TABLE OF CONTENTS

Features
Applications1
Functional Block Diagrams1
General Description1
Product Highlights 1
Revision History2
Specifications
±15 V Dual Supply3
±20 V Dual Supply4
12 V Single Supply 5
36 V Single Supply6
REVISION HISTORY
8/15—Rev. C to Rev. D
Changes to Features Section
Changes to Table 1
Changes to Table 2
Changes to Table 35
Changes to Table 4
Changes to Table 79
Changes to Figure 20 Caption to Figure 22 Caption 14
Changes to Figure 23 Caption to Figure 25 Caption 15
Deleted Figure 20 and Figure 22; Renumbered Sequentially 15
Deleted Figure 24, Figure 26, and Figure 2816
Deleted Figure 3017
12/14—Rev. B to Rev. C
Changes to Features Section and Product Highlights Section 1
Changes to Table 1
Changes to Table 24
Changes to Table 36
Changes to Table 47
Change to Table 79
Changes to Figure 7 to Figure 12
Changes to Figure 13 and Figure 1414
Changes to Figure 19, Figure 20 Caption, and
Figure 22 Caption
Added Figure 21 and Figure 23; Renumbered Sequentially 15
Changes to Figure 24 Caption, Figure 26 Caption, and
Figure 28 Caption
Added Figure 25, Figure 27, and Figure 28
Changes Figure 30 Caption
Added Figure 31
Changes to Figure 34

Continuous Current per Channel, 8x or Dx	
Absolute Maximum Ratings	9
ESD Caution	9
Pin Configurations and Function Descriptions	10
Typical Performance Characteristics	12
Test Circuits	16
Terminology	18
Trench Isolation	19
Applications Information	20
Outline Dimensions	21
Ordering Guide	22
6/13—Rev. A to Rev. B	
Added 20-Lead LFCSP	Universa
Updated Outline Dimensions	21
Changes to Ordering Guide	22
3/12—Rev. 0 to Rev. A	
Added 16-Lead LFCSP	Universa
Changes to Ordering Guide	

7/11—Revision 0: Initial Version

SPECIFICATIONS

±15 V DUAL SUPPLY

 V_{DD} = +15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{DD} to V_{SS}	V	
On Resistance, R _{ON}	160			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -1 \text{ mA};$ see Figure 28
	200	250	280	Ω max	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
On-Resistance Match Between Channels, ΔR_{ON}	3.5			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -1 \text{ mA}$
	8	9	10	Ω max	
On-Resistance Flatness, R _{FLAT (ON)}	38			Ωtyp	$V_S = \pm 10 \text{ V}, I_S = -1 \text{ mA}$
	50	65	70	Ω max	
LEAKAGE CURRENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Source Off Leakage, I₅ (Off)	±0.02			nA typ	$V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V};$ see Figure 30
	±0.1	±0.2	±0.4	nA max	
Drain Off Leakage, I _D (Off)	±0.02			nA typ	$V_S = \pm 10 \text{ V}, V_D = \mp 10 \text{ V};$ see Figure 30
	±0.1	±0.2	±0.4	nA max	
Channel On Leakage, I _D (On), I _S (On)	±0.08			nA typ	$V_S = V_D = \pm 10 \text{ V}$; see Figure 26
	±0.2	±0.3	±0.9	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
pat carretty into a min	3.002		±0.1	μA max	TIN TOND OF THE
Digital Input Capacitance, C _{IN}	3			pF typ	
DYNAMIC CHARACTERISTICS ¹				71	
Transition Time, trransition	125			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
·	160	190	215	ns max	V _s = 10 V; see Figure 33
ton (EN)	145			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	175	210	240	ns max	$V_s = 10 \text{ V}$; see Figure 35
t _{OFF} (EN)	125			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	155	170	180	ns max	$V_S = 10 \text{ V}$; see Figure 35
Break-Before-Make Time Delay, t _D	45			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
, -			25	ns min	$V_{S1} = V_{S2} = 10 \text{ V}$; see Figure 34
Charge Injection, Q _{INJ}	0.4			pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$ see Figure 36
Off Isolation	-76			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 31
Channel-to-Channel Crosstalk	-87			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 29
–3 dB Bandwidth	355			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 32
Insertion Loss	-6.4			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 32
C _s (Off)	2.8			pF typ	$V_S = 0 \text{ V, } f = 1 \text{ MHz}$
C _D (Off)	9			pF typ	$V_{S} = 0 V, f = 1 MHz$
C_D (On), C_S (On)	13			pF typ	$V_S = 0 V, f = 1 MHz$

Parameter	25°C -	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
POWER REQUIREMENTS					$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
I _{DD}	45			μA typ	Digital inputs = 0 V or V_{DD}
	55		70	μA max	
Iss	0.001			μA typ	Digital inputs = 0 V or V_{DD}
			1	μA max	
V_{DD}/V_{SS}			±9/±22	V min/V max	GND = 0 V

¹ Guaranteed by design; not subject to production test.

±20 V DUAL SUPPLY

 V_{DD} = +20 V \pm 10%, V_{SS} = -20 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 2

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{DD} to V_{SS}	V	
On Resistance, Ron	140			Ωtyp	$V_S = \pm 15 \text{ V}, I_S = -1 \text{ mA};$ see Figure 28
	160	200	230	Ω max	$V_{DD} = +18 \text{ V}, V_{SS} = -18 \text{ V}$
On-Resistance Match Between Channels, ΔR_{ON}	3.5			Ωtyp	$V_S = \pm 15 \text{ V}, I_S = -1 \text{ mA}$
	8	9	10	Ω max	
On-Resistance Flatness, RFLAT (ON)	33			Ω typ	$V_S = \pm 15 \text{ V}, I_S = -1 \text{ mA}$
	45	55	60	Ω max	
LEAKAGE CURRENTS					$V_{DD} = +22 \text{ V}, V_{SS} = -22 \text{ V}$
Source Off Leakage, Is (Off)	±0.02			nA typ	$V_S = \pm 15 \text{ V}, V_D = \mp 15 \text{ V};$ see Figure 30
	±0.1	±0.2	±0.4	nA max	
Drain Off Leakage, I _D (Off)	±0.02			nA typ	$V_S = \pm 15 \text{ V}, V_D = \mp 15 \text{ V};$ see Figure 30
	±0.1	±0.2	±0.4	nA max	
Channel On Leakage, I _D (On), I _S (On)	±0.08			nA typ	$V_S = V_D = \pm 15 V$; see Figure 26
	±0.2	±0.3	±0.9	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	3			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, ttransition	125			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	155	180	200	ns max	$V_s = 10 V$; see Figure 33
t _{on} (EN)	145			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	170	200	220	ns max	$V_s = 10 V$; see Figure 35
t _{OFF} (EN)	125			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	155	160	170	ns max	$V_s = 10 V$; see Figure 35
Break-Before-Make Time Delay, t _D	40			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			20	ns min	$V_{S1} = V_{S2} = 10 \text{ V};$ see Figure 34
Charge Injection, Q _{INJ}	0.7			pC typ	$V_S = 0 V$, $R_S = 0 \Omega$, $C_L = 1 nF$; see Figure 36
Off Isolation	-76			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 31

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
Channel-to-Channel Crosstalk	-87			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
–3 dB Bandwidth	370			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 32
Insertion Loss	-5.6			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 32
C _s (Off)	2.8			pF typ	$V_S = 0 V, f = 1 MHz$
C _D (Off)	9			pF typ	$V_S = 0 V, f = 1 MHz$
C_D (On), C_S (On)	13			pF typ	$V_S = 0 V, f = 1 MHz$
POWER REQUIREMENTS					$V_{DD} = +22 \text{ V}, V_{SS} = -22 \text{ V}$
I _{DD}	50			μA typ	Digital inputs = 0 V or V_{DD}
	70		110	μA max	
Iss	0.001			μA typ	Digital inputs = 0 V or V _{DD}
			1	μA max	
V_{DD}/V_{SS}			±9/±22	V min/V max	GND = 0 V

¹ Guaranteed by design; not subject to production test.

12 V SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 3.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0V$ to V_{DD}	V	
On Resistance, Ron	360			Ωtyp	$V_S = 0 \text{ V to } 10 \text{ V, } I_S = -1 \text{ mA;}$ see Figure 28
	500	610	700	Ω max	$V_{DD} = 10.8 \text{ V}, V_{SS} = 0 \text{ V}$
On-Resistance Match Between Channels, ΔR_{ON}	5.5			Ωtyp	$V_S = 0 V \text{ to } 10 V, I_S = -1 \text{ mA}$
	20	21	22	Ω max	
On-Resistance Flatness, R _{FLAT (ON)}	170			Ωtyp	$V_S = 0 V \text{ to } 10 V, I_S = -1 \text{ mA}$
	280	335	370	Ω max	
LEAKAGE CURRENTS					$V_{DD} = 13.2 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, Is (Off)	±0.02			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V};$ see Figure 30
	±0.1	±0.2	±0.4	nA max	
Drain Off Leakage, I _D (Off)	±0.02			nA typ	$V_S = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V};$ see Figure 30
	±0.1	±0.2	±0.4	nA max	
Channel On Leakage, I _D (On), I _S (On)	±0.08			nA typ	$V_S = V_D = 1 \text{ V}/10 \text{ V}$; see Figure 26
	±0.2	±0.3	±0.9	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	3			pF typ	

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
DYNAMIC CHARACTERISTICS ¹					
Transition Time, trransition	165			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	215	260	300	ns max	$V_S = 8 V$; see Figure 33
t _{on} (EN)	200			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	245	305	350	ns max	$V_S = 8 V$; see Figure 35
toff (EN)	130			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	165	180	200	ns max	$V_S = 8 V$; see Figure 35
Break-Before-Make Time Delay, t _D	85			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			45	ns min	$V_{S1} = V_{S2} = 8 \text{ V}$; see Figure 34
Charge Injection, Q _{INJ}	0			pC typ	$V_S = 6 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$ see Figure 36
Off Isolation	-76			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 31
Channel-to-Channel Crosstalk	-87			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
–3 dB Bandwidth	260			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 32
Insertion Loss	-9			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 32
C _s (Off)	3			pF typ	$V_S = 6 V, f = 1 MHz$
C _D (Off)	10			pF typ	$V_S = 6 V, f = 1 MHz$
C_D (On), C_S (On)	14			pF typ	$V_S = 6 V, f = 1 MHz$
POWER REQUIREMENTS					$V_{DD} = 13.2 \text{ V}$
I _{DD}	40			μA typ	Digital inputs = 0 V or V _{DD}
	50		65	μA max	
V_{DD}			9/40	V min/V max	$GND = 0 V, V_{SS} = 0 V$

¹ Guaranteed by design; not subject to production test.

36 V SINGLE SUPPLY

 V_{DD} = 36 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 4.

Parameter	25°C	−40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0V$ to V_{DD}	V	
On Resistance, R _{ON}	140			Ωtyp	$V_S = 0 \text{ V to } 30 \text{ V, } I_S = -1 \text{ mA;}$ see Figure 28
	170	215	245	Ω max	$V_{DD} = 32.4 \text{ V}, V_{SS} = 0 \text{ V}$
On-Resistance Match Between Channels, ΔR_{ON}	3.5			Ωtyp	$V_S = 0 \text{ V to } 30 \text{ V, } I_S = -1 \text{ mA}$
	8	9	10	Ω max	
On-Resistance Flatness, R _{FLAT (ON)}	35			Ωtyp	$V_S = 0 \text{ V to } 30 \text{ V, } I_S = -1 \text{ mA}$
	50	60	65	Ω max	
LEAKAGE CURRENTS					$V_{DD} = 39.6 \text{ V}, V_{SS} = 0 \text{ V}$
Source Off Leakage, Is (Off)	±0.02			nA typ	$V_S = 1 \text{ V}/30 \text{ V}, V_D = 30 \text{ V}/1 \text{ V};$ see Figure 30
	±0.1	±0.2	±0.4	nA max	
Drain Off Leakage, I _D (Off)	±0.02			nA typ	$V_S = 1 \text{ V}/30 \text{ V}, V_D = 30 \text{ V}/1 \text{ V};$ see Figure 30
	±0.1	±0.2	±0.4	nA max	
Channel On Leakage, I _D (On), I _S (On)	±0.08			nA typ	$V_S = V_D = 1 \text{ V}/30 \text{ V};$ see Figure 26
	±0.2	±0.3	±0.9	nA max	

Parameter	25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.002			μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	3			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, transition	155			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	200	215	230	ns max	$V_S = 18 V$; see Figure 33
t _{on} (EN)	180			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	215	235	250	ns max	$V_S = 18 V$; see Figure 35
$t_{OFF}(\overline{EN})$	150			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	190	190	190	ns max	$V_S = 18 V$; see Figure 35
Break-Before-Make Time Delay, t _D	50			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			25	ns min	$V_{S1} = V_{S2} = 18 \text{ V}$; see Figure 34
Charge Injection, Q _{INJ}	0.5			pC typ	$V_S = 18 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$ see Figure 36
Off Isolation	-76			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 31
Channel-to-Channel Crosstalk	-87			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
–3 dB Bandwidth	275			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 32
Insertion Loss	-6.2			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 32
C _s (Off)	2.8			pF typ	$V_S = 18 \text{ V, } f = 1 \text{ MHz}$
C _D (Off)	9			pF typ	$V_S = 18 \text{ V, } f = 1 \text{ MHz}$
C_D (On), C_S (On)	13			pF typ	$V_S = 18 V, f = 1 MHz$
POWER REQUIREMENTS					$V_{DD} = 39.6 \text{ V}$
I _{DD}	80			μA typ	Digital inputs = 0 V or V_{DD}
	100		130	μA max	
$V_{ extsf{DD}}$			9/40	V min/V max	$GND = 0 V, V_{SS} = 0 V$

¹ Guaranteed by design; not subject to production test.

CONTINUOUS CURRENT PER CHANNEL, Sx OR Dx

Table 5. ADG5233

Parameter	25°C	85°C	125°C	Unit
CONTINUOUS CURRENT, Sx OR Dx				
$V_{DD} = +15 \text{ V}, V_{SS} = -15 \text{ V}$				
TSSOP ($\theta_{JA} = 112.6$ °C/W)	24	16	11	mA maximum
LFCSP ($\theta_{JA} = 30.4$ °C/W)	42	26.5	15	mA maximum
$V_{DD} = +20 \text{ V}, V_{SS} = -20 \text{ V}$				
TSSOP ($\theta_{JA} = 112.6$ °C/W)	26	17	11	mA maximum
LFCSP ($\theta_{JA} = 30.4$ °C/W)	46	28	15	mA maximum
$V_{DD} = 12 \text{ V}, V_{SS} = 0 \text{ V}$				
TSSOP ($\theta_{JA} = 112.6$ °C/W)	17	12	7.7	mA maximum
LFCSP ($\theta_{JA} = 30.4$ °C/W)	24	17	11	mA maximum
$V_{DD} = 36 \text{ V}, V_{SS} = 0 \text{ V}$				
TSSOP ($\theta_{JA} = 112.6^{\circ}\text{C/W}$)	25	17	11	mA maximum
LFCSP ($\theta_{JA} = 30.4$ °C/W)	45	28	15	mA maximum

Table 6. ADG5234

Parameter	25°C	85°C	125°C	Unit
CONTINUOUS CURRENT, Sx OR Dx				
$V_{DD} = +15 \text{ V}, V_{SS} = -15 \text{ V}$				
TSSOP ($\theta_{JA} = 112.6$ °C/W)	21	15	10	mA maximum
LFCSP ($\theta_{JA} = 30.4$ °C/W)	38	24	14	mA maximum
$V_{DD} = +20 \text{ V}, V_{SS} = -20 \text{ V}$				
TSSOP ($\theta_{JA} = 112.6$ °C/W)	22	15	10	mA maximum
LFCSP ($\theta_{JA} = 30.4$ °C/W)	41	26	15	mA maximum
$V_{DD} = 12 \text{ V}, V_{SS} = 0 \text{ V}$				
TSSOP ($\theta_{JA} = 112.6$ °C/W)	15	11	7	mA maximum
LFCSP ($\theta_{JA} = 30.4$ °C/W)	22	16	11	mA maximum
$V_{DD} = 36 \text{ V}, V_{SS} = 0 \text{ V}$				
TSSOP ($\theta_{JA} = 112.6$ °C/W)	22	15	10	mA maximum
LFCSP ($\theta_{JA} = 30.4$ °C/W)	40	26	15	mA maximum

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

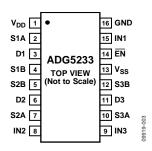
Table 7.

Parameter	Rating
V _{DD} to V _{SS}	48 V
V _{DD} to GND	−0.3 V to +48 V
V _{SS} to GND	+0.3 V to -48 V
Analog Inputs ¹	V_{SS} – 0.3 V to V_{DD} + 0.3 V or 30 mA, whichever occurs first
Digital Inputs ¹	V_{SS} – 0.3 V to V_{DD} + 0.3 V or 30 mA, whichever occurs first
Peak Current, Sx or Dx Pins	
ADG5233	76 mA (pulsed at 1 ms, 10% duty cycle maximum)
ADG5234	67 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current, Sx or Dx ²	Data + 15%
Temperature Range	
Operating	−40°C to +125°C
Storage	−65°C to +150°C
Junction Temperature	150°C
Thermal Impedance, θ _{JA}	
16-Lead TSSOP (4-Layer Board)	112.6°C/W
20-Lead TSSOP (4-Layer Board)	143°C/W
16-Lead LFCSP (4-Layer Board)	30.4°C/W
20-Lead LFCSP (4-Layer Board)	30.4°C/W
Reflow Soldering Peak Temperature, Pb Free	260(+0/-5)°C
Human Body Model (HBM) ESD	
Input/Output Port to Supplies	8 kV
Input/Output Port to Input/Output Port	2 kV
All Other Pins	8 kV

¹ Overvoltages at the INx, Sx, and Dx pins are clamped by internal diodes. Limit current to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at any one time.


ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

² See Table 5 and Table 6.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

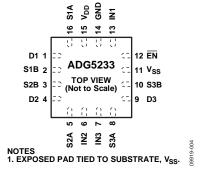


Figure 3. ADG5233 TSSOP Pin Configuration

Figure 4. ADG5233 LFCSP_WQ Pin Configuration

Table 8. ADG5233 Pin Function Descriptions

Pin No.					
TSSOP LFCSP_WQ Mnemonic		Mnemonic	Description		
1	15	V_{DD}	Most Positive Power Supply Potential.		
2	16	S1A	Source Terminal 1A. This pin can be an input or an output.		
3	1	D1	Drain Terminal 1. This pin can be an input or an output.		
4	2	S1B	Source Terminal 1B. This pin can be an input or an output.		
5	3	S2B	Source Terminal 2B. This pin can be an input or an output.		
6	4	D2	Drain Terminal 2. This pin can be an input or an output.		
7	5	S2A	Source Terminal 2A. This pin can be an input or an output.		
8	6	IN2	Logic Control Input 2.		
9	7	IN3	Logic Control Input 3.		
10	8	S3A	Source Terminal 3A. This pin can be an input or an output.		
11	9	D3	Drain Terminal 3. This pin can be an input or an output.		
12	10	S3B	Source Terminal 3B. This pin can be an input or an output.		
13	11	V _{SS}	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.		
14	12	EN	Active Low Digital Input. When high, the device is disabled and all switches are off. When low, INx logic inputs determine the on switches.		
15	13	IN1	Logic Control Input 1.		
16	14	GND	Ground (0 V) Reference.		
	17	EPAD	The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, V_{SS} .		

Table 9. ADG5233 Truth Table

EN	INx	SxA	SxB	
1	X ¹	Off	Off	
0	0	Off	On	
0	1	On	Off	

¹ X is don't care.

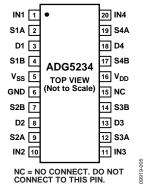


Figure 5. ADG5234 TSSOP Pin Configuration

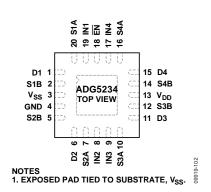


Figure 6. ADG5234 LFCSP_WQ Pin Configuration

Table 10. ADG5234 Pin Function Descriptions

Pin No.				
TSSOP	LFCSP_WQ	Mnemonic	Description	
1	19	IN1	Logic Control Input 1.	
2	20	S1A	Source Terminal 1A. This pin can be an input or an output.	
3	1	D1	Drain Terminal 1. This pin can be an input or an output.	
4	2	S1B	Source Terminal 1B. This pin can be an input or an output.	
5	3	V _{SS}	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.	
6	4	GND	Ground (0 V) Reference.	
7	5	S2B	Source Terminal 2B. This pin can be an input or an output.	
8	6	D2	Drain Terminal 2. This pin can be an input or an output.	
9	7	S2A	Source Terminal 2A. This pin can be an input or an output.	
10	8	IN2	Logic Control Input 2.	
11	9	IN3	Logic Control Input 3.	
12	10	S3A	Source Terminal 3A. This pin can be an input or an output.	
13	11	D3	Drain Terminal 3. This pin can be an input or an output.	
14	12	S3B	Source Terminal 3B. This pin can be an input or an output.	
15	N/A	NC	No Connect. This pin is open.	
16	13	V_{DD}	Most Positive Power Supply Potential.	
17	14	S4B	Source Terminal 4B. This pin can be an input or an output.	
18	15	D4	Drain Terminal 4. This pin can be an input or an output.	
19	16	S4A	Source Terminal 4A. This pin can be an input or an output.	
20	17	IN4	Logic Control Input 4.	
N/A	18	ĒN	Active Low Digital Input. When high, the device is disabled and all switches are off. When low, INx logic inputs determine the on switches.	
N/A	21	EP	Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, Vss.	

Table 11. ADG5234 Truth Table

INx	SxA	SxB
0	Off	On
1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

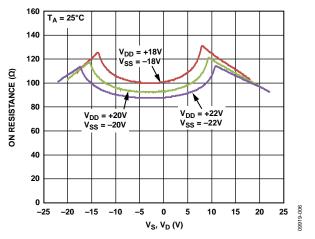


Figure 7. On Resistance as a Function of V_S , V_D (± 20 V Dual Supply)

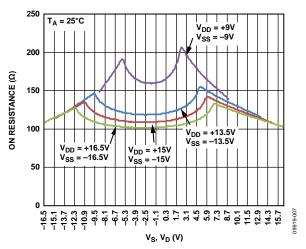


Figure 8. On Resistance as a Function of V_S , V_D (± 15 V Dual Supply)

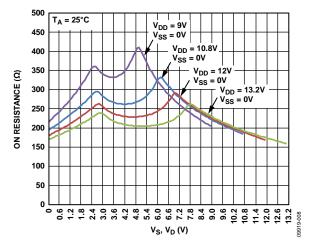


Figure 9. On Resistance as a Function of V_S , V_D (12 V Single Supply)

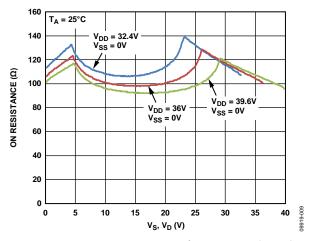


Figure 10. On Resistance as a Function of V_S , V_D (36 V Single Supply)

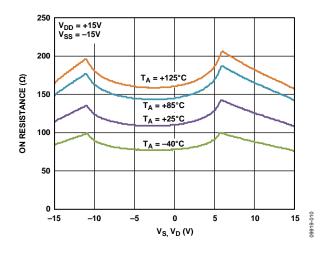


Figure 11. On Resistance as a Function of V_S (V_D) for Different Temperatures, ± 15 V Dual Supply

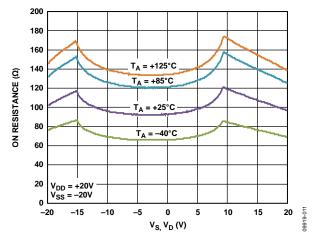


Figure 12. On Resistance as a Function of V_5 (V_0) for Different Temperatures, ± 20 V Dual Supply

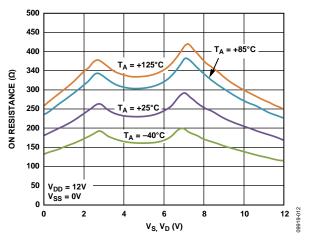


Figure 13. On Resistance as a Function of V_s (V_D) for Different Temperatures, 12 V Single Supply

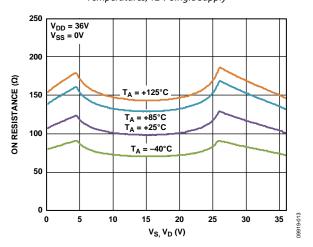


Figure 14. On Resistance as a Function of V_S (V_D) for Different Temperatures, 36 V Single Supply

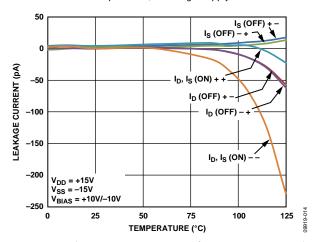


Figure 15. Leakage Currents as a Function of Temperature, ± 15 V Dual Supply

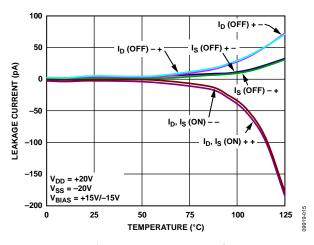


Figure 16. Leakage Currents as a Function of Temperature, ±20 V Dual Supply

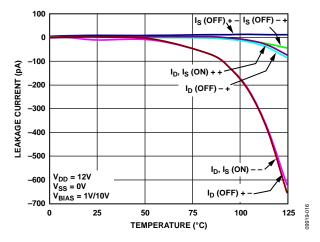


Figure 17. Leakage Currents as a Function of Temperature, 12 V Single Supply

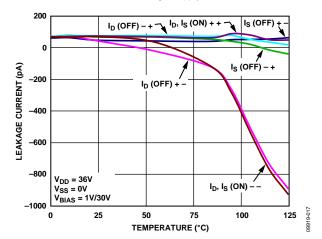


Figure 18. Leakage Currents as a Function of Temperature, 36 V Single Supply

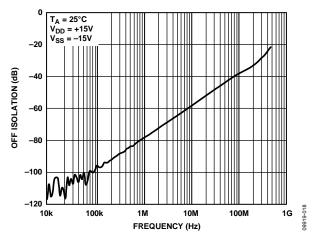


Figure 19. Off Isolation vs. Frequency, ±15 V Dual Supply

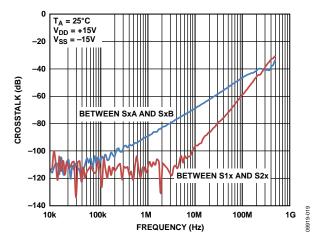


Figure 20. Crosstalk vs. Frequency, ±15 V Dual Supply

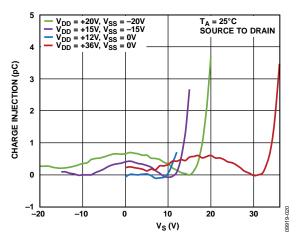


Figure 21. Charge Injection vs. Source Voltage, Source to Drain

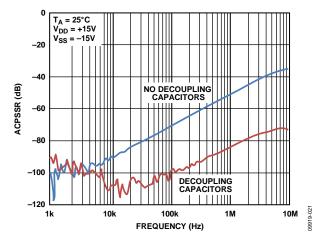


Figure 22. ACPSRR vs. Frequency, ±15 V Dual Supply

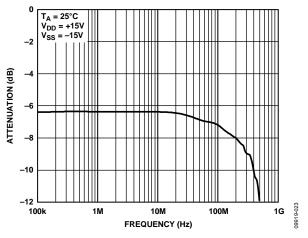


Figure 23. Bandwidth

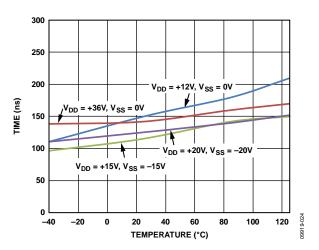


Figure 24. $t_{TRANSITION}$ Times vs. Temperature

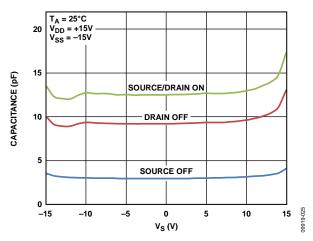


Figure 25. Capacitance vs. Source Voltage, ± 15 V Dual Supply

TEST CIRCUITS

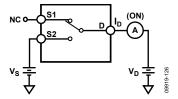


Figure 26. On Leakage

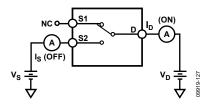


Figure 27. On and Off Leakage On and Off Leakage (ADG5234 TSSOP)

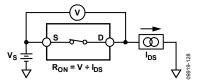


Figure 28. On Resistance

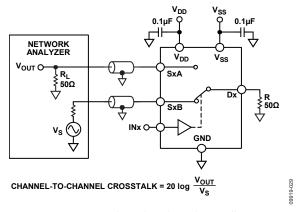


Figure 29. Channel-to-Channel Crosstalk

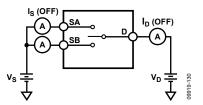


Figure 30. Off Leakage

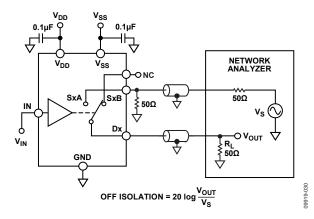


Figure 31. Off Isolation

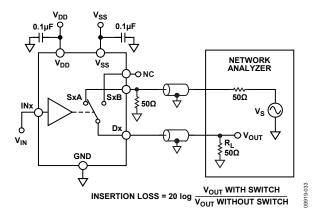


Figure 32. Bandwidth

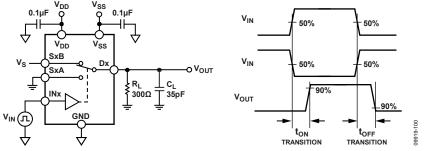


Figure 33. Switching Timing

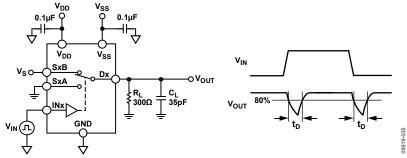
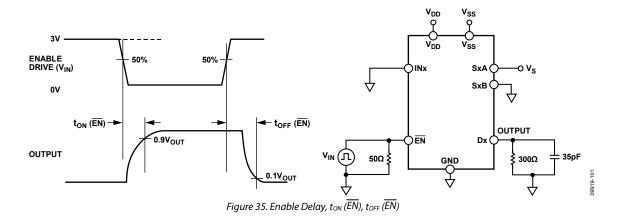



Figure 34. Break-Before-Make Delay, t_D

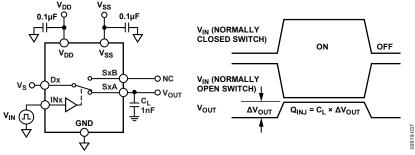


Figure 36. Charge Injection

TERMINOLOGY

I_{DD}

 I_{DD} represents the positive supply current.

Iss

Iss represents the negative supply current.

VD, VS

 V_{D} and V_{S} represent the analog voltage on Terminal Dx and Terminal Sx, respectively.

\mathbf{R}_{ON}

R_{ON} is the ohmic resistance between Terminal Dx and Terminal Sx.

ΔR_{ON}

 $\Delta R_{\rm ON}$ represents the difference between the $R_{\rm ON}$ of any two channels.

R_{FLAT} (ON)

The difference between the maximum and minimum value of on resistance as measured over the specified analog signal range is represented by $R_{\rm FLAT\,(ON)}$.

Is (Off)

I_s (Off) is the source leakage current with the switch off.

ID (Off)

I_D (Off) is the drain leakage current with the switch off.

I_D (On), I_S (On)

 $I_{\rm D}$ (On) and $I_{\rm S}$ (On) represent the channel leakage currents with the switch on.

\mathbf{V}_{INL}

 V_{INL} is the maximum input voltage for Logic 0.

V_{INH}

 V_{INH} is the minimum input voltage for Logic 1.

I_{INL} , I_{INH}

 I_{INL} and I_{INH} represent the low and high input currents of the digital inputs.

C_D (Off)

C_D (Off) represents the off switch drain capacitance, which is measured with reference to ground.

Cs (Off)

Cs (Off) represents the off switch source capacitance, which is measured with reference to ground.

$C_D(On), C_S(On)$

 C_D (On) and C_S (On) represent on switch capacitances, which are measured with reference to ground.

CIN

C_{IN} represents digital input capacitance.

$t_{ON}(\overline{EN})$

 $t_{\rm ON}$ (EN) represents the delay time between the 50% and 90% points of the digital input and switch on condition.

$t_{OFF}(\overline{EN})$

 $t_{\text{OFF}}\left(EN\right)$ represents the delay time between the 50% and 90% points of the digital input and switch off condition.

$t_{\text{TRANSITION}}$

Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

$t_{\rm D}$

 $t_{\rm D}$ represents the off time measured between the 80% point of both switches when switching from one address state to another.

Off Isolation

Off isolation is a measure of unwanted signal coupling through an off channel.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

Bandwidth is the frequency at which the output is attenuated by 3 dB.

On Response

On response is the frequency response of the on switch.

AC Power Supply Rejection Ratio (ACPSRR)

ACPSRR is a measure of the ability of a part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of the signal on the output to the amplitude of the modulation is the ACPSRR.

TRENCH ISOLATION

In the ADG5233/ADG5234, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, and the result is a completely latch-up proof switch.

In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode can become forward-biased. A silicon controlled rectifier (SCR) type circuit is formed by the two transistors causing a significant amplification of the current that, in turn, leads to latch-up. With trench isolation, this diode is removed, and the result is a latch-up proof switch.

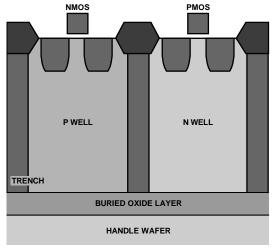
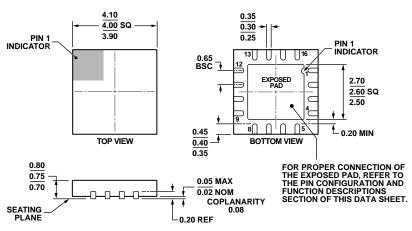


Figure 37. Trench Isolation

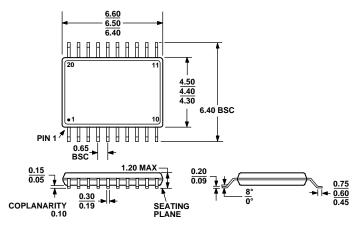
APPLICATIONS INFORMATION

The low capacitance latch-up immune family of switches and multiplexers provide a robust solution for instrumentation, industrial, automotive, aerospace, and other harsh environments that are prone to latch-up, which is an undesirable high current state that can lead to device failure and persists until the power supply is turned off.


The ADG5233/ADG5234 high voltage switches allow single-supply operation from 9 V to 40 V and dual supply operation from ± 9 V to ± 22 V.

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AB


Figure 38. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.

Figure 39. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 4 mm × 4 mm Body, Very Very Thin Quad (CP-16-17) Dimensions shown in millimeters

16-2010-C

COMPLIANT TO JEDEC STANDARDS MO-153-AC

Figure 40. 20-Lead Thin Shrink Small Outline Package [TSSOP] (RU-20) Dimensions shown in millimeters

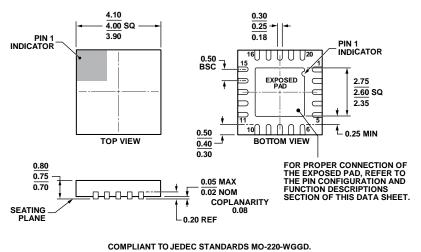
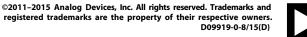



Figure 41. 20-LEAD LEAD FRAME CHIP SCALE PACKAGE [LFCSP_WQ] 4 mm × 4 mm BODY, VERY VERY THIN QUAD (CP-20-8) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Description	EN Pin	Package Option	
ADG5233BRUZ	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	Yes	RU-16	
ADG5233BRUZ-RL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	Yes	RU-16	
ADG5233BCPZ-RL7	−40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	Yes	CP-16-17	
ADG5234BRUZ	-40°C to +125°C	20-Lead Thin Shrink Small Outline Package [TSSOP]	No	RU-20	
ADG5234BRUZ-RL7	-40°C to +125°C	20-Lead Thin Shrink Small Outline Package [TSSOP]	No	RU-20	
ADG5234BCPZ-RL7	−40°C to +125°C	20-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	Yes	CP-20-8	

¹ Z = RoHS Compliant Part.

ANALOG DEVICES

www.analog.com