

Block Diagram

Figure 1. Block diagram

Table 1.	Typical val	lues of external	components	(figure next p	age)
----------	-------------	------------------	------------	----------------	------

Name	Value	Name	Value	Name	Value	Name	Value
C ₂	4.7 nF	C ₁₆	47 μF	R ₃	>68 kΩ	R ₁₆	1 kΩ
C ₃	10 µF	C ₁₇	10 µF	R ₄	10 kΩ	R ₁₇	1.2 kΩ
C4	220 µF	C ₁₈	10 µF	R ₆	62 kΩ	R ₁₈	30 kΩ
C5	47 μF	C ₂₁	1 µF	R ₈	$22 \text{ k}\Omega$	R ₂₁	15 kΩ
C ₇	1 µF	C ₂₃	6.8 nF	R9	330 kΩ	R ₂₂	330 kΩ
C ₈	100 µF	C ₂₄	10 nF	R ₁₀	3 kΩ	R ₂₃	220 kΩ
C ₁₀	150 nF	C ₂₅	100 nF	R ₁₁	62 kΩ	R ₂₄	68 kΩ
C ₁₁	68 nF	C ₂₆	470 nF	R ₁₂	30 kΩ	R ₂₅	$2 k\Omega$
C ₁₂	33 nF	C ₂₇	33 nF	R ₁₃	$62 \text{ k}\Omega$	R ₂₆	3.3 kΩ
C ₁₄	100 nF	C ₂₈	10 µF	R ₁₄	120 kΩ	R ₂₉	1 kΩ
C ₁₅	1 µF	R ₂	20 kΩ	R ₁₅	47 k Ω	R ₃₀	12 kΩ

2 (23)

Rev. A3, 06-Mar-01

Ring Ξb 12686 ں ت $V_{\rm MP}$ hook switch controller Micro • () Pinnings of SSO44 Package \mathbb{R}_{21} BCI OGTX 23(31) 21(29) (30(42) 8 to pin 32 25(33) J 26(36) V_M 11(13) പ്പ ¶ V_M C_{12} 9(10) \mathbf{R}_{10} U4089B 28(40) 8(9) R à 5(6)Earpiece 22(30) 16(24) 27(39) \mathbf{R}_2 13 V H 6(7) IR_{12} 24 (32)) 15(23) 14(22) 1(44)10(11) 18(26) 21(29) 20(28) 13(21) 19(27) 17(25) 29(41) 2(1) $^{+}_{(4)}$ 3(3) R ۍ \mathbf{C}_{17} C_{21} c_{16} C_{18} C₁₅ C_{14} \mathbb{R}_{14} Microphone \mathbb{R}_{15} $^{\rm C}_{24}$ \mathbb{R}_{29} $^{\rm R}_{30}$ C_{25} \mathbb{R}_{25} C₂₆ . \mathbf{R}_{17} C_{27} Loud speaker \mathbb{R}_{24} HF-Mic **L**OGTX R₂₂ | RECO \mathbf{R}_{23} × DTMF

Pin	Symbol	Function
1 (44)	GT	A resistor from this pin to GND sets the amplification of microphone and DTMF signals; the input amplifier can be muted by applying V_{MP} to G_{T} .
2 (1)	DTMF	Input for DTMF signals. Also used for the answering machine and hands-free input.
3 (3)	MIC 2	Non-inverting input of microphone amplifier
4 (4)	MIC 1	Inverting input of microphone amplifier
5 (6)	IND	The internal equivalent inductance of the circuit is proportional to the value of the capacitor at this pin. A resistor connected to ground may be used to reduce the DC line voltage.
6(7)	VL	Line voltage
7 (8)	GND	Reference point for DC- and AC-output signals
8 (9)	SENSE	A small resistor (fixed) connected from this pin to V_L sets the slope of the DC characteristic and also affects the line-lengthequalization characteristics and the line current at which the loudspeaker amplifier is switched on.
9 (10)	VB	Unregulated supply voltage for peripheral circuits (voice switch); limited to typically 7 V.
10 (11)	SAO	Output of loudspeaker amplifier
11 (13)	V _{MP}	Regulated supply voltage 3.3 V for peripheral circuits. The maximum output current is 2 mA.
12 (20)	IMPSEL	Control input for selection of line impedance 1. 600 Ω 2. 900 Ω 3. Mute of second transmit stage (TXA); also used for indication of external supply (answering machine); last chosen impedance is stored
13 (21)	TSACL	Time constant of anti-clipping of speaker amplifier
14 (22)	GSA	Current input for setting the gain of the speaker amplifier. Adjustment characteristic is logarithmical. For RGSA $> 2 M\Omega$, the speaker amplifier is switched off.

Pin	Symbol	Function
15 (23)	SA I	Speaker amplifier input (for loud- speaker, tone ringer and hands-free use)
16 (24)	MUTX	 Three-state input of transmit mute: 1) Speech condition; inputs MIC1 / MIC2 active 2) DTMF condition; input DTMF active. A part of the input signal is passed to the receiving amplifier as a confidence signal during dialing. 3) Input DTMF used for answering machine and hands-free use; receive branch is not affected.
17 (25)	ATAFS	Attenuation of acoustical feedback suppression. Maximum attenuation of AFS circuit is set by a resistor at this pin. Without the resistor, AFS is switched off.
18 (26)	INLDT	Input of transmit level detector
19 (27)	INLDR	Input of receive level detector
20 (28)	TLDT	Time constant of transmit level detector
21 (29)	TLDR	Time constant of receive level detector
22 (30)	AGA	Automatic gain adjustment with line current. A resistor connected from this pin to GND sets the starting point. Max. gain change is 6 dB.
23 (31)	IREF	Internal reference current generation; RREF = $62 \text{ k}\Omega$; IREF = $20 \mu \text{A}$
24 (32)	STO	Side-tone reduction output. Output resistance is approximately 300 Ω Maximum load impedance is 10 k Ω .
25 (33)	V _M	Reference node for microphone- earphone and loudspeaker amplifier. Supply for electret microphone (IM \leq 300 μ A).
26 (36)	STI	Input for side-tone network
27 (39)	RECO	Output of receiving amplifier
28 (40)	G _R	A resistor connected from this pin to GND sets the receiving ampli- fication of the circuit; amplifier RA1 can be muted by applying V_{MP} to G_R
29 (41)	TTXA	Time constant of anti-clipping in transmit path
30 (42)	RECIN	Input of receiving path; input impedance is typically $80 \text{ k}\Omega$

DC Line Interface and Supply-Voltage Generation

The DC line interface consists of an electronic inductance and an output stage which charges the capacitor at V_B . The value of the equivalent inductance is given by:

 $L = R_{SENSE} \times C_{IND} \times (R_{DC} \times R_{30}) / (R_{DC} + R_{30})$

In order to improve the supply during worst-case operating conditions, PNP current source – I_{BOPT} –

supplies an extra amount of current to the supply voltages when the NPN in parallel is unable to conduct current.

The U4089B-M contains a series regulator which provides a supply voltage $V_{\rm MP}$ of 3.3 V at 2 mA suitable for a microprocessor.

Figure 5. DC line interface with electronic inductance and generation of regulated and unregulated supply

Figure 6. The supply of functional blocks is controlled by input voltages VL, VB

1. In speech condition, the system is supplied by the line current. If the LIDET-block detects a line voltage above the fixed threshold (1.9 V), the internal signal VLON is activated, thus switching on all blocks of the chip.

For line voltages below 1.9 V, the switches remain in their quiescent state as shown in the diagram.

OFFSACOMP disables the group listening feature (SAI, SA, SACL, AFS) below line currents of approximately 10 mA.

2. Selecting IMPSEL = high impedance activates all switches at the ES line.

Acoustic Feedback Suppression

Acoustical feedback from the loudspeaker to the handset microphone may cause instability in the system. The U4089B

U4089B-M offers a very efficient feedback suppression circuit which uses a modified voice switch topology. Figure 7 shows the basic system configuration.

Two attenuators (TX ATT and RX ATT) reduce the critical loop gain by introducing an externally adjustable amount of loss either in the transmit or in the receive path. The sliding control in block ATT CONTR determines whether the TX or the RX signal has to be attenuated. The overall loop gain remains constant under all operating conditions.

Selection of the active channel is made by comparison of the logarithmically compressed TX- and RX- envelope curve.

The system configuration for group listening, which is realized in the U4089B-M, is illustrated in figure 8. TXA and SAI represent the two attenuators; the logarithmic envelope detectors are shown in a simplified way (operational amplifiers with two diodes).

Figure 7. Basic voice-switch system

Figure 8. Integration of the acoustic feedback-suppression circuit into the speech circuit environment

Figure 9. Acoustic feedback suppression by alternative control of transmit- and speaker amplifier gain

A detailed diagram of the AFS (acoustic feedback suppression) is given in figure 9. Receive and transmit signals are first processed by logorithmic rectifiers in order to produce the envelopes of the speech at TLDT and RLDT. After amplification, a decision is made by the differential pair which direction should be transmitted.

The attenuation of the controlled amplifiers TXA and SAI is determined by the emitter current IAT which is comprised of three parts:

IATAFS sets maximum attenuation

- I_{ATGSA} decreases the attenuation when speaker amplifier gain is reduced
- $I_{AGAFS} \ \ decreases \ the \ attenuation \ according \ to \ the \ loop-gain \ reduction \ caused \ by \ the \ AGA-function$

 $I_{AT} = I_{ATAFS} - I_{ATGSA} - I_{AGAFS}$

 $\Delta G = I_{AT} \ \times \ 0.67 \ dB/\mu A$

Figure 10 illustrates the principal relationship between speaker amplifier gain (GSA) and attenuation of AFS (ATAFS). Both parameters can be adjusted independently, but the internal coupling between them has to be considered. The maximum value to be used of GSA is 36 dB. The shape of the characteristic is moved in the x-direction by adjusting resistor RATAFS, thus changing ATAFS_m. The actual value of the attenuation (ATAFS_a), however, can be determined by reading the value which belongs to the actual gain GSA_a. If the speaker amplifier gain is reduced, the attenuation of AFS is automatically reduced by the same amount in order to achieve a constant loop gain. Zero attenuation is set for speaker gains GSA \leq GSA0 = 36 dB – ATAFS_m.

Figure 10. Reducing speaker amplifier gain results in an equal reduction of AFS attenuation

Operating Range of Speaker Amplifier

The basic behavior is illustrated in figure 11. Actual values of ILON/ILOFF vary slightly with the adjustment of the DC-characteristics and the selection of the internal line impedance.

Figure 11. Threshold of speaker amplifier

Figure 12. Comparator thresholds depend on DC mask and line impedance

Absolute Maximum Ratings

Parameters	Symbol	Value	Unit
Line current	IL	140	mA
DC line voltage	VL	12	V
Junction temperature	Tj	125	°C
Ambient temperature	T _{amb}	-25 to +75	°C
Storage temperature	T _{stg}	-55 to +150	°C
Total power dissipation, $T_{amb} = 60^{\circ}C$ SDIP30	P _{tot}	1	W
SSO44	Ptot	0.9	W

Thermal Resistance

	Parameters	Symbol	Value	Unit
Junction ambient	SDIP30	R _{thJA}	50	K/W
	SSO44	R _{thJA}	70	K/W

Electrical Characteristics

f = 1 kHz, 0 dBm = 775 mV_{rms}, I_M = 0.3 mA, I_{MP} = 2 mA, RDC = 130 kΩ, T_{amb} = 25°C, RGSA = 560 kΩ, Z_{ear} = 68 nF + 100 Ω, Z_M = 68 nF, Pin 20 open, V_{MUTX} = GND, unless otherwise specified.

Parameters	Test Conditions / Pin	Symbol	Min.	Тур.	Max.	Unit	Fig.
DC characteristics							
DC voltage drop over circuit	$I_{L} = 2 \text{ mA}$ $I_{L} = 14 \text{ mA}$ $I_{L} = 60 \text{ mA}$ $I_{I} = 100 \text{ mA}$	VL	4.6 8.8	2.4 5.0 7.5 9.4	5.4 10.0	V	20
Transmission amplifier, $I_L = 14$	$mA, V_{MIC} = 2 mV, RG$	$T = 27 k\Omega$, unless o	therwise	specified		
Adjustment range of transmit gain		GT	40	45	50	dB	23
Transmitting amplification	$\begin{array}{l} \text{RGT} = 12 \text{ k}\Omega \\ \text{RGT} = 27 \text{ k}\Omega \end{array}$	G _T	47 39.8	48	49 41.8	dB	23
Frequency response	$I_L \ge 14 \text{ mA},$ f = 300 to 3400 Hz	ΔG_{T}			±0.5	dB	23
Gain change with current	Pin 20 open $I_L = 14$ to 100 mA	ΔG_{T}			±0.5	dB	23
Gain deviation	$T_{amb} = -10$ to $+60^{\circ}C$	ΔG_{T}			± 0.5	dB	23
CMRR of microphone amplifier		CMRR	60	80		dB	23
Input resistance of MIC amplifier	$\begin{array}{l} RGT = 12 \ k\Omega \\ RGT = 27 \ k\Omega \end{array}$	R _i	45	50 75	110	kΩ	23
Distortion at line	$\begin{array}{l} I_L > 14 \mbox{ mA} \\ V_L = 700 \mbox{ mV}_{rms} \end{array} \end{array} \label{eq:linear}$	dt			2	%	23
Maximum output voltage	$\label{eq:L} \begin{split} I_L > 19 \text{ mA, } d < 5\% \\ V_{mic} = 25 \text{ mV} \\ CTXA = 1 \mu F \end{split}$	V _{Lmax}	1.8	3	4.2	dBm	23
Noise at line psophometrically weighted	$\begin{array}{l} I_L > 14 \mbox{ mA} \\ G_T = 48 \mbox{ dB} \end{array}$	no		-80	-72	dBmp	23
Anti-clipping attack time release time	$CTXA = 1 \ \mu F$ each 3 dB overdrive			0.5 9		ms ms	23

Electrical Characteristics (continued)

Parameters	Test Conditions / Pin	Symbol	Min.	Тур.	Max.	Unit	Fig.
Gain at low operating current	$I_L = 10 \text{ mA}$						
	$I_{MP} = 1 mA$	~					
	$RDC = 68 k\Omega$	G _T	40		42.5	dB	23
	$V_{\text{mic}} = 1 \text{ mV}$ $V_{\text{mic}} = 300 \text{ mA}$						
Distortion at low operating	$I_{\rm M} = 300 \mu {\rm A}$ $I_{\rm I} = 10 {\rm m}{\rm A}$						
current	$I_{\rm M} = 300 \mu{\rm A}$						
	$I_{MP} = 1 \text{ mA}$	dt			5	%	23
	$RDC = 68 k\Omega$						
· · · ·	$V_{mic} = 10 \text{ mV}$						
Line-loss compensation	$I_{\rm L} = 100 \text{ mA},$ RAGA = 20 kΩ	ΔG_{TI}	-6.4	-5.8	-5.2	dB	23
Mute suppression	$I_L \ge 14 \text{ mA}$						
a) MIC muted	Mutx = open	G _{TM}	60	80		dB	23
(microphone preamplifier)	DCD (21	41			00 \$7		
Receiving amplifier, $I_L = 14 \text{ mA}$	$\mathbf{K}, \mathbf{K}, \mathbf{K}$	therwise s	pecified,	$V_{\text{GEN}} = 3$	<u>00 m v</u>		
gain	$I_L \ge 14 \text{ mA},$ single-ended	G _R	-8		+2	dB	23
Receiving amplification	$RGR = 62 k\Omega$ $RGR = 22 k\Omega$	GR	- 7.75	- 7 1.5	- 6.25	dB	23
Amplification of DTMF signal	$I_L \ge 14 \text{ mA}$	Grue	1	4	7	dB	23
from DTMF IN to RECO	$V_{MUTX} = V_{MP}$	ORM	1	4	/	ub	23
Frequency response	$I_L > 14 \text{ mA},$ f = 300 to 3400 Hz	ΔG_{RF}			± 0.5	dB	23
Gain change with current	$I_L = 14$ to 100 mA	ΔG_R			± 0.5	dB	23
Gain deviation	$T_{amb} = -10$ to $+60^{\circ}C$	ΔG_R			± 0.5	dB	23
Ear protection	$I_L \ge 14 \text{ mA}$ VGEN = 11 V _{rms}	EP			1.1	Vrms	23
MUTE suppression	$I_L \ge 14 \text{ mA}$	AGr	60			dB	23
DTMF operation	$V_{MUTX} = V_{MP}$	20 _R	00			uD	23
Output voltage d $\leq 2\%$	$I_{L} = 14 \text{ mA}$ $Z_{ear} = 68 \text{ nF}$		0.5			V _{rms}	23
Maximum output current	$Z_{ear} = 100 \ \Omega$		4			mA	23
$d \leq 2\%$			•			(peak)	20
Receiving noise	$Z_{ear} = 68 \text{ nF} + 100 \Omega$	ni		-80	-77	dBmp	23
Output resistance	$I_L \ge 14 \text{ mA}$	Ro			10	0	23
Line-loss compensation	$R \Delta G \Delta = 20 k \Omega$	KO			10		23
Line-toss compensation	$I_{\rm I} = 100 \text{ mA}$	ΔG_{RI}	-7.0	-6.0	-5.0	dB	23
Gain at low operating current	$I_L = 10 \text{ mA}$						
	$I_{MP} = 1 \text{ mA}$						
	$I_M = 300 \ \mu A$	G _R	-8	-7	-6	dB	23
	$V_{\text{GEN}} = 560 \text{ mV}$						
AC impedance	$RDC = 68 K\Omega$	7.	840	000	060	0	23
Distortion at low operating	$I_{\rm L} = 10 \rm{mA}$	∠1mp	0+0	200	200	22	23
current	$I_L = 10 \text{ mA}$ $I_{MD} = 1 \text{ mA}$						
	$V_{\text{GEN}} = 560 \text{ mV}$	dR			5	%	23
	$RDC = 68 k\Omega$						

Electrical Characteristics (continued)

Parameters	Test Conditions / Pin	Symbol	Min.	Тур.	Max.	Unit	Fig.
Speaker amplifier	Speaker amplifier						
Minimum line current for operation	No ac signal	I _{Lmin}			15	mA	22
Input resistance	Pin 24		14		22	kΩ	23
Gain from SAI to SAO	$\label{eq:saless} \begin{array}{l} V_{SAI}=3 \mbox{ mV},\\ I_L=15 \mbox{ mA},\\ RGSA=560 \mbox{ k}\Omega\\ RGSA=20 \mbox{ k}\Omega \end{array}$	G _{SA}	35.5	36.5 - 3	37.5	dB dB	23
Output power	Load resistance $R_L = 50 \Omega, d < 5\%$ $V_{SAI} = 20 mV$ $I_L = 15 mA$ $I_L = 20 mA$	P _{SA} P _{SA}	3	7 20		mW mW	23
Output noise (input SAI open) psophometrically weighted	$I_L > 15 \text{ mA}$	n _{SA}			200	μV_{psoph}	23
Gain deviation	$I_{L} = 15 \text{ mA}$ $T_{amb} = -10 \text{ to } +60^{\circ}\text{C}$	ΔG_{SA}			±1	dB	23
Mute suppression	$I_{L} = 15 \text{ mA},$ $V_{L} = 0 \text{ dBm},$ $V_{SAI} = 4 \text{ mV}$ Pin 23 open	VSAO			-60	dBm	23
Gain change with current	$I_L = 15$ to 100 mA	ΔG_{SA}			±1	dB	23
Resistor for turning off speaker amplifier	$I_L = 15$ to 100 mA	RG _{SA}	0.8	1.3	2	МΩ	23
Gain change with frequency	$I_L = 15 \text{ mA}$ f = 300 to 3400 Hz	ΔG_{SA}			±0.5	dB	23
Attack time of anti-clipping	20 dB over drive	tr		5		ms	23
Release time of anti-clipping		tf		80		ms	23
DTMF amplifier Test condition	ons: IMP = 2 mA, IM =	= 0.3 mA, V	V _{MUTX} =	VMP		1	
Adjustment range of DTMF gain	$I_L = 15 \text{ mA}$ Mute active	GD	40		50	dB	23
DTMF amplification	$I_L = 15 \text{ mA},$ VDTMF = 8 mV Mute active: MUTX = VMP	GD	40.7	41.7	42.7	dB	23
Gain deviaton	$I_{L} = 15 \text{ mA}$ $T_{amb} = -10 \text{ to } +60^{\circ}\text{C}$	GD			±0.5	dB	23
Input resistance	$RGT = 27 \text{ k}\Omega,$ RGT = 15 k Ω	R _i	60 26	180 70	300 130	kΩ	23
Distortion of DTMF signal	$I_L \ge 15 \text{ mA}$ $V_L = 0 \text{ dBm}$	d _D			2	%	23
Gain deviation with current	$I_L = 15$ to 100 mA	ΔGD			± 0.5	dB	23
AFS acousting feedback suppres	ssion						
Range of attenuation	$I_L \ge 15 \text{ mA}$		0		50	dB	23
Attenuation of transmit gain	$\begin{split} I_L &\geq 15 \text{ mA}, \\ I_{INLDT} &= 0 \mu\text{A} \\ R_{ATAFS} &= 30 k\Omega \\ I_{INLDR} &= 10 \mu\text{A} \end{split}$	ΔG_{T}		45		dB	23

Electrical Characteristics (continued)

Parameters	Test Conditions / Pin	Symbol	Min.	Тур.	Max.	Unit	Fig.
Attenuation of speaker amplifier	$\begin{split} I_L &\geq 15 \text{ mA} \\ I_{INLDP} &= 0 \mu \\ R_{ATAFS} &= 30 k\Omega \\ I_{INLDR} &= 10 \mu \end{split}$	ΔG _{SA}		50		dB	23
AFS disable	$I_L \ge 15 \text{ mA}$	VATAFS	1.5			V	23
Supply voltages, V _{mic} = 25 mV, ⁷	$\Gamma_{\rm amb} = -10 \text{ to } + 60^{\circ} \text{C}$						
V _{MP}	$I_L = 14 \text{ mA},$ $RDC = 68 \text{ k}\Omega$ $I_{MP} = 2 \text{ mA}$	V _{MP}	3.1	3.3	3.5	V	23
V _M	$\begin{split} I_L &\geq 14 \text{ mA}, \\ I_M &= 300 \mu\text{A} \\ \text{RDC} &= 130 \text{k} \Omega \end{split}$	V _M	1.4		3.3	v	23
V _B	$I_{B} = + 20 \text{ mA},$ $I_{L} = 0 \text{ mA}$	VB		7	7.6	V	23
MUTX input							
Input current	$V_{MUTX} = V_{MP}$ $V_{MUTX} = GND$	I _{MUTX} I _{MUTX}		20 20	30 -30	μΑ μΑ	21
Input voltage	Input high	V _{MUTX}	V _{MP} - 0.3 V			v	21
	Input low	V _{MUTX}			0.3	V	21

U4089B-M Control

	MUTX	MODE
0	MIC 1/2 transmit enabled receive enable AFS = on AGA = on TXACL = on	Speech
Z	DTMF transmit enabled receive enable AFS = on AGA = on TXACL = on	For answering machine
1	DTMF transmit enabled DTMF to receive enable AFS = off AGA = off TXACL = off	DTMF dialling

	IMPSEL	MODE
0	Line impedance = 600Ω TXA = on ES = off	Speech
0 to Z	Line impedance = 600Ω TXA = off ES = on	Transmit mute
1 to Z	Line impedance = 900 Ω TXA = off ES = on	Transmit mute
1	Line impedance = 900Ω TXA = on ES = off	Speech

Logic-level
0 = < (0.3 V)
$Z = > (1 V) < (V_{MP} - 1 V)$ or (open input)
$1 = > (V_{MP} - 0.3 V)$

AFS =	Acoustical feedback-supression control
AGA =	Automatic gain adjustment
TXACL = ES =	Transmit anti-clipping control External supply

Figure 13. Typical DC characteristic

Figure 14. Typical adjustment range of the transmit gain

Figure 15. Typical adjustment range of the receive gain

Figure 16. Typical AGA characteristic

Figure 17. Typical load characteristic of V_B for a maximum (RDC = infinity) DC characteristic and a 3-mW loudspeaker output

Figure 18. Typical load characteristic of V_B for a medium DC characteristic (RDC = 130 k\Omega) and a 3-mW loudspeaker output

Figure 19. Typical load characteristic of V_B for a minimum DC characteristic (RDC = 68 k\Omega) and a 3-mW loudspeaker output

Figure 20. DC voltage absolut

Figure 21. DC voltage current test

Figure 22. DC ramps

Figure 23. AC tests

13046

Package Information

Dimensions in mm

Ozone Depleting Substances Policy Statement

It is the policy of Atmel Germany GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Atmel Germany GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Atmel Germany GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Atmel Wireless & Microcontrollers products for any unintended or unauthorized application, the buyer shall indemnify Atmel Wireless & Microcontrollers against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Data sheets can also be retrieved from the Internet: http://www.atmel-wm.com

Atmel Germany GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423

Rev. A3, 06-Mar-01