

CY7C1069GN

Contents

Selection Guide	3
Pin Configurations	3
Maximum Ratings	4
Operating Range	
DC Electrical Characteristics	4
Capacitance	
Thermal Resistance	5
AC Test Loads and Waveforms	5
Data Retention Characteristics	6
Data Retention Waveform	
AC Switching Characteristics	
Switching Waveforms	
Truth Table	

Ordering Information	. 10
Ordering Code Definitions	. 10
Package Diagrams	.11
Acronyms	
Document Conventions	. 13
Units of Measure	. 13
Document History Page	. 14
Sales, Solutions, and Legal Information	.15
Worldwide Sales and Design Support	. 15
Products	
PSoC® Solutions	. 15
Cypress Developer Community	. 15
Technical Support	

Selection Guide

Description	-10	Unit
Maximum access time	10	ns
Maximum operating current	110	mA
Maximum CMOS standby current	30	mA

Pin Configurations

Figure 1. 54-pin TSOP II pinout (Top View)^[1]

				1	
NC		1	54	þ	NC
V_{CC}		2	53		V_{SS}
NC		3	52	þ	NC
I/O ₆		4	51		I/O ₅
V_{SS}		5	50		V_{CC}
I/O7		6	49		I/O ₄
A_4		7	48	Ь	A ₅
A ₃		8	47	Б	A ₆
A ₂	Г	9	46	h	A ₇
A ₁		10	45	Б	А ₈
A ₀		11	44	Б	A ₉
NČ		12	43	Ь	NC
CE₁		13	42		OE
V _{CC}		14	41	Б	V_{SS}
WE		15	40		NC
CE_2		16	39		A ₂₀
A ₁₉		17	38		A ₁₀
A ₁₈		18	37		A ₁₁
A ₁₇		19	36		A ₁₂
A ₁₆		20	35		A ₁₃
A ₁₅		21	34	Þ	A ₁₄
I/O ₀		22	33		I/O ₃
V _{CC}		23	32	\square	V_{SS}
I/O ₁		24	31	\square	I/O ₂
NC		25	30		NC
V_{SS}		26	29	Р	V_{CC}
NC		27	28	Ρ	NC

Figure 2. 48-ball VFBGA pinout (Top View) ^[1]

Note 1. NC pins are not connected on the die.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. These user guidelines are not tested.

Storage temperature65 °C to +150 °C
Ambient temperature with power applied–55 °C to +125 °C
Supply voltage on V_{CC} relative to GND $^{[2]}$ –0.5 V to V_{CC} + 0.5 V
DC voltage applied to outputs in High Z state $^{[2]}$ 0.5 V to V_{CC} + 0.5 V

DC input voltage [2]	–0.5 V to V_{CC} + 0.5 V
Current into outputs (LOW)	
Static discharge voltage (MIL-STD-883, method 3015)	>2001 V
Latch-up current	> 140 mA

Operating Range

Range	Ambient Temperature	V _{cc}
Industrial	–40 °C to +85 °C	$3.3~V\pm0.3~V$

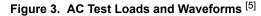
DC Electrical Characteristics

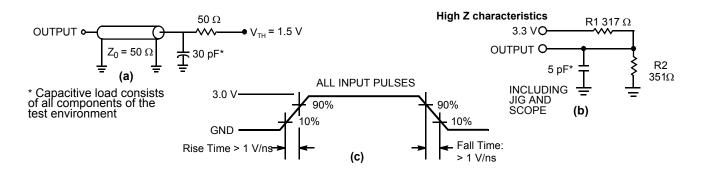
Over the Operating Range

Parameter	Deeg	Description	Toot Conditions	-10ns			Unit
Parameter	Desc	npuon	Test Conditions	Min	Typ ^[3]	Max	Unit
V _{OH}	Output HIGH	2.2 V to 2.7 V	Min V _{CC} , I _{OH} = -1.0 mA	2.0	-	-	V
	voltage	2.7 V to 3.0 V	Min V _{CC} , I _{OH} = -4.0 mA	2.2	-	-	
		3.0 V to 3.6 V	Min V _{CC} , I _{OH} = -4.0 mA	2.4	-	-	
V _{OL}	Output LOW	2.2 V to 2.7 V	Min V _{CC} , I_{OL} = 2.0 mA	-	-	0.4	V
	voltage	2.7 V to 3.6 V	Min V _{CC} , I _{OL} = 8.0 mA	-	_	0.4	
V _{IH}	Input HIGH	2.2 V to 2.7 V	-	2.0	_	V _{CC} + 0.3	V
	voltage	2.7 V to 3.6 V	-	2.0	_	V _{CC} + 0.3	
V _{IL}	Input LOW	2.2 V to 2.7 V	-	-0.3	_	0.6	V
	voltage ^[2]	2.7 V to 3.6 V	-	-0.3	_	0.8	
I _{IX}	Input leakage c	urrent	$GND \leq V_{IN} \leq V_{CC}$	–1		+1	μA
I _{OZ}	Output leakage	current	GND \leq V _{OUT} \leq V _{CC} , Output disabled	-1		+1	μA
I _{CC}	V _{CC} operating s	supply current	V _{CC} = Max, f = f _{MAX} = 1/t _{RC} , I _{OUT} = 0 mA, CMOS levels	-	90	110	mA
I _{SB1}	Automatic CE p current – TTL ir		$\begin{array}{l} \text{Max } V_{CC}, \ \overline{CE}_1 \geq V_{IH}, \ CE_2 \leq V_{IL}, \\ V_{IN} \geq V_{IH} \ \text{or} \ V_{IN} \leq V_{IL}, \ f = f_{MAX} \end{array}$	-	-	40	mA
I _{SB2}	Automatic CE p current – CMOS		$\begin{array}{l} \underline{Max} \ V_{CC}, \\ CE_1 \geq V_{CC} - 0.3 \ V, \ CE_2 \leq 0.3 \ V, \\ V_{IN} \geq V_{CC} - 0.3 \ V \ or \ V_{IN} \leq 0.3 \ V, \ f = 0 \end{array}$	_	20	30	mA

Notes

V_{IL(min)} = -2.0 V and V_{IH(max)} = V_{CC} + 2 V for pulse durations of less than 20 ns.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = 3 V (for V_{CC} range of 2.2 V–3.6 V)


Capacitance


Parameter ^[4]	Description	Test Conditions	TSOP II	VFBGA	Unit
C _{IN}	Input capacitance	T _A = 25 °C, f = 1 MHz, V _{CC} = 3.3 V	10	10	pF
C _{OUT}	IO capacitance		10	10	pF

Thermal Resistance

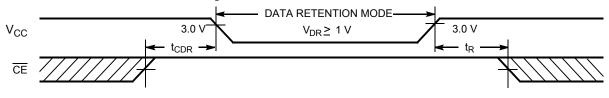
Parameter ^[4]	Description	Test Conditions	TSOP II	VFBGA	Unit
- JA		Still air, soldered on a 3 × 4.5 inch, four layer printed circuit board	93.63	31.50	°C/W
- 30	Thermal resistance (junction to case)		21.58	15.75	°C/W

AC Test Loads and Waveforms

Notes

4. Tested initially and after any design or process changes that may affect these parameters.

5. Full device AC operation assumes a 100-µs ramp time from 0 to V_{CC(min)} and 100-µs wait time after V_{CC} stabilization.


Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions	Min	Max	Unit
V _{DR}	V_{CC} for data retention	_	1.0	-	V
I _{CCDR}	Data retention current	$\begin{array}{l} V_{CC} = V_{DR}, \overline{CE}_1 \geq V_{CC} - 0.2 \text{ V}, CE_2 \leq 0.2 \text{ V}, \\ V_{IN} \geq V_{CC} - 0.2 \text{ V} \text{ or } V_{IN} \leq 0.2 \text{ V} \end{array}$	_	30	mA
t _{CDR} ^[6]	Chip deselect to data retention time	_	0	_	ns
t _R ^[7]	Operation recovery time	_	10	-	ns

Data Retention Waveform

Figure 4. Data Retention Waveform

Notes
6. Tested initially and after any design or process changes that may affect these parameters.
7. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} > 100 μs or stable at V_{CC(min.)} > 100 μs.

Page 6 of 15

AC Switching Characteristics

Over the Operating Range

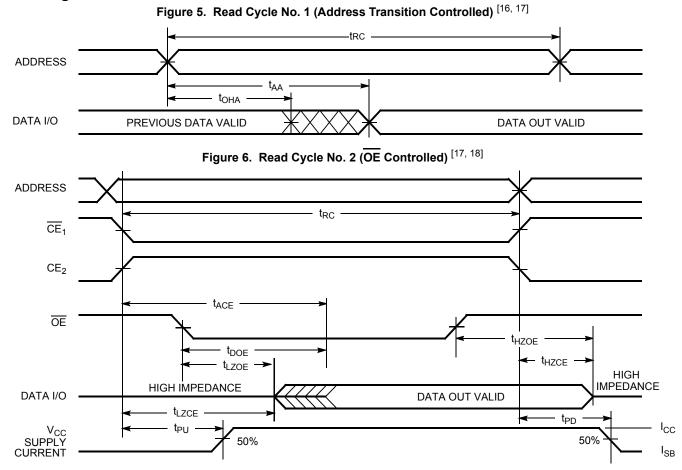
Parameter [8]	Description	-	10	Unit
Parameter	Description		Мах	Unit
Read Cycle				-
t _{power}	V _{CC} (typical) to the first access ^[9, 10]	100	-	μS
t _{RC}	Read cycle time	10	-	ns
t _{AA}	Address to data valid	-	10	ns
t _{OHA}	Data hold from address change	3	-	ns
t _{ACE}	CE ₁ LOW/CE ₂ HIGH to data valid	-	10	ns
t _{DOE}	OE LOW to data valid	-	5	ns
t _{LZOE}	OE LOW to low Z [11, 12, 13]	0	-	ns
t _{HZOE}	OE HIGH to high Z ^[11, 12, 13]	-	5	ns
t _{LZCE}	CE ₁ LOW/CE ₂ HIGH to low Z ^[11, 12, 13]	3	-	ns
t _{HZCE}	CE ₁ HIGH/CE ₂ LOW to high Z ^[11, 12, 13]	-	5	ns
t _{PU}	CE ₁ LOW/CE ₂ HIGH to power-up ^[10]	0	-	ns
t _{PD}	CE ₁ HIGH/CE ₂ LOW to power-down ^[10]	-	10	ns
Write Cycle [14	, 15]			-
t _{WC}	Write cycle time	10	-	ns
t _{SCE}	CE ₁ LOW/CE ₂ HIGH to write end	7	-	ns
t _{AW}	Address setup to write end	7	-	ns
t _{HA}	Address hold from write end	0	-	ns
t _{SA}	Address setup to write start	0	-	ns
t _{PWE}	WE pulse width	7	-	ns
t _{SD}	Data setup to write end	5	-	ns
t _{HD}	Data hold from write end	0	-	ns
t _{LZWE}	WE HIGH to low Z [11, 12, 13]	3	-	ns
t _{HZWE}	WE LOW to high Z [11, 12, 13]	_	5	ns

Notes

8. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, and input pulse levels of 0 to 3.0 V. Test conditions for the read cycle use output loading shown in (a) of Figure 3 on page 5, unless specified otherwise.

9. t_{POWER} gives the minimum amount of time that the power supply is at typical V_{CC} values until the first memory access is performed.

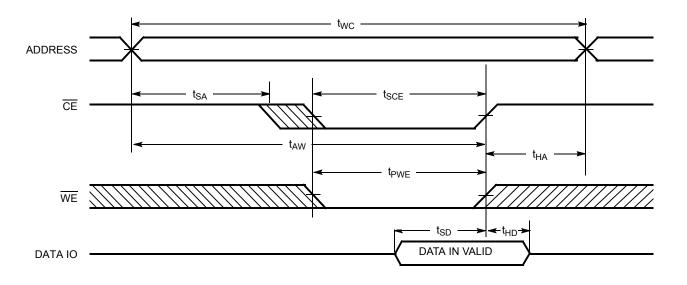
10. These parameters are guaranteed by design and are not tested.

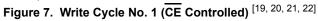

t_{HZOE}, t_{HZOE}, t_{LZOE}, t_{LZCE}, and t_{LZWE} are specified with a load capacitance of 5 pF as in (b) of Figure 3 on page 5. Transition is measured ±200 mV from steady state voltage.
 At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZDE}, t_{HZDE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any device. These parameters are guaranteed by design and are not tested.

13. Tested initially and after any design or process changes that may affect these parameters.

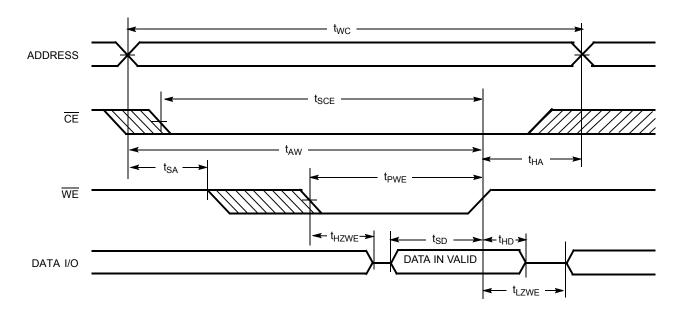
14. The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, and CE₂ = V_{IH}. CE₁ and WE are LOW along with CE₂ HIGH to initiate a write, and the transition of any of these signals can terminate. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.
 15. The minimum write cycle time for Write Cycle No. 2 (WE Controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

Switching Waveforms




Notes

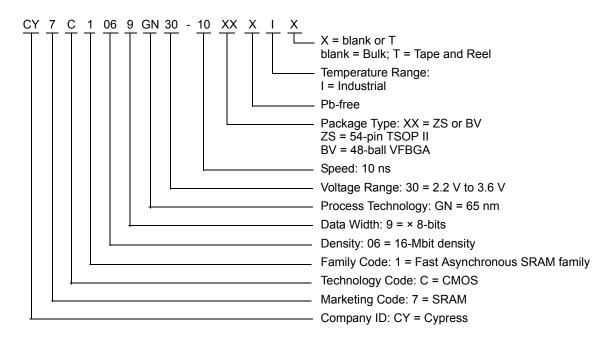
- 16. The device is continuously selected. $\overline{CE}_1 = V_{IL}$, and $CE_2 = V_{IH}$. 17. WE is HIGH for read cycle.
- 18. Address valid before or similar to \overline{CE}_1 transition LOW and CE_2 transition HIGH.



Switching Waveforms (continued)

Notes

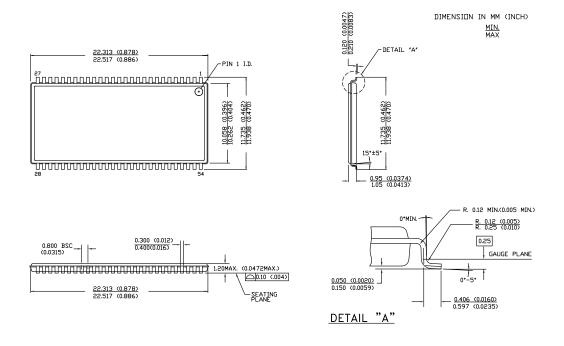
- 19. CE is a shorthand combination of both CE₁ and CE₂ combined. It is active LOW.
 20. Data I/O is high impedance if OE = V_{IH}.
 21. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high impedance state.
 22. The internal write time of the memory is defined by the overlap of WE = VIL, CE = VIL. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.


Truth Table

CE ₁	CE ₂	OE	WE	I/O ₀ –I/O ₇	Mode	Power
Н	Х	Х	Х	High Z	Power-down	Standby (I _{SB})
Х	L	Х	Х	High Z	Power-down	Standby (I _{SB})
L	Н	L	Н	Data out	Read all bits	Active (I _{CC})
L	Н	Х	L	Data in	Write all bits	Active (I _{CC})
L	Н	Н	Н	High Z	Selected, outputs disabled	Active (I _{CC})

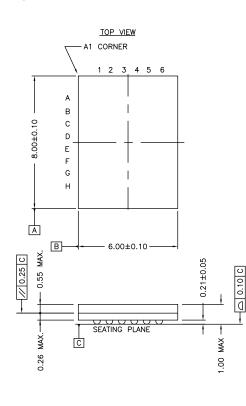
Ordering Information

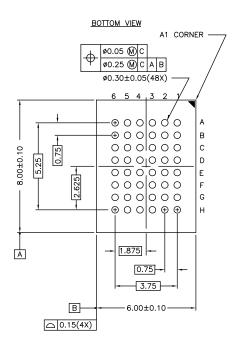
Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C1069GN30-10ZSXI	51-85160	54-pin TSOP II (Pb-free)	Industrial
	CY7C1069GN30-10ZSXIT	51-85160	54-pin TSOP II (Pb-free), Tape and Reel	
	CY7C1069GN30-10BVXI	51-85150	48-ball VFBGA (Pb-free)	
	CY7C1069GN30-10BVXIT	51-85150	48-ball VFBGA (Pb-free), Tape and Reel	


Ordering Code Definitions

Package Diagrams

Figure 9. 54-pin TSOP II (22.4 × 11.84 × 1.0 mm) Z54-II Package Outline, 51-85160


51-85160 *E



Package Diagrams (continued)

Figure 10. 48-ball VFBGA (6 × 8 × 1.0 mm) BV48/BZ48 Package Outline, 51-85150

NOTE:

PACKAGE WEIGHT: See Cypress Package Material Declaration Datasheet (PMDD) posted on the Cypress web.

51-85150 *H

Acronyms

Acronym	Description
CE	chip enable
CMOS	complementary metal oxide semiconductor
I/O	input/output
OE	output enable
SRAM	static random access memory
VFBGA	very fine-pitch ball grid array
TSOP	thin small outline package
TTL	transistor-transistor logic
WE	write enable

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
MHz	megahertz
μA	microampere
μ s	microsecond
mA	milliampere
ns	nanosecond
Ω	ohm
%	percent
pF	picofarad
V	volt
W	watt

Document History Page

Document Title: CY7C1069GN, 16-Mbit (2M × 8) Static RAM

Document Number: 002-00046				
Rev.	ECN No.	Orig. of Change	Submission Date	Description of Change
**	4948206	NILE	10/13/2015	New data sheet
*A	5437942	NILE	09/15/2016	Updated DC Electrical Characteristics: Removed Operating Range "2.7 V to 3.6 V" and all values corresponding to V_{OH} parameter. Included Operating Ranges "2.7 V to 3.0 V" and "3.0 V to 3.6 V" and all values corresponding to V_{OH} parameter. Updated Ordering Information: Updated part numbers. Updated Ordering Code Definitions. Updated to new template. Completing Sunset Review.
*B	5999403	AESATMP8	12/19/2017	Updated logo and Copyright.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community Community | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2015-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or system could cause personal injury, death, or properly damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.