

January 1999 Revised June 2005

74LVT16374 • 74LVTH16374 Low Voltage 16-Bit D-Type Flip-Flop with 3-STATE Outputs

General Description

The LVT16374 and LVTH16374 contain sixteen non-inverting D-type flip-flops with 3-STATE outputs and is intended for bus oriented applications. The device is byte controlled. A buffered clock (CP) and Output Enable $(\overline{\text{OE}})$ are common to each byte and can be shorted together for full 16-bit operation.

The LVTH16374 data inputs include bushold, eliminating the need for external pull-up resistors to hold unused inputs.

These flip-flops are designed for low-voltage (3.3V) V_{CC} applications, but with the capability to provide a TTL interface to a 5V environment. The LVT16374 and LVTH16374 are fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining a low power dissipation.

Features

- Input and output interface capability to systems at 5V V_{CC}
- Bushold data inputs eliminate the need for external pull-up resistors to hold unused inputs (74LVTH16374), also available without bushold feature (74LVT16374)
- Live insertion/extraction permitted
- Power Up/Power Down high impedance provides glitch-free bus loading
- Outputs source/sink -32 mA/+64 mA
- Functionally compatible with the 74 series 16374
- Latch-up performance exceeds 500 mA
- ESD performance:

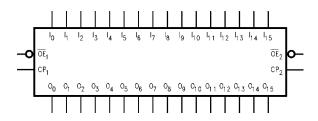
Human-body model > 2000V

Machine model > 200V

Charged device model : 1000V

Charged-device model > 1000V

Also packaged in plastic Fine-Pitch Ball Grid Array (FBGA)

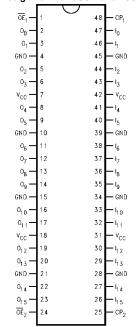

Ordering Code:

Order Number	Package Number	Package Description
74LVT16374G (Note 1)(Note 2)	BGA54A (Preliminary)	54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide
74LVT16374MEA (Note 2)	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74LVT16374MTD (Note 2)	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
74LVTH16374G (Note 1)(Note 2)	BGA54A	54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide
74LVTH16374MEA (Note 2)	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74LVTH16374MTD (Note 2)	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

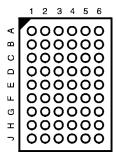
Note 1: Ordering code "G" indicates Trays.

Note 2: Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbol



© 2005 Fairchild Semiconductor Corporation


DS012022

Connection Diagrams

Pin Assignment for SSOP and TSSOP

Pin Assignment for FBGA

(Top Thru View)

Pin Descriptions

Pin Names	Description
\overline{OE}_n	Output Enable Input (Active LOW)
CP _n	Clock Pulse Input
I ₀ -I ₁₅	Inputs
O ₀ -O ₁₅	3-STATE Outputs
NC	No Connect

FBGA Pin Assignments

	1	2	3	4	5	6
Α	O ₀	NC	OE ₁	CP ₁	NC	I ₀
В	02	O ₁	NC	NC	I ₁	l ₂
С	O ₄	O ₃	V _{CC}	V _{CC}	l ₃	I ₄
D	O ₆	O ₅	GND	GND	l ₅	I ₆
E	Ο ₈	O ₇	GND	GND	I ₇	I ₈
F	O ₁₀	O ₉	GND	GND	l ₉	I ₁₀
G	O ₁₂	O ₁₁	V _{CC}	V _{CC}	I ₁₁	I ₁₂
Н	O ₁₄	O ₁₃	NC	NC	I ₁₃	I ₁₄
J	O ₁₅	NC	OE ₂	CP ₂	NC	I ₁₅

Truth Tables

	Outputs		
CP ₁	OE ₁	I ₀ –I ₇	O ₀ -O ₇
~	L	Н	Н
~	L	L	L
L	L	Х	O _o
X	Н	Χ	Z

	Outputs		
CP ₂	OE ₂	I ₈ -I ₁₅	O ₈ -O ₁₅
~	L	Н	Н
~	L	L	L
L	L	Χ	O _o
Х	Н	X	Z

H = HIGH Voltage Level

Functional Description

The LVT16374 and LVTH16374 consist of sixteen edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. Each byte has a buffered clock and buffered Output Enable common to all flip-flops within that byte. The description which follows applies to each byte.

Each flip-flop will store the state of their individual D-type inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP_n) transition. With the Output Enable (\overline{OE}_n) LOW, the contents of the flip-flops are available at the outputs. When \overline{OE}_n is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE}_n input does not affect the state of the flip-flops.

L = LOW Voltage Level

X = Immaterial

Z = HIGH Impedance

O_o = Previous O_o before HIGH to LOW of CP

Please note that these diagrams are provided for the understanding of logic operation and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 3)

Symbol	Parameter	Value	Conditions	Units	
V _{CC}	Supply Voltage	-0.5 to +4.6		V	
VI	DC Input Voltage	-0.5 to +7.0		V	
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V	
		-0.5 to +7.0	Output in High or Low State (Note 4)	ľ	
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA	
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA	
I _O	DC Output Current	64	V _O > V _{CC} Output at High State	mA	
		128	V _O > V _{CC} Output at Low State	IIIA	
I _{CC}	DC Supply Current per Supply Pin	±64		mA	
I _{GND}	DC Ground Current per Ground Pin	±128		mA	
T _{STG}	Storage Temperature	-65 to +150		°C	

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V _{CC}	Supply Voltage	2.7	3.6	V
VI	Input Voltage	0	5.5	V
I _{OH}	High-Level Output Current		-32	mA
I _{OL}	Low-Level Output Current		64	mA
T _A	Free-Air Operating Temperature	-40	85	°C
$\Delta t / \Delta V$	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V	0	10	ns/V

Note 3: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.

Note 4: I_O Absolute Maximum Rating must be observed.

DC Electrical Characteristics

Symbol	Parameter		V _{CC}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	
Syllibol	Farameter	i arameter		Min	Max	Oilles	Conditions	
V _{IK}	Input Clamp Diode Voltage		2.7		-1.2	V	I _I = -18 mA	
V _{IH}	Input HIGH Voltage		2.7-3.6	2.0		V	$V_O \le 0.1V$ or	
V _{IL}	Input LOW Voltage		2.7-3.6		0.8	l v	$V_O \ge V_{CC} - 0.1V$	
V _{OH}	Output HIGH Voltage		2.7-3.6	V _{CC} - 0.2			I _{OH} = -100 μA	
			2.7	2.4		V	I _{OH} = -8 mA	
			3.0	2.0			I _{OH} = -32 mA	
V _{OL}	Output LOW Voltage		2.7		0.2		$I_{OL} = 100 \mu A$	
			2.7		0.5		I _{OL} = 24 mA	
			3.0		0.4	V	I _{OL} = 16 mA	
			3.0		0.5		I _{OL} = 32 mA	
			3.0		0.55		I _{OL} = 64 mA	
I _{I(HOLD)}	Bushold Input Minimum Drive		3.0	75		μА	$V_I = 0.8V$	
(Note 5)			3.0	-75		μА	V _I = 2.0V	
I _{I(OD)}	Bushold Input Over-Drive		3.0	500		μА	(Note 6)	
(Note 5)	Current to Change State		3.0	-500		μΑ	(Note 7)	
l _l	Input Current		3.6		10		V _I = 5.5V	
		Control Pins	3.6		±1	μА	$V_I = 0V$ or V_{CC}	
		Data Pins	3.6		-5	μΑ	$V_I = 0V$	
		Dala FIIIS	3.0		1		$V_I = V_{CC}$	
I _{OFF}	Power Off Leakage Current		0		±100	μА	$0V \le V_I \text{ or } V_O \le 5.5V$	
I _{PU/PD}	Power Up/Down 3-STATE		0-1.5V		±100	^	V _O = 0.5V to 3.0V	
	Output Current		0-1.50		±100	μА	$V_I = GND \text{ or } V_{CC}$	
I _{OZL}	3-STATE Output Leakage Currer	it	3.6		-5	μА	$V_0 = 0.5V$	
I _{OZH}	3-STATE Output Leakage Currer	it	3.6		5	μА	V _O = 3.0V	
I _{OZH} +	3-STATE Output Leakage Currer	ıt	3.6		10	μΑ	$V_{CC} < V_O \le 5.5V$	

DC Electrical Characteristics (Continued)

Symbol	Parameter	v _{cc}	V_{CC} $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	
Oymboi	T di diffetei	(V)	Min	Max	Onito	Conditions	
I _{CCH}	Power Supply Current	3.6		0.19	mA	Outputs HIGH	
I _{CCL}	Power Supply Current	3.6		5	mA	Outputs LOW	
I _{CCZ}	Power Supply Current	3.6		0.19	mA	Outputs Disabled	
I _{CCZ} +	Power Supply Current	3.6		0.19	mA	$V_{CC} \le V_O \le 5.5V$,	
						Outputs Disabled	
Δl _{CC}	Increase in Power Supply Current	3.6		0.2	mA	One Input at V _{CC} - 0.6V	
	(Note 8)					Other Inputs at V _{CC} or GND	

Note 5: Applies to bushold versions only (74LVTH16374).

Note 6: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 7: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

Note 8: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

Dynamic Switching Characteristics (Note 9)

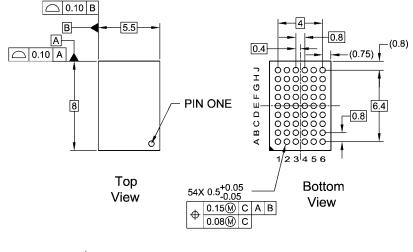
Symbol	Parameter	v _{cc}	T _A = 25°C			Units	Conditions	
- Cymbon	i didilicici	(V)	Min	Тур Мах		Omio	$\textbf{C}_{\textbf{L}} = \textbf{50}~\text{pF,}~\textbf{R}_{\textbf{L}} = \textbf{500}\Omega$	
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8		V	(Note 10)	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3		-0.8		V	(Note 10)	

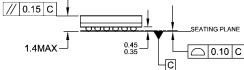
Note 9: Characterized in SSOP package. Guaranteed parameter, but not tested.

Note 10: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW.

AC Electrical Characteristics

		$T_A = -40$ °C to +85 °C, $C_L = 50$ pF, $R_L = 500\Omega$					
Symbol	Parameter	V _{CC} = 3.	V _{CC} =	Units			
		Min	Max	Min	Max		
f _{MAX}	Maximum Clock Frequency	160		160		MHz	
t _{PHL}	Propagation Delay	1.9	4.3	1.9	4.6	no	
t _{PLH}	CP to O _n	1.6	4.5	1.6	5.2	ns	
PZL	Output Enable Time	1.3	4.4	1.3	5.0	ns	
t _{PZH}		1.0	4.5	1.0	5.4	115	
PLZ	Output Disable Time	1.5	4.6	1.5	4.8	ns	
t _{PHZ}		2.0	5.0	2.0	5.4	115	
ts	Setup Time	1.8		2.0		ns	
^t н	Hold Time	0.8		0.1		ns	
tw	Pulse Width	3.0		3.0		ns	
OSHL	Output to Output Skew (Note 11)		1.0		1.0	ns	
OSLH			1.0		1.0	ns	


Note 11: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (toSHL) or LOW-to-HIGH (toSLH).


Capacitance (Note 12)

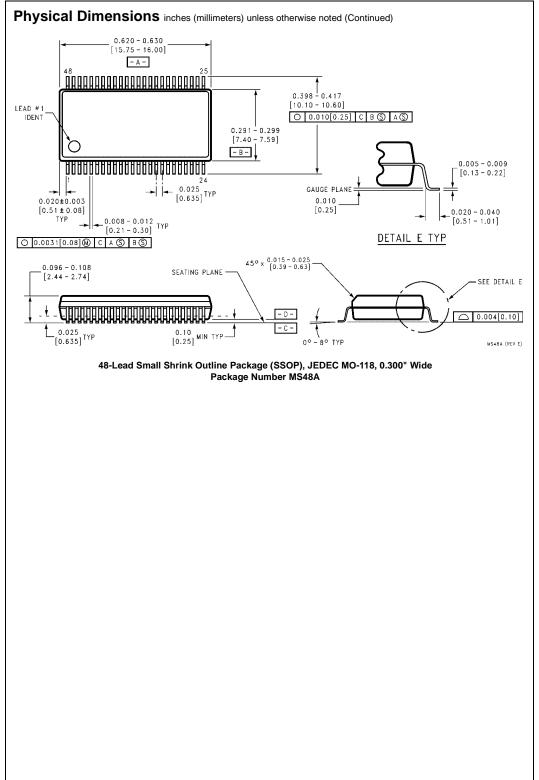
-	Symbol	Parameter	Conditions	Typical	Units
C	ÌIN	Input Capacitance	V _{CC} = Open, V _I = 0V or V _{CC}	4	pF
C	ОИТ	Output Capacitance	$V_{CC} = 3.0V$, $V_{O} = 0V$ or V_{CC}	8	pF

Note 12: Capacitance is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.

Physical Dimensions inches (millimeters) unless otherwise noted

NOTES:

- A. THIS PACKAGE CONFORMS TO JEDEC M0-205


 B. ALL DIMENSIONS IN MILLIMETERS

 C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)
 .35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS

 D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA54ArevD

54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide Package Number BGA54A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 12.50±0.10 0.40 TYP -B-99. 9.20 8.10 50. O.2 C B A ALL LEAD TIPS PIN #1 IDENT 0.50 LAND PATTERN RECOMMENDATION 0.1 C SEE DETAIL A 0.90+0.15 0.09-0.20 0.10±0.05 0.17-0.27 0.50 ♦ 0.13\@ A B\S C\S 12.00' TOP & BOTTOM DIMENSIONS ARE IN MILLIMETERS R0.16 GAGE PLANE 0.25 NOTES: A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION ED, DATE 4/97. B. DIMENSIONS ARE IN MILLIMETERS. SEATING PLANE 0.60±0.10 1.00 C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982. DETAIL A MTD48REVC 48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com