

Table of Contents

G	ENERA	L DESCRIPTION		1
K	EY P RO	DUCT FEATURES		1
A	PPLICA	TIONS		1
0	RDERIN	IG INFORMATION		1
T١	PICAL	APPLICATION CIRCUIT		
1	GE	NERAL DESCRIPTION		4
•	1.1	Pin Diagram		4
	1.2	Marking Information		4
	1.3	Pin Description		5
	1.4	Acronyms		5
2	ELE	ECTRICAL CHARACTERIST	TICS	6
	2.1	Absolute Maximum Rating	js	6
	2.2	Operating Conditions		6
	2.3	Thermal Characteristics		6
	2.4	Electrical Specifications		7
3	PR	DXIMITY SENSING INTERF	ACE	9
	3.1	Introduction		9
	3.2	Scan Period		9
	3.3	Analog Front-End (AFE)		10
	3.3. 3.3.		asics	10 12
	3.3.		ge Conversion (C-to-V)	12
	3.3.			12
	3.3. 3.3.		version (ADC)	12 13
	3.4	Digital Processing	Version (ADC)	13
	3.4.			13
	3.4.			15
	3.4.		2	15
	3.4. 3.4.			16 18
	3.4.			18
	3.5	Host Operation		19
	3.6	Operational Modes		20
	3.6.			20
	3.6. 3.6.			20 20
	3.6.	•		20
4	I2C	INTERFACE		21
	4.1	Introduction		21
	4.2	I2C Write		21
	4.3	I2C Read		21
5	RE	SET		23
	5.1	Power-up		23
	5.2	NRST Pin		23
	5.3	Software Reset		24
6	INT	ERRUPT		25
Re	evision 4	February 4, 2014	© 2014 Semtech Corporation	www.semtech.com

	6.1	Power-up	25
	6.2	Assertion and Clearing	25
7	PIN	IS DESCRIPTION	26
	7.1	V _{DD} and SV _{DD}	26
	7.2	TXEN	26
	7.3	Capacitive Sensing Interface (CS0, CS1, CS2, CS3, CSG)	26
	7.4	Host Interface	26
	7.4.		26
		2 SCL, NRST and TXEN	27
_	7.4.		27
8	RE	GISTERS	
	8.1	Overview	28
	8.2	Detailed Description	29
9	AP	PLICATION INFORMATION	33
	9.1	Typical Application Circuit	33
	9.2	External Components Recommended Values	33
10) PA	CKAGING INFORMATION	34
	10.1	Outline Drawing	34
	10.2	Land Pattern	35

WIRELESS & SENSING

1 GENERAL DESCRIPTION

1.1 Pin Diagram

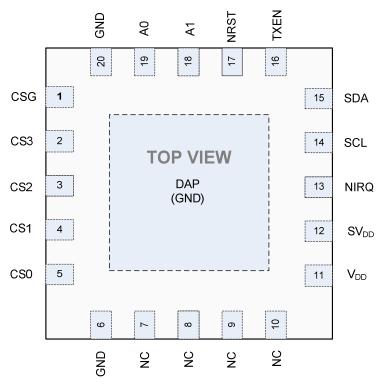
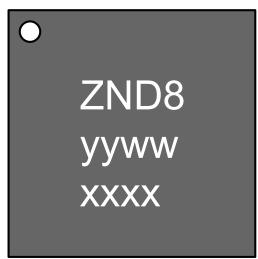



Figure 1: Pin Diagram

1.2 Marking Information

yyww= Date Code xxxx = Lot Number

Figure 2: Marking Information

Revision 4 February 4, 2014

WIRELESS & SENSING

1.3 Pin Description

Number	Name	Туре	Description
1	CSG	Analog	Capacitive Sensor Guard/Shield
2	CS3	Analog	Capacitive Sensor 3
3	CS2	Analog	Capacitive Sensor 2
4	CS1	Analog	Capacitive Sensor 1
5	CS0	Analog	Capacitive Sensor 0
6	GND	Ground	Ground
7	NC	Not Used	Do Not Connect
8	NC	Not Used	Do Not Connect
9	NC	Not Used	Do Not Connect
10	NC	Not Used	Do Not Connect
11	V _{DD}	Power	Core power supply
12	SV _{DD}	Power	Host interface power supply. Must be $\leq V_{DD}$ at all times (including during power-up and power-down)
13	NIRQ	Digital Output	Interrupt request, active LOW, requires pull-up resistor to SV _{DD}
14	SCL	Digital Input	I2C Clock, requires pull-up resistor to SV _{DD}
15	SDA	Digital I/O	I2C Data, requires pull-up resistor to SV _{DD}
16	TXEN	Digital Input	Transmit Enable, active HIGH (Tie to SV _{DD} if not used).
17	NRST	Digital Input	External reset, active LOW (Tie to SV _{DD} if not used).
18	A1	Digital Input	I2C Sub-Address, connect to GND or V _{DD}
19	A0	Digital Input	I2C Sub-Address, connect to GND or V _{DD}
20	GND	Ground	Ground
DAP	GND	Ground	Exposed Pad. Connect to Ground

Table 1: Pin Description

1.4 Acronyms

DAP Die Attach Paddle RF Radio Frequency

2 ELECTRICAL CHARACTERISTICS

2.1 Absolute Maximum Ratings

Stresses above the values listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these, or any other conditions beyond the "Operating Conditions", is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability and proper functionality.

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vdd	-0.5	6.0	
Supply voltage	SVDD	-0.5	6.0	V
Input Voltage (non-supply pins)	V _{IN}	-0.5	Vdd+0.3	
Input Current (non-supply pins)	l _{iN}	-10	10	mA
Operating Junction Temperature	T _{JCT}	-40	125	
Reflow Temperature	T _{RE}	-	260	°C
Storage Temperature	T _{STOR}	-50	150	
ESD HBM (Human Body model, to JESD22-A114)	ESD _{HBM}	8	-	kV

Table 2: Absolute Maximum Ratings

2.2 Operating Conditions

Parameter	Symbol	Min	Мах	Unit
Supply Voltage	V _{DD}	2.7	5.5	V
Supply Voltage	SV _{DD}	1.65	V _{DD}	v
Ambient Temperature	T _A	-40	85	°C

Table 3: Operating Conditions

Note: During power-up or power-down, SVDD must be less than or equal to VDD

2.3 Thermal Characteristics

Parameter	Symbol	Typical	Unit
Thermal Resistance – Junction to Air (Static Airflow)	θ_{JA}	34	°C/W

Table 4: Thermal Characteristics

Note: θ_{JA} is calculated from a package in still air, mounted to 3" x 4.5", 4-layer FR4 PCB with thermal vias under exposed pad per JESD51 standards.

2.4 Electrical Specifications

All values are valid within the operating conditions unless otherwise specified. Typical values are given for T_A = +25°C, VDD=SVDD=3.3V unless otherwise specified.

Symbol	Conditions	Min	Тур	Max	Unit
	<u>I</u>				
I _{SLEEP}	Power down, all analog circuits shut down. (I2C listening)	-	2.5	-	
I _{DOZE}	SCANPERIOD = 200ms DOZEPERIOD = 2xSCANPERIOD FREQ = 167kHz RESOLUTION = Medium VDD = 5V	-	18	-	uA
I _{ACTIVE}	SCANPERIOD = 30ms FREQ = 167kHz RESOLUTION = Medium VDD = 5V	-	170	-	
I _{OL}	VOL = 0.4V	6	-	-	mA
Vo. (Max)	SV _{DD} > 2V	-	-	0.4	V
VOL(IVIAX)	$SV_{DD} \le 2V$	-	-	0.2 x SV_{DD}	
VIH		0.8 x SVdd	-	SVDD + 0.3	V
VIL		-0.3	-	0.25 x SVDD	v
l.	CMOS input	-1	-	1	uA
V _{HYS}	SV _{DD} > 2V	-	0.05x SV _{DD}	-	V
	SV _{DD} ≤ 2V	-	0.1x SV _{DD}	-	v
TXENACTDLY	Delay between TXEN rising edge and SX9500 starting measurements	-	100	-	μs
	•			·	
VIH		0.7 x Vdd	-	Vdd + 0.3	V
VIL		-0.3		0.3 x VDD	v
	ISLEEP IDOZE IACTIVE IOL VOL(MAX) VIH VIL IL VHYS TXENACTDLY	IsLEEPPower down, all analog circuits shut down. (I2C listening)IDOZESCANPERIOD = 200ms DOZEPERIOD = 2xSCANPERIOD FREQ = 167KHz RESOLUTION = Medium VDD = 5VIACTIVESCANPERIOD = 30ms FREQ = 167KHz RESOLUTION = Medium VDD = 5VIOLVOL = 0.4VVOL(Max)SVDD > 2V SVDD > 2VVIHIVILILCMOS inputVHYSSVDD > 2V SVDD > 2VVHYSSVDD > 2V SVDD > 2VTXENACTDLYDelay between TXEN rising edge and SX9500 starting measurements	IsLEEPPower down, all analog circuits shut down. (I2C listening)-IDOZESCANPERIOD = 200ms DOZEPERIOD = 2xSCANPERIOD FREQ = 167kHz RESOLUTION = Medium VDD = 5V-IACTIVESCANPERIOD = 30ms FREQ = 167kHz RESOLUTION = Medium VDD = 5V-IOLVOL = 0.4V6VOL(Max)SVDD > 2V-VIH0.8 x SVDDVILSVDD > 2V-VIH0.8 x SVDDVILSVDD > 2V-VILSVDD > 2V-VILDelay between TXEN rising edge and SX9500 starting measurements-	$\begin{split} \hline I_{SLEEP} & \begin{array}{ c c c } \hline Power down, all analog circuits shut \\ \hline down. (I2C listening) & - & 2.5 \\ \hline I_{DOZE} & \begin{array}{ c c } \hline SCANPERIOD = 200ms \\ DOZPERIOD = 2xSCANPERIOD \\ FREQ = 167kHz \\ RESOLUTION = Medium \\ VDD = 5V \\ \hline \end{array} & \begin{array}{ c c } \hline SCANPERIOD = 30ms \\ FREQ = 167kHz \\ RESOLUTION = Medium \\ VDD = 5V \\ \hline \end{array} & \begin{array}{ c } \hline \end{array} & \end{array} & \begin{array}{ c } \hline \end{array} & \begin{array}{ c } \end{array} & \begin{array}{ c } \hline \end{array} & \begin{array}{ c } \hline \end{array} & \begin{array}{ c } \end{array} \\ \\ \hline \end{array} & \begin{array}{ c } \end{array} & \end{array} \\ \\ \hline \end{array} \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \end{array} & \begin{array}{ c } \end{array} & \begin{array}{ c } \end{array} & \begin{array}{ c } \end{array} & \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \hline \end{array} \\ \hline \end{array} \end{array} $ \hline \end{array} \\ \end{array} \\ \end{array} \\ \hline \end{array} \end{array} \end{array} \\ \end{array} \\	$\begin{split} I_{SLEEP} & \begin{array}{ c c c } \hline Power down, all analog circuits shut down. (I2C listening) & - & 2.5 & - \\ \hline I_{DOZE} & \begin{array}{ c c } \hline SCANPERIOD = 20SSANPERIOD \\ PCEPERIOD = 2xSCANPERIOD \\ FREQ = 167kHz \\ RESOLUTION = Medium \\ VDD = 5V & - & 18 & - \\ \hline I_{ACTIVE} & \begin{array}{ c } \hline SCANPERIOD = 30ms \\ FREQ = 167kHz \\ RESOLUTION = Medium \\ VDD = 5V & - & 170 & - \\ \hline V_{DD} = 5V & - & 170 & - \\ \hline V_{DD} = 5V & - & 0.4 & \\ \hline V_{DD} = 5V & - & 0.4 & \\ \hline V_{DL}(Max) & \begin{array}{ c } \hline SV_{DD} > 2V & - & - & 0.4 & \\ \hline SV_{DD} > 2V & - & - & 0.2 \times SV_{DD} & \\ \hline V_{IH} & & 0.8 \times SV_{DD} & - & SV_{DD} + 0.3 & \\ \hline V_{IL} & & -0.3 & - & 0.25 \times SV_{DD} & \\ \hline I_L & CMOS input & -1 & - & 1 & \\ \hline V_{HYS} & \begin{array}{ c } \hline SV_{DD} > 2V & - & 0.05x \\ \hline SV_{DD} > 2V & - & 0.1x \\ \hline SV_{DD} > 2V & - & 0.1x \\ \hline SV_{DD} \le 2V & - & 0.1x \\ \hline SV_{DD} \le 2V & - & 0.1x \\ \hline SV_{DD} \le 2V & - & 0.01x \\ \hline SV_{DD} = 100 & - & \\ \hline TXEN_{ACTDLY} & \begin{array}{ c } \hline Delay between TXEN rising \\ edge and SX9500 starting \\ measurements & & \\ \hline \end{array}$

Input: NRST						
Input logic high	Mari	SV _{DD} > 2V	$0.7 \times SV_{DD}$	-	SV _{DD} + 0.3	
	VIH	$SV_{DD} \le 2V$	0.75 x SV_{DD}	-		V
Input logic low	M	SV _{DD} > 2V	-	-	0.6	v
Input logic low	VIL	$SV_{DD} \le 2V$	-	-	$0.3 \text{ x SV}_{\text{DD}}$	
NRST minimum pulse width	T _{RESETPW}		2	-	-	μs
Start-up						
Power-up time	T _{POR}		-	1	-	ms

Table 5: Electrical Specifications

Revision 4 February 4, 2014

Capacitive Proximity/Button Solution

WIRELESS & SENSING

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
I2C Timing Specifications (Cf. Figure	3 and Figure 4	below)				
SCL clock frequency	f _{SCL}		-	-	400	kHz
SCL low period	t _{LOW}		1.3	-	-	
SCL high period	t _{HIGH}		0.6	-	-	
Data setup time	t _{SU;DAT}		0.1	-	-	
Data hold time	t _{HD;DAT}		0	-	-	
Repeated start setup time	t _{SU;STA}		0.6	-	-	us
Start condition hold time	t _{HD;STA}		0.6	-	-	
Stop condition setup time	t _{SU;STO}		0.6	-	-	
Bus free time between stop and start	t _{BUF}		1.3	-	-	
Input glitch suppression	t _{SP}	Note 1	-	-	50	ns

Note 1: Minimum glitch amplitude is $0.7V_{DD}$ at High level and Maximum $0.3V_{DD}$ at Low level.

Table 6: I2C Timing Specifications

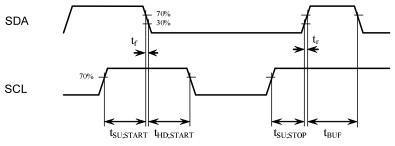


Figure 3: I2C Start and Stop Timing

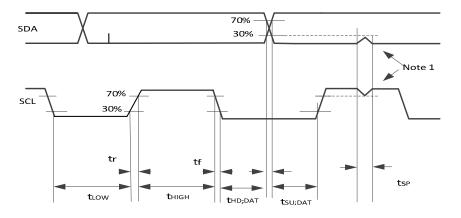


Figure 4: I2C Data Timing

Revision 4 February 4, 2014

3 PROXIMITY SENSING INTERFACE

3.1 Introduction

The purpose of the proximity sensing interface is to detect when a conductive object (usually a body part i.e. finger, palm, face, etc) is in the proximity of the system. Note that proximity sensing can be done thru the air or thru a solid (typically plastic) overlay (also called "touch" sensing).

The chip's proximity sensing interface is based on capacitive sensing technology. An overview is given in figure below.

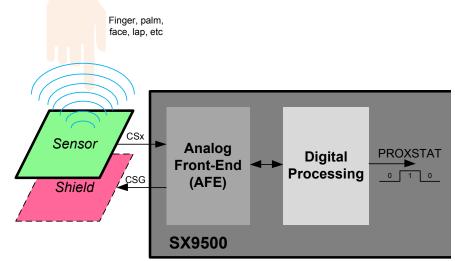
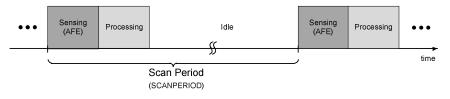



Figure 5: Proximity Sensing Interface Overview

- The sensor can be a simple copper area on a PCB or FPC for example. Its capacitance (to ground) will vary when a conductive object is moving in its proximity.
- The optional shield can be also be a simple copper area on a PCB or FPC below/under/around the sensor. It is used to protect the sensor against potential surrounding noise sources and improve its global performance. It also brings directivity to the sensing, for example sensing objects approaching from top only.
- The analog front-end (AFE) performs the raw sensor's capacitance measurement and converts it into a digital value. It also controls the shield. See §3.3 for more details.
- The digital processing block computes the raw capacitance measurement from the AFE and extracts a binary information PROXSTAT corresponding to the proximity status, i.e. object is "Far" or "Close". It also triggers AFE operations (compensation, etc). See §3.4 for more details.

3.2 Scan Period

To save power and since the proximity event is slow by nature, the chip will be waken-up regularly at every programmed scan period (SCANPERIOD) to first sense sequentially each of the enabled CSx pins and then process new proximity samples/info. The chip will be in idle mode most of the time. This is illustrated in figure below

Figure 6: Proximity Sensing Sequencing

Revision 4 February 4, 2014 © 2014 Semtech Corporation

The sensing and processing phase's durations vary with the number of sensors enabled, the sampling frequency, and the resolution programmed. During the Idle phase, the SX9500's analog circuits are turned off. Upon expiry of the idle timer, a new scan period cycle begins.

The scan period determines the minimum reaction time (actual/final reaction time also depends on debounce and filtering settings) and can be programmed from 30ms to 400ms.

3.3 Analog Front-End (AFE)

3.3.1 Capacitive Sensing Basics

Capacitive sensing is the art of measuring a small variation of capacitance in a noisy environment. As mentioned above, the chip's proximity sensing interface is based on capacitive sensing technology. In order to illustrate some of the user choices and compromises required when using this technology it is useful to understand its basic principles.

To illustrate the principle of capacitive sensing we will use the simplest implementation where the sensor is a copper plate on a PCB.

The figure below shows a cross-section and top view of a typical capacitive sensing implementation. The sensor connected to the chip is a simple copper area on top layer of the PCB. It is usually surrounded (shielded) by ground for noise immunity (shield function) but also indirectly couples via the grounds areas of the rest of the system (PCB ground traces/planes, housing, etc). For obvious reasons (design, isolation, robustness ...) the sensor is stacked behind an overlay which is usually integrated in the housing of the complete system.

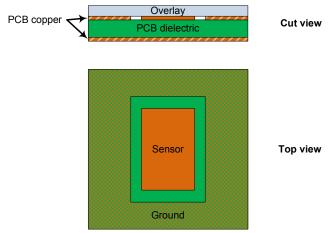


Figure 7: Typical Capacitive Sensing Implementation

When the conductive object to be detected (finger/palm/face, etc) is not present, the sensor only sees an inherent capacitance value C_{Env} created by its electrical field's interaction with the environment, in particular with ground areas.

When the conductive object (finger/palm/face, etc) approaches, the electrical field around the sensor will be modified and the total capacitance seen by the sensor increased by the user capacitance C_{User} . This phenomenon is illustrated in the figure below.

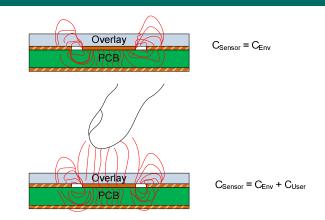


Figure 8: Proximity Effect on Electrical Field and Sensor Capacitance

The challenge of capacitive sensing is to detect this relatively small variation of C_{Sensor} (C_{User} usually contributes for a few percent only) and differentiate it from environmental noise (C_{Env} also slowly varies together with the environment characteristics like temperature, etc). For this purpose, the chip integrates an auto offset compensation mechanism which dynamically monitors and removes the C_{Env} component to extract and process C_{User} only. See §3.3.5 for more details.

In first order, C_{User} can be estimated by the formula below:

$$C_{User} = \frac{\varepsilon_{o} \cdot \varepsilon_{r} \cdot A}{d}$$

A is the common area between the two electrodes hence the common area between the user's finger/palm/face and the sensor.

d is the distance between the two electrodes hence the proximity distance between the user and the system.

 ε_{a} is the free space permittivity and is equal to 8.85 10e-12 F/m (constant)

 \mathcal{E}_r is the dielectric relative permittivity.

Typical permittivity of some common materials is given in the table below.

Material	Typical ε_r
Glass	8
FR4	5
Acrylic Glass	3
Wood	2
Air	1

Table 7: Typical Permittivity of Some Common Materials

From the discussions above we can conclude that the most robust and efficient design will be the one that minimizes C_{Env} value and variations while improving C_{User} .

3.3.2 AFE Block Diagram

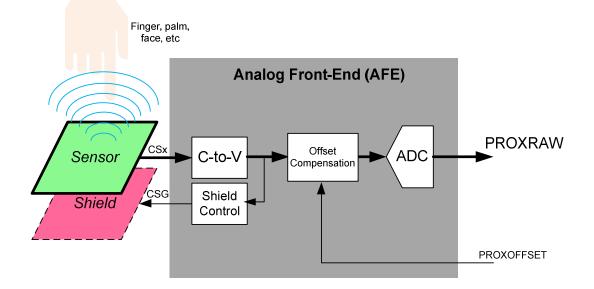


Figure 9: Analog Front-End Block Diagram

3.3.3 Capacitance-to-Voltage Conversion (C-to-V)

The sensitivity of the interface is defined by RANGE and GAIN parameters.

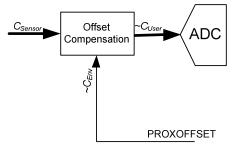
PROXFREQ defines the operating frequency of the interface and should be set as high as possible for power consumption reasons.

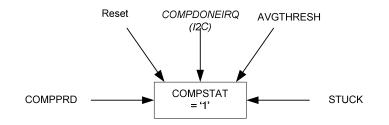
3.3.4 Shield Control

SHIELDEN allows enabling or disabling the shield function.

3.3.5 Offset Compensation

Offset compensation consists in performing a one-time measurement of C_{Env} and subtracting it to the total capacitance C_{Sensor} in order to feed the ADC with the closest contribution of C_{User} only.




Figure 10: Offset Compensation Block Diagram

The ADC input C_{User} is the total capacitance C_{Sensor} to which C_{Env} is subtracted.

Revision 4 February 4, 2014 © 2014 Semtech Corporation

There are five possible compensation sources which are illustrated in the figure below. When set to 1 by any of these sources, COMPSTAT will only be reset once the compensation is completed.

- <u>Reset:</u> a compensation for all sensors is automatically requested when a reset is performed (power-up, NRST pin, RegReset)
- <u>COMPDONEIRQ (I2C)</u>: a compensation for all sensors can be manually requested anytime by the host through I2C interface by writing a 1 into COMPDONEIRQ.
- <u>AVGTHRESH</u>: a compensation for all sensors or only the affected one (depending on COMPMETHOD) can be automatically requested if it is detected that C_{Env} has drifted beyond a predefined range programmed by the host.
- <u>COMPPRD</u>: a compensation can be automatically requested at a predefined rate programmed by the host.
- <u>STUCK</u>: a compensation can be automatically requested if it is detected that the proximity "Close" state lasts longer than a predefined duration programmed by the host.

Please note that the compensation request flag can be set anytime but the compensation itself is always done at the beginning of a scan period to keep all parameters coherent.

Also, when compensation occurs, all PROXSTAT flags turn OFF (ie no proximity detected) independently from the user's potential actual presence.

3.3.6 Analog-to-Digital Conversion (ADC)

An ADC is used to convert the analog capacitance information into a digital word PROXRAW.

3.4 Digital Processing

3.4.1 Overview

The main purpose of the digital processing block is to convert the raw capacitance information coming from the AFE (PROXRAW) into a robust and reliable digital flag (PROXSTAT) indicating if something is close to the proximity sensor.

The offset compensation performed in the AFE is a one-time measurement. However, the environment capacitance C_{Env} may vary with time (temperature, nearby objects, etc). Hence, in order to get the best estimation of C_{User} (PROXDIFF) it is needed to dynamically track and subtract C_{Env} variations. This is performed by filtering PROXUSEFUL to extract its slow variations (PROXAVG).

PROXDIFF is then compared to user programmable threshold (PROXTHRESH) to extract PROXSTAT flag.

Comparator PROXRAW(15:0) PROXSTAT PROXDIFF(11:0) PROXUSEFUL(15:0) Low Pass RAWFILT PROXTHRESH Low PROXAVG(15:0) Pass Comparator Compensation Request AVGTHRESH

Figure 12: Digital Processing Block Diagram

Digital processing sequencing is illustrated in figure below. At every scan period wake-up, the block updates sequentially PROXRAW, PROXUSEFUL, PROXAVG, PROXDIFF and PROXSTAT before going back to Idle mode.

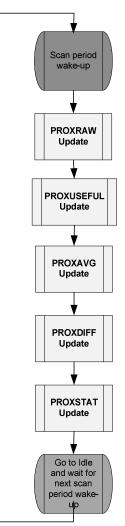
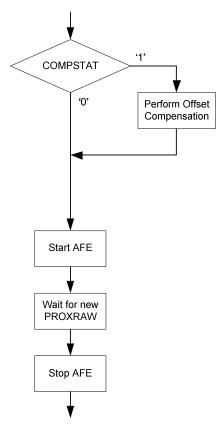


Figure 13: Digital Processing Sequencing


Digital processing block also updates COMPSTAT (set when compensation is currently pending execution or completion)

Revision 4 February 4, 2014 © 2014 Se

3.4.2 PROXRAW Update

PROXRAW update consists mainly in starting the AFE and waiting for the new PROXRAW values (one for each CSx/sensor pin) to be ready. If compensation was pending it is performed first.

Figure 14: ProxRaw Update

Note that PROXRAW is not available in the "Sensor Data Readback" section of the registers. If needed it can be observed by setting RAWFILT=00 and reading PROXUSEFUL.

3.4.3 PROXUSEFUL Update

PROXUSEFUL update consists in filtering PROXRAW upfront to remove its potential high frequencies components(system noise, interferer, etc) and extract only user activity (few Hz max) and slow environment changes.

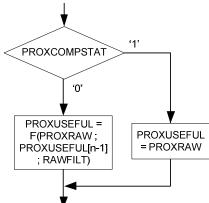


Figure 15: PROXUSEFUL Update

Revision 4 February 4, 2014

3.4.4 PROXAVG Update

PROXAVG update consists in averaging PROXUSEFUL to ignore its "fast" variations (i.e. user finger/palm/hand) and extract only the very slow variations of environment capacitance C_{Env} .

One can program a debounced threshold (AVGTHRESH/AVGDEB) to define a range within which PROXAVG can vary without triggering compensation (i.e. small acceptable environment drift).

Large positive values of PROXUSEFUL are considered as normal (user finger/hand/head) but large negative values are considered abnormal and should be compensated quickly. For this purpose, the averaging filter coefficient can be set independently for positive and negative variations via AVGPOSFILT and AVGNEGFILT. Typically we have AVGPOSFILT > AVGNEGFILT to filter out (abnormal) negative events faster.

To prevent PROXAVG to be "corrupted" by user activity (should only reflect environmental changes) it is frozen when proximity is detected.

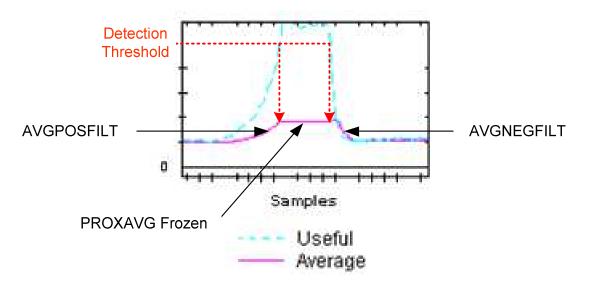


Figure 16: ProxAvg vs Proximity Event

SX9500

Ultra Low Power, Four Channels Capacitive Proximity/Button Solution

WIRELESS & SENSING

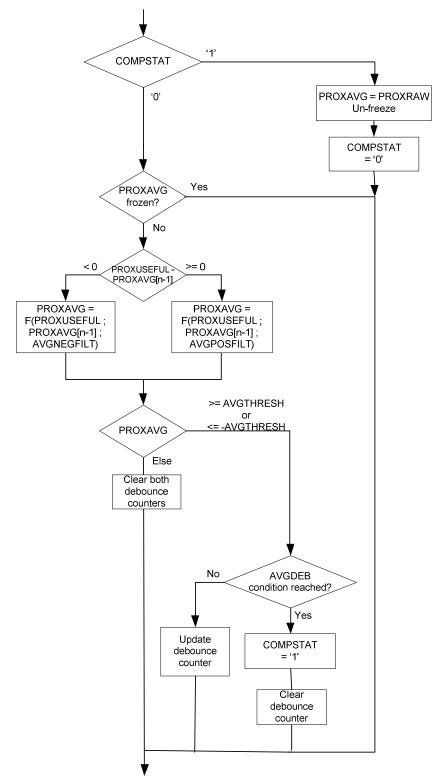
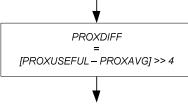



Figure 17: ProxAvg Update

3.4.5 PROXDIFF Update

PROXDIFF update consists in the complementary operation i.e. subtracting PROXAVG to PROXUSEFUL to ignore slow capacitances variations (C_{Env}) and extract only the user related variations i.e. C_{User} .

Figure 18: ProxDiff Update

Note that only the 12 upper bits of [PROXUSEFUL - PROXAVG] are kept for PROXDIFF.

3.4.6 PROXSTAT Update

PROXSTAT update consists in taking PROXDIFF information (C_{User}), comparing it with a user programmable threshold PROXTHRESH and finally updating PROXSTAT accordingly. When PROXSTAT=1, PROXAVG is frozen to prevent the user proximity signal averaging and hence absorbed into C_{Env} .

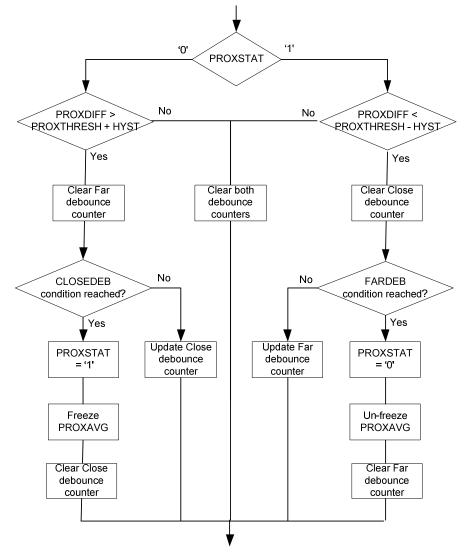
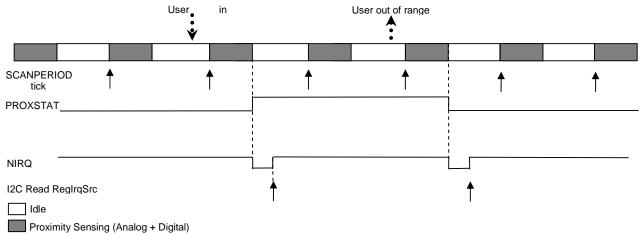
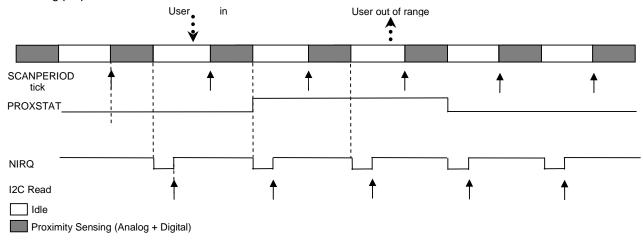


Figure 19: PROXSTAT Update


Revision 4 February

February 4, 2014


3.5 Host Operation

An interrupt can be triggered when the user is detected to be close (in range), detected to be far (out of range), or both (CLOSEIRQEN, FARIRQEN).

Figure 20: Proximity Sensing Host Operation (RegIrqMsk[6:3] = 1100)

An interrupt can also be triggered at the end of each proximity sensing operation, indicating to the host when the proximity sensing block is running (CONVDONEIRQEN). This may be used by the host to synchronize noisy system operations or to read sensor data (PROXUSEFUL, PROXAVG, PROXDIFF) synchronously for monitoring purposes.

Figure 21: Proximity Sensing Host Operation (ReglrqMsk[6:3] = 0001)

In both cases above, an interrupt can also be triggered at the end of compensation (COMPDONEIRQEN).

3.6 **Operational Modes**

3.6.1 Active

Active mode has the shortest scan periods, typically 30ms. In this mode, all enabled sensors are scanned and information data is processed within this interval. The Active scan period is user configurable (SCANPERIOD) and can be extended up to 400ms.

3.6.2 Doze

In some applications, the reaction/sensing time needs to be fast when the user is present (proximity detected), but can be slow when not detection has been done for some time.

The Doze mode, when enabled (DOZEEN), allows the chip to automatically switch between a fast scan period (SCANPERIOD) during proximity detection and a slow scan period (DOZEPERIOD) when no proximity is being detected (up to 6.4s). This allows reaching low average power consumption values at the expense obviously of longer reaction times.

As soon as proximity is detected on any sensor, the chip will automatically switch to Active mode while when it has not detected an object for DOZEPERIOD, it will automatically switch to Doze mode.

3.6.3 Sleep

Sleep mode can be entered by disabling all sensors (SENSOREN=0000). It places the SX9500 in its lowest power mode, with sensor scanning completely disabled and idle period set to continuous. In this mode, only the I2C serial bus is active. Enabling any sensor will make the chip leave Sleep mode (for Doze if enabled, else Active mode)

3.6.4 TXEN Pin

The TXEN input enables proximity sensing when HIGH, likewise when the TXEN input is LOW, the SX9500 is in Sleep mode. Specifically, on the rising edge of TXEN the SX9500 will begin measuring the sensors normally at the programmed rate (SCANPERIOD, DOZEPERIOD) as long as TXEN remains HIGH. When TXEN goes LOW the current measurement sequence will complete and then measurement will cease until the next rising edge of TXEN.

This feature can be used to synchronize proximity sensing with noisy and/or RF activity for example.

WIRELESS & SENSING

4 I2C INTERFACE

4.1 Introduction

The I2C implemented on the SX9500 and used by the host to interact with it is compliant with:

- Standard (100kb/s) and fast mode (400kb/s)
- Slave mode
- 7-bit address (default is 0x28 assuming A1=A0=0)

The SX9500 has two I/O pins (A0 and A1) that provides four possible, user selectable I2C addresses:

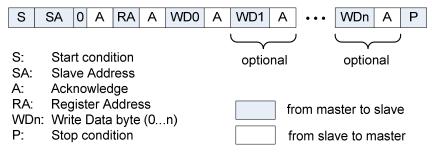

A1	A0	Address
0	0	0x28
0	1	0x29
1	0	0x2A
1	1	0x2B

Table 8: I2C Sub-Address Selection

The host can use the I2C to read and write data at any time, and these changes are effective immediately. Therefore the user should ideally disable the sensor before changing settings, or discard the results while changing.

4.2 I2C Write

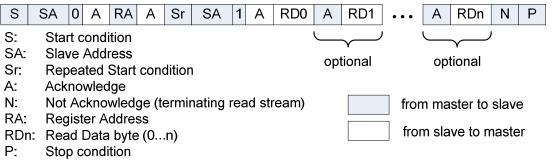
The format of the I2C write is given in Figure 12. After the start condition [S], the slave address (SA) is sent, followed by an eighth bit ('0') indicating a Write. The SX9500 then Acknowledges [A] that it is being addressed, and the Master sends an 8 bit Data Byte consisting of the SX9500 Register Address (RA). The Slave Acknowledges [A] and the master sends the appropriate 8 bit Data Byte (WD0). Again the Slave Acknowledges [A]. In case the master needs to write more data, a succeeding 8 bit Data Byte will follow (WD1), acknowledged by the slave [A]. This sequence will be repeated until the master terminates the transfer with the Stop condition [P].

Figure 22: I2C Write

The register address is incremented automatically when successive register data (WD1...WDn) is supplied by the master.

4.3 I2C Read

The format of the I2C read is given in Figure 13. After the start condition [S], the slave address (SA) is sent, followed by an eighth bit ('0') indicating a Write. The SX9500 then Acknowledges [A] that it is being addressed, and the Master responds with an 8-bit Data consisting of the Register Address (RA). The Slave Acknowledges [A] and the master sends the Repeated Start Condition [Sr]. Once again, the slave address (SA) is sent, followed by an eighth bit ('1') indicating a Read. The SX9500 responds with an Acknowledge [A] and the read


Revision 4 February 4, 2014 © 2014 Semtech Corporation

Capacitive Proximity/Button Solution

WIRELESS & SENSING

Data byte (RD0). If the master needs to read more data it will acknowledge [A] and the SX9500 will send the next read byte (RD1). This sequence can be repeated until the master terminates with a NACK [N] followed by a stop [P].

Figure 23: I2C Read

The register address is incremented automatically when successive register data (RD1...RDn) is retrieved by the master.

Capacitive Proximity/Button Solution

WIRELESS & SENSING

5 RESET

5.1 Power-up

During a power-up condition, the NIRQ output is HIGH until V_{DD} has met the minimum input voltage requirements and a T_{POR} time has expired upon which, NIRQ asserts to a LOW condition indicating the SX9500 is initialized. The host must perform an I2C read of RegIrqSrc to clear this NIRQ status. The SX9500 is then ready for normal I2C communication and is operational.

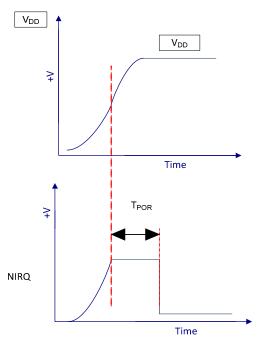
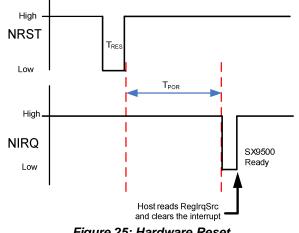
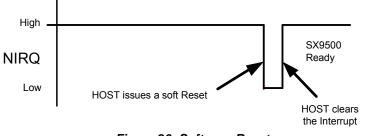


Figure 24: Power-up vs. NIRQ

5.2 NRST Pin

When the host asserts NRST LOW (for min. $T_{RESETPW}$) and then HIGH, the SX9500 will reset its internal registers and will become active after T_{POR} . When not used, this pin must be pulled high to SV_{DD}.




Figure 25: Hardware Reset

Revision 4 February 4, 2014

5.3 Software Reset

The host can also perform a reset anytime by writing 0xDE into RegReset. The NIRQ output will be asserted LOW and the Host is required to perform an I2C read to clear this NIRQ status.

6 INTERRUPT

Except RESETIRQ, all interrupt sources are disabled by default upon power-up and resets, and thus must be enabled by the host. Any or all of the following interrupts can be enabled by writing a "1" into the appropriate locations within the RegIrqMsk register:

- Close (proximity detected)
- Far (proximity un-detected)
- Compensation completed
- Conversion completed

The interrupt status can be read from RegIrqSrc for each of these interrupt sources.

6.1 Power-up

During initial power-up, the NIRQ output is HIGH. Once the SX9500 internal power-up sequence has completed, NIRQ is asserted LOW, signaling that the SX9500 is ready. The host must perform a read to RegIrqSrc to acknowledge and the SX9500 will clear the interrupt and release the NIRQ line.

6.2 Assertion and Clearing

The NIRQ can be asserted in either the Active or Doze mode during a scan period. The NIRQ will be automatically cleared after the host performs a read of RegIrqSrc (which content will be cleared as well).

7 **PINS DESCRIPTION**

7.1 V_{DD} and SV_{DD}

These are the device supply voltages. VDD is the supply voltage for the internal core. SVDD is the supply voltage for the host interface. NOTE: SVDD MUST be equal or lower than V_{DD} at all times.

Ultra Low Power, Four Channels Capacitive Proximity/Button Solution

7.2 **TXEN**

This signal can be used in many applications if a conversion trigger/enable is needed. This input pin synchronizes the Capacitance Sensing inputs in systems that need to (for example) transmit RF signals. When this signal is active, SX9500 performs capacitive measurements. If this input becomes inactive during the middle of a measurement, the SX9500 will complete all remaining measurements and will enter sleep mode until TXEN goes active again.

7.3 Capacitive Sensing Interface (CS0, CS1, CS2, CS3, CSG)

The Capacitance Sensing input pins CS0, CS1, CS2 and CS3 are connected directly to the Capacitance Sensing Interface circuitry which converts the sensed capacitance into digital values. The Capacitive Sensor Guard (CSG) output provides a guard reference to minimize the parasitic sensor pin capacitances to ground. Capacitance sensor pins which are not used must not be connected. Additionally, CSx pins must be connected directly to the capacitive sensors using a minimum length circuit trace to minimize external "noise" pick-up.

The capacitance sensor and capacitive sensor guard pins are protected from ESD events to VDD and GROUND.

7.4 Host Interface

The Host Interface consists of: NIRQ, NRST, SCL, SDA, and TXEN. These signals are discussed below.

<u>7.4.1</u> NIRQ

The NIRQ pin is an open drain output that requires an external pull-up resistor (1...10 kOhm). The NIRQ pin is protected from ESD events to VDD and GROUND.

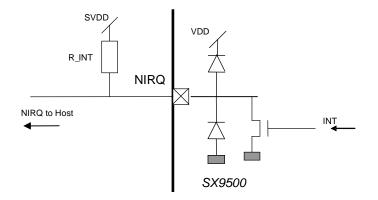


Figure 27: NIRQ Output Simplified Diagram

7.4.2 SCL, NRST and TXEN

The SCL, NRST and TXEN pins are high impedance input pins that require an external pull-up resistor (1..10 kOhm). NRST and TXEN can be connected without the requirement for a pull-up resistor if driven from a push-pull host output. These pins are protected from ESD events to VDD and GROUND.

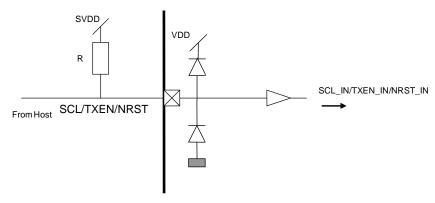


Figure 28: SCL/TXEN/NRST

<u>7.4.3</u> SDA

SDA is an I/O pin that requires an external pull-up resistor (1...10 kOhm). The SDA I/O pin is protected to VDD and GROUND.

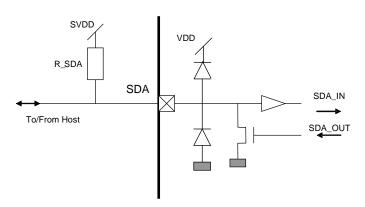


Figure 29: SDA Simplified Diagram

WIRELESS & SENSING

8 **REGISTERS**

8.1 Overview

The SX9500 allows the user full parameter customization for sensor sensitivity, hysteresis, detection thresholds, etc. Custom parameters are controlled thru the volatile registers below and must be uploaded by the host thru I2C after power-up or after a reset.

Address	Name	Default	Description	
0x00	ReglrqSrc	0x80		
0x01	RegStat	0x0F	Interrupt & Status	
0x03	ReglrqMsk	0x00	······	
0x06	RegProxCtrl0	0x0F		
0x07	RegProxCtrl1	0x40		
0x08	RegProxCtrl2	0x08		
0x09	RegProxCtrl3	0x40		
0x0A	RegProxCtrl4	0x00	Proximity Sensing Control	
0x0B	RegProxCtrl5	0x00		
0x0C	RegProxCtrl6	0x00		
0x0D	RegProxCtrl7	0x00		
0x0E	RegProxCtrl8	0x00		
0x20	RegSensorSel	0x00		
0x21	RegUseMsb	0x00		
0x22	RegUseLsb	0x00		
0x23	RegAvgMsb	0x00		
0x24	RegAvgLsb	0x00	Sensor Data Readback	
0x25	RegDiffMsb	0x00		
0x26	RegDiffLsb	0x00		
0x27	RegOffsetMsb	0x00		
0x28	RegOffsetLsb	0x00		
0x7F	RegReset	0x00	Software Reset	

Table 9: Registers Overview

NOTES:

1) Addresses not listed above are reserved and should not be written.

2) Reserved bits should be left to their default value unless otherwise specified.

8.2 Detailed Description

Addr.	Name	R/W	Bits	Variable	Default	Function
	•	•	•	Interrupt & Sta	tus	
0x00	ReglrqSrc	R	7	RESETIRQ	1	Reset interrupt source status. (i.e.
			6	CLOSEIRQ	0	reset occurred) Close interrupt source status. (i.e. PROXSTATx rising edge)
			5	FARIRQ	0	Far interrupt source status. (i.e. PROXSTATx falling edge)
		R/W	4	COMPDONEIRQ	0	Compensation interrupt source status. (i.e. compensation occurred When set to 1, triggers compensation
		R	3	CONVDONEIRQ	0	Conversion interrupt source status. (i.e. new set of sensor data available)
			2:1	Reserved	00	,
			0	TXENSTAT	0	Indicates current TXEN pin status.
0x01	RegStat	R	7	PROXSTAT3	0	Indicates if proximity is being detected for CS3 (i.e. sensor's PROXDIFF value is above detection threshold)
			6	PROXSTAT2	0	Indicates if proximity is being detected for CS2 (i.e. sensor's PROXDIFF value is above detection threshold)
			5	PROXSTAT1	0	Indicates if proximity is being detected for CS1 (i.e. sensor's PROXDIFF value is above detection threshold)
			4	PROXSTAT0	0	Indicates if proximity is being detected for CS0 (i.e. sensor's PROXDIFF value is above detection threshold)
			3:0	COMPSTAT	1111	Indicates which capacitive sensor(s has a compensation pending. [3:0] = [CS3, CS2, CS1, CS0]
0x03	ReglrqMsk	R	7	Reserved	0	
		R/W	6	CLOSEIRQEN	0	Enables the close interrupt.
			5	FARIRQEN	0	Enables the far interrupt.
			4	COMPDONEIRQEN	0	Enables the compensation interrup
			3	CONVDONEIRQEN	0	Enables the conversion interrupt.
		R	2:0	Reserved	000	· · · · · ·
		-		Proximity Sensing	Control	
0x06	RegProxCtrl0	R/W	7	Reserved	0	
			6:4	SCANPERIOD	000	Defines the Active scan period : 000: 30 ms (Typ.) 001: 60 ms 010: 90 ms 011: 120 ms 100: 150 ms 101: 200 ms
						110: 300 ms 111: 400 ms Low values will allow fast reaction
						time while high values will provide low power consumption.
			3:0	SENSOREN	1111	time while high values will provide low power consumption. Enables sensor pins.

WIRELESS & SENSING

Capacitive Proximity/Button Solution

						[3:0] = [CS3, CS2, CS1, CS0]
0x07	RegProxCtrl1	R/W	7:6	SHIELDEN	01	Enables shield function on CSG pin: 00: Off, high impedance. 01: On (Typ.) 1x: Reserved
		R/W	5:2	Reserved	0000	
		R/W	1:0	RANGE	00	Defines the input capacitance range: 00: Large (typ. +/-7.3pF FS) 01: Medium Large (typ. +/-3.7pF FS) 10: Medium Small (typ. +/-3pF FS) 11: Small (typ. +/-2.5pF FS)
						This parameter can be seen as an analog gain (small range = high gain) Full scale (FS) values assume no digital gain.
0x08	RegProxCtrl2	R/W	7	Reserved	0	
			6:5	GAIN	00	Defines the digital gain factor: 00: Off (x1) 01: x2 10: x4 11: x8 (Typ.) This is a pure digital gain (value
			4:3	FREQ	01	shift) applied at the ADC output. Defines the sampling frequency: 00: 83 kHz 01: 125 kHz 10: 167 kHz (Typ.) 11: Reserved
			2:0	RESOLUTION	000	Defines the capacitance measurement resolution/precision: 000: Coarsest 100: Medium
						111: Finest (Typ.)
0x09	RegProxCtrl3	R/W	7	Reserved	0	
	Ū.		6	DOZEEN	1	Enables Doze mode.
			5:4	DOZEPERIOD	00	When DOZEN=1, defines the Doze scan period: 00: 2x SCANPERIOD 01: 4x SCANPERIOD 10: 8x SCANPERIOD 11: 16x SCANPERIOD
			3:2	Reserved	00	
			1:0	RAWFILT	00	Defines PROXRAW filter strength : 00: Off - No filtering 01: Low (Typ.) 10: Medium 11: High - Max filtering
0x0A	RegProxCtrl4	R/W	7:0	AVGTHRESH	0x00	Defines the positive and negative average thresholds which will trigger compensation: Thresholds = +/- 128x AVGTHRESH Typically set between +/-16384 and +/-24576 (i.e. ½ to ¾ of the system
Revision	4 February 4	1 2014		© 2014 Semtech Co		dynamic range).

Capacitive Proximity/Button Solution

WIRELESS & SENSING

						Should not be set below 0x40.
0x0B	RegProxCtrl5	R/W	7:6	AVGDEB	00	Defines the average debouncer applied to AVGTHRESH: 00: Off 01: 2 samples 10: 4 samples 11: 8 samples
			5:3	AVGNEGFILT	000	Defines the average negative filter strength: 000: Off - No filtering 001: Lowest (Typ.) 111: Highest - Max filtering
			2:0	AVGPOSFILT	000	Defines the average positive filter strength: 000: Off - No filtering 001: Lowest
0x0C	RegProxCtrl6	R/W	7:5	Reserved	000	111: Highest - Max filtering (Typ.)
			4:0	PROXTHRESH	00000	Defines the proximity detection threshold (for all sensors). 00000: 0 00001: 20 00010: 40 00011: 60 00101: 100 00111: 140 01001: 120 00111: 140 01001: 180 01001: 200 0111: 220 01101: 220 01101: 280 01111: 300 10000: 350 10001: 400 10010: 450 10011: 500 10101: 600 10111: 900 1100: 1000 1100: 1000 1100: 1200 11011: 1300 11100: 1400 11101: 1500 11111: 1700 Low values allow good sensitivity/distance while highe
	Dog Drov Otel 7		7		0	values allow better noise immunity.
0x0D	RegProxCtrl7	R/W	7	AVGCOMPDIS	0	Disables the automatic compensation triggered by AVGTHRESH.

Capacitive Proximity/Button Solution

WIRELESS & SENSING

			6	COMPMETHOD	0	Defines the compensation method:
			U		Ū	0: Compensate each CSx pin
						independently (Typ.)
						1: Compensate all CSx pins
						together.
			5:4	HYST	00	Defines the proximity detection
						hysteresis applied to
						PROXTHRESH:
						00: 32
						01: 64
						10: 128
						11: 256
			3:2	CLOSEDEB	00	Defines the Close debouncer applied
						to PROXTHRESH:
						00: Off
						01: 2 samples 10: 4 samples
						11: 8 samples
			1:0	FARDEB	00	Defines the Far debouncer applied to
						PROXTHRESH:
						00: Off
						01: 2 samples
						10: 4 samples
						11: 8 samples
0x0E	RegProxCtrl8	R/W	7:4	STUCK	0000	Defines the proximity "stuck" timeout:
						0000 : Off (Typ.)
						00XX: STUCK x 64 samples
						01XX: STUCK x 128 samples
			3:0	COMPPRD	0000	1XXX: STUCK x 256 samples Defines the periodic compensation
			5.0		0000	interval:
						0000: Off (Typ.)
						Else: COMPPRD x 128 samples
				Sensor Data Rea	dback	
0x20	RegSensorSel	R	7:2	Reserved	000000	
		RW	1:0	SENSORSEL	00	Defines which sensor's data will be
						available in registers RegUseMsb to
						RegOffsetLsb (addr. 0x21 to 0x28): 00: CS0
						01: CS1
						10: CS2
						11: CS3
0x21	RegUseMsb	R	7:0	PROXUSEFUL	0x00	Useful current value.
0x22	RegUseLsb	R	7:0		0x00	Signed, 2's complement format.
0x23	RegAvgMsb	R	7:0	PROXAVG	0x00	Average current value.
0x24	RegAvgLsb	R	7:0		0x00	Signed, 2's complement format.
0x25	RegDiffMsb	R	7:0	PROXDIFF	0x00	Diff current value.
0x26	RegDiffLsb	R	7:0		0x00	Signed, 2's complement format.
0x27	RegOffsetMsb	R/W	7:0	PROXOFFSET	0x00	Compensation offset current value.
0x28	RegOffsetLsb	R/W	7:0		0x00	Unsigned.
						To force a value, MSB and LSB
						registers must be written in sequence and change is effective
						after LSB.
		I	·	Software Res	et	
0x7F	RegReset	W	7:0	SOFTRESET	0x00	Writing 0xDE resets the chip.
L	. V	•		1	•	v i

Table 10: Registers Detailed Description

Revision 4 February 4, 2014

WIRELESS & SENSING

9 APPLICATION INFORMATION

9.1 Typical Application Circuit

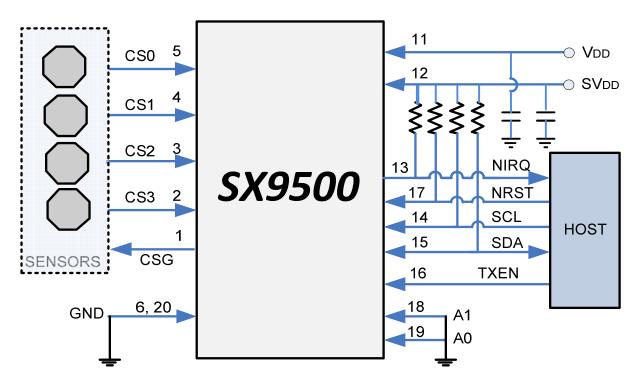
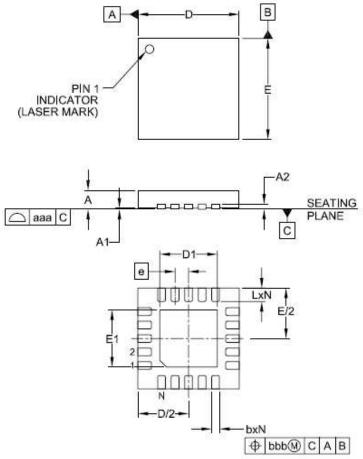


Figure 30: Typical Application Circuit

9.2 External Components Recommended Values

Symbol	Description	Note	Min	Тур.	Max	Unit
CVDD	Core supply decoupling capacitor		-	100	-	nF
CSVDD	Host interface supply decoupling capacitor		-	100	-	nF
RPULL	Host interface pull-ups	+/- 50%	-	10	-	kΩ

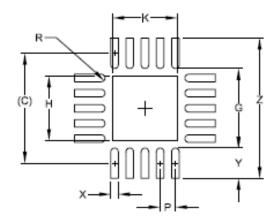

Table 11: External Components Recommended Values

WIRELESS & SENSING

10 PACKAGING INFORMATION

10.1 Outline Drawing

2	0	DIM	IENS	ONS				
-	. N	NCHE	S	MILLIMETERS				
DIM	MIN	NOM	MAX	MIN	NOM	MAX		
A	,020	- <u>1</u>	.024	0,50	しるこ	0,60		
A1	.000	2	.002	0.00	0.2.0	0.05		
A2		(.006)	s - 3		(0.152)	(
b	,006	,008	.010	0,15	0.20	0.25		
D	,114	,118	,122	2,90	3,00	3,10		
D1	.061	.067	.071	1.55	1.70	1.80		
E	.114	.118	.122	2,90	3.00	3,10		
E1	,061	.067	.071	1,55	1,70	1,80		
e		016 BS	С	0.40 BSC				
L	.012	.016	.020	0.30	0.40	0.50		
N		20		20				
888		.003	ĺ	0.08				
bbb		.004			0.10			


NOTES:

- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
- 2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
- 3, DAP IS 1.90 x 1.90mm.

Figure 31: Outline Drawing

WIRELESS & SENSING

	DIMENSIONS					
DIM	INCHES	MILLIMETERS				
С	(.114)	(2.90)				
G	.083	2.10				
н	.067	1.70				
ĸ	067	1,70				
Р	.016	0.40				
R	.004	0.10				
х	.008	0.20				
Υ	.031	0.80				
Z	.146	3,70				

NOTES:

- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
- THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY, CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR COMPANY'S MANUFACTURING GUIDELINES ARE MET.
- THERMAL VIAS IN THE LAND PATTERN OF THE EXPOSED PAD SHALL BE CONNECTED TO A SYSTEM GROUND PLANE.
 FAILURE TO DO SO MAY COMPROMISE THE THERMAL AND/OR FUNCTIONAL PERFORMANCE OF THE DEVICE.

Figure 32: Land Pattern

© Semtech 2014

All rights reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights. Semtech assumes no responsibility or liability whatsoever for any failure or unexpected operation resulting from misuse, neglect improper installation, repair or improper handling or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified range.

SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER'S OWN RISK. Should a customer purchase or use Semtech products for any such unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs damages and attorney fees which could arise.

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Contact Information

Semtech Corporation Wireless and Sensing Products Division 200 Flynn Road, Camarillo, CA 93012 Phone: (805) 498-2111 Fax: (805) 498-3804