STATIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Con	Min.	Тур.	Max.	Unit	
I _R *	Reverse leakage current	T _j = 25°C	V _R = V _{RRM}			3	μΑ
		T _j = 125°C			4	75	
V _F **	Forward voltage drop	T _j = 25°C	I _F = 3A			0.95	V
		T _j = 125°C			0.66	0.75	

Pulse test : * tp = 5 ms, δ < 2 %

** tp = 380 μ s, δ < 2 %

To evaluate the maximum conduction losses use the following equations:

 $P = 0.60 \text{ x } I_{F(AV)} + 0.05 I_{F}^{2}(RMS)$

DYNAMIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit	
trr	Reverse recovery time	$I_F = 1A dI_F/dt = -50A/\mu s$ $V_R = 30V$	T _j = 25°C			35	ns
tfr	Forward recovery time	$I_F = 3A dI_F/dt = 50A/\mu s$ $V_{FR} = 1.1 \times V_F \max$	$T_j = 25^{\circ}C$		70		ns
V _{FP}	Forward recovery voltage		T _j = 25°C		1.6		V

57

Fig. 1: Average forward power dissipation versus average forward current.

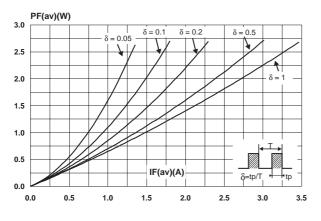


Fig. 3: Thermal resistance versus lead length.

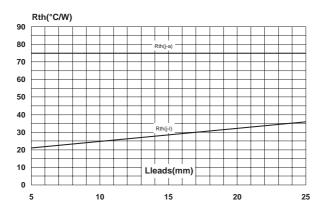


Fig. 5: Forward voltage drop versus forward current.

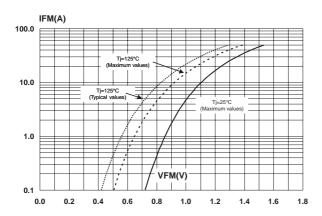
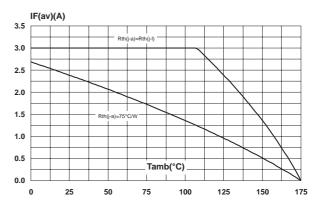



Fig. 2: Average forward current versus ambient temperature (δ =0.5).

Fig. 4: Relative variation of thermal impedance junction ambient versus pulse duration (printed circuit board epoxy FR4, Lleads = 10mm).

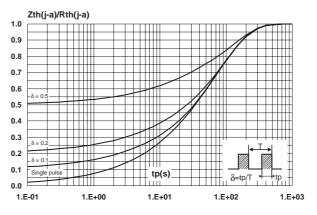
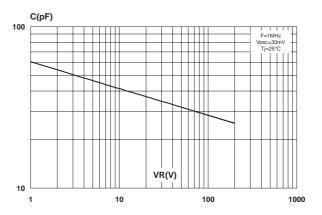
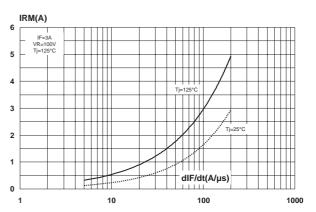
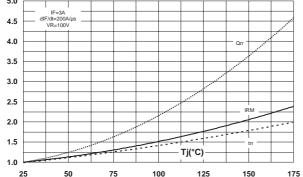



Fig. 6: Junction capacitance versus reverse voltage applied (typical values).

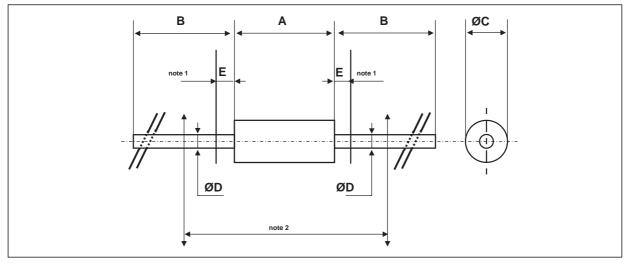
57


STTH302


Fig. 7: Reverse recovery time versus dI_F/dt (90% confidence).

trr(ns) 100 90 80 70 60 Tj=125°C 50 ···· 40 30 · • • • 20 10 dlF/dt(A/µs) 0 10 100 1000 1

Fig. 9: Relative variations of dynamic parameters versus junction temperature.


IRM; trr; Qrr[Tj]/IRM; trr; Qrr[Tj=25°C] 5.0 IF=3A dIF/dt=200A/µs VR=100V -4.5 4.0 Qr 3.5 3.0 2.5 2.0 . . . +---1.5 Tj(°C) 1.0 25 50 75 100 125 150 175 Fig. 8: Peak reverse recovery current versus dIF/dt (90% confidence).

PACKAGE MECHANICAL DATA

DO-201AD

	DIMENSIONS						
REF. Millimeters		Inches		NOTES			
	Min.	Max.	Min.	Max.			
A		9.50		0.374	1 - The lead diameter \varnothing D is not controlled over zone E		
В	25.40		1.000				
ØC		5.30		0.209	2 - The minimum axial length within which the device may be		
ØD		1.30		0.051	placed with its leads bent at right angles is 0.59"(15 mm)		
E		1.25		0.049			

Ordering code	Marking	Package	Weight	Base qty	Delivery mode
STTH302	STTH302	DO-201AD	1.16 g	600	Ammopack
STTH302RL	STTH302	DO-201AD	1.16 g	1900	Tape and reel

White band indicates cathode

Epoxy meets UL94,V0

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany

Hong Kong - India - Israel - Italy - Japan - Malaysia -Malta - Morocco - Singapore

Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

