Contents

1	Electrical ratings
2	Electrical characteristics
	2.1 Electrical characteristics (curves)
3	Test circuit
4	Package mechanical data 10
5	Revision history

1 Electrical ratings

Gumbal	Devementer	Value	Value		
Symbol	Parameter	TO-220/ TO-247	TO-220FP	Unit	
V _{DSS}	Drain-source voltage ($V_{GS} = 0$)	800		V	
V _{DGR}	Drain-gate voltage (R _{GS} = 20kΩ)	800		V	
V _{GS}	Gate-source voltage	± 30		V	
Ι _D	Drain current (continuous) at $T_C = 25^{\circ}C$	9 g ⁽¹⁾		А	
I _D	Drain current (continuous) at T _C =100°C 6		6 ⁽¹⁾	А	
I _{DM} ⁽²⁾	Drain current (pulsed)	36	36 ⁽¹⁾	А	
P _{TOT}	Total dissipation at $T_{C} = 25^{\circ}C$	160	40	W	
	Derating factor	1.28	0.32	W/°C	
Vesd(G-S)	G-S ESD (HBM C=100pF, R=1.5kΩ)	4		kV	
dv/dt ⁽³⁾	Peak diode recovery voltage slope	4.5		V/ns	
V _{ISO}	SO Insulation withstand voltage (DC) 2500		2500	V	
T _J T _{stg}	Operating junction temperature Storage temperature	-55 to 15	-55 to 150		

Table 2.Absolute maximum ratings

1. Limited by maximum junction temperature.

2. Pulse width limited by safe operating area.

3. $I_{SD} \leq$ 9 A, di/dt \leq 200 A/µs, $V_{DD} \leq V_{(BR)DSS}$, $T_j \leq T_{JMAX}$

Table 3. Thermal data

Symbol	Parameter		Unit		
Symbol	Falameter	TO-220	TO-220FP	TO-247	Omt
R _{thj-case}	Thermal resistance junction-case Max	0.78	3.1	0.78	°C/W
R _{thj-a}	Thermal resistance junction-ambient Max	62.5		50	°C/W

Table 4. Avalanche characteristics

Symbol	Symbol Parameter		Unit
I _{AS} Avalanche current, repetitive or not-repetitive (pulse width limited by Tj Max)		9	A
E _{AS}	Single pulse avalanche energy (starting Tj=25°C, Id=Iar, Vdd=50V)	290	mJ

2 Electrical characteristics

(T_{CASE}=25°C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 1mA$, $V_{GS} = 0$	800			V
I _{DSS}	Zero gate voltage drain current ($V_{GS} = 0$)	V _{DS} = 800V V _{DS} = 800V, T _C = 125°C			1 50	μΑ μΑ
I _{GSS}	Gate body leakage current (V _{DS} = 0)	$V_{GS} = \pm 20V$			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 100 \mu A$	3	3.75	4.5	V
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10V, I _D = 4.5A		0.78	0.9	Ω

Table 5. On/off states

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
9 _{fs} ⁽¹⁾	Forward transconductance	V _{DS} =15V, I _D = 4.5A	-	9.6	-	S
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} =25V, f=1 MHz, V _{GS} =0	-	2180 205 38	-	pF pF pF
C _{oss eq} ⁽²⁾ .	Equivalent output capacitance	V_{GS} =0, V_{DS} =0V to 640V	-	105	-	pF
Q _g Q _{gs} Q _{gd}	Total gate charge Gate-source charge Gate-drain charge	V_{DD} =640V, I_{D} = 9A V_{GS} =10V See <i>Figure 20</i>	-	72 12.5 37	-	nC nC nC

1. Pulsed: pulse duration=300µs, duty cycle 1.5%

2. $C_{oss\ eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on delay time Rise time	V _{DD} =400 V, I _D =4.5A, R _G =4.7Ω, V _{GS} =10V See <i>Figure 21</i>		30 20		ns ns
t _{d(off)} t _f	Turn-off delay Time Fall time	V_{DD} =400 V, I _D =4.5A, R _G =4.7 Ω , V _{GS} =10V See <i>Figure 21</i>		65 17		ns ns

Table 7. Switching times

Table 8.Gate-source zener diode

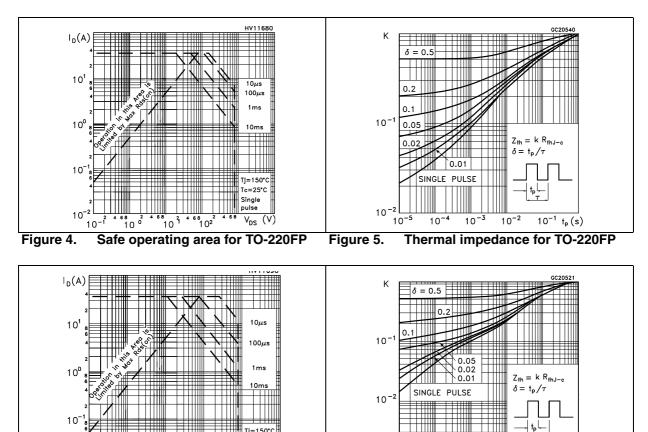
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
BV _{GSO} ⁽¹⁾	Gate-source breakdown voltage	lgs=±1mA (open drain)	30			V

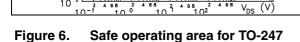
 The built-in back-to-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

Table 9.Source drain diode

Symbol	Parameter	Test conditions	Min	Тур.	Max	Unit
I _{SD}	Source-drain current		-		9	А
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		36	А
$V_{SD}^{(2)}$	Forward on voltage	I _{SD} =9A, V _{GS} =0	-		1.6	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} =9A, di/dt = 100A/μs, V _{DD} =45V, Tj=150°C	-	645 6.4 20		ns μC Α

1. Pulse width limited by safe operating area


2. Pulsed: pulse duration=300µs, duty cycle 1.5%

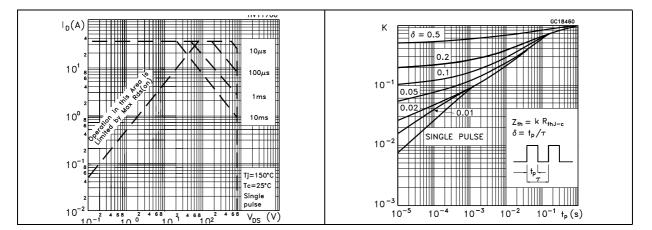


Electrical characteristics (curves) 2.1

- Figure 3.
 - Thermal impedance for TO-220

10

Figure 7. Thermal impedance for TO-247

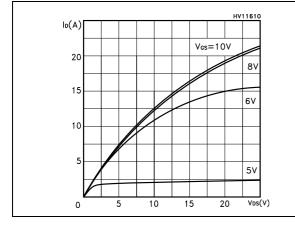

10

 10^{-2}

100

 $t_{p}(s)$

 10^{-1}


10

10

Tc=25°C Single

Figure 8. Output characterisics

Figure 10. Transconductance

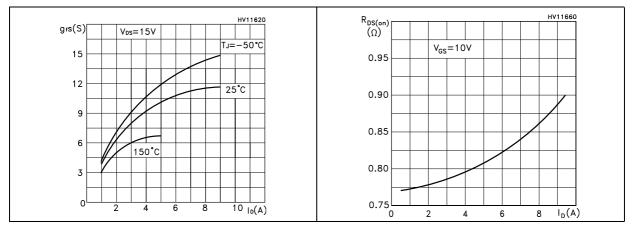
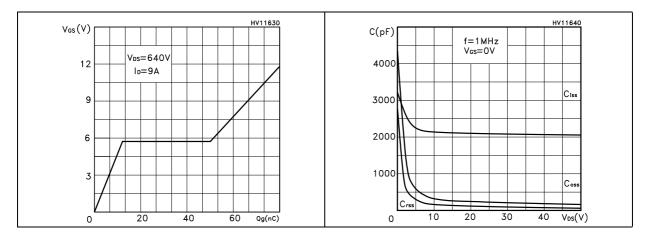



Figure 12. Gate charge vs gate-source voltage Figure 13. Capacitance variations

Figure 9. Transfer characteristics

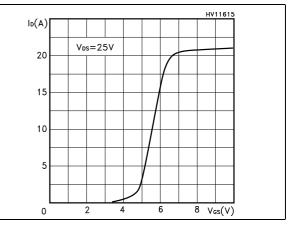


Figure 11. Static drain-source on resistance

Figure 14. Normalized gate threshold voltage Figure 15. Normalized on resistance vs vs temperature

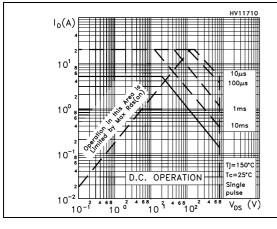


Figure 16. Source-drain diode forward characteristics

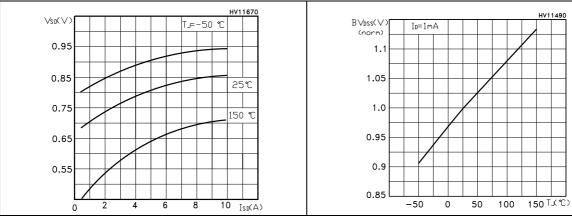
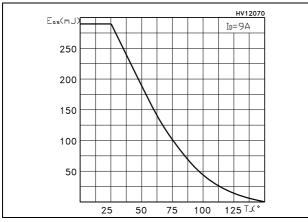
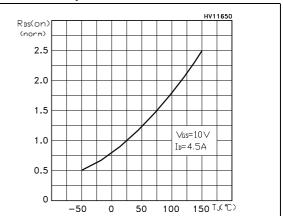
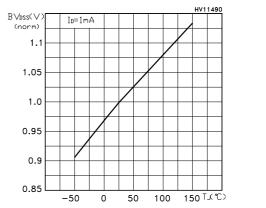
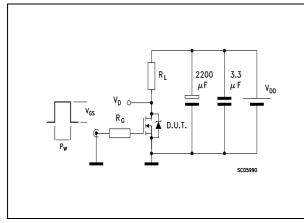



Figure 18. Maximum avalanche energy vs temperature

temperature


Figure 17. Normalized $\mathsf{BV}_{\mathsf{DSS}}$ vs temperature

3 **Test circuit**

Figure 19. Switching times test circuit for resistive load

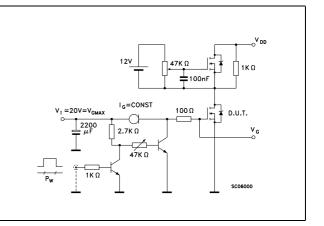
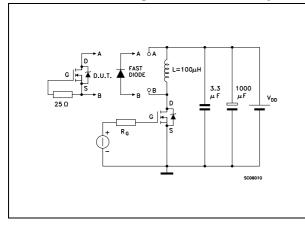
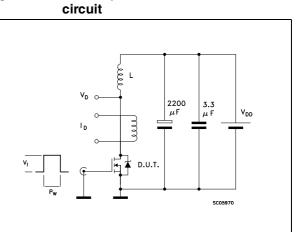
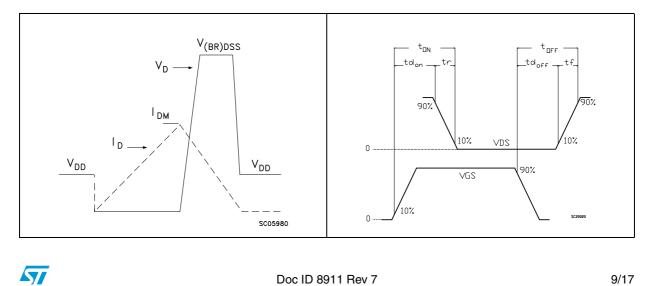




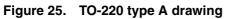
Figure 20. Gate charge test circuit

Figure 21. Test circuit for inductive load Figure 22. switching and diode recovery times



Unclamped Inductive load test

4 Package mechanical data


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

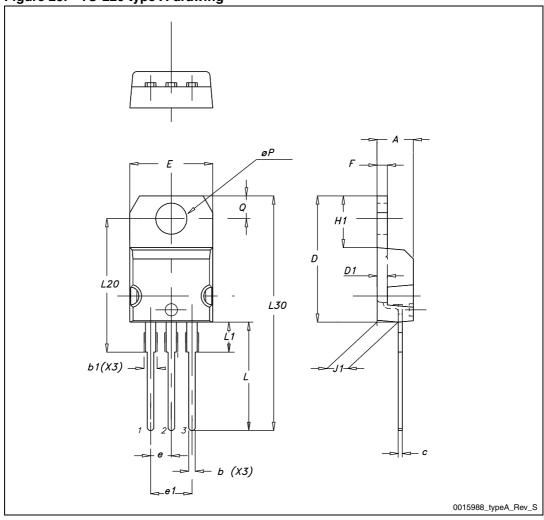
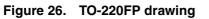
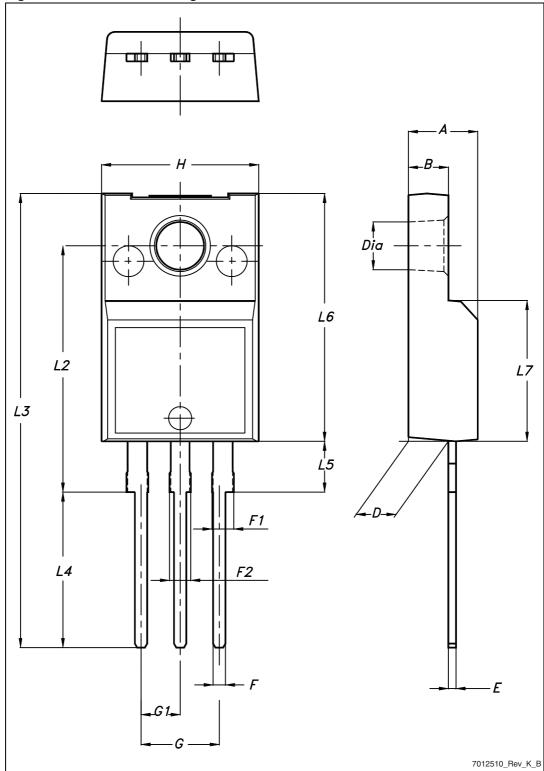

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
b	0.61		0.88
b1	1.14		1.70
с	0.48		0.70
D	15.25		15.75
D1		1.27	
E	10		10.40
е	2.40		2.70
e1	4.95		5.15
F	1.23		1.32
H1	6.20		6.60
J1	2.40		2.72
L	13		14
L1	3.50		3.93
L20		16.40	
L30		28.90	
ØР	3.75		3.85
Q	2.65		2.95

Table 10. TO-220 type A mechanical data





Dim		mm	
Dim.	Min.	Тур.	Max.
A	4.4		4.6
В	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	1.15		1.70
F2	1.15		1.70
G	4.95		5.2
G1	2.4		2.7
н	10		10.4
L2		16	
L3	28.6		30.6
L4	9.8		10.6
L5	2.9		3.6
L6	15.9		16.4
L7	9		9.3
Dia	3		3.2

 Table 11.
 TO-220FP mechanical data

Doc ID 8911 Rev 7

Dim.		mm.	
Diili.	Min.	Тур.	Max.
А	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
с	0.40		0.80
D	19.85		20.15
E	15.45		15.75
е	5.30	5.45	5.60
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
ØP	3.55		3.65
ØR	4.50		5.50
S	5.30	5.50	5.70

Table 12.TO-247 mechanical data

14/17

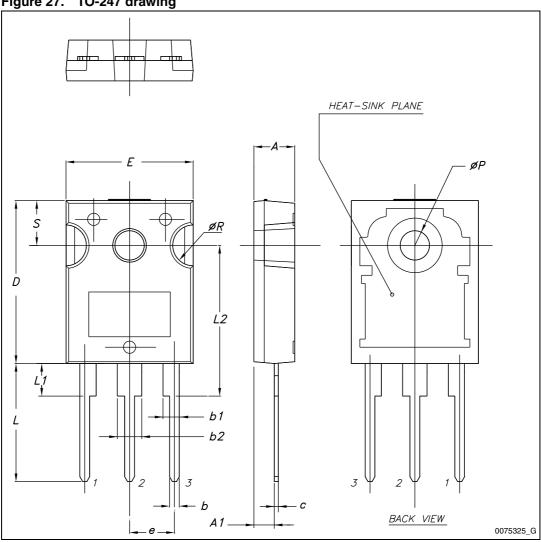


Figure 27. TO-247 drawing

5 Revision history

Table 13.	Document	revision	history
-----------	----------	----------	---------

Date	Revision	Changes
08-Sep-2005	4	Complete document
10-Mar-2006	5	Inserted ecopack indication
28-Sep-2005	6	New template, no content change
15-Mar-2012	7	Content reworked to improve readability. Minor text changes in cover page. Updated <i>Table 5</i> . Updated <i>Section 4: Package mechanical data</i> .

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 8911 Rev 7