 (B5,B4) are used to select current sense amplifier 2 gain: ('00' default condition at power on reset) Table 27. Current sense amplifier 2 gain | Gain | B5=
G21 | B4=
G20 | |------|------------|------------| | 10 | 0 | 0 | | 30 | 0 | 1 | | 50 | 1 | 0 | | 100 | 1 | 1 | SPI operation L9907 d) Off2 (B3) is used to select current sense amplifier 2 offset (for ground or phase connection): '0' (default value) means ground, '1' means phase. e) G11 and G10 (B2,B1) are used to select Current sense amplifier 1 Gain:('00' default condition at Power-On Reset) | Table 10: Carront Conce ampiner : gam | | | | | |---------------------------------------|----------|----------|--|--| | Gain | B2 = G11 | B1 = G10 | | | | 10 | 0 | 0 | | | | 30 | 0 | 1 | | | | 50 | 1 | 0 | | | | 100 | 1 | 1 | | | Table 28. Current sense amplifier 1 gain f) Off1 (B0) is used to select current sense amplifier 1 offset (for ground or phase connection): '0' (default value) means ground, '1' means phase. #### 2. CMD1 register - Diagnostic settings: B(15:13) = 001 In order to avoid unsafe change of diagnostic settings, it is not possible to write the CMD1 register during normal Output Gate Drive operation. For this reason at least one Enable signal EN1 or EN2 must be deasserted in order to update the CMD1 register. If EN1 and EN2 are both asserted while a SPI cycle CMD1 with WE=1 is ongoing, then a SPI communication error is generated and the corresponding SPI command is ignored. Since the Enable signals EN1 and EN2 also affect the output gate drives, a deglitch filter is implemented on both of them. This filter is active on either falling edge of EN1 or EN2 signal. In order to avoid unsafe change of fault management settings, as for the CMD1 register, it is not possible to write CMD4 register during normal Output Gate Drive operation. For this reason at least one Enable signal EN1 or EN2 must be deasserted in order to update the register. If EN1 and EN2 are both asserted while a SPI cycle CMD4 or CMD1 with WE=1 is ongoing, then a SPI communication error is generated and the corresponding SPI command is ignored. a) SC_LS1 and SC_LS0 (B7,B6) are used to select short circuit detection threshold for low-side external MOSFET ('00' default condition at power up): | VSC_LS | B7 = SC_LS1 | B6 = SC_LS0 | | | |---------------|-------------|-------------|--|--| | 0.4 – 0.6 V | 0 | 0 | | | | 0.7 – 0.9 V | 0 | 1 | | | | 0.9 – 1.1 V | 1 | 0 | | | | 1.17 – 1.43 V | 1 | 1 | | | Table 29. Short circuit detection threshold for low-side external MOSFET The accuracy in ranges in Table 29 is valid for VB > 6 V. For VB < 6 V the accuracy is 22.5% for each configuration. 32/49 DS11800 Rev 5 Note: L9907 SPI operation b) SC_HS1 and SC_HS0 (B5-B4) are used to select short circuit detection threshold for high-side external MOSFET ('00' default condition at Power Up): Table 30. Short circuit detection threshold for low-side external MOSFET | VSC_HS | B5 = SC_HS1 | B4 = SC_HS0 | |---------------|-------------|-------------| | 0.4 – 0.6 V | 0 | 0 | | 0.7 – 0.9 V | 0 | 1 | | 0.9 – 1.1 V | 1 | 0 | | 1.17 – 1.43 V | 1 | 1 | Note: The accuracy in ranges in Table 30 is valid for VB > 6 V. For VB < 6 V the accuracy is 22.5% for each configuration. VB_{OV2} and VB_{OV1} (B3-B2) are used to select over voltage threshold for single or double battery application Table 31. VB over voltage threshold for single or double battery application | VB _{OV} | B3 = VB _{OV2} | B2 = VB _{OV1} ⁽¹⁾ | | | | |---------------------|------------------------|---------------------------------------|--|--|--| | 27.5 – 34.5 V | 1 | 0 | | | | | 36 – 42 V (Default) | 0 | 1 | | | | | Not Allowed | 0 | 0 | | | | | Not Allowed | 1 | 1 | | | | ^{1.} For power supply configuration in 48 V domain, please refer to AN5124. The power-up default value for this parameter is "01", corresponding to double battery applications. A SPI command attempting to set a not allowed VB_{OV} configuration does not return any SPI error, and the VB_{OV} configuration register retains its previous value. d) EN_THSD, EN_VBOV EN_VBUV (B12,B9,B8) are used to enable/disable effect of Thermal Shut Down, VB overvoltage, VB Under Voltage faults respectively. Default value is '1' for all of them, that means "fault effect is enabled". Table 32. CMD1 SDI SPI bits vs. enabled fault | CMD1 SDI SPI BIT | Name | Description (Default value='1') | |------------------|---------------------|--| | B12 | EN_THSD | It enables Thermal shut down fault effect in case of THSD fault detection | | В9 | EN_VB _{OV} | It enables VB _{OV} fault effect in case of VB _{OV} fault detection | | В8 | EN_VB _{UV} | It enables VB _{UV} fault effect in case of VB _{UV} fault detection | e) VCC_{OV2} and VCC_{OV1} (B1-B0) are used to select the VCC over voltage thresholds: Table 33. VCC over voltage threshold | vcc _{ov} | B1 = VCC _{OV2} | B0 = VCC _{OV1} | | | | |-------------------|-------------------------|-------------------------|--|--|--| | 3.3 V (default) | 1 | 0 | | | | | 5.0 V | 0 | 1 | | | | L9907 SPI operation |
VCC _{OV} | B1 = VCC _{OV2} | B0 = VCC _{OV1} | | | | |-------------------|-------------------------|-------------------------|--|--|--| | Not Allowed | 0 | 0 | | | | | Not Allowed | 1 | 1 | | | | Table 33. VCC over voltage threshold (continued) The Power Up default value for this parameter is "10", corresponding to Vcc = 3.3 V applications. A SPI command attempting to set a not allowed VCC_{OV} configuration does not return any SPI error, and the VCC_{OV} configuration register retains its previous value. #### CMD2 register - Test Mode Selections: B(15:13) = 010 SDI bit B12: GCR_INT_I This bit is accessible for writing only if AND(EN1,EN2)='0': trying to write it without lowering AND(EN1,EN2) will not generate any SPI error but command will be simply ignored for the specific bit. Once written, CMD2 B12 changes the status of the output GCR_INT_I (refer to Section 2.5.1). SDI bit B9: BstDisEN This bit is accessible for writing only if AND(EN1,EN2)='0': trying to write it without lowering AND(EN1,EN2) will not generate any SPI error but command will be simply ignored for the specific bit. Once written, CMD2 B9 determines how to behave in case of activation of BST DIS pin. In case this bit is set and activating BST DIS pin brings the device to switch-off BST CLK till BST DIS pin becomes low (refer to Section 2.4.1). SDI bit B8: SHT_PH This bit is accessible for writing only if AND(EN1,EN2)='0': trying to write it without lowering AND(EN1,EN2) will not generate any SPI error but command will be simply ignored for the specific bit. Once written, CMD2 B8 determines how to behave in case of shoot-through detected. In case this bit is not set (default) a shoot-through in any phase will prevent the actuation of all commands, only the involved phase is inhibited otherwise (refer to Section 2.5.2). - VSC_{TST} (B7) = '1' activates Test Function for short circuit level ('0' is the default d) value). - VOV_{TST} (B6) = '1' activates Test Function for VCC over-voltage level ('0' is the e) default value). - SDI bit B5: Short PH f) Downloaded from Arrow.com This bit is accessible for writing only if AND(EN1,EN2)='0': trying to write it without lowering AND(EN1,EN2) will not generate any SPI error but command will be simply ignored for the specific bit. Once written, CMD2 B5 determines how to behave in case of external FET (both HS and LS) short detected. In case this bit is not set (default) a short in any phase will prevent the actuation of all commands, only the involved phase is inhibited otherwise (refer to Section 2.5.3). L9907 SPI operation #### 4. CMD3 register - Current Sense amplifier offset calibration: B(15:13) = 011 a) SDI bit DIS_BST_{ov} (B12) This bit is accessible for writing only if AND(EN1,EN2) = '0': trying to write it without lowering AND(EN1,EN2) will not generate any SPI error but command will be simply ignored for the specific bit. Once set to '1', CMD3 B12 disables the over voltage protection on the boost regulator BST_C pin. This bit defaults to '0'. b) SDI bits TRIM24 to TRIM10 (B9 to B0) The input offset of both current sense amplifiers can be calibrated separately by properly setting the bits of the CMD3 SPI Register. Such a register can be accessed through SDI bits B(9:0). Bits B(9:5) are dedicated to offset calibration of Current Sense amplifier 2, while bits B(4:0) are dedicated to current sense amplifier 1. The encoded value is a signed representation, and the values "10000" and "00000", both correspond to 0 mV calibration. Table 34. Current sense amplifier input offset calibration | Current sense amplifier 2(1) calibration input offset | B9(B4)=
Trim24
(Trim14) | B8(B3)=
Trim23
(Trim13) | B7(B2)=
Trim22
(Trim12) | B6(B1)=
Trim21
(Trim11) | B5(B0)=
Trim20
(Trim10) | | | | |---|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|--|--|--| | -15 mV | 0 | 1111 | | | | | | | | -14 mV | 0 | | 11 | 10 | | | | | | -13 mV | 0 | | 11 | 01 | | | | | | | 0 | | • | | | | | | | -3 mV | 0 | | 00 | 11 | | | | | | -2 mV | 0 | 0010 | | | | | | | | -1 mV | 0 | | 00 | 01 | | | | | | 0 mV | 0 | | 00 | 00 | | | | | | 0 mV | 1 | 0000 (0000 = Default) | | | | | | | | +1 mV | 1 | 0001 | | | | | | | | +2 mV | 1 | | 00 | 10 | | | | | | +2 mV | 1 | 0011 | | | | | | | | | 1 | | | | | | | | | +13 mV | 1 | 1101 | | | | | | | | +14 mV | 1 | 1110 | | | | | | | | +15 mV | 1 | 1111 | | | | | | | #### 5. CMD4 register - Fault effect enabling B(15:13)=100 In order to avoid unsafe change of fault management settings, as for the CMD1 register, it is not possible to write CMD4 register during normal Output Gate Drive operation. For this reason at least one Enable signal EN1 or EN2 must be deasserted in order to update the register. Since the Enable signals EN1 and EN2 also affect the output gate drives, a deglitch filter is implemented on both of them. This filter is active on the falling edges of EN1 or EN2 signal. DS11800 Rev 5 35/49 L9907 SPI operation > If EN1 and EN2 are both asserted while a SPI cycle CMD4 or CMD1 with WE=1 is ongoing, then a SPI communication error is generated and the corresponding SPI command is ignored. > The effect of any fault (except Shoot Through) can be selectively masked from Micro Controller setting at '0' proper register. FS_FLAG status and SDO report are not affected since fault detection always acts in the same way. Default value for these bits is '1' (fault effect enabled). Once the fault effect is re-enabled with SPI communication the IC reacts to fault as described in the specific paragraph if the fault is still present. | CMD4 SDI SPI BIT | Name | Description (Default value='1') | |------------------|-----------------------|--| | В9 | EN_Vcc _{OV} | It enables VCC _{OV} fault effect in case of VCC _{OV} fault detection | | B8 | EN_Vcc _{UV} | It enables VCC _{UV} fault effect in case of VCC _{UV} fault detection | | B7 | EN_UV_HS | It enables UV_HS fault effect in case of UV_HS fault detection | | B6 | EN_UV_LS | It enables UV_LS fault effect in case of UV_LS fault detection | | B5 | EN_V _{SCHS1} | It enables V _{SCHS1} fault effect in case of V _{SCHS1} fault detection | | B4 | EN_V _{SCHS2} | It enables V _{SCHS2} fault effect in case of V _{SCHS2} fault detection | | В3 | EN_V _{SCHS3} | It enables V _{SCHS3} fault effect in case of V _{SCHS3} fault detection | | B2 | EN_V _{SCLS1} | It enables V _{SCLS1} fault effect in case of V _{SCLS1} fault detection | | B1 | EN_V _{SCLS2} | It enables V _{SCLS2} fault effect in case of V _{SCLS2} fault detection | | В0 | EN_V _{SCLS3} | It enables V _{SCLS3} fault effect in case of V _{SCLS3} fault detection | Table 35. CMD4 SDI SPI bits vs. enabled fault #### 6. CMD4 SPI command register SDI bit B12: REGOFF EN Downloaded from Arrow.com. This bit is accessible for writing only if AND(EN1,EN2)='0': trying to write it without lowering AND(EN1,EN2) will generate SPI error. Once written, CMD4 B12 determines if the REG OFF procedure is active or not (default: not active). #### 7. **REG OFF procedure** (active only if CMD4 B12 is set; refer also to Section 2.3) Lowering EN1 external pin triggers the procedure to switch off regulators that supply the HS and LS FET drivers: filter time, active only on the falling edge of the EN1 signal, is implemented: $8*tosc \le TFILT \le 16*tosc$. Once the procedure has been triggered, the device behaves as follows: REG_OFF = '1', EN_PWM = "000", FS_FLAG = '0', DIAG2 bit B6 set In order to re-engage, the correct procedure is to toggle AND(EN1,EN2) then read the DIAG2 SPI register (to verify that bit B6 is set). Toggling of AND(EN1,EN2) will re-engage the output commands (EN PWM = "111") while subsequent reading of DIAG2 register will re-engage HS/LS drivers supply (REG_OFF = '0') and release FS_FLAG. In order to avoid activating output commands while regulators that supply the HS and LS FET drivers are in power-up phase (this could generate current shape distortion) L9907 SPI operation Table 36. SDO bit map definition microprocessor must guarantee a dis-overlap between reading of DIAG2 register and PWM commands toggling. #### 4.1.1 SDO | Item | B15 | B14 | B13 | B12 | B11 | B10 | В9 | B8 | В7 | В6 | B5 | B4 | В3 | B2 | B1 | В0 | |-------|-----|-----|-----|-----------|------|------|--------------------------|----------|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | CMD0 | 0 | 0 | 0 | 0 | - | - | DT1 | DT0 | IG_1 | IG_0 | G21 | G20 | Off2 | G11 | G10 | Off1 | | CMD1 | 0 | 0 | 1 | EN_THSD | - | - | EN_VBOV | EN_VBUV | SC_LS1 | sc_Ls0 | SC_HS1 | SC_HS0 | VBOV2 | VBOV1 | VccOV2 | VccOV1 | | CMD2 | 0 | 1 | 0 | GCR_INT_I | - | - | BST_DIS_EN | SHT_PH | VSCTST | VOVTST | ShortPH | - | Undefined | Undefined | Undefined | Undefined | | CMD3 | 0 | 1 | 1 | DIS_BSTov | - | - | TRIM24 | TRIM23 | TRIM22 | TRIM21 | TRIM20 | TRIM14 | TRIM13 | TRIM12 | TRIM11 | TRIM10 | | CMD4 | 1 | 0 | 0 | REGOFF_EN | - | - | EN_VccOV | EN_VccUV | EN_UV_HS | EN_UV_LS | EN_VSCHS1 | EN_VSCHS2 | EN_VSCHS3 | EN_VSCLS1 | EN_VSCLS2 | EN_VSCLS3 | | DIAG | 1 | 1 | 0 | THSD | VBOV | VBUV | VccOV | VccUV | SH_VU | NV_LS | VSCHS1 | VSCHS2 | VSCHS3 | VSCLS1 | VSCLS2 | VSCLS3 | | DIAG2 | 1 | 1 | 1 | - | - | - | BSTDIS_RB ⁽¹⁾ | EN1_RB | AND(EN1_EN2)_RB | REGOFF_RB | BST_C_OV | GCR_OL | GCR_STG | SHT3 | SHT2 | SHT1 | Not cleared after read. #### SDO CMD1 to CMD4 registers - Response to SDI commands: B(15:13)=000 till 100 SDO responds in the current SPI cycle with the content of the command register CMDn (n=1 to 4) that is being addressed in the previous SPI cycle. In such a way the controller may verify the command data being stored in the proper register (WE=1 in the previous SPI cycle), or simply verify the correct IC data retention
of initially programmed commands (WE=0). #### SDO DIAG register - Diagnostic read cycle: B(15:13) = 110 2. During its operation the IC detects diagnostic data that is made available at SDO SPI output pin. Such diagnostic data is mainly related to output gate drivers, in order to check for example under voltage condition on high-side or low-side (UV HS and UV LS) together with over current information due to a short circuit fault on each external high and low-side FET (VSCHS1-2-3 and VSCLS1-2-3). Additionally the device diagnostic allows also to check Thermal Shutdown Fault (THSD), under and over voltage condition on VB line (VBUV and VBOV) and VCC line (VccOV, VccUV). DS11800 Rev 5 37/49 SPI operation L9907 Effects described in the following sections take into account that the corresponding Fault Enable bit is set to '1'. a) TH SD (B12). Thermal shutdown. Once Thermal shutdown threshold temperature is reached, all the FET drivers are disabled and a cumulative fault information is available at FS_FLAG pin and through SPI reading cycle, together with FET status (enable/disable). After cooling down the FET drivers are automatically re-enabled once the temperature becomes lower than (Tot-Thys: see *Table 11*) and the information about FET status (enable/disable) is available at SDO pin through an SPI reading cycle. After cooling down the SPI diagnostic bit remains set, and the pin FS_FLAG remains asserted low. A SPI diagnostic read cycle clears the THSD bit and deactivates high the FS_FLAG pin. The filter time applied to this fault works on both edges of the input signal. b) VB_OV (B11) and VB_UV (B10). VB over-voltage and under-voltage When the device is active and an under or over-voltage condition on VB line is present for a time longer than Td_VB, the fault is detected and internally latched. Upon detection of under or over-voltage of VB, the FET drivers and the BOOST regulator are disabled, the proper SPI bit is set and the FS_FLAG is asserted low. After removal of the fault condition (VB returns inside its normal range), the BOOST is automatically re-enabled, the FET drivers instead are restarted by cycling EN signal (internal AND of EN1 and EN2 pins) from high to low to high. A SPI diagnostic read cycle clears the SPI diagnostic flag releases the FS_FLAG pin to high. The filter time applied to this fault works on both edges of the input signal. c) Vcc_OV (B9) and Vcc_UV (B8). VCC over-voltage and under-voltage When an over-voltage condition appears on the VCC line for a time longer than Td_Vcc, the fault is detected and internally latched, the device is then disabled. In case of detected under or over-voltage of VCC, the FET drivers and the BOOST regulator are disabled, the proper SPI bit is set and the FS_FLAG is asserted low. After removal of the fault condition (Vcc returns inside its normal range), the BOOST is automatically re-enabled, the FET drivers are restarted by cycling EN signal (internal AND of EN1 and EN2 pins) from high to low to high. A SPI diagnostic read cycle clears the SPI diagnostic flag and releases the FS_FLAG pin to high. The filter time applied to this fault works on both edges of the input signal. d) UV_HS (B7). High-side FET drivers supply under-voltage The voltage difference between boost output pin and high-side Drain connection is monitored and, if it falls down below VG_UV_HS threshold for a time longer than tUV_UG, a high-side under-voltage fault is detected and internally latched. All the FET drivers are disabled and fault information is available at FS_FLAG pin and at SDO pin through an SPI reading cycle. The fault flag for the high-side FET drivers supply under-voltage is related to a BOOST regulator under - voltage. In case of detected fault, the FET drivers are disabled, the proper SPI bit is set and the FS_FLAG is asserted low. After removal of the fault condition, the FET L9907 SPI operation drivers are restarted by cycling EN signal (internal AND of EN1 and EN2 pins) from high to low to high. A SPI diagnostic read cycle clears the SPI diagnostic flag and releases the FS_FLAG pin to high. e) UV LS (B6). Low-side FET drivers supply under-voltage The voltage difference between the low-side gate driver supply pin VCAP and each of the low-side FET sources are monitored. In case VCAP is lower than VG_UV_LS threshold for a time longer than tUV_UG, then a low-side under-voltage fault is detected and internally latched. The low-side FET drivers supply under-voltage is active if the fault condition is present at least on one of the three channels. In case of detected fault, the FET drivers are disabled, the proper SPI bit is set and the FS_FLAG is asserted low. After removal of the fault condition, the FET drivers are restarted by cycling EN signal (internal AND of EN1 and EN2 pins) from high to low to high. A SPI diagnostic read cycle clears the SPI diagnostic flag and releases the FS_FLAG pin to high. - f) VSC_HS1 to VSC_HS3 (B5 to B3). High-side external MOSFET over-current The voltage difference between the high-side external power drain (VDH) and the source (SHS1-2-3) is monitored and, if it exceeds VSC_HS threshold for a time longer than TSCoff, then a high-side short circuit fault is detected and internally latched. - In case of detected fault, all FET drivers are disabled, the proper SPI bit is set and the FS_FLAG is asserted low. After removal of the fault condition, the FET drivers are restarted by cycling EN signal (internal AND of EN1 and EN2 pins) from high to low to high. A SPI diagnostic read cycle clears the SPI diagnostic flag and releases the FS_FLAG pin to high. - g) VSC_LS1 to VSC_LS3 (B2 to B0). Low-side external MOSFET over-current The voltage difference between low-side external power drain (SHS1-2-3) and source (SLS1-2-3) is monitored and, if it exceeds the VSC_LS threshold for a time longer than TSCoff, then a low-side short circuit fault is detected and internally latched. In case of detected fault, all FET drivers are disabled, the proper SPI bit is set and the FS_FLAG is asserted low. After removal of the fault condition, the FET drivers are restarted by cycling the EN signal (internal AND of EN1 and EN2 pins) from high to low to high. A SPI diagnostic read cycle clears the SPI diagnostic flag and releases the FS_FLAG pin to high. DS11800 Rev 5 39/49 SPI operation L9907 #### SDO DIAG2 register - Diagnostic read cycle: B(15:13) = 111 Below, it is described the meaning of each diagnostic bit in case of DIAG2 active. - a) SDO bit B9: BST_DIS_RB BST_DIS_RB informs about the status of that a BST_DIS pin (not cleared after read). - b) SDO bit B8: EN1_RB EN1 RB informs about the status of EN1 filtered input (not cleared after read). - SDO bit B7: AND(EN1,EN2)_RB AND(EN1,EN2)_RB informs about the status of AND(EN1,EN2) signal (not cleared after read). - d) SDO bit B6: REGOFF_RB - e) REGOFF_RB informs that a REG_OFF procedure has been triggered by EN1 lowering. Reading back this bit will re-engage FS_FLAG and cause REG_OFF='0'. - f) SDO bit B5: BST C OV BST C OV informs about the status of boost over voltage level. Filter time duration: $16*tosc \le TFILT \le 20*tosc$ (active on both directions) effect when validated: BST CLK = 0, BST EN = 1, BST_HYST = 1, FS_FLAG = 0; EN_PWM[3:1] no change BST_CLK self re-engagement when fault disappears FS_FLAG re-engaged after DIAG2 reading and fault cleared g) SDO bit B4: GCR OL re-engagement: GCR_OL informs about the status of the GCR pin open load condition (i.e. too high resistive value). Filter time duration: $16*tosc \le TFILT \le 20*tosc$ (active on both directions) effect when validated: $GCR_INT_I = 1$ GCR_INT_I = 0 self re-engagement when fault disappears FS FLAG re-engaged after DIAG2 reading and fault cleared h) SDO bit B3: GCR STG re-engagement: GCR_STG informs about the status of the GCR pin short to ground condition (i.e. too low resistive value). Filter time duration: $16*tosc \le TFILT \le 20*tosc$ (active on both directions) effect when validated:GCR INT I = 1 re-engagement: GCR_INT_I = 0 self re-engagement when fault disappears FS FLAG re-engaged after DIAG2 reading and fault cleared i) SDO bit B<2:0>: SHT<X> Shoot Through on specific phase has occurred: FS_FLAG remains low till the fault is cleared by a read back of DIAG2 frame. **47**/ L9907 **Application circuit** #### **Application circuit** 5 #### 12 V/24 V system 5.1 **Power Supply** BLDC PWM H1 PWM L1 PWM H2 PWM L2 PWM H3 PWM L3 Motor L9907 EN1 DEN2 DBST_DIS **MCU** GLS2 C SLS2 C GLS3 C SLS3 C VCAP C 16. Figure 8. Application circuit, 12 V/24 V system Application circuit L9907 # 5.2 48 V system Figure 9. Application circuit, 48 V system ### 5.3 Bill of materials The following table summarizes the suggested BOM for both systems shown in the *Figure 8* and *Figure 9*. Recommended Voltage/ **Part Number** Component Min Max Unit Comment Тур 12 V 24 V 48 V system system system 1 100 50 V 100 V C_{IN} μF 100 V C_{RB1} 390 nF 50 V 100 nF 50 V 100 V C_{BST1} μF 1 25 V C_{BST2} --100 nF 50 V C_{BP} Table 37. Application circuit - BOM L9907 Application circuit Table 37. Application circuit - BOM (continued) | 0 | # | ,, | T | Max | Unit | Recommended Voltage/
Part Number | | | | |---------------------|---|---------|-----|---------|------|-------------------------------------|----------------|-------------------------|-----------------------------| | Component | | Min | Тур | | | 12 V
system | 24 V
system | 48 V
system | Comment | | СНВ | 1 | - | 220 | - | μF | 50 V | 10 | 0 V | - | | C _{BSx} | 3 | - | 1 | - | μF | | 25 V | | X = 1, 2, 3 | | C _{LSD} | 1 | - | 1 | - | μF | | 16 V | | Place near
LSx
ground | | C _{ISx+} | 2 | - | 22 | - | nF | | 6.3 V | | X = 1, 2 | | C _{ISx-} | 2 | - | 22 | - | nF | | 6.3 V | | X = 1, 2 | | C _{IBx} | 2 | - | 220 | - | pF | | 6.3 V | | X = 1, 2
optional | | C _{VCC} | 1 | - | 100 | - | nF | | 6.3 V | | Place near | | C _{VDD} | 1 | 100-20% | 100 | 100+20% | nF | | 6.3 V | |
device
pins | | R _{RB1} | 1 | - | 39 | - | kΩ | | - | | - | | R _{RB2} | 1 | - | 1 | - | kΩ | | - | | - | | R _{RB3} | 1 | - | 22 | - | kΩ | - | | - | | | R _{BP1} | 1 | - | 22 | - | kΩ | - | | optional | | | R _{BP2} | 1 | - | 22 | - | kΩ | - | | optional | | | R _{GHS1x} | 3 | - | 22 | - | Ω | - | | X = 1, 2, 3
optional | | | R _{GHS2x} | 3 | - | 100 | - | kΩ | - | | X = 1, 2, 3
optional | | | R _{GLS1x} | 3 | - | 22 | - | Ω | - | | X = 1, 2, 3
optional | | | R _{GLS2x} | 3 | - | 100 | | kΩ | - | | X = 1, 2, 3
optional | | | R _{IBx} | 2 | - | 1 | - | kΩ | - | | X = 1, 2,
optional | | | R _{SHUNTx} | 2 | - | 4 | - | mΩ | WSL10204L000FEA | | X = 1, 2 | | | R _{GCR} | 1 | 1-10% | 1 | 22+10% | kΩ | - | | - | | | L _{BST} | 1 | - | 47 | - | μΗ | - | | - | | | D ₁ | 1 | - | ı | - | - | | STPS2H100ZFY | , | - | | D ₂ | 1 | - | - | - | - | STPS0520Z | | - | | | D ₃ | 1 | - | - | - | - | STPS3L60 | | - | | | D ₄ | 1 | - | ı | - | - | SMA6T39AY SMA6T56AY - | | - | | | D ₅ | 1 | - | ı | - | - | Short | SMA6T6V7AY | 1 | - | Application circuit L9907 Table 37. Application circuit - BOM (continued) | Commonat | # Min | NA: | T | Max | Unit | Reco | 0 | | | |------------------|-------|------|-----|-----|------|---------------------------------|----------------|-----------------------|-------------| | Component | | WIII | Тур | | | 12 V
system | 24 V
system | 48 V
system | Comment | | T _{RB1} | | | | | | STL225N6F7
AG ⁽¹⁾ | STD105N | 10F7AG ⁽¹⁾ | - | | T _{RB2} | | | | | | BCP56-16 | | - | | | T _{BP} | | | | | | | - | BCP56-16 | - | | T _{HSx} | | | | | | STL225N6F7
AG ⁽¹⁾ | STD105N | 10F7AG ⁽¹⁾ | X = 1, 2, 3 | | T _{LSx} | | | | | | STL225N6F7
AG ⁽¹⁾ | STD105N | 10F7AG ⁽¹⁾ | X = 1, 2, 3 | ^{1.} Actual part number must be carefully selected according to the application current consumption estimation. L9907 Package information # 6 Package information In order to meet environmental requirements, ST offers these devices in different grades of *ECOPACK* packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK is an ST trademark. ### 6.1 TQFP64 (10x10x1 mm exp. pad down) package mechanical data Figure 10. TQFP64 (10x10x1 mm exp. pad down) package mechanical drawing **BOTTOM VIEW** <u>AAAAAAAAAAAAAAAA</u> D1/4 4x N/4 TIPS SECTION A-A aaa C A-B D - ccc C GAUGE PLANE - 0.05 D1 _ D АААААА<u>ААЙАААААА</u> SECTION B-B WITH PLATING D1/4 Ė BASE METAL **TOP VIEW** \Rightarrow 7278840_G_9I GAPGPS03451 DS11800 Rev 5 45/49 Package information L9907 Table 38. TQFP64 (10x10x1 mm exp. pad down) package mechanical data | | Dimensions | | | | | | | | | | |-------------------|------------|-------------|------------|-----------------------|------------|--------|--|--|--|--| | Ref | | Millimeters | | Inches ⁽¹⁾ | | | | | | | | | Min. | Тур. | Max. | Min. | Тур. | Max. | | | | | | θ | 0° | 3.5° | 6° | 0° | 3.5° | 6° | | | | | | Θ1 | 0° | - | - | 0° | - | - | | | | | | Θ2 | 11° | 12° | 13° | 11° | 12° | 13° | | | | | | Θ3 | 11° | 12° | 13° | 11° | 12° | 13° | | | | | | Α | - | - | 1.20 | - | - | 0.0472 | | | | | | A1 | 0.05 | - | 0.15 | 0.002 | - | 0.0059 | | | | | | A2 | 0.95 | 1.0 | 1.05 | 0.0374 | 0.0394 | 0.0413 | | | | | | b | 0.17 | 0.22 | 0.27 | 0.0067 | 0.0079 | 0.0091 | | | | | | b1 | 0.17 | 0.20 | 0.23 | 0.0067 | 0.0079 | 0.0091 | | | | | | С | 0.9 | - | 0.20 | 0.0354 | - | 0.0079 | | | | | | c1 | 0.9 | - | 0.16 | 0.0354 | - | 0.0063 | | | | | | D | - | 12.00 BSC | - | - | 0.4724 BSC | - | | | | | | D1 ⁽²⁾ | - | 10.00 BSC | _ | - | 0.3937 BSC | - | | | | | | D2 | | <u>'</u> | VARI | ATION | | | | | | | | е | - | 0.50 BSC | - | - | 0.0197 BSC | - | | | | | | E | - | 12.00 BSC | - | - | 0.4724 BSC | - | | | | | | E1 ⁽²⁾ | - | 10.00 BSC | - | - | 0.3937 BSC | - | | | | | | E2 | | | VARI | ATION | | | | | | | | L | 0.45 | 0.60 | 0.75 | 0.0177 | 0.0236 | 0.0295 | | | | | | L1 | - | 1.00 REF | - | - | 0.0394 REF | - | | | | | | N | - | 64.00 | - | - | 2.5197 | - | | | | | | R1 | 0.08 | - | - | 0.0031 | - | - | | | | | | R2 | 0.08 | - | 0.20 | 0.0031 | - | 0.0079 | | | | | | S | 0.20 | - | - | 0.0079 | - | - | | | | | | | | TOLERANCE | OF FORM AI | ND POSITION | | | | | | | | aaa | - | 0.20 | - | - | 0.0079 | - | | | | | | bbb | - | 0.20 | - | - | 0.0079 | - | | | | | | ccc | - | 0.08 | - | - | 0.0031 | - | | | | | | ddd | - | 0.07 | - | - | 0.0028 | - | | | | | | | | | VARIATIONS | | | | | | | | | Option A | | | | | | | | | | | | D2 | - | 4.50 | - | - | 0.1772 | - | | | | | | | | | | | | | | | | | L9907 Package information Table 38. TQFP64 (10x10x1 mm exp. pad down) package mechanical data (continued) | | Dimensions | | | | | | | | | |----------|------------|-------------|------|-----------------------|--------|------|--|--|--| | Ref | | Millimeters | | Inches ⁽¹⁾ | | | | | | | | Min. | Тур. | Max. | Min. | Тур. | Max. | | | | | E2 | - | 4.50 | - | - | 0.1772 | - | | | | | Option B | | | | | | | | | | | D2 | - | 6.0 | - | - | 0.2362 | - | | | | | E2 | - | 6.0 | - | - | 0.2362 | - | | | | ^{1.} Values in mm are converted into inches and rounded to 4 decimal digits. ### 6.1.1 TQFP64 exposed pad dimensions for L9907 Table 39. TQFP64 exposed pad dimensions for L9907 | Ref | | Millimeters | | Inches ⁽¹⁾ | | | |-----|------|-------------|------|-----------------------|--------|--------| | Kei | Min. | Тур. | Max. | Min. | Тур. | Max. | | D2 | 5.85 | 6.0 | 6.15 | 0.2303 | 0.2362 | 0.2421 | | E2 | 5.85 | 6.0 | 6.15 | 0.2303 | 0.2362 | 0.2421 | ^{1.} Values in mm are converted into inches and rounded to 4 decimal digits. ^{2.} Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusion is "0.25 mm" per side. Revision history L9907 # 7 Revision history Table 40. Document revision history | Date | Revision | Changes | | | |-------------|----------|---|--|--| | 30-Mar-2017 | 1 | Initial release | | | | 29-Jun-2018 | 2 | Corrected limits (LSL = 1 µs) for TSCoff digital filter time (short circuit shutdown delay) in <i>Table 18 on page 24</i> . Updated: Operating VB range, extension to 4.2 V; ISxx range: VDH+4 V in <i>Table 8 on page 18</i> Inserted note (2) for differential driver stage in <i>Table 9: Absolute maximum ratings</i> ; Corrected in <i>Table 16 on page 22</i> , V _{CAP} range, with LSL limit to 7.5 V; Corrected B8 description in <i>Table 32 on page 33</i> ; Added note in <i>Table 31</i> reference regarding power supply configuration for 48 V boardnet. | | | | 07-Aug-2019 | 3 | Updated: - High level digital input LSL from 2 V to 1.9 V in <i>Table 14</i> ; - LSL of overdrive for V _{BST} , V _{CAP} and V _{CBS} set to 8.5 V in <i>Table 16</i> . | | | | 20-Jul-2020 | 4 | Typing error. | | | | 27-Apr-2021 | 5 | Added: - Section 2.7: System clock. Updated: - Section : Features; - Section : Description; - Section 2.6: Current Sense Amplifier (CSA); - Section 5: Application circuit; - Table 9: Absolute maximum ratings; - Table 12: Supply electrical characteristics. Minor text changes in: - Section 4.1: SPI bits mapping; - Section 4.1.1: SDO. | | | ### **IMPORTANT NOTICE - PLEASE READ CAREFULLY** STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2021 STMicroelectronics – All rights reserved DS11800 Rev 5 49/49