PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM8142 -	SOIC-8	-40°C to +85°C SGM8142YS8G/TR		SGM8142YS8 XXXXX	Tape and Reel, 2500
	MSOP-8	-40℃ to +85℃	SGM8142YMS8G/TR	SGM8142 YMS8 XXXXX	Tape and Reel, 3000

MARKING INFORMATION

NOTE: XXXXX = Date Code and Vendor Code. SOIC-8/MSOP-8

XXXXX

— Vendor Code — Date Code - Week

Date Code - Year

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage6V
Analog Inputs (+IN, -IN) (-V _S) - 0.1V to (+V _S) + 0.1V
Differential Input Voltage (-V _S) - (+V _S)
Junction Temperature+150°C
Storage Temperature Range65°C to +150°C
Lead Temperature (Soldering, 10s)+260°C
ESD Susceptibility
HBM
MM400V

RECOMMENDED OPERATING CONDITIONS

Operating Temperature Range-40°C to +85°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

ELECTRICAL CHARACTERISTICS

(At $T_A = +25^{\circ}C$, $+V_S = 1.4V$ to 5.0V, $-V_S = GND$, $V_{CM} = +V_S/2$, $V_{OUT} \approx +V_S/2$ and $R_L = 1M\Omega$ to $+V_S/2^{(1)}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS		
DC Electrical Characteristics	•							
Input Offset Voltage	V _{os}	$V_{CM} = +V_S/2$		0.4	2.5	mV		
Input Offset Voltage Drift	$\Delta V_{OS} / \Delta T$	$V_{CM} = +V_{S}/2, -40^{\circ}C \le T_{A} \le +85^{\circ}C$		2		µV/°C		
Power Supply Rejection Ratio	PSRR	+V _S = 1.4V to 5.5V	69	80		dB		
Input Common Mode Voltage Range	V _{CMR}		(-V _s) - 0.1		(+V _s) + 0.1	V		
		$+V_{\rm S}$ = 5.0V, $V_{\rm CM}$ = -0.1V to 5.1V	69	83				
Common Mode Rejection Ratio	CMRR	$+V_{\rm S}$ = 5.0V, $V_{\rm CM}$ = 2.5V to 5.1V	67	82		dB		
		$+V_{\rm S}$ = 5.0V, $V_{\rm CM}$ = -0.1V to 2.5V	63	77				
		$+V_{s} = 1.4V, R_{L} = 50k\Omega, V_{OUT} = (+V_{s}) - 0.1V$	75	80				
Large-Signal Voltage Gain	A _{vo}	+V _S = 2.5V, R _L = 50kΩ, V _{OUT} = (+V _S) - 0.1V		87		dB		
		$+V_{s} = 5.0V, R_{L} = 50k\Omega, V_{OUT} = (+V_{s}) - 0.1V$	87	93				
Input Bias Current	Ι _Β			1		pА		
Input Offset Current	los			1		pА		
		+V _S = 1.4V, R_L = 50kΩ	1.39	1.395		v		
	V _{OH}	+V _S = 2.5V, R _L = 50kΩ		2.497				
		$+V_{\rm S}$ = 5.0V, R _L = 50kΩ	4.99	4.996				
Maximum Output Voltage Swing		+ $V_{\rm S}$ = 1.4V, R _L = 50kΩ		4.6	10	1		
	V _{OL}	+V _S = 2.5V, R _L = 50kΩ	3.1			mV		
		+V _S = 5.0V, R _L = 50kΩ		3.6	10	1		
		+V _S = 2.5V		5.6				
Output Short-Circuit Current	I _{sc}	+V _S = 5.0V	22	24		— mA		
Supply Voltage	V _{cc}		1.4		5.5	V		
		+V _S = 1.4V		300				
Quiescent Current/Amplifier	ΙQ	+V _S = 2.5V		320		nA		
		+V _S = 5.0V		350	800			

ELECTRICAL CHARACTERISTICS (continued)

(At $T_A = +25^{\circ}C$, $+V_S = 1.4V$ to 5.0V, $-V_S = GND$, $V_{CM} = +V_S/2$, $V_{OUT} \approx +V_S/2$ and $R_L = 1M\Omega$ to $+V_S/2$, $C_L = 60pF^{(1)}$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS		
AC Electrical Characteristics			•			•		
		+V _S = 1.4V	4.3					
Gain-Bandwidth Product	GBP	+V _S = 2.5V		4.7		kHz		
		+V _S = 5.0V		5				
		+V _S = 1.4V, V _{OUT} = 1V Step		1.3				
Slew Rate	SR	+V _S = 2.5V, V _{OUT} = 1V Step		1.5		V/ms		
		+V _S = 5.0V, V _{OUT} = 2V Step		1.6				
Phase Margin	PM	+V _s = 1.4V to 5.5V		60		٥		
		+V _S = 1.4V, f = 0.1Hz to 10Hz		4.4		μV _{P-P}		
Input Voltage Noise	e _n p-p	+V _S = 2.5V, f = 0.1Hz to 10Hz		3.9				
		+V _s = 5.0V, f = 0.1Hz to 10Hz		4.0				
		+V _S = 1.4V, f = 1kHz		135		nV/ √HZ		
Input Voltage Noise Density	en	+V _s = 2.5V, f = 1kHz		140				
		+V _s = 5.0V, f = 1kHz		130		1		

NOTE: 1. Refer to Figure 1 and Figure 2.

TEST CIRCUITS

The test circuits used for the DC and AC tests are shown in Figure 1 and Figure 2. The bypass capacitors are laid out according to the rules discussed in "Supply Bypass".

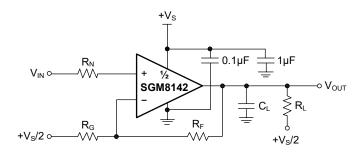


Figure 1. AC and DC Test Circuit for Most Non-Inverting Gain Conditions

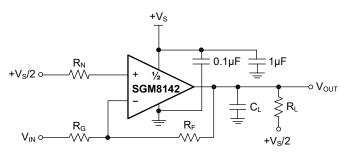
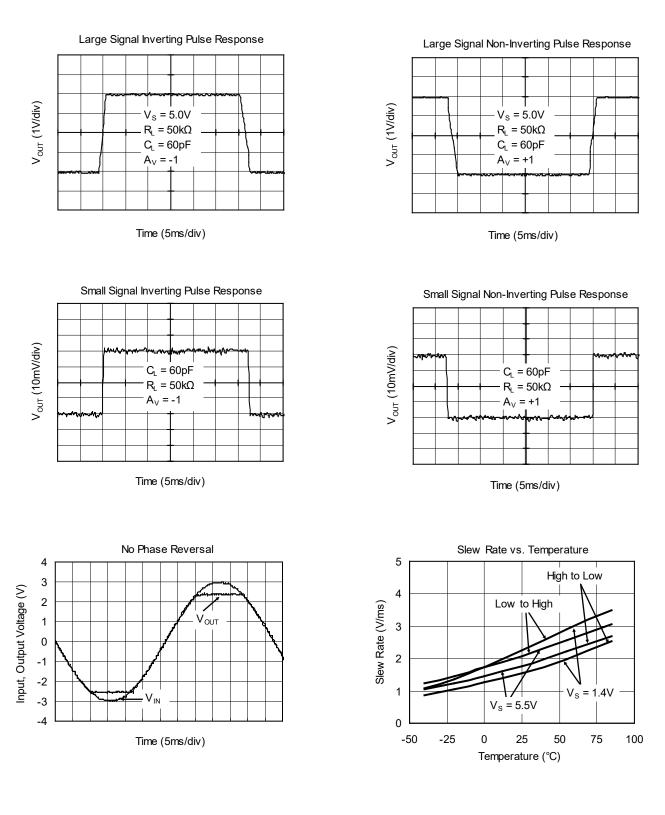
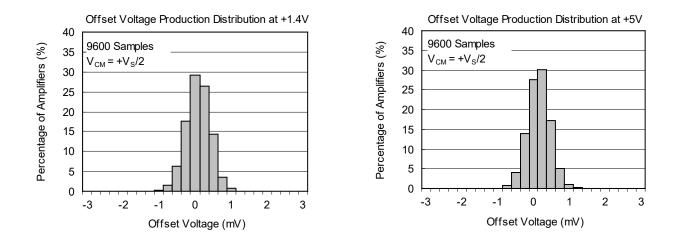



Figure 2. AC and DC Test Circuit for Most Inverting Gain Conditions

TYPICAL PERFORMANCE CHARACTERISTICS


At T_A = +25°C, +V_S = 1.4V to 5.0V, -V_S = GND, V_{CM} = +V_S/2, V_{OUT} ≈ +V_S/2 and R_L = 1M Ω to +V_S/2, C_L = 60pF, unless otherwise noted.

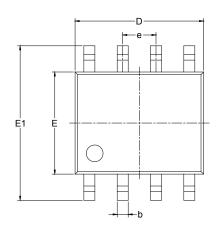
SG Micro Corp

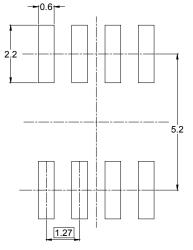
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

At T_A = +25°C, +V_S = 1.4V to 5.0V, -V_S = GND, V_{CM} = +V_S/2, V_{OUT} ≈ +V_S/2 and R_L = 1M Ω to +V_S/2, C_L = 60pF, unless otherwise noted.

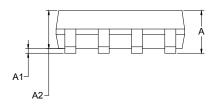
REVISION HISTORY

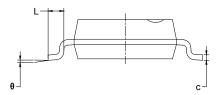
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.


JANUARY 2013 – REV.A.1 to REV.A.2	Page
Added Tape and Reel Information section	
MAY 2011 – REV.A to REV.A.1	Page
Updated Package Description	All
Changes from Original (APRIL 2010) to REV.A	Page
Changed from product preview to production data	All

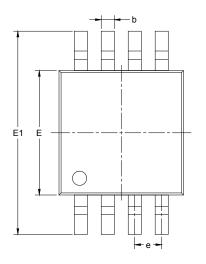


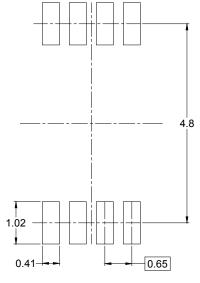
6


PACKAGE OUTLINE DIMENSIONS

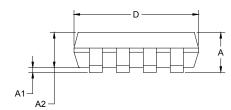

SOIC-8

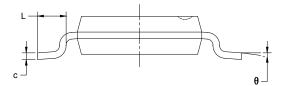
RECOMMENDED LAND PATTERN (Unit: mm)



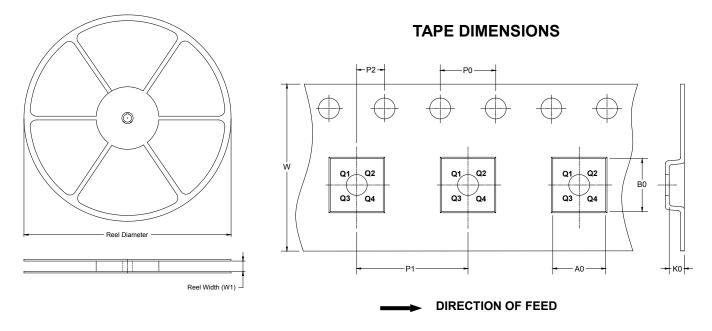

Symbol		nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
A	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
с	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.27	BSC	0.050	BSC	
L	0.400	1.270	0.016	0.050	
θ	0°	8°	0°	8°	

SG Micro Corp


PACKAGE OUTLINE DIMENSIONS


MSOP-8

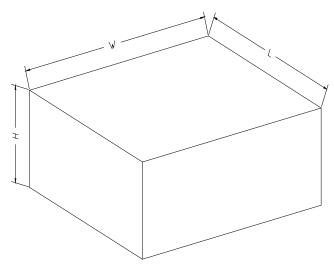
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
А	0.820	1.100	0.032	0.043	
A1	0.020	0.150	0.001	0.006	
A2	0.750	0.950	0.030	0.037	
b	0.250	0.380	0.010	0.015	
С	0.090	0.230	0.004	0.009	
D	2.900	3.100	0.114	0.122	
E	2.900	3.100	0.114	0.122	
E1	4.750	5.050	0.187	0.199	
е	0.650	BSC	0.026	BSC	
L	0.400	0.800	0.016	0.031	
θ	0°	6°	0°	6°	

TAPE AND REEL INFORMATION

REEL DIMENSIONS


NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOIC-8	13″	12.4	6.40	5.40	2.10	4.0	8.0	2.0	12.0	Q1
MSOP-8	13″	12.4	5.20	3.30	1.50	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
13″	386	280	370	5	DD0002

