

Discrete POWER & Signal **Technologies**

2N5962

MMBT5962

NPN General Purpose Amplifier

This device is designed for use as low noise, high gain, general purpose amplifiers requiring collector currents to 50 mA. Sourced from Process 07. See 2N5088 for characteristics.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units	
V_{CEO}	Collector-Emitter Voltage	45	V	
V _{CBO}	Collector-Base Voltage	45	V	
V _{EBO}	Emitter-Base Voltage	8.0	V	
Ic	Collector Current - Continuous	100	mA	
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C	

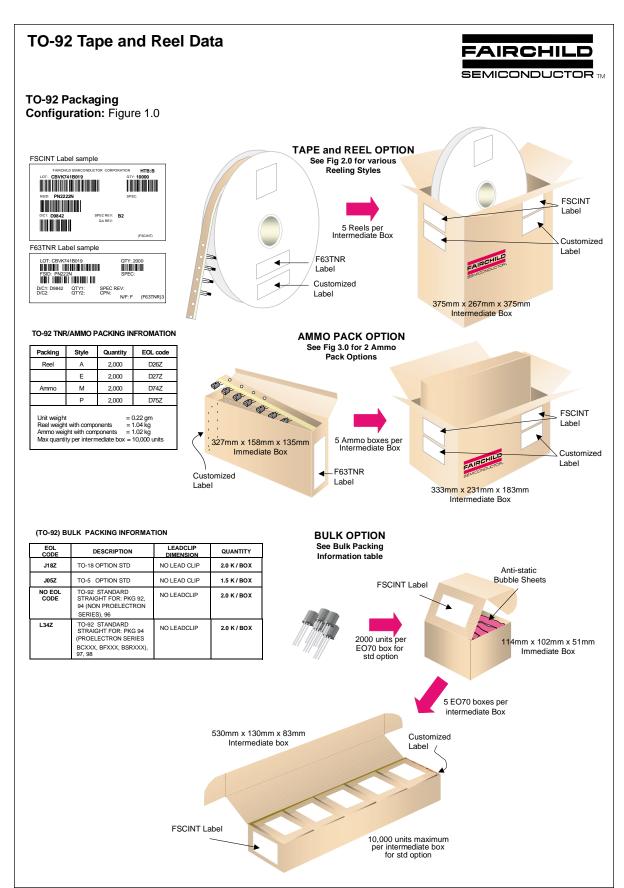
^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	Characteristic	М	Units	
		2N5962	*MMBT5962	
P _D	Total Device Dissipation Derate above 25°C	625 5.0	350 2.8	mW mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	°C/W

^{*}Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

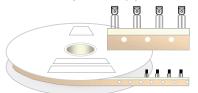

¹⁾ These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

NPN General Purpose Amplifier (continued)

Symbol	Parameter	Test Conditions	Max	Units	
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_C = 5.0 \text{ mA}, I_B = 0$	45		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 10 \mu A, I_E = 0$	45		V
$V_{(BR)EBO}$	Emitter-Base Breakdown Voltage	$I_E = 10 \mu\text{A}, I_C = 0$	8.0		V
I _{сво}	Collector Cutoff Current	$V_{CB} = 30 \text{ V}, I_{E} = 0$		2.0	nA
1	Freitter Cutoff Cumant	$V_{CB} = 30 \text{ V}, I_{E} = 0, T_{A} = 65 ^{\circ}\text{C}$		50	nA
EBO	Emitter Cutoff Current	$V_{EB} = 5.0 \text{ V}, I_C = 0$		1.0	nA
ON CHAF	RACTERISTICS*				
h _{FE}	DC Current Gain	$V_{CE} = 5.0 \text{ V}, I_{C} = 10 \mu\text{A}$	450		
		$V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}$	500		
		$V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_{C} = 10 \text{ mA}$	550 600	1400	
.,	Collector Emitter Seturation Voltage	$I_C = 10 \text{ mA}, I_B = 0.5 \text{ mA}$	000	0.2	V
VOE (OOt)					
J _{BE(on)}	Collector-Emitter Saturation Voltage Base-Emitter On Voltage SIGNAL CHARACTERISTICS	$V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$	0.5	0.7	V
V _{BE(ON)}	-	· ·	0.5		•
V _{BE(on)} SMALL S	Base-Emitter On Voltage	$V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$	0.5	0.7	V
SMALL S C _{cb}	Base-Emitter On Voltage SIGNAL CHARACTERISTICS Collector-Base Capacitance	$V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$ $V_{CB} = 5.0 \text{ V}$	0.5	4.0	V
SMALL S C _{cb}	Base-Emitter On Voltage SIGNAL CHARACTERISTICS Collector-Base Capacitance Emitter-Base Capacitance	$V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$ $V_{CB} = 5.0 \text{ V}$ $V_{EB} = 0.5 \text{ V}$ $I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V},$ $f = 1.0 \text{ kHz}$	600	4.0	V
SMALL S C _{cb}	Base-Emitter On Voltage SIGNAL CHARACTERISTICS Collector-Base Capacitance Emitter-Base Capacitance	$V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$ $V_{CB} = 5.0 \text{ V}$ $V_{EB} = 0.5 \text{ V}$ $I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V},$ $f = 1.0 \text{ kHz}$ $I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V},$	600	4.0 6.0	V
V _{CE} (sat) V _{BE} (on) SMALL S C _{cb} C _{eb} Ofe	Base-Emitter On Voltage SIGNAL CHARACTERISTICS Collector-Base Capacitance Emitter-Base Capacitance	$V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$ $V_{CB} = 5.0 \text{ V}$ $V_{EB} = 0.5 \text{ V}$ $I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V},$ $f = 1.0 \text{ kHz}$ $I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V},$ $f = 100 \text{ MHz}$		4.0 6.0	V
SMALL S Cob Cob	Base-Emitter On Voltage SIGNAL CHARACTERISTICS Collector-Base Capacitance Emitter-Base Capacitance Small-Signal Current Gain	$V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$ $V_{CB} = 5.0 \text{ V}$ $V_{EB} = 0.5 \text{ V}$ $I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V},$ $f = 1.0 \text{ kHz}$ $I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V},$ $f = 100 \text{ MHz}$ $V_{CE} = 5.0 \text{ V}, I_{C} = 10 \text{ \muA},$ $R_{S} = 10 \text{ k}\Omega, f = 1.0 \text{ kHz},$	600	0.7 4.0 6.0 200	PF PF
SMALL S Cob Cob Tree Tree Tree Tree Tree Tree Tree Tre	Base-Emitter On Voltage SIGNAL CHARACTERISTICS Collector-Base Capacitance Emitter-Base Capacitance Small-Signal Current Gain	$\begin{split} V_{CE} &= 5.0 \text{ V}, \text{ I}_{C} = 1.0 \text{ mA} \\ \\ V_{CB} &= 5.0 \text{ V} \\ V_{EB} &= 0.5 \text{ V} \\ \\ I_{C} &= 10 \text{ mA}, \text{ V}_{CE} = 5.0 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ I_{C} &= 10 \text{ mA}, \text{ V}_{CE} = 5.0 \text{ V}, \\ f &= 100 \text{ MHz} \\ \\ V_{CE} &= 5.0 \text{ V}, \text{ I}_{C} = 10 \mu\text{A}, \\ R_{S} &= 10 k\Omega, f = 1.0 \text{ kHz}, \\ B_{W} &= 400 \text{ Hz} \end{split}$	600	4.0 6.0	V
SMALL S Ccb Ceb	Base-Emitter On Voltage SIGNAL CHARACTERISTICS Collector-Base Capacitance Emitter-Base Capacitance Small-Signal Current Gain	$\begin{split} &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 1.0 \text{ mA} \\ \\ &V_{CB} = 5.0 \text{ V} \\ &V_{EB} = 0.5 \text{ V} \\ &I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, \\ &f = 1.0 \text{ kHz} \\ &I_{C} = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, \\ &f = 100 \text{ MHz} \\ \\ &V_{CE} = 5.0 \text{ V}, I_{C} = 10 \mu\text{A}, \\ &R_{S} = 10 k\Omega, f = 1.0 k\text{Hz}, \\ &B_{W} = 400 \text{ Hz} \\ &V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}, \end{split}$	600	0.7 4.0 6.0 200	pF pF
SMALL S Ccb Ceb	Base-Emitter On Voltage SIGNAL CHARACTERISTICS Collector-Base Capacitance Emitter-Base Capacitance Small-Signal Current Gain	$\begin{split} V_{CE} &= 5.0 \text{ V}, \text{ I}_{C} = 1.0 \text{ mA} \\ \\ V_{CB} &= 5.0 \text{ V} \\ V_{EB} &= 0.5 \text{ V} \\ \\ I_{C} &= 10 \text{ mA}, \text{ V}_{CE} = 5.0 \text{ V}, \\ f &= 1.0 \text{ kHz} \\ I_{C} &= 10 \text{ mA}, \text{ V}_{CE} = 5.0 \text{ V}, \\ f &= 100 \text{ MHz} \\ \\ V_{CE} &= 5.0 \text{ V}, \text{ I}_{C} = 10 \mu\text{A}, \\ R_{S} &= 10 k\Omega, f = 1.0 \text{ kHz}, \\ B_{W} &= 400 \text{ Hz} \end{split}$	600	0.7 4.0 6.0 200	pF pF
SMALL S Cob Cob Tree Tree Tree Tree Tree Tree Tree Tre	Base-Emitter On Voltage SIGNAL CHARACTERISTICS Collector-Base Capacitance Emitter-Base Capacitance Small-Signal Current Gain	$\begin{split} &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 1.0 \text{ mA} \\ \\ &V_{CB} = 5.0 \text{ V} \\ &V_{EB} = 0.5 \text{ V} \\ \\ &I_{C} = 10 \text{ mA}, \text{ V}_{CE} = 5.0 \text{ V}, \\ &f = 1.0 \text{ kHz} \\ &I_{C} = 10 \text{ mA}, \text{ V}_{CE} = 5.0 \text{ V}, \\ &f = 100 \text{ MHz} \\ \\ &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 10 \mu\text{A}, \\ &R_{S} = 10 k\Omega, f = 1.0 k\text{Hz}, \\ &B_{W} = 400 \text{ Hz} \\ &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 100 \mu\text{A}, \\ &R_{S} = 1.0 k\Omega, f = 1.0 k\text{Hz}, \\ \end{aligned}$	600	0.7 4.0 6.0 200	PF PF
SMALL S Cob Cob Tree Tree Tree Tree Tree Tree Tree Tre	Base-Emitter On Voltage SIGNAL CHARACTERISTICS Collector-Base Capacitance Emitter-Base Capacitance Small-Signal Current Gain	$\begin{split} &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 1.0 \text{ mA} \\ &V_{CB} = 5.0 \text{ V} \\ &V_{EB} = 0.5 \text{ V} \\ &I_{C} = 10 \text{ mA}, \text{ V}_{CE} = 5.0 \text{ V}, \\ &f = 1.0 \text{ kHz} \\ &I_{C} = 10 \text{ mA}, \text{ V}_{CE} = 5.0 \text{ V}, \\ &f = 100 \text{ MHz} \\ &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 10 \mu\text{A}, \\ &R_{S} = 10 k\Omega, f = 1.0 k\text{Hz}, \\ &B_{W} = 400 \text{ Hz} \\ &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 100 \mu\text{A}, \\ &R_{S} = 1.0 k\Omega, f = 1.0 k\text{Hz}, \\ &B_{W} = 400 \text{ Hz} \\ &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 100 \mu\text{A}, \\ &R_{S} = 10 k\Omega, f = 1.0 k\text{Hz}, \\ &R_{S} = 10 k\Omega, f = 1.0 k\text{Hz}, \end{split}$	600	4.0 6.0 200 3.0 6.0	PF PF
SMALL S Cob Cob	Base-Emitter On Voltage SIGNAL CHARACTERISTICS Collector-Base Capacitance Emitter-Base Capacitance Small-Signal Current Gain	$\begin{split} &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 1.0 \text{ mA} \\ &V_{CB} = 5.0 \text{ V} \\ &V_{EB} = 0.5 \text{ V} \\ &I_{C} = 10 \text{ mA}, \text{ V}_{CE} = 5.0 \text{ V}, \\ &f = 1.0 \text{ kHz} \\ &I_{C} = 10 \text{ mA}, \text{ V}_{CE} = 5.0 \text{ V}, \\ &f = 100 \text{ MHz} \\ &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 10 \mu\text{A}, \\ &R_{S} = 10 k\Omega, f = 1.0 \text{ kHz}, \\ &B_{W} = 400 \text{ Hz} \\ &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 100 \mu\text{A}, \\ &R_{S} = 1.0 k\Omega, f = 1.0 \text{ kHz}, \\ &B_{W} = 400 \text{ Hz} \\ &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 100 \mu\text{A}, \\ &R_{S} = 10 k\Omega, f = 1.0 \text{ kHz}, \\ &B_{W} = 400 \text{ Hz} \\ &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 100 \mu\text{A}, \\ &R_{S} = 10 k\Omega, f = 1.0 \text{ kHz}, \\ &B_{W} = 400 \text{ Hz} \\ \end{split}$	600	0.7 4.0 6.0 200	PF PF
SMALL S	Base-Emitter On Voltage SIGNAL CHARACTERISTICS Collector-Base Capacitance Emitter-Base Capacitance Small-Signal Current Gain	$\begin{split} &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 1.0 \text{ mA} \\ &V_{CB} = 5.0 \text{ V} \\ &V_{EB} = 0.5 \text{ V} \\ &I_{C} = 10 \text{ mA}, \text{ V}_{CE} = 5.0 \text{ V}, \\ &f = 1.0 \text{ kHz} \\ &I_{C} = 10 \text{ mA}, \text{ V}_{CE} = 5.0 \text{ V}, \\ &f = 100 \text{ MHz} \\ &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 10 \mu\text{A}, \\ &R_{S} = 10 k\Omega, f = 1.0 k\text{Hz}, \\ &B_{W} = 400 \text{ Hz} \\ &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 100 \mu\text{A}, \\ &R_{S} = 1.0 k\Omega, f = 1.0 k\text{Hz}, \\ &B_{W} = 400 \text{ Hz} \\ &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 100 \mu\text{A}, \\ &R_{S} = 10 k\Omega, f = 1.0 k\text{Hz}, \\ &R_{S} = 10 k\Omega, f = 1.0 k\text{Hz}, \end{split}$	600	4.0 6.0 200 3.0 6.0 4.0	PF PF dB dB dB
SMALL S Cob Cob Tree Tree Tree Tree Tree Tree Tree Tre	Base-Emitter On Voltage SIGNAL CHARACTERISTICS Collector-Base Capacitance Emitter-Base Capacitance Small-Signal Current Gain	$\begin{split} &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 1.0 \text{ mA} \\ &V_{CB} = 5.0 \text{ V} \\ &V_{EB} = 0.5 \text{ V} \\ &I_{C} = 10 \text{ mA}, \text{ V}_{CE} = 5.0 \text{ V}, \\ &f = 1.0 \text{ kHz} \\ &I_{C} = 10 \text{ mA}, \text{ V}_{CE} = 5.0 \text{ V}, \\ &f = 100 \text{ MHz} \\ &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 10 \mu\text{A}, \\ &R_{S} = 10 k\Omega, f = 1.0 \text{ kHz}, \\ &B_{W} = 400 \text{ Hz} \\ &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 100 \mu\text{A}, \\ &R_{S} = 1.0 k\Omega, f = 1.0 \text{ kHz}, \\ &B_{W} = 400 \text{ Hz} \\ &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 100 \mu\text{A}, \\ &R_{S} = 10 k\Omega, f = 1.0 \text{ kHz}, \\ &B_{W} = 400 \text{ Hz} \\ &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 100 \mu\text{A}, \\ &R_{S} = 100 k\Omega, f = 1.0 \text{ kHz}, \\ &B_{W} = 400 \text{ Hz} \\ \end{split}$	600	4.0 6.0 200 3.0 6.0	PF PF
SMALL S Cob Cob Tree Tree	Base-Emitter On Voltage SIGNAL CHARACTERISTICS Collector-Base Capacitance Emitter-Base Capacitance Small-Signal Current Gain	$\begin{split} &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 1.0 \text{ mA} \\ &V_{CB} = 5.0 \text{ V} \\ &V_{EB} = 0.5 \text{ V} \\ &I_{C} = 10 \text{ mA}, \text{ V}_{CE} = 5.0 \text{ V}, \\ &f = 1.0 \text{ kHz} \\ &I_{C} = 10 \text{ mA}, \text{ V}_{CE} = 5.0 \text{ V}, \\ &f = 100 \text{ MHz} \\ &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 10 \mu\text{A}, \\ &R_{S} = 10 k\Omega, f = 1.0 \text{ kHz}, \\ &B_{W} = 400 \text{ Hz} \\ &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 100 \mu\text{A}, \\ &R_{S} = 1.0 k\Omega, f = 1.0 \text{ kHz}, \\ &B_{W} = 400 \text{ Hz} \\ &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 100 \mu\text{A}, \\ &R_{S} = 10 k\Omega, f = 1.0 \text{ kHz}, \\ &B_{W} = 400 \text{ Hz} \\ &V_{CE} = 5.0 \text{ V}, \text{ I}_{C} = 100 \mu\text{A}, \\ &R_{S} = 100 k\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 k\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 k\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 k\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 k\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 k\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 k\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 k\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 k\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 k\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 k\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 k\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 k\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 k\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 k\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 k\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 \text{ k}\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 \text{ k}\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 \text{ k}\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 \text{ k}\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 \text{ k}\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 \text{ k}\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 \text{ k}\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 \text{ k}\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 \text{ k}\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 \text{ k}\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 \text{ k}\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 \text{ k}\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 \text{ k}\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 \text{ k}\Omega, f = 1.0 \text{ kHz}, \\ &R_{S} = 100 \text{ k}\Omega, \\ &R_{S} = 100 $	600	4.0 6.0 200 3.0 6.0 4.0	PF PF dB dB dB

^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

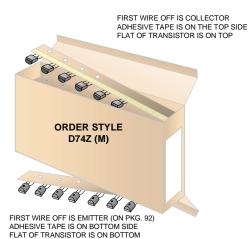


©2001 Fairchild Semiconductor Corporation

TO-92 Tape and Reel Data, continued

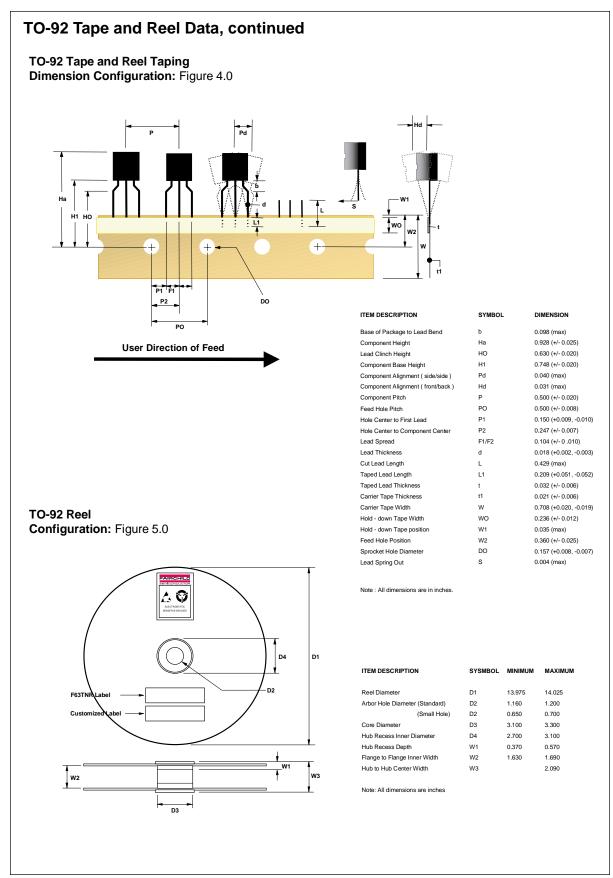
TO-92 Reeling Style Configuration: Figure 2.0

Machine Option "A" (H)

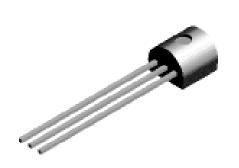


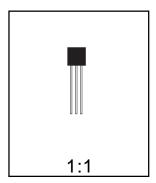
Style "A", D26Z, D70Z (s/h)

Machine Option "E" (J)

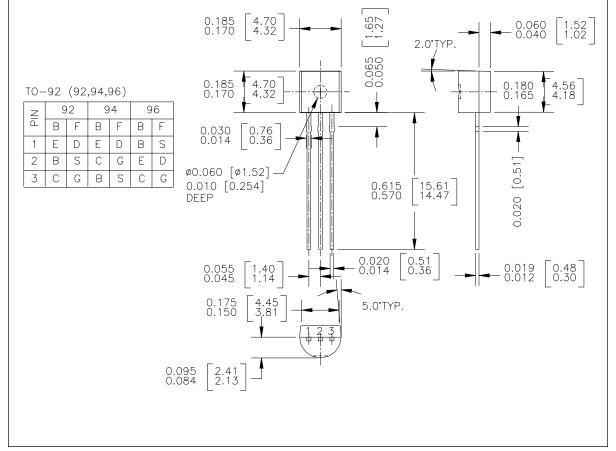

Style "E", D27Z, D71Z (s/h)

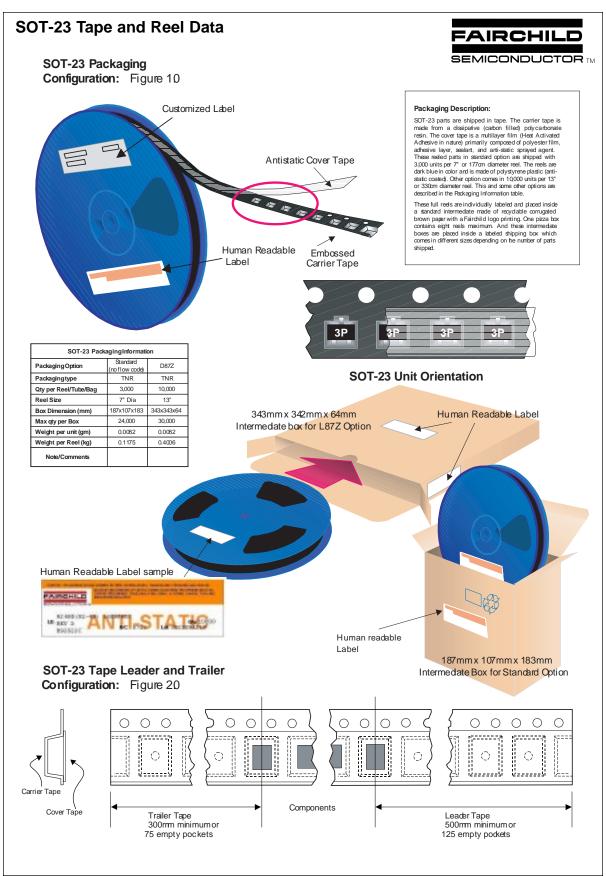
TO-92 Radial Ammo Packaging Configuration: Figure 3.0


FIRST WIRE OFF IS COLLECTOR (ON PKG. 92) ADHESIVE TAPE IS ON BOTTOM SIDE FLAT OF TRANSISTOR IS ON TOP



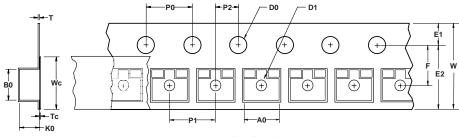
TO-92 Package Dimensions


TO-92 (FS PKG Code 92, 94, 96)


Scale 1:1 on letter size paper
Dimensions shown below are in:
inches [millimeters]

Part Weight per unit (gram): 0.1977

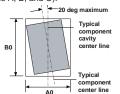
©2000 Fairchild Semiconductor International


January 2000, Rev. B

SOT-23 Tape and Reel Data, continued

SOT-23 Embossed Carrier Tape

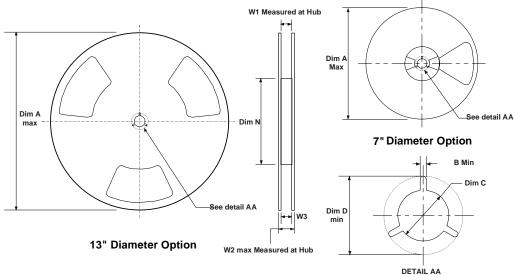
Configuration: Figure 3.0


User Direction of Feed

	Dimensions are in millimeter													
Pkg type	Α0	В0	w	D0	D1	E1	E2	F	P1	P0	K0	т	Wc	Тс
SOT-23 (8mm)	3.15 +/-0.10	2.77 +/-0.10	8.0 +/-0.3	1.55 +/-0.05	1.125 +/-0.125	1.75 +/-0.10	6.25 min	3.50 +/-0.05	4.0 +/-0.1	4.0 +/-0.1	1.30 +/-0.10	0.228 +/-0.013	5.2 +/-0.3	0.06 +/-0.02

Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

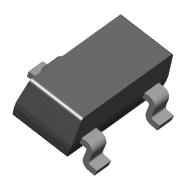
Sketch A (Side or Front Sectional View)
Component Rotation

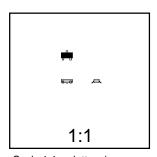

Sketch B (Top View)
Component Rotation

Sketch C (Top View)

Component lateral movement

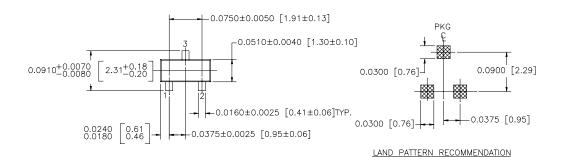
SOT-23 Reel Configuration: Figure 4.0

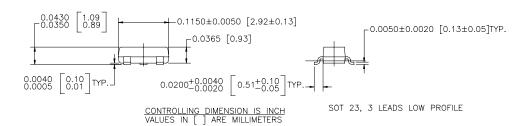



	Dimensions are in inches and millimeters								
Tape Size	Reel Option	Dim A	Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (LSL-USL)
8mm	7" Dia	7.00 177.8	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	2.165 55	0.331 +0.059/-0.000 8.4 +1.5/0	0.567 14.4	0.311 - 0.429 7.9 - 10.9
8mm	13" Dia	13.00 330	0.059 1.5	512 +0.020/-0.008 13 +0.5/-0.2	0.795 20.2	4.00 100	0.331 +0.059/-0.000 8.4 +1.5/0	0.567 14.4	0.311 - 0.429 7.9 - 10.9

SOT-23 Package Dimensions

SOT-23 (FS PKG Code 49)





Scale 1:1 on letter size paper

Dimensions shown below are in: inches [millimeters]

Part Weight per unit (gram): 0.0082

NOTE: UNLESS OTHERWISE SPECIFIED

- 1. STANDARD LEAD FINISH 150 MICROINCHES / 3.81 MICROMETERS MINIMUM TIN / LEAD (SOLDER) ON ALLOY 42
- 2. REFERENCE JEDEC REGISTRATION TO -236, VARIATION AB, ISSUE G, DATED JUL 1993

©2000 Fairchild Semiconductor International

September 1998, Rev. A1

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ FASTr™ PowerTrench® SyncFET™ Bottomless™ QFET™ TinyLogic™ GlobalOptoisolator™ QSTM UHC™ CoolFET™ GTO™ **VCX**TM $CROSSVOLT^{TM}$ QT Optoelectronics™ HiSeC™ DOME™

Quiet Series™ ISOPLANAR™ E²CMOSTM SILENT SWITCHER® MICROWIRE™ EnSigna™ OPTOLOGIC™ SMART START™ FACT™ OPTOPLANAR™ SuperSOT™-3 FACT Quiet Series™ PACMAN™ SuperSOT™-6 **POPTM** SuperSOT™-8 FAST®

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition				
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.				
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.				
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.				
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information on				

Rev. G

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com