TABLE OF CONTENTS

Features
Applications1
Pin Connection Diagrams1
General Description
Revision History
Specifications
Electrical Specifications, $V_{SY} = \pm 1.5 V$
Electrical Specifications, $V_{SY} = \pm 5 \text{ V}$
Electrical Specifications, $V_{SY} = \pm 15$ V
Absolute Maximum Ratings7
Thermal Resistance7
ESD Caution7
Pin Configurations and Function Descriptions
Typical Performance Characteristics

±1.5 V Characteristics	10
±5 V Characteristics	13
±15 V Characteristics	16
Comparative Voltage and Variable Voltage Graphs	19
Theory of Operation	
Input Stage	
Phase Inversion	
Input Overvoltage Protection	21
Comparator Operation	
Outline Dimensions	22
Ordering Guide	24
Automotive Products	24

REVISION HISTORY

9/2017—Rev. F to Rev. G	
Changed ADA409x to ADA4096-2	Throughout
Changed CP-16-27 to CP-16-22	Throughout
Changes to Figure 12 and Figure 13	10
Changes to Figure 26	13
Changes to Figure 39	16
Updated Outline Dimensions	
Changes to Ordering Guide	24

12/2014—Rev. E to Rev. F

Changes to	EPAD	Note,	Figure	2			 1
Changes to	EPAD	Note,	Figure	5 and	Table 7	7	 7
Changes to	EPAD	Note,	Figure	7 and	Table 8	3	 8

3/2014—Rev. D to Rev. E

Changes to Figure 10 and Figure 12	9
Changes to Figure 23 and Figure 25	12
Changes to Figure 36 and Figure 38	15

5/2013—Rev. C to Rev. D

Changes to Pin Connection Diagrams Section	1
Changes to Pin Configurations and Function Descriptions	
Section	7
Added Figure 10, Renumbered Sequentially	9
Added Figure 23	12
Added Figure 36	15

8/2012—Rev. B to Rev. C

Changes to	Table 8		8
------------	---------	--	---

ADA4096-2/ADA4096-4

8/2012—Rev. A to Rev. B

Added ADA4096-4 Universal
Changes to Features Section1
Added Figure 3 1
Changes to Pin Connection Diagrams Section1
Changes to Input Bias Current, Common-Mode Rejection
Ratio, Large Signal Voltage Gain, and Supply Current per
Amplifier Parameters, and -3 dB Closed-Loop Bandwidth
Symbol, Table 2
Changes to Input Bias Current, Common-Mode Rejection
Ratio, Large Signal Voltage Gain, and Parameters, and –3 dB
Closed-Loop Bandwidth Symbol, Table 34
Changes to Input Bias Current, Common-Mode Rejection
Ratio, Large Signal Voltage Gain, Output Voltage High, and
Output Voltage Low Parameters, and -3 dB Closed-Loop
Bandwidth Symbol, Table 45
Changes to Table 67
Added Pin Configurations and Function Descriptions
Section
Added Figure 4 and Figure 5, Renumbered Sequentially
Added Table 7, Renumbered Sequentially8
Added Figure 6, Figure 7, and Table 89
Updated Outline Dimensions
Changes to Ordering Guide20

3/2012—Rev. 0 to Rev. A

Changed –3 dB Closed-Loop Bandwidth from 97 kHz to
970 kHz, Table 2
Changed –3 dB Closed-Loop Bandwidth from 114 kHz to
1140 kHz, Table 3
Changed to -3 dB Closed-Loop Bandwidth from 152 kHz to
1520 kHz, Table 45
Updated Outline Dimensions18

7/2011—Revision 0: Initial Version

SPECIFICATIONS ELECTRICAL SPECIFICATIONS, $V_{sy} = \pm 1.5 V$

 $V_{SY} = \pm 1.5$ V, $V_{CM} = V_{SY}/2$, $T_A = 25^{\circ}$ C, unless otherwise noted.

Table 2.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			35	300	μV
		$0^{\circ}C \leq T_{A} \leq +125^{\circ}C$			450	μV
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			900	μV
Offset Voltage Drift	$\Delta V_{os}/\Delta T$	$-40^{\circ}C \le T_A \le +125^{\circ}C$		1		μV/°C
Input Bias Current	IB			±10	±25	nA
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			±30	nA
Input Offset Current	los			±0.1	±1.5	nA
-		$-40^{\circ}C \le T_A \le +125^{\circ}C$			±3	nA
Input Voltage Range			-1.5		+1.5	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0 V \text{ to } \pm 1.5 V$	61	77		dB
-		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	58			dB
Large Signal Voltage Gain	Avo	$R_L = 10 \text{ k}\Omega$, $V_O = -1.4 \text{ V}$ to $+1.4 \text{ V}$	91	94		dB
		$-40^{\circ}C \leq T_{A} \leq +125^{\circ}C$	84			dB
		$R_L = 2 k\Omega$, $V_O = -1.3 V$ to $+1.3 V$	86	92		dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	77			dB
MATCHING CHARACTERISTICS						-
Offset Voltage		$T_A = 25^{\circ}C$		100	300	μV
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_L = 10 \text{ k}\Omega \text{ to GND}$	1.48	1.49		V
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	1.45			V
		$R_L = 2 k\Omega$ to GND	1.45	1.46		V
		-40°C to +125°C	1.40			V
Output Voltage Low	V _{OL}	$R_L = 10 \text{ k}\Omega \text{ to GND}$		-1.49	-1.48	V
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			-1.45	V
		$R_L = 2 k\Omega$ to GND		-1.48	-1.47	V
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			-1.40	V
Short-Circuit Limit	lsc	Source/sink		±10		mA
Closed-Loop Impedance	Zout	$f = 100 \text{ kHz}, A_V = 1$		102		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{SY} = 3 V \text{ to } 36 V$	100			dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	90			dB
Supply Current per Amplifier	Isy	$V_O = V_{SY}/2$		40	50	μΑ
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			80	μA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 100 \text{ k}\Omega, C_L = 30 \text{ pF}$		0.25		V/µs
Gain Bandwidth Product	GBP	$V_{IN} = 5 \text{ mV p-p}, R_L = 10 \text{ k}\Omega, A_V = 100$		501		kHz
Unity-Gain Crossover	UGC	$V_{IN} = 5 \text{ mV p-p}, R_L = 10 \text{ k}\Omega, A_V = 1$		465		kHz
Phase Margin	Фм			51		Degrees
–3 dB Closed-Loop Bandwidth	f _3 dB	$A_V = 1, V_{IN} = 5 \text{ mV } p-p$		970		kHz
NOISE PERFORMANCE						
Voltage Noise	en p-p	0.1 Hz to 10 Hz		0.7		μV p-p
Voltage Noise Density	en	f = 1 kHz		27		nV/√Hz
Current Noise Density	İn	f = 1 kHz		0.2		pA/√Hz

ELECTRICAL SPECIFICATIONS, $V_{SY} = \pm 5 V$

 $V_{\text{SY}} = \pm 5$ V, $V_{\text{CM}} = V_{\text{SY}}/2,$ $T_{\text{A}} = 25^{\circ}\text{C},$ unless otherwise noted.

Table 3.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos			35	300	μV
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			500	μV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$			1		μV/°C
Input Bias Current	IB			±10	±25	nA
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			±30	nA
Input Offset Current	los			±1.5	±2	nA
		$-40^\circ C \leq T_A \leq +125^\circ C$			±3	nA
Input Voltage Range			-5		+5	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -5 V \text{ to } +5 V$	72	86		dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	68			dB
		$V_{CM} = -3 V \text{ to } +3 V$	91	103		dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	85			dB
Large Signal Voltage Gain	Avo	$R_L = 10 \text{ k}\Omega, V_O = \pm 4.8 \text{ V}$	102	111		dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	99			dB
		$R_L=2\;k\Omega,V_O=\pm4.7\;V$	93	103		dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	88			dB
MATCHING CHARACTERISTICS						
Offset Voltage		$T_A = 25^{\circ}C$		100	300	μV
OUTPUT CHARACTERISTICS						
Output Voltage High	VOH	$R_L = 10 \ k\Omega$ to GND	4.96	4.97		V
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	4.95			V
		$R_L = 2 k\Omega$ to GND	4.80	4.90		V
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	4.70			V
Output Voltage Low	Vol	$R_L = 10 \text{ k}\Omega \text{ to GND}$		-4.98	-4.97	V
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			-4.95	V
		$R_L = 2 k\Omega$ to GND		-4.90	-4.80	V
		$-40^{\circ}C \leq T_A \leq +125^{\circ}C$			-4.75	V
Short-Circuit Limit	I _{sc}	Source/sink		±10		mA
Closed-Loop Impedance	Zout	$f = 100 \text{ kHz}, A_V = 1$		71		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{SY} = 3 V \text{ to } 36 V$	100			dB
		$-40^{\circ}C \leq T_A \leq +125^{\circ}C$	90			dB
Supply Current per Amplifier	Isy	$V_{\rm O} = V_{\rm SY}/2$		47	55	μΑ
		$-40^{\circ}C \leq T_A \leq +125^{\circ}C$			75	μΑ
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 100 \text{ k}\Omega$, $C_L = 30 \text{ pF}$		0.3		V/µs
Gain Bandwidth Product	GBP	$V_{IN} = 5 \text{ mV p-p}, R_L = 10 \text{ k}\Omega, A_V = 100$		595		kHz
Unity-Gain Crossover	UGC	$V_{IN} = 5 \text{ mV } p$ - p , $R_L = 10 \text{ k}\Omega$, $A_V = 1$		550		kHz
Phase Margin	Фм			52		Degrees
-3 dB Closed-Loop Bandwidth	$f_{-3 dB}$	$A_V = 1, V_{IN} = 5 \text{ mV } p-p$		1140		kHz
NOISE PERFORMANCE						
Voltage Noise	en p-p	0.1 Hz to 10 Hz		0.7		μV p-p
Voltage Noise Density	en	f = 1 kHz		27		nV/√Hz
Current Noise Density	İn	f = 1 kHz		0.2		pA/√Hz

ELECTRICAL SPECIFICATIONS, $V_{SY} = \pm 15 V$

 V_{SY} = ±15 V, V_{CM} = $V_{\text{SY}}/2,$ V_{O} = 0.0 V, T_{A} = 25°C, unless otherwise noted.

Table 4.

$\begin{array}{ $	Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	INPUT CHARACTERISTICS						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Offset Voltage	Vos			35	300	μV
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			$-40^{\circ}C \le T_A \le +125^{\circ}C$			500	μV
$ \begin{array}{ c c c c c } \mbox{Input Bias Current} & a & -40^{\circ} C \le T_A \le +125^{\circ} C & 1.5 & 1.25^{\circ} C & 1.5 & 1$	Offset Voltage Drift	$\Delta V_{os}/\Delta T$			1		μV/°C
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Input Bias Current	IB			±3	±25	nA
$ \begin{array}{ c c c c c c } \mbox{Input Voltage Range} & $z_{15} & z_{15} $	•		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			±30	nA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Offset Current	los			±0.1	±1.5	nA
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$-40^{\circ}C \leq T_{A} \leq +125^{\circ}C$			±3	nA
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Input Voltage Range			-15		+15	V
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Common-Mode Rejection Ratio	CMRR	$V_{CM} = -15 V \text{ to } +15 V$	81	95		dB
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	75			dB
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			$V_{CM} = -13 V \text{ to } +13 V$	95	107		dB
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			$-40^{\circ}C < T_{A} < +125^{\circ}C$	89			dB
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Large Signal Voltage Gain	Avo	$B_{i} = 10 \text{ kO } V_{0} = \pm 14.7 \text{ V}$	109	120		dB
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Lurge signal voltage sam	7.00	$-40^{\circ}C < T_{A} < +125^{\circ}C$	105	120		dB
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			$R_1 = 2 k O V_0 = \pm 11 V$	99	112		dB
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			$-40^{\circ}C < T_{1} < \pm 125^{\circ}C$	90	112		dB
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Innut Canacitance		-0 C 3 TA 3 T 125 C	50			ab
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Differential Mode	C			25		nE
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Common Mode	Con			2.J 7		pi
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		CCM			/		рг
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			T _ 25°C		100	200	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			T _A = 23 C		100	500	μν
Output Voitage High Voit $R_L = 10 \text{ kD to GND}$ 14.92 14.92 14.94 V $-40^{\circ}C \leq T_A \leq +125^{\circ}C$ 14.90 V V V V V $R_L = 2 \text{ kD to GND}$ 14.0 14.3 V V V V V V $POWE$ V_{OL} $R_L = 10 \text{ kD to GND}$ -14.00 14.40 14.3 V $-40^{\circ}C \leq T_A \leq +125^{\circ}C$ 11.0 V -14.96 -14.80 V $-40^{\circ}C \leq T_A \leq +125^{\circ}C$ -14.75 -14.60 V $-40^{\circ}C \leq T_A \leq +125^{\circ}C$ -14.00 V Short-Circuit Limit Isc Source/sink ±10 mA 0 0 Closed-Loop Impedance Z_{OUT} $f = 100 \text{ kHz}, A_V = 1$ 40° 0 0 POWER SUPPLY PSRR $V_{SY} = 3V \text{ to }36V$ 100 dB 0 0 Supply Current per Amplifier I_{SY} $V_{SY} = 4V \text{ to }30 \text{ F}$ 0.7 μA 0 DYNAMIC PERFORMANCE SR $R_L = 100 \text{ k}\Omega, C_L = 30 \text{ pF}$ 0.4 V		M		14.00	14.04		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Output voltage High	Vон	$R_{L} = 10 \text{ K}\Omega$ to GND	14.92	14.94		V
Note that the set of th			$-40^{\circ}C \le I_{A} \le +125^{\circ}C$	14.90			V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$R_L = 2 \text{ K}\Omega \text{ to GND}$	14.0	14.3		V
Output Voltage Low V_{OL} $R_c = 10 \text{ k}\Omega \text{ to GND}$ -14.96 -14.80 V $-40^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ -14.75 V $R_c = 2 \text{ k}\Omega \text{ to GND}$ -14.75 V $-40^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ -14.00 V Short-Circuit Limit I_{SC} Source/sink ± 10 mAClosed-Loop Impedance Z_{OUT} $f = 100 \text{ kHz}, A_V = 1$ 40 Ω POWER SUPPLYPower Supply Rejection RatioPSRR $V_{SY} = 3 \text{ V to } 36 \text{ V}$ 100 dB Supply Current per Amplifier I_{SV} $V_{O} = V_{SV}/2$ 60 75 μA $-40^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ 90 dB μA DYNAMIC PERFORMANCE I_{SV} $V_{O} = V_{SV}/2$ 60 75 μA Slew RateSR $R_c = 100 \text{ k}\Omega, C_c = 30 \text{ pF}$ 0.4 V/μ $V_{SV} = 3 \text{ V}$ Gain Bandwidth ProductGBP $V_{IN} = 5 \text{ mV } p \text{ p}, R_c = 10 \text{ k}\Omega, A_V = 100$ 786 KHz Phase Margin Φ_M 60 Degrees $-3 \text{ dB} \text{ Closed-Loop Bandwidth}$ $f_{-3 \text{ dB}}$ $A_V = 1, V_{IN} = 5 \text{ mV } p \text{ p}$ 1520 KHz Channel SeparationCS $f = 1 \text{ kHz}$ 100 dB NO/Hz 0.7 $\mu V \text{ p} \text{ p}$ Voltage Noise $e_n p \text{ p}$ $0.1 \text{ Hz} to 10 \text{ Hz}$ 0.7 $\mu V \text{ p} \text{ p}$ N/Hz Current Noise Density e_n $f = 1 \text{ kHz}$ 0.2 $pA/\sqrt/Hz$			$-40^{\circ}C \le I_{A} \le +125^{\circ}C$	11.0			V
$\begin{array}{ c c c c c } -40^\circ C \leq T_A \leq +125^\circ C & -14.75 & V \\ R_L = 2 k\Omega \ to \ GND & -14.75 & -14.60 & V \\ -40^\circ C \leq T_A \leq +125^\circ C & -14.75 & -14.60 & V \\ -40^\circ C \leq T_A \leq +125^\circ C & -14.75 & -14.60 & V \\ -40^\circ C \leq T_A \leq +125^\circ C & -14.0 & V \\ \hline POWER \ SUPPLY & F = 10 \ kHz, \ A_V = 1 & 40 & \Omega \\ \hline POWER \ SUPPLY & F = 100 \ kHz, \ A_V = 1 & 40 & 0 \\ \hline POWER \ Supply \ Current \ per \ Amplifier & I_{SV} & V_{SV} = 3 V \ to \ 36 V & 100 & dB \\ \hline Supply \ Current \ per \ Amplifier & I_{SV} & V_{0} = V_{SV}/2 & 60 & 75 & \muA \\ \hline DYNAMIC \ PERFORMANCE & SR & R_L = 100 \ k\Omega, \ C_L = 30 \ pF & 0.4 & V/\mu \\ \hline Stetting \ Time & t_S & To \ 0.1\%, \ 10V \ step & 23.4 & \muS \\ \hline Gain \ Bandwidth \ Product & GBP & V_{N} \leq 5 \ mV \ p-p, \ R_L = 10 \ k\Omega, \ A_V = 1 & 800 & kHz \\ \hline Unity-Gain \ Crossover & UGC & V_{N} = 5 \ mV \ p-p, \ R_L = 10 \ k\Omega, \ A_V = 1 & 800 & kHz \\ \hline Phase \ Margin & \Phi_M & 60 & Degrees \\ \hline -3 \ dB \ Closed-Loop \ Bandwidth & f_{-3 \ dB} & A_V = 1, \ V_{N} = 5 \ mV \ p-p & 1520 & kHz \\ \hline NOISE \ PERFORMANCE & V_{O1} = S \ mV \ p-p & 1520 & kHz \\ \hline Voltage \ Noise \ Density & e_n & f = 1 \ kHz & 27 & nV//Hz \\ \hline Voltage \ Noise \ Density & e_n & f = 1 \ kHz & 0.2 & pA//Hz \\ \hline \end{array}$	Output Voltage Low	Vol	$R_{L} = 10 k\Omega$ to GND		-14.96	-14.80	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			-14.75	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$R_L = 2 k\Omega$ to GND		-14.75	-14.60	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$-40^{\circ}C \le T_A \le +125^{\circ}C$			-14.0	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Short-Circuit Limit	lsc	Source/sink		±10		mA
POWER SUPPLY Power Supply Rejection RatioPSRR $V_{SY} = 3 V to 36 V$ $-40^{\circ}C \le T_A \le +125^{\circ}C$ 100dB dBSupply Current per Amplifier I_{SY} $V_0 = V_{SY}/2$ 	Closed-Loop Impedance	Zout	$f = 100 \text{ kHz}, A_V = 1$		40		Ω
Power Supply Rejection RatioPSR $V_{SY} = 3 V to 36 V$ 100dBSupply Current per Amplifier I_{SY} $-40^{\circ}C \le T_A \le +125^{\circ}C$ 90dBDYNAMIC PERFORMANCE I_{SY} $V_0 = V_{SY}/2$ 60 75 μA DYNAMIC PERFORMANCE I_{SY} $V_0 = V_{SY}/2$ 00 $V_{\mu}A$ Settling Time t_S $To 0.1\%, 10 V step$ 23.4 μ_S Gain Bandwidth ProductGBP $V_{IN} = 5 mV p-p, R_L = 10 k\Omega, A_V = 100$ 786 KHz Unity-Gain CrossoverUGC $V_{IN} = 5 mV p-p, R_L = 10 k\Omega, A_V = 1$ 800 kHz Phase Margin Φ_M 60 Degrees-3 dB Closed-Loop Bandwidth $f_{-3 dB}$ $A_V = 1, V_{IN} = 5 mV p-p$ 1520 kHz NOISE PERFORMANCE V_{II} $0.1 Hz to 10 Hz$ 0.7 $\mu V p-p$ Voltage Noise $e_n p-p$ $0.1 Hz to 10 Hz$ 0.2 pA/\sqrt{Hz}	POWER SUPPLY						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Power Supply Rejection Ratio	PSRR	$V_{SY} = 3 V \text{ to } 36 V$	100			dB
Supply Current per AmplifierIsv $V_0 = V_{SY}/2$ 6075 μA -40°C $\leq T_A \leq +125°C$ 100 μA DYNAMIC PERFORMANCESRRL = 100 k Ω , CL = 30 pF0.4 V/μ Settling TimetsTo 0.1%, 10 V step23.4 μs Gain Bandwidth ProductGBP $V_{IN} = 5 \text{ mV p-p}$, RL = 10 k Ω , Av = 100786kHzUnity-Gain CrossoverUGC $V_{IN} = 5 \text{ mV p-p}$, RL = 10 k Ω , Av = 1800kHzPhase Margin Φ_M 60Degrees-3 dB Closed-Loop Bandwidth $f_{-3 dB}$ $A_V = 1$, $V_{IN} = 5 \text{ mV p-p}$ 1520kHzChannel SeparationCS $f = 1 \text{ kHz}$ 100dBNOISE PERFORMANCE e_n $f = 1 \text{ kHz}$ 27 nV/\sqrt{Hz} Voltage Noise Density e_n $f = 1 \text{ kHz}$ 0.2 pA/\sqrt{Hz}			$-40^{\circ}C \le T_A \le +125^{\circ}C$	90			dB
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Supply Current per Amplifier	lsy	$V_0 = V_{SY}/2$		60	75	μΑ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			100	μΑ
Slew RateSR $R_L = 100 k\Omega, C_L = 30 pF$ 0.4 V/μ Settling Time t_s To 0.1%, 10 V step23.4 μs Gain Bandwidth ProductGBP $V_{IN} = 5 mV p-p, R_L = 10 k\Omega, A_V = 100$ 786kHzUnity-Gain CrossoverUGC $V_{IN} = 5 mV p-p, R_L = 10 k\Omega, A_V = 1$ 800kHzPhase Margin Φ_M 60Degrees-3 dB Closed-Loop Bandwidth $f_{-3 dB}$ $A_V = 1, V_{IN} = 5 mV p-p$ 1520kHzChannel SeparationCS $f = 1 kHz$ 100dBNOISE PERFORMANCE $e_n p-p$ 0.1 Hz to 10 Hz0.7 $\mu V p-p$ Voltage Noise e_n $f = 1 kHz$ 27 nV/\sqrt{Hz} Current Noise Density i_n $f = 1 kHz$ 0.2 pA/\sqrt{Hz}	DYNAMIC PERFORMANCE						
Settling TimetsTo 0.1%, 10 V step23.4 μs Gain Bandwidth ProductGBP $V_{IN} = 5 \text{ mV p-p}, R_L = 10 \text{ k}\Omega, A_V = 100$ 786kHzUnity-Gain CrossoverUGC $V_{IN} = 5 \text{ mV p-p}, R_L = 10 \text{ k}\Omega, A_V = 1$ 800kHzPhase Margin Φ_M 60Degrees-3 dB Closed-Loop Bandwidth $f_{-3 \text{ dB}}$ $A_V = 1, V_{IN} = 5 \text{ mV p-p}$ 1520kHzChannel SeparationCS $f = 1 \text{ kHz}$ 100dBNOISE PERFORMANCE $e_n p-p$ 0.1 Hz to 10 Hz0.7 $\mu V p-p$ Voltage Noise e_n $f = 1 \text{ kHz}$ 27 nV/\sqrt{Hz} Current Noise Density i_n $f = 1 \text{ kHz}$ 0.2 pA/\sqrt{Hz}	Slew Rate	SR	$R_L = 100 \text{ k}\Omega, C_L = 30 \text{ pF}$		0.4		V/μ
	Settling Time	ts	To 0.1%, 10 V step		23.4		μs
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gain Bandwidth Product	GBP	$V_{IN} = 5 \text{ mV p-p}, R_L = 10 \text{ k}\Omega, A_V = 100$		786		kHz
$\begin{tabular}{ c c c c c } \hline Phase Margin & Φ_M & 60 & Degrees \\ \hline -3 dB Closed-Loop Bandwidth & $f_{-3 dB}$ & $A_V = 1, V_{IN} = 5 \mbox{ mV p-p}$ & 1520 & kHz & 100 & dB & CS & $f = 1 \mbox{ kHz}$ & 100 & dB & 100 $	Unity-Gain Crossover	UGC	$V_{IN} = 5 \text{ mV p-p}, R_L = 10 \text{ k}\Omega, A_V = 1$		800		kHz
$\begin{tabular}{ c c c c c c } \hline -3 \ dB \ Closed-Loop \ Bandwidth & f_{-3 \ dB} & A_V = 1, V_{IN} = 5 \ mV \ p-p & 1520 & kHz \\ \hline Channel \ Separation & CS & f = 1 \ kHz & 100 & dB \\ \hline \hline NOISE \ PERFORMANCE & & & & & & & \\ \hline Voltage \ Noise & e_n \ p-p & 0.1 \ Hz \ to \ 10 \ Hz & 0.7 & \muV \ p-p \\ \hline Voltage \ Noise \ Density & e_n & f = 1 \ kHz & 27 & nV/\sqrt{Hz} \\ \hline Current \ Noise \ Density & i_n & f = 1 \ kHz & 0.2 & pA/\sqrt{Hz} \\ \hline \end{tabular}$	Phase Margin	Фм			60		Degrees
$\begin{tabular}{ c c c c c c } \hline CS & f=1 \text{kHz} & 100 & dB \\ \hline NOISE PERFORMANCE & & & & & & & \\ \hline Voltage Noise & & e_n p-p & 0.1 \text{Hz} to 10 \text{Hz} & 0.7 & \mu V p-p \\ \hline Voltage Noise Density & e_n & f=1 \text{kHz} & 27 & nV/\sqrt{\text{Hz}} \\ \hline Current Noise Density & i_n & f=1 \text{kHz} & 0.2 & pA/\sqrt{\text{Hz}} \\ \hline \end{array}$	-3 dB Closed-Loop Bandwidth	f _3 dB	$A_V = 1, V_{IN} = 5 \text{ mV } p-p$		1520		kHz
NOISE PERFORMANCE $e_n p-p$ 0.1 Hz to 10 Hz0.7 $\mu V p-p$ Voltage Noise e_n $f = 1 \text{ kHz}$ 27 nV/\sqrt{Hz} Current Noise Density i_n $f = 1 \text{ kHz}$ 0.2 pA/\sqrt{Hz}	Channel Separation	CS	f = 1 kHz		100		dB
Voltage Noise $e_n p-p$ 0.1 Hz to 10 Hz0.7 $\mu V p-p$ Voltage Noise Density e_n $f = 1 \text{ kHz}$ 27 nV/\sqrt{Hz} Current Noise Density i_n $f = 1 \text{ kHz}$ 0.2 pA/\sqrt{Hz}	NOISE PERFORMANCE			1			
Voltage Noise Density e_n $f = 1 \text{ kHz}$ 27 $n V/\sqrt{Hz}$ Current Noise Density i_n $f = 1 \text{ kHz}$ 0.2 $p A/\sqrt{Hz}$	Voltage Noise	e _n p-p	0.1 Hz to 10 Hz		0.7		μV p-р
Current Noise Density i_n $f = 1 \text{ kHz}$ 0.2 pA/\sqrt{Hz}	Voltage Noise Density	en	f = 1 kHz		27		nV/√Hz
	Current Noise Density	i n	f = 1 kHz		0.2		pA/√Hz

ABSOLUTE MAXIMUM RATINGS

Table 5.

Parameter	Rating
Supply Voltage	36 V
Input Voltage	
Operating Condition	$-V \leq V_{IN} \leq +V$
Overvoltage Condition ¹	$(-V) - 32V \le V_{IN} \le (+V) + 32V$
Differential Input Voltage ²	±V _{SY}
Input Current	±5 mA
Output Short-Circuit Duration to GND	Indefinite
Storage Temperature Range	–65°C to +150°C
Operating Temperature Range	-40°C to +125°C
Junction Temperature Range	–65°C to +150°C
Lead Temperature (Soldering, 60 seconds)	300°C

¹ Performance not guaranteed during overvoltage conditions.

² Limit the input current to ±5 mA.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the device soldered on a 4-layer JEDEC standard printed circuit board (PCB) with zero airflow. The exposed pad is soldered to the application board.

Table 6. Thermal Resistance

Package Type	θ _{JA}	θις	Unit
8-Lead MSOP (RM-8)	142	45	°C/W
8-Lead LFCSP (CP-8-10)	76	43	°C/W
14-Lead TSSOP (RU-14)	112	35	°C/W
16-Lead LFCSP (CP-16-22)	75	12	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

ΟυτΑ 🔟	•	<u>े</u> ∎ v+	
–INA 2	ADA4096-2	7 OUTB	
+INA 3	TOP VIEW	6 –INB	201
V- 4		5 +INB	09241-

Figure 4. 8-Lead, MSOP (RM-8), ADA4096-2

Figure 5. 8-Lead LFCSP (CP-8-10), ADA4096-2

Table 7. Pin	Function	Descriptions,	ADA4096-2
--------------	----------	---------------	-----------

Pin	No. ¹			
8-Lead MSOP	8-Lead LFCSP	Mnemonic	Description	
1	1	OUTA	Output Channel A.	
2	2	–INA	Negative Input Channel A.	
3	3	+INA	Positive Input Channel A.	
4	4	V-	Negative Supply Voltage.	
5	5	+INB	Positive Input Channel B.	
6	6	–INB	Negative Input Channel B.	
7	7	OUTB	Output Channel B.	
8	8	V+	Positive Supply Voltage.	
N/A	EP ²	EPAD	Exposed Pad. ² For the ADA4096-2 (8-lead LFCSP only), connect the exposed pad to V–.	

¹ N/A means not applicable.

² The exposed pad is not shown in the pin configuration diagram.

Data Sheet

ADA4096-2/ADA4096-4

Figure 6. 14-Lead TSSOP (RU-14), ADA4096-4

Pin No. ¹			
14-Lead TSSOP	16-Lead LFCSP	Mnemonic	Description
1	15	OUTA	Output Channel A.
2	1	–INA	Negative Input Channel A.
3	2	+INA	Positive Input Channel A.
4	3	V+	Positive Supply Voltage.
5	4	+INB	Positive Input Channel B.
6	5	–INB	Negative Input Channel B.
7	6	OUTB	Output Channel B.
8	7	OUTC	Output Channel C.
9	8	–INC	Negative Input Channel C.
10	9	+INC	Positive Input Channel C.
11	10	V-	Negative Supply Voltage.
12	11	+IND	Positive Input Channel D.
13	12	–IND	Negative Input Channel D.
14	14	OUTD	Output Channel D.
N/A	13	NIC	No Internal Connection.
N/A	16	NIC	No Internal Connection.
N/A	EP ²	EPAD	Exposed Pad. ² For the ADA4096-4 (16-lead LFCSP only), connect the exposed pad to V–.

¹ N/A means not applicable.

² The exposed pad is not shown in the pin configuration diagram.

TYPICAL PERFORMANCE CHARACTERISTICS

 $T_A = 25^{\circ}$ C, unless otherwise noted. All typical performance characteristics shown are for the ADA4096-2 only.

±1.5 V CHARACTERISTICS

Figure 11. Input Bias Current (IB) vs. VCM for Various Temperatures

Figure 12. Output Voltage to Supply Rail vs. Load Current

Figure 15. Output Impedance (Z_{OUT}) vs. Frequency

±5 V CHARACTERISTICS

Figure 21. Input Offset Voltage (Vos) Distribution

Figure 23. Input Offset Voltage (V_{OS}) vs. Common-Mode Voltage (V_{CM})

Figure 24. Input Bias Current (IB) vs. VCM for Various Temperatures

Figure 25. Output Voltage to Supply Rail vs. Load Current

Figure 26. Open-Loop Gain and Phase vs. Frequency

09241-053

09241-017

Data Sheet

0.08 ADA4096-2 $V_{SY} = \pm 5V$ $T_A = 25^{\circ}C$ $R_L = 10k\Omega$ $G_L = 100pF$ G = +10.06 0.04 0.02 () 0 150 0 0 -0.04 -0.06 -0.08 -0.10 09241-018 Ó 5 10 15 20 25 30 TIME (µs) Figure 31. Small Signal Transient Response

6 5 4 ۷_{0UT} (۷) 3 2 1 0 20 40 60 80 100 09241-057 0 TIME (µs) Figure 32. Positive Overload Recovery

±15 V CHARACTERISTICS

Figure 34. Input Offset Voltage (Vos) Distribution

Figure 36. Input Offset Voltage (Vos) vs. Common-Mode Voltage (Vcm)

Figure 37. Input Bias Current (IB) vs. VCM for Various Temperatures

Figure 38. Output Voltage to Supply Rail vs. Load Current

Figure 39. Open-Loop Gain and Phase vs. Frequency

G = +100 50 ADA4096-2 V_{SY} = ±15V T_A = 25°C 40 1 1 1 1 30 G = +10 CLOSED-LOOP GAIN (dB) 20 10 G = +1 0 ____ -10 -20 -30 _40 L 10 09241-036 100 1k 10k 100k 1M 10M FREQUENCY (Hz)

Figure 40. Closed-Loop Gain vs. Frequency

Figure 41. Output Impedance (Zout) vs. Frequency

COMPARATIVE VOLTAGE AND VARIABLE VOLTAGE GRAPHS

Figure 47. Input Voltage Noise, 0.1 Hz to 10 Hz Bandwidth

Figure 52. Overshoot vs. Load Capacitance (CLOAD)

THEORY OF OPERATION

INPUT STAGE

Figure 53. Simplified Schematic, ADA4096-2

Figure 53 shows a simplified schematic of the ADA4096-2. The input stage comprises two differential pairs (Q1 to Q4 and Q5 to Q8) operating in parallel. When the input common-mode voltage approaches VCC – 1.5 V, Q1 to Q4 shut down as I1 reaches its minimum voltage compliance. Conversely, when the input common-mode voltage approaches V_{EE} + 1.5 V, Q5 to Q8 shut down as I2 reaches its minimum voltage compliance. This topology allows for maximum input dynamic range because the amplifier can function with its inputs at 200 mV outside the rail (at room temperature).

As with any rail-to-rail input amplifier, V_{os} mismatch between the two input pairs determines the CMRR of the amplifier. If the input common-mode voltage range is kept within 1.5 V of each rail, transitions between the input pairs are avoided, thus improving the CMRR by approximately 10 dB (see Table 3 and Table 4).

PHASE INVERSION

Some single-supply amplifiers exhibit phase inversion when the input signal extends beyond the common-mode voltage range of the amplifier. When the input devices become saturated, the inverting and noninverting inputs exchange functions, causing the output to move in the opposing direction. Although phase inversion persists for only as long as the inputs are saturated, it can be detrimental to applications where the amplifier is part of a closed-loop system. The ADA4096-2 family is free from phase inversion over the entire common-mode voltage range, as well as the overvoltage protected range that is stated in the Absolute Maximum Ratings section, Table 5. Figure 54 shows the ADA4096-2 in a unity-gain configuration with the input signal at ± 40 V and the amplifier supplies at ± 10 V.

INPUT OVERVOLTAGE PROTECTION

The ADA4096-2 family inputs are protected from input voltage excursions up to 32 V outside each rail. This feature is of particular importance in applications with power supply sequencing issues that could cause the signal source to be active before the power supplies.

Figure 55 shows the input current limiting capability of the ADA4096-2 (green curves) compared to using a 5 k Ω series resistor (red curves).

Figure 55 was generated with the ADA4096-2 in a buffer configuration with the supplies connected to GND (or ± 15 V) and the positive input swept until it exceeds the supplies by 32 V. In general, input current is limited to 1 mA during positive overvoltage conditions and 200 µA during negative undervoltage conditions. For example, at an overvoltage of 20 V, the ADA4096-2 input current is limited to 1 mA, providing a current-limit equivalent to a series 20 k Ω resistor. Figure 55 also shows that the current limiting circuitry is active whether the amplifier is powered or not.

Note that Figure 55 represents input protection under abnormal conditions only. The correct amplifier operation input voltage range (IVR) is specified in Table 2 to Table 4.

COMPARATOR OPERATION

Although op amps are quite different from comparators, occasionally an unused section of a dual or a quad op amp may be pressed into service as a comparator; however, this is not recommended for any rail-to-rail output op amps. For rail-torail output op amps, the output stage is generally a ratioed current mirror with bipolar or metal-oxide semiconductor field-effect (MOSFET) transistors. With the device operating in open loop, the second stage increases the current drive to the ratioed mirror to close the loop, but it cannot, which results in an increase in supply current. With the op amp configured as a comparator, the supply current can be significantly higher (see Figure 56).

OUTLINE DIMENSIONS

Dimensions shown in millimeters

(CP-16-22)

Dimensions shown in millimeters

ORDERING GUIDE

Model ^{1, 2}	Temperature Range	Package Description	Package Option	Branding
ADA4096-2ARMZ	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	A2T
ADA4096-2ARMZ-R7	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	A2T
ADA4096-2ARMZ-RL	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	A2T
ADA4096-2ACPZ-R7	-40°C to +125°C	8-Lead Lead Frame Chip Scale Package [LFCSP_UD]	CP-8-10	A4
ADA4096-2ACPZ-RL	-40°C to +125°C	8-Lead Lead Frame Chip Scale Package [LFCSP_UD]	CP-8-10	A4
ADA4096-2WARMZ-R7	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	A2T
ADA4096-2WARMZ-RL	–40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	A2T
ADA4096-4ARUZ	-40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14	
ADA4096-4ARUZ-R7	-40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14	
ADA4096-4ARUZ-RL	-40°C to +125°C	14-Lead Thin Shrink Small Outline Package [TSSOP]	RU-14	
ADA4096-4ACPZ-R7	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-22	A30
ADA4096-4ACPZ-RL	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-22	A30

¹ Z = RoHS Compliant Part.

 2 W = Qualified for Automotive Applications.

AUTOMOTIVE PRODUCTS

The ADA4096-2W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

NOTES

©2011–2017 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09241-0-9/17(G)

www.analog.com

Rev. G | Page 25 of 25