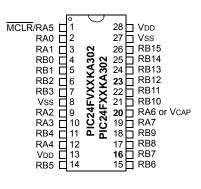
		Ν	lemory				۷				(ch)	rs	-	
PIC24F Device	Pins	Flash Program (bytes)	SRAM (bytes)	EE Data (bytes)	Timers 16-Bit	Capture Input	Compare/PWM Output	UART w/ IrDA [®]	SPI	I²C™	12-Bit A/D (Comparators	CTMU (ch)	RTCC
PIC24FV16KA301/ PIC24F16KA301	20	16K	2K	512	5	3	3	2	2	2	12	3	12	Y
PIC24FV32KA301/ PIC24F32KA301	20	32K	2K	512	5	3	3	2	2	2	12	3	12	Y
PIC24FV16KA302/ PIC24F16KA302	28	16K	2K	512	5	3	3	2	2	2	13	3	13	Y
PIC24FV32KA302/ PIC24F32KA302	28	32K	2K	512	5	3	3	2	2	2	13	3	13	Y
PIC24FV16KA304/ PIC24F16KA304	44	16K	2K	512	5	3	3	2	2	2	16	3	16	Y
PIC24FV32KA304/ PIC24F32KA304	44	32K	2K	512	5	3	3	2	2	2	16	3	16	Y

Pin Diagrams

20	0-Pin SPDIP/SSOP/SOIC ⁽¹⁾ RA1 [] RA1 [] RA1 [] RB0 [] 4 RB1 [] 5 RB2 [] 6 RA2 [] 7 RA2 [] 7 RA3 [] 8 RB4 [] 9 RA4 [] 10	20 VDD 19 VSS 18 RB15 17 RB14 16 RB13 15 RB12 14 RA6 or VCAP 13 RB9 12 RB8 11 RB7
Pin	Pin F	eatures
Pin	PIC24FVXXKA301	PIC24FXXKA301
1	MCLR/Vpp/RA5	MCLR/Vpp/RA5
2	PGEC2/VREF+/CVREF+/AN0/C3INC/SCK2/CN2/RA0	PGEC2/VREF+/CVREF+/AN0/C3INC/SCK2/CN2/RA0
3	PGED2/CVREF-/VREF-/AN1/SDO2/CN3/RA1	PGED2/CVREF-/VREF-/AN1/SDO2/CN3/RA1
4	PGED1/AN2/ULPWU/CTCMP/C1IND/C2INB/C3IND/U2TX/SDI2/ OC2/CN4/RB0	PGED1/AN2/ULPWU/CTCMP/C1IND/C2INB/C3IND/U2TX/SDI2/ OC2/CN4/RB0
5	PGEC1/AN3/C1INC/C2INA/U2RX/OC3/CTED12/CN5/RB1	PGEC1/AN3/C1INC/C2INA/U2RX/OC3/CTED12/CN5/RB1
6	AN4/SDA2/T5CK/T4CK/U1RX/CTED13/CN6/RB2	AN4/SDA2/T5CK/T4CK/U1RX/CTED13/CN6/RB2
7	OSCI/AN13/C1INB/C2IND/CLKI/CN30/RA2	OSCI/AN13/C1INB/C2IND/CLKI/CN30/RA2
8	OSCO/AN14/C1INA/C2INC/CLKO/CN29/RA3	OSCO/AN14/C1INA/C2INC/CLKO/CN29/RA3
9	PGED3/SOSCI/AN15/U2RTS/CN1/RB4	PGED3/SOSCI/AN15/U2RTS/CN1/RB4
10	PGEC3/SOSCO/SCLKI/U2CTS/CN0/RA4	PGEC3/SOSCO/SCLKI/U2CTS/CN0/RA4
11	U1TX/C2OUT/OC1/IC1/CTED1/INT0/CN23/RB7	U1TX/INT0/CN23/RB7
12	SCL1/U1CTS/C3OUT/CTED10/CN22/RB8	SCL1/U1CTS/C3OUT/CTED10/CN22/RB8
13	SDA1/T1CK/U1RTS/IC2/CTED4/CN21/RB9	SDA1/T1CK/U1RTS/IC2/CTED4/CN21/RB9
14	VCAP	C2OUT/OC1/IC1/CTED1/INT2/CN8/RA6
15	AN12/HLVDIN/SCK1/SS2/IC3/CTED2/INT2/CN14/RB12	AN12/HLVDIN/SCK1/SS2/IC3/CTED2/CN14/RB12
16	AN11/SDO1/OCFB/CTPLS/CN13/RB13	AN11/SDO1/OCFB/CTPLS/CN13/RB13
17	CVREF/AN10/C3INB/RTCC/SDI1/C1OUT/OCFA/CTED5/INT1/ CN12/RB14	CVREF/AN10/C3INB/RTCC/SDI1/C1OUT/OCFA/CTED5/INT1/ CN12/RB14
18	AN9/C3INA/SCL2/T3CK/T2CK/REFO/SS1/CTED6/CN11/RB15	AN9/C3INA/SCL2/T3CK/T2CK/REFO/SS1/CTED6/CN11/RB15
19	Vss/AVss	Vss/AVss
20	VDD/AVDD	Vdd/AVdd


Legend: Pin numbers in **bold** indicate pin function differences between PIC24FV and PIC24F devices.

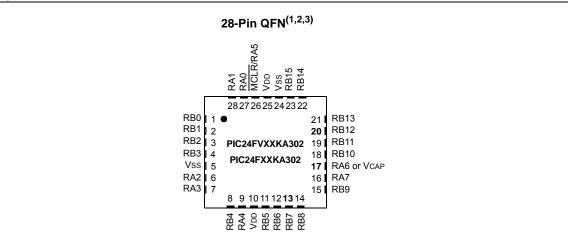
Note 1: PIC24F32KA304 device pins have a maximum voltage of 3.6V and are not 5V tolerant.

 $[\]ensuremath{\textcircled{}^\circ}$ 2011-2012 Microchip Technology Inc.

Pin Diagrams

28-Pin SPDIP/SSOP/SOIC^(1,2)

	Pin Fea	atures
Pin	PIC24FVXXKA302	PIC24FXXKA302
1	MCLR/Vpp/RA5	MCLR/Vpp/RA5
2	VREF+/CVREF+/AN0/C3INC/CTED1/CN2/RA0	VREF+/CVREF+/AN0/C3INC/CTED1/CN2/RA0
3	CVREF-/VREF-/AN1/CN3/RA1	CVREF-/VREF-/AN1/CN3/RA1
4	PGED1/AN2/ULPWU/CTCMP/C1IND/C2INB/C3IND/U2TX/CN4/RB0	PGED1/AN2/ULPWU/CTCMP/C1IND/C2INB/C3IND/U2TX/CN4/RB0
5	PGEC1/AN3/C1INC/C2INA/U2RX/CTED12/CN5/RB1	PGEC1/AN3/C1INC/C2INA/U2RX/CN5/RB1
6	AN4/C1INB/C2IND/SDA2/T5CK/T4CK/U1RX/CTED13/CN6/RB2	AN4/C1INB/C2IND/SDA2/T5CK/T4CK/U1RX/CTED13/CN6/RB2
7	AN5/C1INA/C2INC/SCL2/CN7/RB3	AN5/C1INA/C2INC/SCL2/CN7/RB3
8	Vss	Vss
9	OSCI/AN13/CLKI/CN30/RA2	OSCI/AN13/CLKI/CN30/RA2
10	OSCO/AN14/CLKO/CN29/RA3	OSCO/AN14/CLKO/CN29/RA3
11	SOSCI/AN15/U2RTS/CN1/RB4	SOSCI/AN15/U2RTS/CN1/RB4
12	SOSCO/SCLKI/U2CTS/CN0/RA4	SOSCO/SCLKI/U2CTS/CN0/RA4
13	VDD	VDD
14	PGED3/ASDA ⁽¹⁾ /SCK2/CN27/RB5	PGED3/ASDA ⁽¹⁾ /SCK2/CN27/RB5
15	PGEC3/ASCL ⁽¹⁾ /SDO2/CN24/RB6	PGEC3/ASCL ⁽¹⁾ /SDO2/CN24/RB6
16	U1TX/C2OUT/OC1/INT0/CN23/RB7	U1TX/INT0/CN23/RB7
17	SCL1/U1CTS/C3OUT/CTED10/CN22/RB8	SCL1/U1CTS/C3OUT/CTED10/CN22/RB8
18	SDA1/T1CK/U1RTS/IC2/CTED4/CN21/RB9	SDA1/T1CK/U1RTS/IC2/CTED4/CN21/RB9
19	SDI2/IC1/CTED3/CN9/RA7	SDI2/IC1/CTED3/CN9/RA7
20	VCAP	C2OUT/OC1/CTED1/INT2/CN8/RA6
21	PGED2/SDI1/OC3/CTED11/CN16/RB10	PGED2/SDI1/OC3/CTED11/CN16/RB10
22	PGEC2/SCK1/OC2/CTED9/CN15/RB11	PGEC2/SCK1/OC2/CTED9/CN15/RB11
23	AN12/HLVDIN/SS2/IC3/CTED2/INT2/CN14/RB12	AN12/HLVDIN/SS2/IC3/CTED2/CN14/RB12
24	AN11/SDO1/OCFB/CTPLS/CN13/RB13	AN11/SDO1/OCFB/CTPLS/CN13/RB13
25	CVREF/AN10/C3INB/RTCC/C1OUT/OCFA/CTED5/INT1/CN12/RB14	CVREF/AN10/C3INB/RTCC/C1OUT/OCFA/CTED5/INT1/CN12/ RB14
26	AN9/C3INA/T3CK/T2CK/REFO/SS1/CTED6/CN11/RB15	AN9/C3INA/T3CK/T2CK/REFO/SS1/CTED6/CN11/RB15
27	Vss/AVss	Vss/AVss
28	Vdd/AVdd	Vdd/AVdd


Legend:

Pin numbers in **bold** indicate pin function differences between PIC24FV and PIC24F devices.

Note 1: Alternative multiplexing for SDA1 (ASDA1) and SCL1 (ASCL1) when the I2CSEL Configuration bit is set.

2: PIC24F32KA304 device pins have a maximum voltage of 3.6V and are not 5V toleran.t

Pin Diagrams

D:	Pin F	eatures
Pin	PIC24FVXXKA302	PIC24FXXKA302
1	PGED1/AN2/ULPWU/CTCMP/C1IND/C2INB/C3IND/U2TX/CN4/RB0	PGED1/AN2/ULPWU/CTCMP/C1IND/C2INB/C3IND/U2TX/CN4/RB0
2	PGEC1/AN3/C1INC/C2INA/U2RX/CTED12/CN5/RB1	PGEC1/AN3/C1INC/C2INA/U2RX/CTED12/CN5/RB1
3	AN4/C1INB/C2IND/SDA2/T5CK/T4CK/U1RX/CTED13/CN6/RB2	AN4/C1INB/C2IND/SDA2/T5CK/T4CK/U1RX/CTED13/CN6/RB2
4	AN5/C1INA/C2INC/SCL2/CN7/RB3	AN5/C1INA/C2INC/SCL2/CN7/RB3
5	Vss	Vss
6	OSCI/AN13/CLKI/CN30/RA2	OSCI/AN13/CLKI/CN30/RA2
7	OSCO/AN14/CLKO/CN29/RA3	OSCO/AN14/CLKO/CN29/RA3
8	SOSCI/AN15/U2RTS/CN1/RB4	SOSCI/AN15/U2RTS/CN1/RB4
9	SOSCO/SCLKI/U2CTS/CN0/RA4	SOSCO/SCLKI/U2CTS/CN0/RA4
10	VDD	VDD
11	PGED3/ASDA1 ⁽²⁾ /SCK2/CN27/RB5	PGED3/ASDA1 ⁽²⁾ /SCK2/CN27/RB5
12	PGEC3/ASCL1 ⁽²⁾ /SDO2/CN24/RB6	PGEC3/ASCL1 ⁽²⁾ /SDO2/CN24/RB6
13	U1TX/C2OUT/OC1/INT0/CN23/RB7	U1TX/INT0/CN23/RB7
14	SCL1/U1CTS/C3OUT/CTED10/CN22/RB8	SCL1/U1CTS/C3OUT/CTED10/CN22/RB8
15	SDA1/T1CK/U1RTS/IC2/CTED4/CN21/RB9	SDA1/T1CK/U1RTS/IC2/CTED4/CN21/RB9
16	SDI2/IC1/CTED3/CN9/RA7	SDI2/IC1/CTED3/CN9/RA7
17	VCAP	C2OUT/OC1/CTED1/INT2/CN8/RA6
18	PGED2/SDI1/OC3/CTED11/CN16/RB10	PGED2/SDI1/OC3/CTED11/CN16/RB10
19	PGEC2/SCK1/OC2/CTED9/CN15/RB11	PGEC2/SCK1/OC2/CTED9/CN15/RB11
20	AN12/HLVDIN/SS2/IC3/CTED2/INT2/CN14/RB12	AN12/HLVDIN/SS2/IC3/CTED2/CN14/RB12
21	AN11/SDO1/OCFB/CTPLS/CN13/RB13	AN11/SDO1/OCFB/CTPLS/CN13/RB13
22	CVREF/AN10/C3INB/RTCC/C1OUT/OCFA/CTED5/INT1/CN12/ RB14	CVREF/AN10/C3INB/RTCC/C1OUT/OCFA/CTED5/INT1/CN12/ RB14
23	AN9/C3INA/T3CK/T2CK/REFO/SS1/CTED6/CN11/RB15	AN9/C3INA/T3CK/T2CK/REFO/SS1/CTED6/CN11/RB15
24	Vss/AVss	Vss/AVss
25	Vdd/AVdd	Vdd/AVdd
26	MCLR/Vpp/RA5	MCLR/Vpp/RA5
27	VREF+/CVREF+/AN0/C3INC/CTED1/CN2/RA0	VREF+/CVREF+/AN0/C3INC/CN2/RA0
28	CVREF-/VREF-/AN1/CN3/RA1	CVREF-/VREF-/AN1/CN3/RA1

Legend: Pin numbers in **bold** indicate pin function differences between PIC24FV and PIC24F devices.

Note 1: Exposed pad on underside of device is connected to Vss.

2: Alternative multiplexing for SDA1 (ASDA1) and SCL1 (ASCL1) when the I2CSEL Configuration bit is set.

3: PIC24F32KA304 device pins have a maximum voltage of 3.6V and are not 5V tolerant.

© 2011-2012 Microchip Technology Inc.

Pin Diagrams

	44-Pin TQFP/QFN ^(1,2,3)	Pir
		1
		2
	RB7 RB7 VD5 VS5 VS5 RC3 RC3 RC3 RC3 RC3 RC3 RC3 RC3 RC3 RC3	3
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4
00	444747 444747 3333333340444334 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 34544 345444 345444 345444 345444 345444 345444 345444 345444 345444 345444 345444 345444 345444 345444 345444 345444 345444 345444 345444 345444 345444 345444 345444 345444 3454444 345444 345444 345444 345444 345444 345444 345444 345444 345444 345444 345444 345444 345444 345444 345444 3454444 3454444 3454444 3454444 34544444 3454444444444	6
RB RC		7
RC	7 3 31 RA3	8
RC RC		9
RA RA6 or Vca RB1	7 6 PIC24FXXKA304 28 VDD 27 RC2	10
RB1		11
RB1 RB1	2 10 24 RB3	12
KD1	3 11 23 RB2	13
	RA10 RA11 RB15 RB15 VSS VSS VSS VSS VDD VDD VDD RB1 RA1 RA1 RA1 RB1 RB1	14
	MCI	15
		16
		17
		18
		19
		20
		21
		22
		23
		24
		25
		26
		27
		28
		29
		30
		31 32
		32
		33
Legend:	Pin numbers in <b>bold</b> indicate pin	34
	function differences between PIC24FV and PIC24F devices.	35
Note 1:	Exposed pad on underside of device	30
Note 1:	is connected to Vss.	38
2:	Alternative multiplexing for SDA1	39
	(ASDA1) and SCL1 (ASCL1) when	40
	the I2CSEL Configuration bit is set.	41
3:	PIC24F32KA304 device pins have a	42
	maximum voltage of 3.6V and are not	43
	5V tolerant.	44

Pin	Pin F	eatures
Pin	PIC24FVXXKA304	PIC24FXXKA304
1	SDA1/T1CK/U1RTS/CTED4/CN21/ RB9	SDA1/T1CK/U1RTS/CTED4/CN21/ RB9
2	U1RX/CN18/RC6	U1RX/CN18/RC6
3	U1TX/CN17/RC7	U1TX/CN17/RC7
4	OC2/CN20/RC8	OC2/CN20/RC8
5	IC2/CTED7/CN19/RC9	IC2/CTED7/CN19/RC9
6	IC1/CTED3/CN9/RA7	IC1/CTED3/CN9/RA7
7	VCAP	C2OUT/OC1/CTED1/INT2/CN8/RAG
8	PGED2/SDI1/CTED11/CN16/RB10	PGED2/SDI1/CTED11/CN16/RB10
9	PGEC2/SCK1/CTED9/CN15/RB11	PGEC2/SCK1/CTED9/CN15/RB11
10	AN12/HLVDIN/CTED2/INT2/CN14/ RB12	AN12/HLVDIN/CTED2/CN14/RB12
11	AN11/SDO1/CTPLS/CN13/RB13	AN11/SDO1/CTPLS/CN13/RB13
12	OC3/CN35/RA10	OC3/CN35/RA10
13	IC3/CTED8/CN36/RA11	IC3/CTED8/CN36/RA11
14	CVREF/AN10/C3INB/RTCC/ C1OUT/OCFA/CTED5/INT1/CN12/ RB14	CVREF/AN10/C3INB/RTCC/ C1OUT/OCFA/CTED5/INT1/CN12/ RB14
15	AN9/C3INA/T3CK/T2CK/REFO/ SS1/CTED6/CN11/RB15	AN9/C3INA/T3CK/T2CK/REFO/ SS1/CTED6/CN11/RB15
16	Vss/AVss	Vss/AVss
17	Vdd/AVdd	Vdd/AVdd
18	MCLR/VPP/RA5	MCLR/VPP/RA5
19	VREF+/CVREF+/AN0/C3INC/ CTED1/CN2/RA0	VREF+/CVREF+/AN0/C3INC/CN2/ RA0
20	CVREF-/VREF-/AN1/CN3/RA1	CVREF-/VREF-/AN1/CN3/RA1
21	PGED1/AN2/ULPWU/CTCMP/ C1IND/C2INB/C3IND/U2TX/CN4/RB0	PGED1/AN2/ULPWU/CTCMP/C1IND/ C2INB/C3IND/U2TX/CN4/RB0
22	PGEC1/AN3/C1INC/C2INA/U2RX/ CTED12/CN5/RB1	PGEC1/AN3/C1INC/C2INA/U2RX/ CTED12/CN5/RB1
23	AN4/C1INB/C2IND/SDA2/T5CK/ T4CK/CTED13/CN6/RB2	AN4/C1INB/C2IND/SDA2/T5CK/ T4CK/CTED13/CN6/RB2
24	AN5/C1INA/C2INC/SCL2/CN7/ RB3	AN5/C1INA/C2INC/SCL2/CN7/RB3
25	AN6/CN32/RC0	AN6/CN32/RC0
26	AN7/CN31/RC1	AN7/CN31/RC1
27	AN8/CN10/RC2	AN8/CN10/RC2
28	VDD	VDD
29	Vss	Vss
30	OSCI/AN13/CLKI/CN30/RA2	OSCI/AN13/CLKI/CN30/RA2
31	OSCO/AN14/CLKO/CN29/RA3	OSCO/AN14/CLKO/CN29/RA3
32	OCFB/CN33/RA8	OCFB/CN33/RA8
33	SOSCI/AN15/U2RTS/CN1/RB4	SOSCI/AN15/U2RTS/CN1/RB4
34	SOSCO/SCLKI/U2CTS/CN0/RA4	SOSCO/SCLKI/U2CTS/CN0/RA4
35	SS2/CN34/RA9	SS2/CN34/RA9
36	SDI2/CN28/RC3	SDI2/CN28/RC3
37	SDO2/CN25/RC4	SDO2/CN25/RC4
38	SCK2/CN26/RC5	SCK2/CN26/RC5
39	Vss	Vss
40	VDD	VDD
41	PGED3/ASDA1 ⁽²⁾ /CN27/RB5	PGED3/ASDA1 ⁽²⁾ /CN27/RB5
42	PGEC3/ASCL1 ⁽²⁾ /CN24/RB6	PGEC3/ASCL1 ⁽²⁾ /CN24/RB6
43	C2OUT/OC1/INT0/CN23/RB7	INT0/CN23/RB7
44	SCL1/U1CTS/C3OUT/CTED10/ CN22/RB8	SCL1/U1CTS/C3OUT/CTED10/ CN22/RB8

### **Pin Diagrams**

				Pin Feat	ures
		48-Pin UQFN ^(1,2,3)	Pin	PIC24FVXXKA304	PIC24FXXKA304
			1	SDA1/T1CK/U1RTS/CTED4/CN21/RB9	SDA1/T1CK/U1RTS/CTED4/CN21 RB9
			2	U1RX/CN18/RC6	U1RX/CN18/RC6
			3	U1TX/CN17/RC7	U1TX/CN17/RC7
		R R R R R R R R R R R R R R R R R R R	4	OC2/CN20/RC8	OC2/CN20/RC8
			5	IC2/CTED7/CN19/RC9	IC2/CTED7/CN19/RC9
	RB9		6	IC1/CTED3/CN9/RA7	IC1/CTED3/CN9/RA7
	RC6 RC7		7	VCAP	C20UT/OC1/CTED1/INT2CN8/R
	RC8		8	N/C	N/C
	RC9		9	PGED2/SDI1/CTED11/CN16/RB10	PGED2/SDI1/CTED11/CN16/RB1
A6 or \			10	PGEC2/SCK1/CTED9/CN15/RB11	PGEC2/SCK1/CTED9/CN15/RB1
	N/C RB10	_829RC2	11	AN12/HLVDIN/CTED2/INT2/CN14/RB12	AN12/HLVDIN/CTED2/CN14/RB1
	RB11		12	AN11/SDO1/CTPLS/CN13/RB13	AN11/SDO1/CTPLS/CN13/RB13
F	RB12	11 26 RB3	13	OC3/CN35/RA10	OC3/CN35/RA10
F	RB13	_12 25 □ RB2	14	IC3/CTED8/CN36/RA11	IC3/CTED8/CN36/RA11
			15	CVREF/AN10/C3INB/RTCC/ C1OUT/OCFA/CTED5/INT1/CN12/RB14	CVREF/AN10/C3INB/RTCC/C1OUT OCFA/CTED5/INT1/CN12/RB14
		RA10 RA11 RB15 VSS/ASUS VDD/AVDS NCLR/RA5 RCLR/RA5 RB10 RB10 RB11	16	AN9/C3INA/T3CK/T2CK/REFO/ SS1/CTED6/CN11/RB15	AN9/C3INA/T3CK/T2CK/REFO/ SS1/CTED6/CN11/RB15
		Z  ≥	17	Vss/AVss	Vss/AVss
			18	Vdd/AVdd	Vdd/AVdd
			19	MCLR/RA5	MCLR/RA5
			20	N/C	N/C
			21	VREF+/CVREF+/AN0/C3INC/ CTED1/CN2/RA0	VREF+/CVREF+/AN0/C3INC/CN2/ RA0
			22	CVREF-/VREF-/AN1/CN3/RA1	CVREF-/VREF-/AN1/CN3/RA1
			23	PGED1/AN2/ULPWU/CTCMP/C1IND/ C2INB/C3IND/U2TX/CN4/RB0	PGED1/AN2/ULPWU/CTCMP/C1II C2INB/C3IND/U2TX/CN4/RB0
			24	PGEC1/AN3/C1INC/C2INA/U2RX/ CTED12/CN5/RB1	PGEC1/AN3/C1INC/C2INA/U2RX CTED12/CN5/RB1
			25	AN4/C1INB/C2IND/SDA2/T5CK/ T4CK/CTED13/CN6/RB2	AN4/C1INB/C2IND/SDA2/T5CK/ T4CK/CTED13/CN6/RB2
			26	AN5/C1INA/C2INC/SCL2/CN7/RB3	AN5/C1INA/C2INC/SCL2/CN7/RE
			27	AN6/CN32/RC0	AN6/CN32/RC0
			28	AN7/CN31/RC1	AN7/CN31/RC1
			29	AN8/CN10/RC2	AN8/CN10/RC2
			30	VDD	VDD
			31	Vss	Vss
			32	N/C	N/C
			33	OSCI/AN13/CLKI/CN30/RA2	OSCI/AN13/CLKI/CN30/RA2
			34	OSCO/AN14/CLKO/CN29/RA3	OSCO/AN14/CLKO/CN29/RA3
			35		OCFB/CN33/RA8
			36	SOSCI/AN15/U2RTS/CN1/RB4	SOSCI/AN15/U2RTS/CN1/RB4
			37	SOSCO/SCLKI/U2CTS/CN0/RA4	SOSCO/SCLKI/U2CTS/CN0/RA4
.eger	nd:	Pin numbers in <b>bold</b> indicate pin func-	38	SS2/CN34/RA9	SS2/CN34/RA9
Ū		tion differences between PIC24FV and	39	SDI2/CN28/RC3	SDI2/CN28/RC3
		PIC24F devices.	40	SDO2/CN25/RC4	SDO2/CN25/RC4
lote	1:	Exposed pad on underside of device is connected to Vss.	41 42	SCK2/CN26/RC5 Vss	SCK2/CN26/RC5 Vss
	2:	Alternative multiplexing for SDA1	43	VDD	VDD
	∠.	(ASDA1) and SCL1 (ASCL1) when the	44	N/C	N/C
		I2CSEL Configuration bit is set.	45	PGED3/ASDA1 ⁽²⁾ /CN27/RB5	PGED3/ASDA1 ⁽²⁾ /CN27/RB5
	3:	PIC24F32KA3XX device pins have a	46	PGEC3/ASCL1 ⁽²⁾ /CN24/RB6	PGEC3/ASCL1 ⁽²⁾ /CN24/RB6
		maximum voltage of 3.6V and are not	47	C2OUT/OC1/INT0/CN23/RB7	INT0/CN23/RB7
		5V tolerant.	48	SCL1/U1CTS/C3OUT/CTED10/ CN22/RB8	SCL1/U1CTS/C3OUT/CTED10/ CN22/RB8

© 2011-2012 Microchip Technology Inc.

### **Table of Contents**

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Microcontrollers	23
3.0	СРИ	
4.0	Memory Organization	35
5.0	Flash Program Memory	57
6.0	Data EEPROM Memory	63
7.0	Resets	69
8.0	Interrupt Controller	
9.0	Oscillator Configuration	113
10.0	Power-Saving Features	123
11.0	I/O Ports	135
12.0	Timer1	139
13.0	Timer2/3 and Timer4/5	
14.0	Input Capture with Dedicated Timers	147
15.0	Output Compare with Dedicated Timers	151
16.0	Serial Peripheral Interface (SPI)	
17.0	Inter-Integrated Circuit™ (I ² C™)	169
18.0	Universal Asynchronous Receiver Transmitter (UART)	177
	Real-Time Clock and Calendar (RTCC)	
20.0	32-Bit Programmable Cyclic Redundancy Check (CRC) Generator	
21.0	High/Low-Voltage Detect (HLVD)	
22.0	12-Bit A/D Converter with Threshold Detect	207
	Comparator Module	
24.0	Comparator Voltage Reference	229
25.0	Charge Time Measurement Unit (CTMU)	231
26.0	Special Features	
27.0	a contraction of the second	
	Instruction Set Summary	
	Electrical Characteristics	
	DC and AC Characteristics Graphs and Tables	
	Packaging Information	
Appe	endix A: Revision History	339
Index	<	341
The I	Microchip Web Site	347
	omer Change Notification Service	
Custo	omer Support	347
Read	ler Response	348
Produ	uct Identification System	349

### TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

#### Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

#### http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

#### Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; <a href="http://www.microchip.com">http://www.microchip.com</a>
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

#### **Customer Notification System**

Register on our web site at www.microchip.com to receive the most current information on all of our products.

^{© 2011-2012} Microchip Technology Inc.

NOTES:

### 1.0 DEVICE OVERVIEW

This document contains device-specific information for the following devices:

- PIC24FV16KA301, PIC24F16KA301
- PIC24FV16KA302, PIC24F16KA302
- PIC24FV16KA304, PIC24F16KA304
- PIC24FV32KA301, PIC24F32KA301
- PIC24FV32KA302, PIC24F32KA302
- PIC24FV32KA304, PIC24F32KA304

The PIC24FV32KA304 family introduces a new line of extreme low-power Microchip devices. This is a 16-bit microcontroller family with a broad peripheral feature set and enhanced computational performance. This family also offers a new migration option for those high-performance applications which may be outgrowing their 8-bit platforms, but do not require the numerical processing power of a digital signal processor.

### 1.1 Core Features

#### 1.1.1 16-BIT ARCHITECTURE

Central to all PIC24F devices is the 16-bit modified Harvard architecture, first introduced with Microchip's dsPIC[®] digital signal controllers. The PIC24F CPU core offers a wide range of enhancements, such as:

- 16-bit data and 24-bit address paths with the ability to move information between data and memory spaces
- Linear addressing of up to 12 Mbytes (program space) and 64 Kbytes (data)
- A 16-element working register array with built-in software stack support
- A 17 x 17 hardware multiplier with support for integer math
- Hardware support for 32-bit by 16-bit division
- An instruction set that supports multiple addressing modes and is optimized for high-level languages, such as C
- · Operational performance up to 16 MIPS

#### 1.1.2 POWER-SAVING TECHNOLOGY

All of the devices in the PIC24FV32KA304 family incorporate a range of features that can significantly reduce power consumption during operation. Key features include:

- On-the-Fly Clock Switching: The device clock can be changed under software control to the Timer1 source or the internal, low-power RC oscillator during operation, allowing users to incorporate power-saving ideas into their software designs.
- Doze Mode Operation: When timing-sensitive applications, such as serial communications, require the uninterrupted operation of peripherals, the CPU clock speed can be selectively reduced, allowing incremental power savings without missing a beat.
- Instruction-Based Power-Saving Modes: There are three instruction-based power-saving modes:
  - Idle Mode: The core is shut down while leaving the peripherals active.
  - Sleep Mode: The core and peripherals that require the system clock are shut down, leaving the peripherals that use their own clock, or the clock from other devices, active.
  - Deep Sleep Mode: The core, peripherals (except RTCC and DSWDT), Flash and SRAM are shut down.

# 1.1.3 OSCILLATOR OPTIONS AND FEATURES

The PIC24FV32KA304 family offers five different oscillator options, allowing users a range of choices in developing application hardware. These include:

- Two Crystal modes using crystals or ceramic resonators.
- Two External Clock modes offering the option of a divide-by-2 clock output.
- Two Fast Internal oscillators (FRCs): One with a nominal 8 MHz output and the other with a nominal 500 kHz output. These outputs can also be divided under software control to provide clock speed as low as 31 kHz or 2 kHz.
- A Phase Locked Loop (PLL) frequency multiplier, available to the external Oscillator modes and the 8 MHz FRC oscillator, which allows clock speeds of up to 32 MHz.
- A separate internal RC oscillator (LPRC) with a fixed 31 kHz output, which provides a low-power option for timing-insensitive applications.

The internal oscillator block also provides a stable reference source for the Fail-Safe Clock Monitor (FSCM). This option constantly monitors the main clock source against a reference signal provided by the internal oscillator and enables the controller to switch to the internal oscillator, allowing for continued low-speed operation or a safe application shutdown.

#### 1.1.4 EASY MIGRATION

Regardless of the memory size, all the devices share the same rich set of peripherals, allowing for a smooth migration path as applications grow and evolve.

The consistent pinout scheme used throughout the entire family also helps in migrating to the next larger device. This is true when moving between devices with the same pin count, or even jumping from 20-pin or 28-pin devices to 44-pin/48-pin devices.

The PIC24F family is pin compatible with devices in the dsPIC33 family, and shares some compatibility with the pinout schema for PIC18 and dsPIC30. This extends the ability of applications to grow from the relatively simple, to the powerful and complex.

### 1.2 Other Special Features

- Communications: The PIC24FV32KA304 family incorporates a range of serial communication peripherals to handle a range of application requirements. There is an I²C[™] module that supports both the Master and Slave modes of operation. It also comprises UARTs with built-in IrDA[®] encoders/decoders and an SPI module.
- Real-Time Clock/Calendar: This module implements a full-featured clock and calendar with alarm functions in hardware, freeing up timer resources and program memory space for use of the core application.
- **12-Bit A/D Converter:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period, and faster sampling speed. The 16-deep result buffer can be used either in Sleep to reduce power, or in Active mode to improve throughput.
- Charge Time Measurement Unit (CTMU) Interface: The PIC24FV32KA304 family includes the new CTMU interface module, which can be used for capacitive touch sensing, proximity sensing, and also for precision time measurement and pulse generation.

### 1.3 Details on Individual Family Members

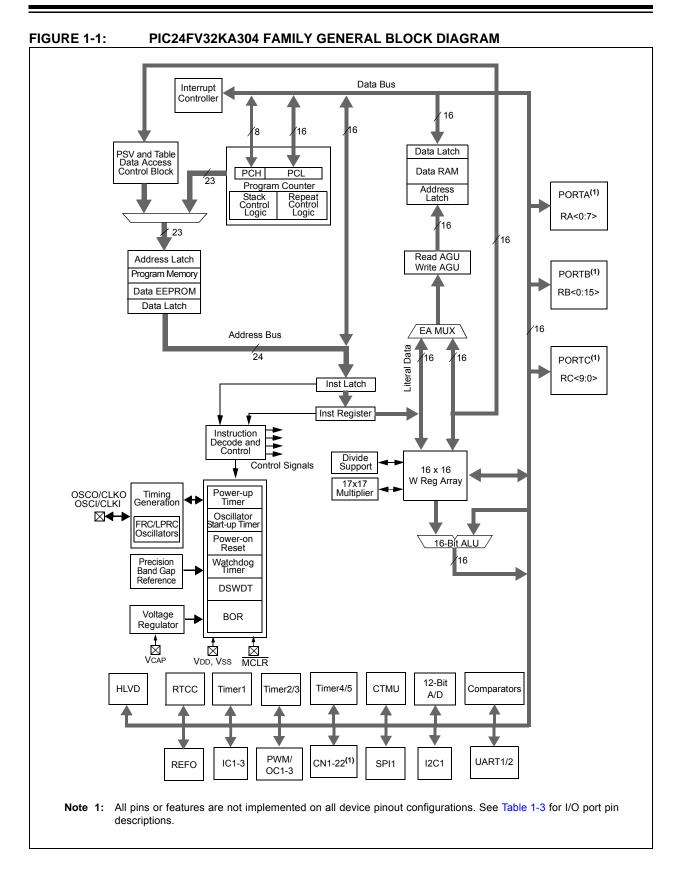
Devices in the PIC24FV32KA304 family are available in 20-pin, 28-pin, 44-pin and 48-pin packages. The general block diagram for all devices is shown in Figure 1-1.

The devices are different from each other in four ways:

- Flash program memory (16 Kbytes for PIC24FV16KA devices, 32 Kbytes for PIC24FV32KA devices).
- Available I/O pins and ports (18 pins on two ports for 20-pin devices, 22 pins on two ports for 28-pin devices and 38 pins on three ports for 44/48-pin devices).
- 3. Alternate SCLx and SDAx pins are available only in 28-pin, 44-pin and 48-pin devices and not in 20-pin devices.
- 4. Members of the PIC24FV32KA301 family are available as both standard and high-voltage devices. High-voltage devices, designated with an "FV" in the part number (such as PIC24FV32KA304), accommodate an operating VDD range of 2.0V to 5.5V, and have an on-board voltage regulator that powers the core. Peripherals operate at VDD. Standard devices, designated by "F" (such as PIC24F32KA304), function over a lower VDD range of 1.8V to 3.6V. These parts do not have an internal regulator, and both the core and peripherals operate directly from VDD.

All other features for devices in this family are identical; these are summarized in Table 1-1.

A list of the pin features available on the PIC24FV32KA304 family devices, sorted by function, is provided in Table 1-3.


Note: Table 1-1 provides the pin location of individual peripheral features and not how they are multiplexed on the same pin. This information is provided in the pinout diagrams on pages 3, 4, 5, 6 and 7 of the data sheet. Multiplexed features are sorted by the priority given to a feature, with the highest priority peripheral being listed first.

			1		1	
Features	PIC24FV16KA301	PIC24FV32KA301	PIC24FV16KA302	PIC24FV32KA302	PIC24FV16KA304	PIC24FV32KA304
Operating Frequency			DC – 32 I	MHz		
Program Memory (bytes)	16K	32K	16K	32K	16K	32K
Program Memory (instructions)	5632	11264	5632	11264	5632	11264
Data Memory (bytes)			2048			
Data EEPROM Memory (bytes)			512			
Interrupt Sources (soft vectors/ NMI traps)			30 (26/	4)		
I/O Ports	PORTA PORTB<15:1		PORTA PORTB		PORTA< PORTB PORTC	<15:0>
Total I/O Pins	17	7	2	3	3	8
Timers: Total Number (16-bit)			5			
32-Bit (from paired 16-bit timers)			2			
Input Capture Channels			3			
Output Compare/PWM Channels			3			
Input Change Notification Interrupt	16	6	2	2	3	7
Serial Communications: UART SPI (3-wire/4-wire)			2			
² C™			2			
12-Bit Analog-to-Digital Module (input channels)	12	2	1	3	1	6
Analog Comparators			3			
Resets (and delays)		BOR, RESET Instruction, Ha		, Configurati		
Instruction Set	76 B	ase Instruction	ns, Multiple A	ddressing M	ode Variation	S
Packages	20-F PDIP/SSC		28- SPDIP/SSOF		44-Pin QI 48-Pin	

#### TABLE 1-1: DEVICE FEATURES FOR THE PIC24FV32KA304 FAMILY

#### TABLE 1-2: DEVICE FEATURES FOR THE PIC24F32KA304 FAMILY

	1 1		1			·
Features	PIC24F16KA301	PIC24F32KA301	PIC24F16KA302	PIC24F32KA302	PIC16F16KA304	PIC24F32KA304
Operating Frequency			DC – 32 I	MHz		
Program Memory (bytes)	16K	32K	16K	32K	16K	32K
Program Memory (instructions)	5632	11264	5632	11264	5632	11264
Data Memory (bytes)			2048			
Data EEPROM Memory (bytes)			512			
Interrupt Sources (soft vectors/ NMI traps)			30 (26/-	4)		
I/O Ports	PORTA PORTB<15:12		PORTA PORTB		PORTA PORTB PORT(	<15:0>,
Total I/O Pins	18	3	24	4	3	9
Timers: Total Number (16-bit)			5			
32-Bit (from paired 16-bit timers)			2			
Input Capture Channels			3			
Output Compare/PWM Channels			3			
Input Change Notification Interrupt	17	7	23	3	3	8
Serial Communications: UART SPI (3-wire/4-wire)			2			
I ² C™			2			
12-Bit Analog-to-Digital Module (input channels)	12	2	1:	3	1	6
Analog Comparators			3			
Resets (and delays)		, BOR, RESET Instruction, Ha (F		, Configuration		
Instruction Set	76 B	Base Instruction	ns, Multiple A	ddressing Mo	ode Variation	S
Packages	20-F PDIP/SSC		28- SPDIP/SSOF		44-Pin QI 48-Pin	



© 2011-2012 Microchip Technology Inc.

<b>TABLE 1-3:</b>	PIC2	4FV32K4	<b>\304 FAN</b>	PIC24FV32KA304 FAMILY PINO	5	DESCRIPTIONS	NS						
			F					FV				_	
			Pin Number					Pin Number				_	
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	2	Buffer	Description
ANO	2	2	27	19	21	2	2	27	19	21	-	ANA	A/D Analog Inputs
AN1	Э	ю	28	20	22	ю	ю	28	20	22	-	ANA	
AN2	4	4	1	21	23	4	4	~	21	23	-	ANA	
AN3	5	5	2	22	24	5	5	2	22	24	-	ANA	
AN4	9	9	3	23	25	9	9	3	23	25	-	ANA	
AN5	Ι	7	4	24	26	Ι	7	4	54	92	-	ANA	
ANG	Ι	Ι	Ι	25	27	Ι	Ι	Ι	25	27	-	ANA	
AN7	1	1	I	26	28	1	I		26	28	_	ANA	
AN8	1	I	1	27	29	1	1	I	27	29	-	ANA	
AN9	18	26	23	15	16	18	26	23	15	91	-	ANA	
AN10	17	25	22	14	15	17	25	22	14	15	-	ANA	
AN11	16	24	21	11	12	16	24	21	11	12	-	ANA	
AN12	15	23	20	10	11	15	23	20	10	11	-	ANA	
AN13	7	6	9	30	33	7	6	9	30	33	-	ANA	
AN14	8	10	7	31	34	8	10	7	31	34	-	ANA	
AN15	6	11	8	33	36	6	11	8	88	98	-	ANA	
ASCL1	Ι	15	12	42	46	Ι	15	12	42	9†	0/1	I²C™	Alternate I2C1 Clock Input/Output
ASDA1	Ι	14	11	41	45	Ι	14	11	41	45	0/1	1 ² C	Alternate I2C1 Data Input/Output
AVDD	20	28	25	17	18	20	28	25	17	18	-	ANA	A/D Supply Pins
AVSS	19	27	24	16	17	19	27	24	16	17	_	ANA	
C1INA	8	7	4	24	26	8	7	4	24	26	-	ANA	Comparator 1 Input A (+)
C1INB	7	9	3	23	25	7	6	3	23	25	_	ANA	Comparator 1 Input B (-)
C1INC	5	5	2	22	24	5	5	2	22	24	-	ANA	Comparator 1 Input C (+)
C1IND	4	4	1	21	23	4	4	1	21	23	-	ANA	Comparator 1 Input D (-)
C10UT	17	25	22	14	15	17	25	22	14	15	0		Comparator 1 Output
C2INA	5	5	2	22	24	5	5	2	22	24	_	ANA	Comparator 2 Input A (+)
C2INB	4	4	1	21	23	4	4	1	21	23	_	ANA	Comparator 2 Input B (-)
C2INC	8	7	4	24	26	8	7	4	24	26	_	ANA	Comparator 2 Input C (+)
C2IND	7	9	З	23	25	7	9	З	23	25	-	ANA	Comparator 2 Input D (-)
C2OUT	14	20	17	7	7	11	16	13	43	47	0	I	Comparator 2 Output

<b>TABLE 1-3</b> :	PIC24	IFV32KA	PIC24FV32KA304 FAMILY PINO	IILY PINC	<b>NUT DES</b>	CRIPTIO	NS (CON	UT DESCRIPTIONS (CONTINUED)	~				
			Ł					FV					
			Pin Number					Pin Number					
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	2	Buffer	Description
C3INA	18	26	23	15	16	18	26	23	15	16	-	ANA	Comparator 3 Input A (+)
C3INB	17	25	22	14	15	17	25	22	14	15	-	ANA	Comparator 3 Input B (-)
C3INC	2	2	27	19	21	2	2	27	19	21	-	ANA	Comparator 3 Input C (+)
C3IND	4	4	1	21	23	4	4	1	21	23	-	ANA	Comparator 3 Input D (-)
C3OUT	12	21	14	44	48	12	17	14	44	48	0		Comparator 3 Output
CLKI	7	6	9	30	33	7	6	9	30	33	-	ANA	Main Clock Input
CLKO	8	10	7	31	34	8	10	7	31	34	0		System Clock Output
CNO	10	12	6	34	37	10	12	6	34	37	-	ST	Interrupt-on-Change Inputs
CN1	6	11	8	33	36	6	11	8	33	36	-	ST	
CN2	2	2	27	19	21	2	2	27	19	21	-	ST	
CN3	3	8	28	20	22	3	3	28	20	22	-	ST	
CN4	4	4	1	21	23	4	4	1	21	23	-	ST	
CN5	5	5	2	22	24	5	5	2	22	24	-	ST	
CN6	6	6	3	23	25	6	6	3	23	25	-	ST	
CN7	I	7	4	24	26	I	7	4	24	26	-	ST	
CN8	14	20	17	7	7	-		Ι	Ι	-	-	ST	
CN9	I	61	16	9	9	-	19	16	9	9	-	ST	
CN10	I	Ι	Ι	27	29	-		Ι	27	29	-	ST	
CN11	18	26	23	15	16	18	26	23	15	16	-	ST	
CN12	17	25	22	14	15	17	25	22	14	15	-	ST	
CN13	16	24	21	11	12	16	24	21	11	12	-	ST	
CN14	15	23	20	10	11	15	23	20	10	11	-	ST	
CN15	I	22	19	6	10	-	22	19	6	10	-	ST	
CN16	I	21	18	8	6	-	21	18	8	6	-	ST	
CN17	I	Ι	Ι	3	3	-	Ι	Ι	3	3	-	ST	
CN18	I	Ι	Ι	2	2	I	I		2	2	-	ST	
CN19	I	Ι	Ι	5	5	Ι	Ι	Ι	5	5	-	ST	
CN20	I	I		4	4	I	-	Ι	4	4	-	ST	
CN21	13	18	15	1	1	13	18	15	1	٢	-	ST	
CN22	12	17	14	44	48	12	17	14	44	48	-	ST	

© 2011-2012 Microchip Technology Inc.

# PIC24FV32KA304 FAMILY

<b>TABLE 1-3</b> :	PIC2	1FV32KA	PIC24FV32KA304 FAMILY PINO	ILY PINC	UT DES	UT DESCRIPTIONS (CONTINUED)	NS (CON	<b>TINUED</b>	-				
			ш					F۷					
-			Pin Number					Pin Number					
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	0/1	Buffer	Description
CN23	11	16	13	43	47	11	16	13	43	47	-	ST	Interrupt-on-Change Inputs
CN24	I	15	12	42	46	I	15	12	42	46	-	ST	
CN25	I	1	I	37	40	I	I	I	37	40	-	ST	
CN26	I	1	I	38	41	I	I	I	38	41	-	ST	
CN27	I	14	11	41	45	I	14	11	41	45	-	ST	
CN28	I	1	Ι	36	39	I	I	I	36	39	-	ST	
CN29	8	10	7	31	34	8	10	7	31	34	Ι	ST	
CN30	7	6	9	30	33	7	6	9	30	33	Ι	ST	
CN31		Ι	Ι	26	28	I	I	I	26	28	Ι	ST	
CN32		Ι	Ι	25	27	I	I	I	25	27	Ι	ST	
CN33		-	Ι	32	35	Ι	Ι	Ι	32	35	Ι	ST	
CN34	-	Ι	Ι	35	38	I	Ι	Ι	35	38	-	ST	
CN35		-	Ι	12	13	Ι	Ι	Ι	12	13	Ι	ST	
CN36	I	Ι	Ι	13	14	I	Ι		13	14	-	ST	
CVREF	17	25	22	14	15	17	25	22	14	15	-	ANA	Comparator Voltage Reference Output
CVREF+	2	2	27	19	21	2	2	27	19	21	-	ANA	Comparator Reference Positive Input Voltage
CVREF-	3	3	28	20	22	3	3	28	20	22	-	ANA	Comparator Reference Negative Input Voltage
CTCMP	4	4	1	21	23	4	4	1	21	23	-	ANA	CTMU Comparator Input
CTED1	14	20	17	7	7	11	2	27	19	21	-	ST	CTMU Trigger Edge Inputs
CTED2	15	23	20	10	11	15	23	20	10	11	-	ST	
CTED3	Ι	19	16	6	6	Ι	19	16	6	9	-	ST	
CTED4	13	18	15	1	1	13	18	15	1	1	-	ST	
CTED5	17	25	22	14	15	17	25	22	14	15	-	ST	
CTED6	18	26	23	15	16	18	26	23	15	16	-	ST	
CTED7	Ι	Ι	Ι	5	5	I	I	Ι	5	5	-	ST	
CTED8		I	I	13	14	I	I		13	14	-	ST	
CTED9		22	19	6	10	I	22	19	6	10	-	ST	
CTED10	12	17	14	44	48	12	17	14	44	48	-	ST	
CTED11	Ι	21	18	8	6	I	21	18	8	6	-	ST	
CTED12	5	5	2	22	24	5	5	2	22	24	-	ST	
CTED13	9	9	з	23	25	9	9	з	23	25	-	ST	

TABLE 1-3:	PIC24	IFV32KA	304 FAM	PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS (CONTINUED)	UT DES	CRIPTIO	NS (CON	ITINUED)					
			F					FV					
		-	Pin Number				-	Pin Number					
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	10	Buffer	Description
CTPLS	16	24	21	11	12	16	24	21	11	12	0	Ι	CTMU Pulse Output
HLVDIN	15	23	20	10	11	15	23	20	10	11	Ι	ST	High/Low-Voltage Detect Input
IC1	14	19	16	9	9	11	19	16	9	6	-	ST	Input Capture 1 Input
IC2	13	18	15	5	5	13	18	15	5	5	-	ST	Input Capture 2 Input
IC3	15	23	20	13	14	15	23	20	13	14	-	ST	Input Capture 3 Input
INTO	11	16	13	43	47	11	16	13	43	47	-	ST	Interrupt 0 Input
INT1	17	25	22	14	15	17	25	22	14	15	-	ST	Interrupt 1 Input
INT2	14	20	17	7	7	15	23	20	10	11	-	ST	Interrupt 2 Input
MCLR	٢	١	26	18	19	٢	-	26	18	19	-	ST	Master Clear (Device Reset) Input (active-low)
OC1	14	20	17	7	7	11	16	13	43	47	0	Ι	Output Compare/PWM1 Output
0C2	4	22	19	4	4	4	22	19	4	4	0	Ι	Output Compare/PWM2 Output
0C3	5	21	18	12	13	5	21	18	12	13	0	I	Output Compare/PWM3 Output
OCFA	17	25	22	14	15	17	25	22	14	15	0	Ι	Output Compare Fault A
OFCB	16	24	21	32	35	16	24	21	32	35	0	Ι	Output Compare Fault B
OSCI	7	6	6	30	33	7	6	6	30	33	Ι	ANA	Main Oscillator Input
osco	8	10	7	31	34	8	10	7	31	34	0	ANA	Main Oscillator Output
PGEC1	5	5	2	22	24	5	5	2	22	24	I/O	ST	ICSP TM Clock 1
PCED1	4	4	1	21	23	4	4	1	21	23	I/O	ST	ICSP Data 1
PGEC2	2	22	19	19	10	2	22	19	19	10	I/O	ST	ICSP Clock 2
PGED2	3	21	18	8	6	3	21	18	8	9	I/O	ST	ICSP Data 2
PGEC3	10	15	12	42	46	10	15	12	42	46	I/O	ST	ICSP Clock 3
PGED3	6	14	1	41	45	6	14	5	41	45	0/1	ST	ICSP Data 3

© 2011-2012 Microchip Technology Inc.

# PIC24FV32KA304 FAMILY

TABLE 1-3:	PIC24	IFV32KA	304 FAM	PIC24FV32KA304 FAMILY PINO	UT DES	UT DESCRIPTIONS (CONTINUED)	NS (CON	ITINUED	•				
			Ŀ					FV					
			Pin Number					Pin Number					
Function	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	20-Pin PDIP/ SSOP/ SOIC	28-Pin SPDIP/ SSOP/ SOIC	28-Pin QFN	44-Pin QFN/ TQFP	48-Pin UQFN	0/1	Buffer	Description
RAO	2	2	27	19	21	2	2	27	19	21	0/1	ST	PORTA Pins
RA1	ę	З	28	20	22	з	с	28	20	22	0/1	ST	
RA2	7	6	9	30	33	7	6	9	30	33	0/1	ST	
RA3	œ	10	7	31	34	8	10	7	31	34	0/1	ST	
RA4	10	12	6	34	37	10	12	6	34	37	0/1	ST	
RA5	Ļ	L	26	18	19	1	1	56	18	19	0/1	ST	
RA6	14	20	17	7	7	Ι	I		Ι	Ι	0/1	ST	
RA7	Ι	19	16	9	9	I	19	16	9	9	0/1	ST	
RA8	Ι	Ι	Ι	32	35	I	I	Ι	32	35	0/1	ST	
RA9	Ι	Ι	Ι	35	38	Ι	Ι	Ι	35	38	0/1	ST	
RA10	Ι	Ι	Ι	12	13	Ι	Ι	Ι	12	13	0/1	ST	
RA11	Ι	Ι	Ι	13	14	Ι	Ι	Ι	13	14	0/1	ST	
RB0	4	4	1	21	23	4	4	١	21	23	0/1	ST	PORTB Pins
RB1	5	5	2	22	24	5	5	2	22	24	0/1	ST	
RB2	9	9	3	23	25	6	9	3	23	25	0/1	ST	
RB3	Ι	7	4	24	26	Ι	7	4	24	26	0/1	ST	
RB4	6	11	8	33	36	6	11	8	33	36	0/1	ST	
RB5	I	14	11	41	45	I	14	11	41	45	0/1	ST	
RB6	Ι	15	12	42	46	Ι	15	12	42	46	0/1	ST	
RB7	11	16	13	43	47	11	16	13	43	47	0/1	ST	
RB8	12	17	14	44	48	12	17	14	44	48	0/1	ST	
RB9	13	18	15	1	٢	13	18	15	1	1	0/1	ST	
RB10	Ι	21	18	8	6	Ι	21	18	8	6	0/1	ST	
RB11	Ι	22	19	6	10	Ι	22	19	6	10	0/1	ST	
RB12	15	23	20	10	11	15	23	20	10	11	0/1	ST	
RB13	16	24	21	11	12	16	24	21	11	12	0/1	ST	
RB14	17	25	22	14	15	17	25	22	14	15	0/1	ST	
RB15	18	26	23	15	16	18	26	23	15	16	0/1	ST	

PIC24FV32KA304 FAMILY PINOUT DESCRIPTIONS (CONTIN

 $\ensuremath{\textcircled{}^{\odot}}$  2011-2012 Microchip Technology Inc.

# PIC24FV32KA304 FAMILY

			Description	Timer1 Clock	Timer2 Clock	Timer3 Clock	Timer4 Clock	Timer5 Clock	UART1 Clear-to-Send Input	UART1 Request-to-Send Output	UART1 Receive	UART1 Transmit	UART2 Clear-to-Send Input	UART2 Request-to-Send Output	UART2 Receive	UART2 Transmit	Ultra Low-Power Wake-up Input	Core Power	Device Digital Supply Voltage	A/D Reference Voltage Input (+)	A/D Reference Voltage Input (-)	Device Digital Ground Return	
			Buffer	ST	ST	ST	ST	ST	ST	-	ST	Ι	ST	-	ST	Ι	ANA	-	-	ANA	ANA	Ι	
			0/	-	-	-	-	-	-	0	-	0	-	0	-	0	-	Ч	٩	-	-	٩	
			48-Pin UQFN	۲	16	16	25	25	48	1	2	3	37	36	24	23	23	7	18,30,43	21	22	17,31,42	
			44-Pin QFN/ TQFP	-	15	15	23	23	44	1	2	з	34	33	22	21	21	7	17,28,40	19	20	16,29,39	
TINUED)	FV	Pin Number	28-Pin QFN	15	23	23	с	3	14	15	3	13	6	8	2	1	1	17	25,10	27	28	24,5	
NS (CON			28-Pin SPDIP/ SSOP/ SOIC	18	26	26	9	9	17	18	9	16	12	11	5	4	4	20	28,13	2	3	27,8	
DESCRIPTIONS (CONTINUED)			20-Pin PDIP/ SSOP/ SOIC	13	18	18	9	9	12	13	9	11	10	6	5	4	4	14	20	2	3	19	
OUT	ш	F 'in Number	Pin Number	48-Pin UQFN	4	16	16	25	25	48	1	2	3	37	36	24	23	23	Ι	18,30,43	21	22	17,31,42
				44-Pin QFN/ TQFP	٢	15	15	23	23	44	1	2	3	34	33	22	21	21	Ι	17,28,40	19	20	16,29,39
304 FAM				28-Pin QFN	15	23	23	3	£	14	15	3	13	6	8	2	1	1	-	25,10	27	28	24,5
PIC24FV32KA304 FAMILY PIN			28-Pin SPDIP/ SSOP/ SOIC	18	26	26	9	9	17	18	9	16	12	11	5	4	4	Ι	28,13	2	3	27,8	
PIC24			20-Pin PDIP/ SSOP/ SOIC	13	18	18	9	9	12	13	9	11	10	6	5	4	4	Ι	20	2	3	19	
TABLE 1-3:			Function	T1CK	T2CK	T3CK	T4CK	T5CK	U1CTS	U1RTS	U1RX	U1TX	U2CTS	U2RTS	U2RX	U2TX	ULPWU	VCAP	VDD	VREF+	VREF-	Vss	

Ś ú ( ċ

# PIC24FV32KA304 FAMILY

Downloaded from Arrow.com.

FIGURE 2-1:

### 2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

### 2.1 Basic Connection Requirements

Getting started with the PIC24FV32KA304 family family of 16-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

- All VDD and Vss pins (see Section 2.2 "Power Supply Pins")
- All AVDD and AVss pins, regardless of whether or not the analog device features are used (see Section 2.2 "Power Supply Pins")
- MCLR pin (see Section 2.3 "Master Clear (MCLR) Pin")
- VCAP pins (see Section 2.4 "Voltage Regulator Pin (VCAP)")

These pins must also be connected if they are being used in the end application:

- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSCI and OSCO pins when an external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for analog modules is implemented

**Note:** The AVDD and AVss pins must always be connected, regardless of whether any of the analog modules are being used.

The minimum mandatory connections are shown in Figure 2-1.

#### **MINIMUM CONNECTIONS** C2⁽²⁾ Vdd ۷DD Vss ŹR1 R2 MCLR VCAP (1)C1 PIC24FXXKXX⁽³⁾ Ī VDD Vss C6⁽²⁾-C3(2) Vdd Vss AVDD AVSS 20/ /SS C4(2) C5⁽²⁾

RECOMMENDED

#### Key (all values are recommendations):

C1 through C6: 0.1  $\mu\text{F},$  20V ceramic

C7: 10 µF, 16V tantalum or ceramic

R1: 10 kΩ

R2: 100Ω to 470Ω

- Note 1: See Section 2.4 "Voltage Regulator Pin (VCAP)" for explanation of VCAP pin connections.
  - 2: The example shown is for a PIC24F device with five VDD/Vss and AVDD/AVss pairs. Other devices may have more or less pairs; adjust the number of decoupling capacitors appropriately.
  - **3:** Some PIC24F K parts do not have a regulator.

### 2.2 Power Supply Pins

#### 2.2.1 DECOUPLING CAPACITORS

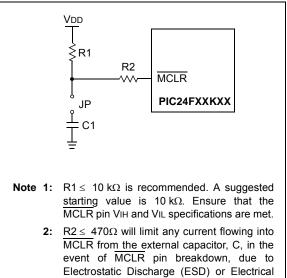
The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS, is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1  $\mu$ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01  $\mu$ F to 0.001  $\mu$ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1  $\mu$ F in parallel with 0.001  $\mu$ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

#### 2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7  $\mu F$  to 47  $\mu F$ .


### 2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: Device Reset, and Device Programming and Debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the MCLR pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

Any components associated with the  $\overline{\text{MCLR}}$  pin should be placed within 0.25 inch (6 mm) of the pin.

#### FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS



Overstress (EOS). Ensure that the MCLR pin

VIH and VIL specifications are met.

#### 2.4 Voltage Regulator Pin (VCAP)

Note:	This section applies only to PIC24F K
	devices with an on-chip voltage regulator.

Some of the PIC24F K devices have an internal voltage regulator. These devices have the voltage regulator output brought out on the VCAP pin. On the PIC24F K devices with regulators, a low-ESR (< 5 $\Omega$ ) capacitor is required on the VCAP pin to stabilize the voltage regulator output. The VCAP pin must not be connected to VDD and must use a capacitor of 10  $\mu$ F connected to ground. The type can be ceramic or tantalum. Suitable examples of capacitors are shown in Table 2-1. Capacitors with equivalent specifications can be used.

Designers may use Figure 2-3 to evaluate ESR equivalence of candidate devices.

The placement of this capacitor should be close to VCAP. It is recommended that the trace length not exceed 0.25 inch (6 mm). Refer to **Section 29.0** "**Electrical Characteristics**" for additional information. Refer to Section 29.0 "Electrical Characteristics" for information on VDD and VDDCORE.

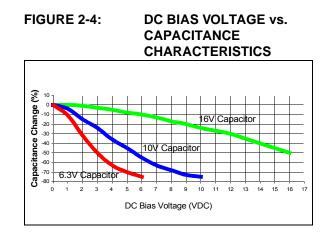
#### FIGURE 2-3: **FREQUENCY vs. ESR** PERFORMANCE FOR SUGGESTED VCAP 10 1 Ω) **SSR** (Ω) 0.1 0.01 0.001 0.01 0.1 10 100 1000 10 000 1 Frequency (MHz) Typical data measurement at 25°C, 0V DC bias. Note:

#### TABLE 2-1: SUITABLE CAPACITOR EQUIVALENTS

Make	Part #	Nominal Capacitance	Base Tolerance	Rated Voltage	Temp. Range
TDK	C3216X7R1C106K	10 µF	±10%	16V	-55 to 125°C
TDK	C3216X5R1C106K	10 µF	±10%	16V	-55 to 85°C
Panasonic	ECJ-3YX1C106K	10 µF	±10%	16V	-55 to 125°C
Panasonic	ECJ-4YB1C106K	10 µF	±10%	16V	-55 to 85°C
Murata	GRM32DR71C106KA01L	10 µF	±10%	16V	-55 to 125°C
Murata	GRM31CR61C106KC31L	10 µF	±10%	16V	-55 to 85°C

# 2.4.1 CONSIDERATIONS FOR CERAMIC CAPACITORS

In recent years, large value, low-voltage, surface-mount ceramic capacitors have become very cost effective in sizes up to a few tens of microfarad. The low-ESR, small physical size and other properties make ceramic capacitors very attractive in many types of applications.


Ceramic capacitors are suitable for use with the internal voltage regulator of this microcontroller. However, some care is needed in selecting the capacitor to ensure that it maintains sufficient capacitance over the intended operating range of the application.

Typical low-cost, 10  $\mu$ F ceramic capacitors are available in X5R, X7R and Y5V dielectric ratings (other types are also available, but are less common). The initial tolerance specifications for these types of capacitors are often specified as ±10% to ±20% (X5R and X7R), or -20%/+80% (Y5V). However, the effective capacitance that these capacitors provide in an application circuit will also vary based on additional factors, such as the applied DC bias voltage and the temperature. The total in-circuit tolerance is, therefore, much wider than the initial tolerance specification.

The X5R and X7R capacitors typically exhibit satisfactory temperature stability (ex:  $\pm 15\%$  over a wide temperature range, but consult the manufacturer's data sheets for exact specifications). However, Y5V capacitors typically have extreme temperature tolerance specifications of  $\pm 22\%$ . Due to the extreme temperature tolerance, a 10  $\mu$ F nominal rated Y5V type capacitor may not deliver enough total capacitance to meet minimum internal voltage regulator stability and transient response requirements. Therefore, Y5V capacitors are not recommended for use with the internal regulator if the application must operate over a wide temperature range.

In addition to temperature tolerance, the effective capacitance of large value ceramic capacitors can vary substantially, based on the amount of DC voltage applied to the capacitor. This effect can be very significant, but is often overlooked or is not always documented.

A typical DC bias voltage vs. capacitance graph for X7R type capacitors is shown in Figure 2-4.



When selecting a ceramic capacitor to be used with the internal voltage regulator, it is suggested to select a high-voltage rating, so that the operating voltage is a small percentage of the maximum rated capacitor voltage. For example, choose a ceramic capacitor rated at 16V for the 3.3V or 2.5V core voltage. Suggested capacitors are shown in Table 2-1.

### 2.5 ICSP Pins

The PGC and PGD pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100 $\Omega$ .

Pull-up resistors, series diodes and capacitors on the PGC and PGD pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., PGCx/PGDx pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 27.0 "Development Support"**.

#### 2.6 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to for **Section 9.0 "Oscillator Configuration**" details).

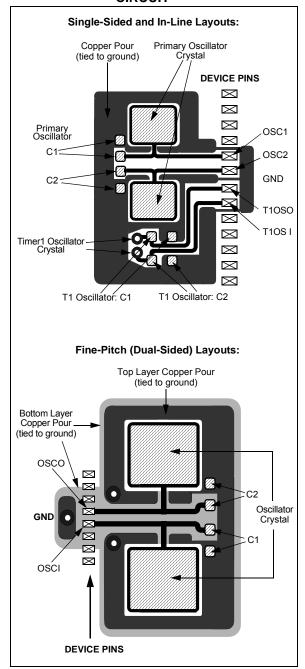
The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in Figure 2-5. In-line packages may be handled with a single-sided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

In planning the application's routing and I/O assignments, ensure that adjacent port pins and other signals, in close proximity to the oscillator, are benign (i.e., free of high frequencies, short rise and fall times, and other similar noise).

For additional information and design guidance on oscillator circuits, please refer to these Microchip Application Notes, available at the corporate web site (www.microchip.com):


- AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849, "Basic PICmicro[®] Oscillator Design"
- AN943, "Practical PICmicro[®] Oscillator Analysis and Design"
- AN949, "Making Your Oscillator Work"

### 2.7 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state. Alternatively, connect a 1 k $\Omega$  to 10 k $\Omega$  resistor to Vss on unused pins and drive the output to logic low.

# FIGURE 2-5: SUG

#### SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT



NOTES:

### 3.0 CPU

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the CPU, refer to the *"PIC24F Family Reference Manual"*, Section 2. "CPU" (DS39703).

The PIC24F CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.

PIC24F devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can act as a data, address or address offset register. The 16th working register (W15) operates as a Software Stack Pointer (SSP) for interrupts and calls.

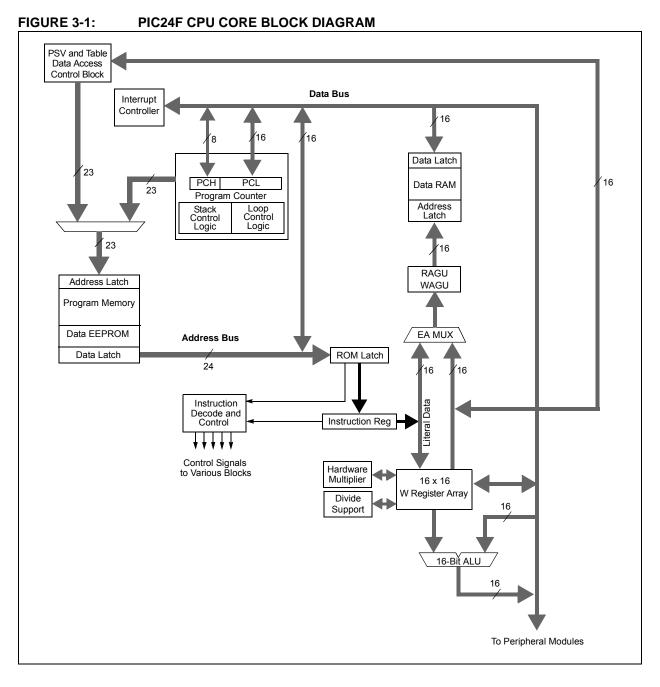
The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K word boundary of either program memory or data EEPROM memory, defined by the 8-bit Program Space Visibility Page Address (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space.

The Instruction Set Architecture (ISA) has been significantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibility. All PIC18 instructions and addressing modes are supported, either directly, or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs.

The core supports Inherent (no operand), Relative, Literal, Memory Direct and three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements. For most instructions, the core is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (i.e., A + B = C) to be executed in a single cycle.

A high-speed, 17-bit by 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit by 16-bit or 8-bit by 8-bit integer multiplication. All multiply instructions execute in a single cycle.

The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by 16-bit integer signed and unsigned division. All divide operations require 19 cycles to complete but are interruptible at any cycle boundary.


The PIC24F has a vectored exception scheme with up to eight sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.

A block diagram of the CPU is illustrated in Figure 3-1.

### 3.1 Programmer's Model

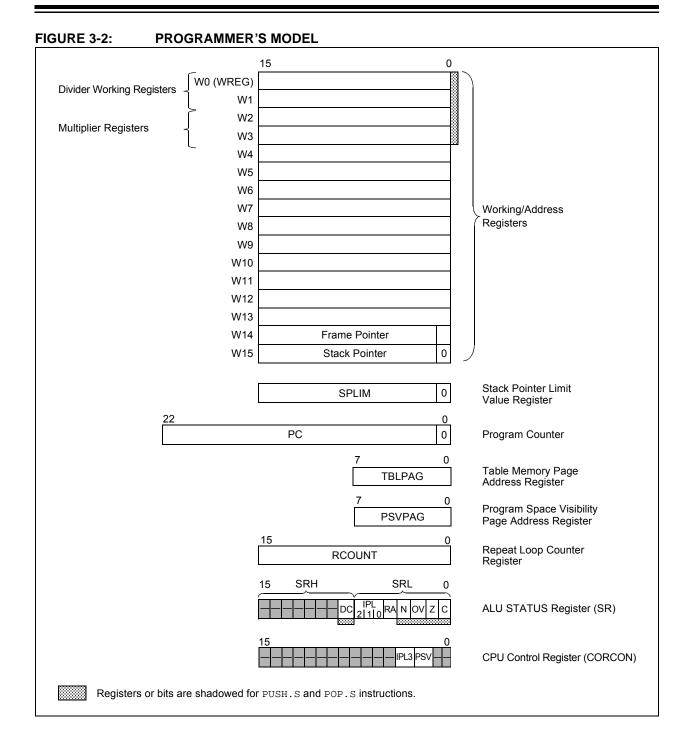

Figure 3-2 displays the programmer's model for the PIC24F. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions.

 Table 3-1 provides a description of each register. All registers associated with the programmer's model are memory mapped.



TABLE 3-1: CPU CORI	E REGISTERS
---------------------	-------------

Register(s) Name	Description
W0 through W15	Working Register Array
PC	23-Bit Program Counter
SR	ALU STATUS Register
SPLIM	Stack Pointer Limit Value Register
TBLPAG	Table Memory Page Address Register
PSVPAG	Program Space Visibility Page Address Register
RCOUNT	Repeat Loop Counter Register
CORCON	CPU Control Register



^{© 2011-2012} Microchip Technology Inc.

### 3.2 CPU Control Registers

#### REGISTER 3-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HSC
—	—	—	_	—	—	—	DC
bit 15							bit 8
R/W-0, HSC ⁽¹⁾	R/W-0, HSC ⁽¹⁾	R/W-0, HSC ⁽¹⁾	R-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC

R/W-0, HSC ⁽¹⁾	R/W-0, HSC ⁽¹⁾	R/W-0, HSC ⁽¹⁾	R-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit 0

Legend:	HSC = Hardware Settable/C	Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 8       DC: ALU Half Carry/Borrow bit         1 = A carry-out from the 4 th low-order bit (for byte-sized data) or 8 th low-order bit (for word-sized data) of the result occurred         0 = No carry-out from the 4 th or 8 th low-order bit of the result has occurred         bit 7-5       IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts disabled         100 = CPU Interrupt Priority Level is 6 (14)         101 = CPU Interrupt Priority Level is 5 (13)         100 = CPU Interrupt Priority Level is 4 (12)         011 = CPU Interrupt Priority Level is 1 (1)         010 = CPU Interrupt Priority Level is 2 (10)         011 = CPU Interrupt Priority Level is 1 (9)         000 = CPU Interrupt Priority Level is 0 (8)         bit 4       RA: REPEAT Loop Active bit         1 = REPEAT loop in progress         0 = REPEAT loop not in progress         0 = Result was negative         0 = Result was non-negative (zero or positive)         bit 2       OV: ALU Overflow bit         1 = Overflow occurred for signed (2's complement) arithmetic in this arithmetic operation
1 = A carry-out from the 4 th low-order bit (for byte-sized data) or 8 th low-order bit (for word-sized data) of the result occurred         0 = No carry-out from the 4 th or 8 th low-order bit of the result has occurred         bit 7-5       IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts disabled         100 = CPU Interrupt Priority Level is 6 (14)         101 = CPU Interrupt Priority Level is 5 (13)         100 = CPU Interrupt Priority Level is 3 (11)         010 = CPU Interrupt Priority Level is 3 (11)         010 = CPU Interrupt Priority Level is 1 (9)         000 = CPU Interrupt Priority Level is 0 (8)         bit 4         RA: REPEAT Loop Active bit         1 = REPEAT loop in progress         0 = RESULT was negative         0 = Result was non-negative (zero or positive)         bit 2       OV: ALU Overflow bit         1 = Overflow occurred for signed (2's complement) arithmetic in this arithmetic operation
bit 7-5       IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts disabled         100 = CPU Interrupt Priority Level is 6 (14)         101 = CPU Interrupt Priority Level is 5 (13)         100 = CPU Interrupt Priority Level is 4 (12)         011 = CPU Interrupt Priority Level is 3 (11)         010 = CPU Interrupt Priority Level is 2 (10)         001 = CPU Interrupt Priority Level is 1 (9)         000 = CPU Interrupt Priority Level is 0 (8)         bit 4         RA: REPEAT Loop Active bit         1 = REPEAT loop in progress         0 = REPEAT loop not in progress         0 = REPEAT loop not in progress         bit 3         N: ALU Negative bit         1 = Result was negative         0 = Result was non-negative (zero or positive)         bit 2         OV: ALU Overflow bit         1 = Overflow occurred for signed (2's complement) arithmetic in this arithmetic operation
111 = CPU Interrupt Priority Level is 7 (15); user interrupts disabled110 = CPU Interrupt Priority Level is 6 (14)101 = CPU Interrupt Priority Level is 5 (13)100 = CPU Interrupt Priority Level is 4 (12)011 = CPU Interrupt Priority Level is 3 (11)010 = CPU Interrupt Priority Level is 2 (10)001 = CPU Interrupt Priority Level is 1 (9)000 = CPU Interrupt Priority Level is 0 (8)bit 4RA: REPEAT Loop Active bit1 = REPEAT loop in progress0 = REPEAT loop not in progressbit 3N: ALU Negative bit1 = Result was negative0 = Result was non-negative (zero or positive)bit 2OV: ALU Overflow bit1 = Overflow occurred for signed (2's complement) arithmetic in this arithmetic operation
<ul> <li>110 = CPU Interrupt Priority Level is 6 (14)</li> <li>101 = CPU Interrupt Priority Level is 5 (13)</li> <li>100 = CPU Interrupt Priority Level is 4 (12)</li> <li>011 = CPU Interrupt Priority Level is 3 (11)</li> <li>010 = CPU Interrupt Priority Level is 2 (10)</li> <li>001 = CPU Interrupt Priority Level is 1 (9)</li> <li>000 = CPU Interrupt Priority Level is 0 (8)</li> <li>bit 4 RA: REPEAT Loop Active bit</li> <li>1 = REPEAT loop in progress</li> <li>0 = REPEAT loop not in progress</li> <li>bit 3 N: ALU Negative bit</li> <li>1 = Result was negative</li> <li>0 = Result was non-negative (zero or positive)</li> <li>bit 2 OV: ALU Overflow bit</li> <li>1 = Overflow occurred for signed (2's complement) arithmetic in this arithmetic operation</li> </ul>
bit 4       RA: REPEAT Loop Active bit         1 = REPEAT loop in progress         0 = REPEAT loop not in progress         bit 3       N: ALU Negative bit         1 = Result was negative         0 = Result was non-negative (zero or positive)         bit 2       OV: ALU Overflow bit         1 = Overflow occurred for signed (2's complement) arithmetic in this arithmetic operation
0 = REPEAT loop not in progress         bit 3       N: ALU Negative bit         1 = Result was negative         0 = Result was non-negative (zero or positive)         bit 2       OV: ALU Overflow bit         1 = Overflow occurred for signed (2's complement) arithmetic in this arithmetic operation
bit 3       N: ALU Negative bit         1 = Result was negative         0 = Result was non-negative (zero or positive)         bit 2         OV: ALU Overflow bit         1 = Overflow occurred for signed (2's complement) arithmetic in this arithmetic operation
1 = Result was negative         0 = Result was non-negative (zero or positive)         bit 2 <b>OV:</b> ALU Overflow bit         1 = Overflow occurred for signed (2's complement) arithmetic in this arithmetic operation
<ul> <li>0 = Result was non-negative (zero or positive)</li> <li>bit 2</li> <li><b>OV:</b> ALU Overflow bit</li> <li>1 = Overflow occurred for signed (2's complement) arithmetic in this arithmetic operation</li> </ul>
bit 2 <b>OV:</b> ALU Overflow bit         1 = Overflow occurred for signed (2's complement) arithmetic in this arithmetic operation
0 = No overflow has occurred
bit 1 Z: ALU Zero bit
<ul> <li>1 = An operation, which effects the Z bit, has set it at some time in the past</li> <li>0 = The most recent operation, which effects the Z bit, has cleared it (i.e., a non-zero result)</li> </ul>
bit 0 <b>C:</b> ALU Carry/Borrow bit 1 = A carry-out from the Most Significant bit (MSb) of the result occurred 0 = No carry-out from the Most Significant bit (MSb) of the result occurred
<b>Note 1:</b> The IPLx Status bits are read-only when NSTDIS (INTCON1<15>) = 1.
2: The IPL<2:0> Status bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt

 The IPL<2:0> Status bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrup Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.

#### REGISTER 3-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/C-0, HSC	R/W-0	U-0	U-0
—	—		—	IPL3 ⁽¹⁾	PSV	—	—
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	t U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-4	Unimplemented: Read as '0'
bit 3	IPL3: CPU Interrupt Priority Level Status bit ⁽¹⁾
	<ul> <li>1 = CPU Interrupt Priority Level is greater than 7</li> <li>0 = CPU Interrupt Priority Level is 7 or less</li> </ul>
bit 2	<b>PSV:</b> Program Space Visibility in Data Space Enable bit
	1 = Program space is visible in data space
	0 = Program space is not visible in data space
bit 1-0	Unimplemented: Read as '0'

**Note 1:** User interrupts are disabled when IPL3 = 1.

#### 3.3 Arithmetic Logic Unit (ALU)

The PIC24F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

The PIC24F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware division for 16-bit divisor.

#### 3.3.1 MULTIPLIER

The ALU contains a high-speed, 17-bit x 17-bit multiplier. It supports unsigned, signed or mixed sign operation in several multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

### 3.3.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. Sixteen-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

#### 3.3.3 MULTI-BIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and single-cycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination.

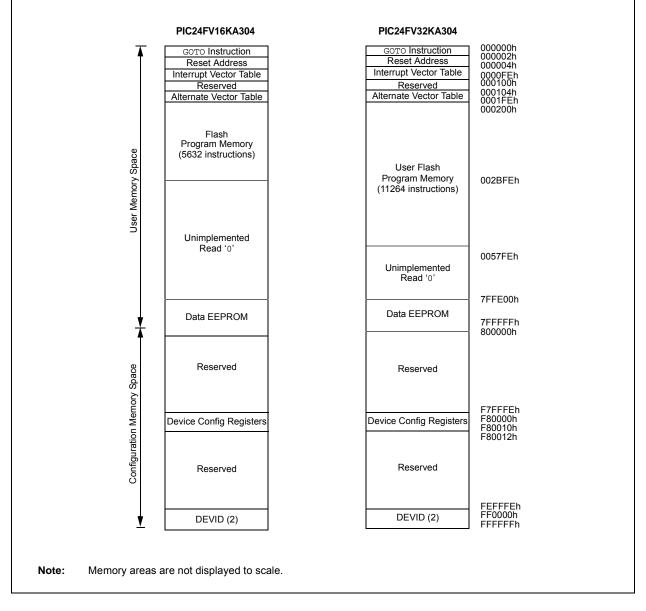
A full summary of instructions that use the shift operation is provided in Table 3-2.

#### TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE AND MULTI-BIT SHIFT OPERATION

Instruction	Description
ASR	Arithmetic shift right source register by one or more bits.
SL	Shift left source register by one or more bits.
LSR	Logical shift right source register by one or more bits.

## 4.0 MEMORY ORGANIZATION

As Harvard architecture devices, the PIC24F microcontrollers feature separate program and data memory space and bussing. This architecture also allows the direct access of program memory from the data space during code execution.


### 4.1 Program Address Space

The program address memory space of the PIC24FV32KA304 family is 4M instructions. The space is addressable by a 24-bit value derived from either the 23-bit Program Counter (PC) during program execution, or from a table operation or data space remapping, as described in Section 4.3 "Interfacing Program and Data Memory Spaces".

User access to the program memory space is restricted to the lower half of the address range (000000h to 7FFFFFh). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

Memory maps for the PIC24FV32KA304 family of devices are shown in Figure 4-1.

### FIGURE 4-1: PROGRAM SPACE MEMORY MAP FOR PIC24FV32KA304 FAMILY DEVICES



#### 4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address, as shown in Figure 4-2.

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

#### 4.1.2 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 00000h and 000200h for hard coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h, with the actual address for the start of code at 000002h.

PIC24F devices also have two Interrupt Vector Tables, located from 000004h to 0000FFh and 000104h to 0001FFh. These vector tables allow each of the many device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the Interrupt Vector Tables (IVT) is provided in Section 8.1 "Interrupt Vector Table (IVT)".

### 4.1.3 DATA EEPROM

In the PIC24FV32KA304 family, the data EEPROM is mapped to the top of the user program memory space, starting at address, 7FFE00, and expanding up to address, 7FFFF.

The data EEPROM is organized as 16-bit wide memory and 256 words deep. This memory is accessed using table read and write operations similar to the user code memory.

#### 4.1.4 DEVICE CONFIGURATION WORDS

Table 4-1 provides the addresses of the device Configuration Words for the PIC24FV32KA304 family. Their location in the memory map is shown in Figure 4-1.

For more information on device Configuration Words, see Section 26.0 "Special Features".

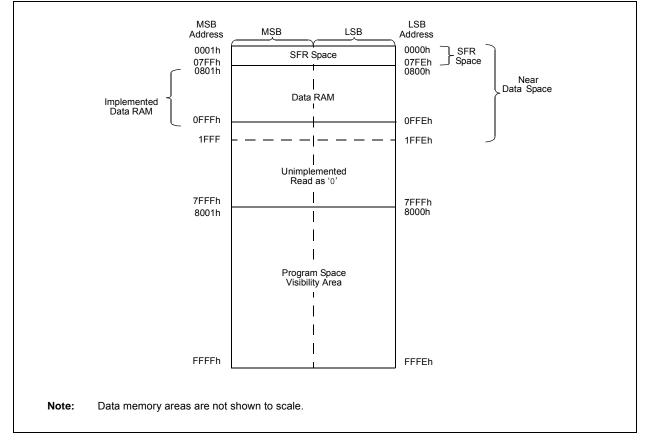
# TABLE 4-1:DEVICE CONFIGURATION<br/>WORDS FOR PIC24FV32KA304<br/>FAMILY DEVICES

Configuration Words	Configuration Word Addresses		
FBS	F80000		
FGS	F80004		
FOSCSEL	F80006		
FOSC	F80008		
FWDT	F8000A		
FPOR	F8000C		
FICD	F8000E		
FDS	F80010		

#### FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

msw Address	most significant wo	ord	least significant word	PC Address (Isw Address)
	23	16	8	0
000001h	0000000			000000h
000003h	0000000			000002h
000005h	0000000			000004h
000007h	0000000			000006h
			~	
	Program Memory 'Phantom' Byte (read as '0')	Instruc	ction Width	

^{© 2011-2012} Microchip Technology Inc.


### 4.2 Data Address Space

The PIC24F core has a separate, 16-bit wide data memory space, addressable as a single linear range. The data space is accessed using two Address Generation Units (AGUs), one each for read and write operations. The data space memory map is shown in Figure 4-3.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15> = 0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility (PSV) area (see Section 4.3.3 "Reading Data From Program Memory Using Program Space Visibility"). PIC24FV32KA304 family devices implement a total of 1024 words of data memory. If an EA points to a location outside of this area, an all zero word or byte will be returned.

#### 4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte-addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all the data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.



#### FIGURE 4-3: DATA SPACE MEMORY MAP FOR PIC24FV32KA304 FAMILY DEVICES

#### 4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC[®] devices and improve data space memory usage efficiency, the PIC24F instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address (EA) calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word, which contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and the registers are organized as two parallel, byte-wide entities with shared (word) address decode, but separate write lines. Data byte writes only write to the corresponding side of the array or register, which matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed, but the write will not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB; the MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow the users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users

can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions operate only on words.

#### 4.2.3 NEAR DATA SPACE

The 8-Kbyte area between 0000h and 1FFFh is referred to as the Near Data Space (NDS). Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. The remainder of the data space is addressable indirectly. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing (MDA) with a 16-bit address field. For PIC24FV32KA304 family devices, the entire implemented data memory lies in Near Data Space.

#### 4.2.4 SFR SPACE

The first 2 Kbytes of the Near Data Space, from 0000h to 07FFh, are primarily occupied with Special Function Registers (SFRs). These are used by the PIC24F core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by the module. Much of the SFR space contains unused addresses; these are read as '0'. The SFR space, where the SFRs are actually implemented, is provided in Table 4-2. Each implemented area indicates a 32-byte region, where at least one address is implemented as an SFR. A complete listing of implemented SFRs, including their addresses, is provided in Table 4-3 through Table 4-25.

			SFR Space Ac	ldress				
	xx00	xx20	xx40	xx60	xx80	xxA0	xxC0	xxE0
000h		Cor	e	ICN	In	terrupts		
100h	Tin	ners	Capture	—	Compare	—	—	—
200h	I ² C™	UART	SPI		—	_	I/	0
300h			A/D/CMTU		—	_	_	_
400h	—	—	—	_	_	—	_	_
500h	—	—	_	—	_	—	_	_
600h		RTC/Comp	CRC			_		
700h	—	—	System/DS/HLVD	NVM/PMD	_	—	—	_

#### TABLE 4-2: IMPLEMENTED REGIONS OF SFR DATA SPACE

**Legend:** — = No implemented SFRs in this block.

^{© 2011-2012} Microchip Technology Inc.

<b>TABLE 4-3:</b>	4-3:	СРU	<b>CPU CORE REGISTERS MAP</b>	REGIS.	TERS N	AAP												
File Name	Start Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
<b>WREG0</b>	0000								WF	WREG0								0000
WREG1	0002								WF	WREG1								0000
WREG2	0004								WF	WREG2								0000
WREG3	9000								WF	WREG3								0000
WREG4	0008								WF	WREG4								0000
WREG5	000A								WF	WREG5								0000
WREG6	000C								WF	WREG6								0000
WREG7	000E								WF	WREG7								0000
WREG8	0010								WF	WREG8								0000
WREG9	0012								WF	WREG9								0000
WREG10	0014								WR	WREG10								0000
WREG11	0016								WR	WREG11								0000
WREG12	0018								WR	WREG12								0000
WREG13	001A								WR	WREG13								0000
WREG14	001C								WR	WREG14								0000
WREG15	001E								WR	WREG15								0000
SPLIM	0020								SF	SPLIM								XXXX
PCL	002E								đ.	PCL								0000
РСН	0030		Ι	Ι		Ι	Ι	Ι	Ι	Ι				РСН				0000
TBLPAG	0032		Ι	Ι	Ι	Ι	Ι	Ι	Ι				TBL	TBLPAG				0000
PSVPAG	0034		Ι	Ι	I	Ι	Ι	Ι	Ι				PSV	PSVPAG				0000
RCOUNT	0036								RCC	RCOUNT								XXXXX
SR	0042		Ι	Ι			Ι	Ι	DC	IPL2	IPL1	IPL0	RA	Z	VO	Z	С	0000
CORCON	0044	I				Ι		I	I	I	I			IPL3	PSV	Ι		0000
DISICNT	0052		I							DISICNT	NT							XXXX
Legend: -	— = unir	mplemente	= unimplemented, read as '0'. Reset values are shown	'0'. Reset	values are		in hexadecimal.											

	Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 All Resets	CN4PDE CN3PDE CN2PDE CN1PDE CN0PDE 0000	CN19PDE ^(1,2) CN18PDE ^(1,2) CN17PDE ^(1,2) CN16PDE ⁽¹⁾	_				CN20PDE ^(1,2) CN18PDE ^(1,2) CN18PDE ^(1,2) CN18PDE ^(1,2) CN16PDE
	Bit 4	CN4PDE	DE CN20PDE ^(1,2) CN19PD	DE CN20PDE ^(1,2) CN19PD CN36PDE ^(1,2) CN35PD	DE         CN20PDE ^(1,2) CN19PD           CN36PDE ^(1,2) CN35PD           E         CN4F         CN3	DE         CN20PDE ^(1,2) CN19PD           CN36PDE ^(1,2) CN36PD         E         CN36PD           E         CN4IE         CN3IE         CN3FD	DE         CN20PDE ^(1,2) CN19PD           CN36PDE ^(1,2) CN19PD         CN19PD           E         CN36PDE ^(1,2) CN19PD           IE         CN4IE         CN36IE           CN20IE ^(1,2) CN19IE         CN35IE	DE         CN20PDE ^(1,2) CN19PD           CN36PDE ^(1,2) CN36PDE ^(1,2) CN36PDE           E         CN4IE         CN3IE           IE         CN20FDE ^(1,2) CN3IE           IE         CN36IE ^(1,2) CN3IE           UE         CN36IE ^(1,2) CN3IE           UE         CN36IE ^(1,2) CN3IE
	Bit 6 Bit 5	CN13PDE CN12PDE CN11PDE CN10PDE(1,2) CN0PDE(1) CN8PDE(3) CN7PDE(1) CN6PDE CN6PDE	CN22PDE CN21PI	CN22PDE CN21PE	CN22PDE CN21PDE CN2EPDE CN21PDE CN6IE CN5IE	CN22PDE CN21PDE 	CN22PDE CN21PT  CN6IE CN5IE CN2IE CN21IE	CN29PDE         CN28PDE ^(1,2) CN28PDE ^(1,2) CN28PDE ^(1,2) CN28PDE ^(1,2) CN28PDE ^(1,2) CN28PDE         CN2PDE         CN2PLE         CN2IE
	Bit 7	(3) CN7PDE ⁽¹⁾	(1) CN23PDE	E ⁽¹⁾ CN23PDE	E ⁽¹⁾ CN23PDE 	E ⁽¹⁾ CN23PDE 	E ⁽¹⁾ CN23PDE 	(1) CN23PDE 
	Bit 8	(1) CN8PDE	1,2) CN24PDE	(1,2) CN24PDE	(1,2) CN24PDE ⁽¹⁾ — ) CN8IE ⁽³⁾	CN25PDE ^(1,2) CN24PDE ⁽¹⁾ — CN3IE ⁽¹⁾ CN3IE ⁽³⁾ CN25IE ^(1,2) CN24IE ⁽¹⁾	(1,2)         CN24PDE           —         —           )         CN8IE ⁽³⁾ ,2)         CN8IE ⁽³⁾	1,2)         CN24PDE           -         -           0         CN8IE ⁽³⁾ 2)         CN24IDE           2)         CN24IDE           2)         CN8IE ⁽³⁾ 2)         CN24IDE           1)         CN8PUE
	Bit 9	2) CN9PDE(	2) CN25PDE(1	2) CN25PDE ⁽¹	2) CN25PDE ⁽¹ — CN9IE ⁽¹⁾	2) CN25PDE ⁽¹ — CN9IE ⁽¹⁾	2) CN25PDE ⁽¹ — — — — — — — — — — — — — — — — — — —	2) CN25PDE ⁽¹ 
	Bit 10	CN10PDE(1,	) CN26PDE(1;	) CN26PDE ⁽¹⁾	<pre>I) CN26PDE^(1,2)</pre>	) CN26PDE ^{(1,2} — CN10IE ^{(1,2}	)) CN26PDE ^{(1,1} — CN10IE ^(1,2) CN26IE ^(1,2)	)         CN26PDE ^{(1,1} )           -         -           -         -           CN10IE ^(1,2) CN26IE ^(1,2) CN10PUE ^(1,2) -
	Bit 11	<b>CN11PDE</b>	CN27PDE ⁽¹⁾	CN27PDE ⁽¹⁾	CN27PDE ⁽¹⁾ - CN11IE	CN27PDE ⁽¹⁾ — CN11IE CN27IE ⁽¹⁾	CN27PDE ⁽¹⁾ - CN11IE CN11IE	CN27PDE ⁽¹⁾ CN11IE CN11IE CN11IE CN11PUE CN11PUE
P.	Bit 12	CN12PDE	CN28PDE ^(1,2)	CN28PDE ^(1,2)	CN28PDE ^(1,2) — CN12IE	CN28PDE ^(1,2) CN27PDE ⁽¹⁾ CN28PDE ^(1,2) -         -         -           CN12IE         CN11IE         CN10IE ^(1,2) CN28IE ^(1,2) CN27IE ⁽¹⁾ CN26IE ^(1,2)	CN28PDE ^(1,2) — CN12IE CN28IE ^(1,2) —	CN28PDE ^(1,2) 
	Bit 13							
	Bit 14	CN14PDE				CN30PDE  CN14IE CN30IE	CN30PDE  CN14IE CN30IE 	CN30PDE 
•	Bit 15	0056 CN15PDE ⁽¹⁾	CNPD2 0058 CN31PDE ^(1,2) CN30PDE	CN31PDE ^(1,2) —	CN31PDE ^(1,2) — CN15IE ⁽¹⁾	CNPD2 0058 CN31PDE ^(1,2) CNPD3 005A — CNEN1 0062 CN15IE ⁽¹⁾ CNEN2 0064 CN31IE ^(1,2)	CN31PDE ^(1,2) CN15IE ^(1,2) CN31IE ^(1,2)	CNPD2 0058 CN31PDE ^(1,2) CNPD3 005A — CNEN1 0062 CN15[E ⁽¹⁾ CNEN2 0064 CN31[E ^(1,2) CNEN3 0066 — CN15PUE ⁽¹⁾
НП	Addr	0056	2 0058	2 0058 3 005A	CNPD2 0058 CNPD3 005A CNEN1 0062	20058 005A 0062	2 0058 3 005A 1 0062 2 0064 3 0066	: 0058 005A 0064 3 0066
IABLE 4-4: ICN REGISTER MAP	File Name	CNPD1	<b>CNPD2</b>	CNPD2 CNPD3	CNPD2 CNPD3 CNPD3	CNPD2 CNPD3 CNEN1 CNEN2	CNPD2 CNPD3 CNEN1 CNEN2 CNEN3	CNPD2 CNPD3 CNEN1 CNEN2 CNEN3 CNEN3

— = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

CNPU3 0072

0000

CN36PUE^(1,2) CN35PUE^(1,2) CN34PUE^(1,2) CN33PUE^(1,2) CN32PUE^(1,2)

÷ Note

äö

These bits are not implemented in 20-pin devices. These bits are not implemented in 28-pin devices. These bits are not implemented in FV devices.

Downloaded from Arrow.com.

© 2011-2012 Microchip Technology Inc.

-	-																
Name Addr	r Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1 0080	0 NSTDIS	Ι	Ι			1	1	Ι		I	Ι	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2 0082	2 ALTIVT	DISI		Ι		Ι	I	Ι	Ι	Ι	Ι	-	Ι	INT2EP	INT1EP	INTOEP	0000
0084	4 NVMIF	Ι	AD11F	U1TXIF	<b>U1RXIF</b>	SPI11F	SPF1IF	T3IF	T2IF	<b>OC2IF</b>	IC2IF	Ι	T11F	OC1IF	IC1IF	INTOIF	0000
0086	5 U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	I	OC3IF	Ι	Ι	Ι	Ι	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
0088		Ι	1	1	I	I	I	Ι	Ι		IC3IF	I	I	I	SPI2IF	SPF2IF	0000
008A		RTCIF	1	1	1	I	I	Ι	Ι		I	I	I	<b>MI2C2IF</b>	SI2C2IF	I	0000
008C		Ι	CTMUIF	1	I	1	I	HLVDIF	Ι	I	I	I	CRCIF	U2ERIF	U1ERIF	I	0000
008E		I	1	1	I	I	I	Ι	I		I	I	I	I	I	ULPWUIF	0000
0094	4 NVMIE	Ι	AD1IE	U1TXIE	<b>U1RXIE</b>	SP11IE	SPF1IE	T3IE	T2IE	OC2IE	IC2IE	Ι	T11E	OC1IE	IC1IE	INTOIE	0000
9600	5 U2TXIE	UZRXIE	INT2IE	T5IE	T4IE		OC3IE	I	Ι	I	I	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
8600		Ι	I	I	1	I	I	I	I	I	IC3IE	I	I	I	SPI2IE	<b>SPF2IE</b>	0000
A000		RTCIE	Ι	I	1	I	I	I		Ι	I	Ι	I	<b>MI2C2IE</b>	SI2C2IE		0000
D600		Ι	CTMUIE	I		I	I	HLVDIE	Ι	Ι	Ι	Ι	CRCIE	UZERIE	U1ERIE		0000
009E		Ι		Ι		Ι	I	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	ULPWUIE	0000
00A4	4	T1IP2	T1IP1	T1IP0		OC1IP2	OC1IP1	OC1IP0	Ι	IC1IP2	IC1IP1	IC1IP0	Ι	INT0IP2	INT0IP1	INTOIPO	4444
00A6	9	T2IP2	T2IP1	T2IP0	Ι	OC2IP2	OC2IP1	OC2IP0	Ι	IC2IP2	IC2IP1	IC2IP0	Ι	Ι	Ι	Ι	4444
00A8	8	U1RXIP2	U1RXIP1	U1RXIP0	Ι	SPI1IP2	SPI1IP1	SPI1IP0	Ι	SPF1IP2	SPF1IP1	SPF1IP0	Ι	T3IP2	T3IP1	T3IP0	4444
00AA		<b>NVMIP2</b>	<b>NVMIP1</b>	<b>NVMIPO</b>		I	I	Ι	Ι	AD1IP2	AD1IP1	AD1IP0	Ι	U1TXIP2	U1TXIP1	U1TXIP0	4044
00AC		CNIP2	CNIP1	<b>CNIPO</b>	I	CMIP2	CMIP1	CMIPO	Ι	MI2C1P2	MI2C1P1	MI2C1P0	I	SI2C1P2	SI2C1P1	SI2C1P0	4444
00AE				Ι		Ι	1	Ι	Ι	Ι	Ι	-	Ι	INT1IP2	INT1IP1	INT1IP0	0004
00B0	0 -	T4IP2	T4IP1	T4IP0		Ι	Ι	Ι	Ι	OC3IP2	OC3IP1	OC3IP0	Ι	Ι	Ι	Ι	4040
00B2	2 —	U2TXIP2	U2TXIP1	<b>U2TXIP0</b>		U2RXIP2	U2RXIP1	<b>U2RXIP0</b>	Ι	INT2IP2	INT2IP1	INT2IP0	Ι	T5IP2	T5IP1	T5IP0	4440
IPC8 00B4	4	Ι		Ι		Ι	Ι	Ι	Ι	SP12IP2	SPI2IP1	SPI2IP0	Ι	SPF2IP2	SPF2IP1	SPF2IP0	0044
PC9 00B6	9	Ι		Ι		Ι	Ι	Ι	Ι	IC3IP2	IC3IP1	IC3IP0	Ι	Ι	Ι	Ι	0040
IPC12 00BC		Ι		Ι		MI2C2IP2	MI2C2IP1	MI2C2IP0	Ι	SI2C2IP2	SI2C2IP1	SI2C2IP0	Ι	Ι	Ι	Ι	0440
IPC15 00C2	2 –	Ι		Ι		RTCIP2	RTCIP1	RTCIP0	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	0400
IPC16 00C4	+	CRCIP2	CRCIP1	<b>CRCIP0</b>	Ι	U2ERIP2	U2ERIP1	UZERIPO	Ι	U1ERIP2	U1ERIP1	U1ERIP0	Ι	Ι	Ι	Ι	4440
PC18 00C8	8	Ι	Ι	I	I	Ι	I	Ι		Ι	Ι	Ι	Ι	HLVDIP2	HLVDIP1	HLVDIP0	0004
PC19 00CA	-								Ι	CTMUIP2	CTMUIP1	<b>CTMUIP0</b>	I	I	I	I	0040
IPC20 00CC							I		Ι	I	I		I	<b>ULPWUIP2</b>	ULPWUIP1	ULPWUIP0	0000
INTTREG 00E0	0 CPUIRQ	Ι	ΛΗΟΓΒ	I	ILR3	ILR2	ILR1	ILRO		<b>VECNUM6</b>	VECNUM6 VECNUM5	<b>VECNUM4</b>	VECNUM4 VECNUM3	<b>VECNUM2</b>	<b>VECNUM1</b>	VECNUMO	0000

	1																
Bit 15 Bi	Bi	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
								TMR1	31								0000
								PR1	5								FFF
TON		I	TSIDL	Ι	I		T1ECS1	T1ECS0	I	TGATE	TCKPS1	TCKPS0	I	TSYNC	TCS	I	0000
								TMR2	32								0000
								TMR3HLD	HLD								0000
								TMR3	33								0000
								PR2	2								0000
								PR3	3								FFF
TON		Ι	TSIDL	Ι	Ι	Ι	Ι		Ι	TGATE	TCKPS1	TCKPS0	T32	Ι	TCS	Ι	FFF
TON		Ι	TSIDL	Ι	Ι	Ι	Ι		Ι	TGATE	TCKPS1	TCKPS0		Ι	TCS	Ι	0000
								TMR4	34								0000
								TMR5HLD	НГD								0000
								TMR5	35								0000
	1							PR4	4								FFF
								PR5	2								FFF
TON		I	TSIDL	I	1		Ι	I	I	TGATE	TCKPS1	TCKPS0	T45	Ι	TCS	I	0000
TON		1	TSIDL	Ι	1		1	1	I	TGATE	TCKPS1	TCKPS0	I	Ι	TCS	I	0000
plemented, I	_	read as '0	= unimplemented, read as '0'. Reset values are shown in	les are sho	wn in hexa	hexadecimal.											
INPUT		CAPTL	INPUT CAPTURE REGISTER MA	SISTER	MAP												
Bit 15 Bit		Bit 14 Bit 13	13 Bit 12	2 Bit 11		Bit 10 Bi	Bit 9 Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3		Bit 2	Bit 1	Bit 0	All Resets
		- ICSIDL	DL ICTSEL2	EL2 ICTSEL1	-	ICTSEL0 -		1	ICI1	ICI0	ICOV	ICBNE		ICM2	ICM1	ICM0	0000
-		-				-	- IC32	CTRIG	TRIGSTAT	-	SYNCSEL4	-4 SYNCSEL3		SYNCSEL2 S	SYNCSEL1	<b>SYNCSEL0</b>	000D
								IC1BUF	Γ								0000
	1							IC1TMR	R								XXXX
		- ICSIDL	DL IC2TSEL2	EL2 IC2TSEL1		IC2TSEL0 -	-	Ι	ICI1	IC10	ICOV	ICBNE		ICM2	ICM1	ICM0	0000
-							- IC32	CTRIG	TRIGSTAT	- Т	SYNCSEL4	-4 SYNCSEL3		SYNCSEL2 S	SYNCSEL1	<b>SYNCSEL0</b>	000D
								IC2BUF	Γ								0000
								IC2TMR	R								XXXX
		- ICSIDL	DL IC3TSEL2	EL2 IC3TSEL1	-	IC3TSEL0 -		Ι	ICI1	IC10	ICOV	ICBNE		ICM2	ICM1	ICM0	0000
							- IC32	CTRIG	TRIGSTAT	-	SYNCSEL4	-4 SYNCSEL3		SYNCSEL2 S	YNCSEL1	SYNCSEL1 SYNCSEL0	000D

0000 XXXX

IC3BUF IC3TMR

--- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Legend:

0154 0156

IC3BUF **IC3TMR** 

© 2011-2012 Microchip Technology Inc.

TABLE 4-8:	<b>1-8</b> :	DO.	TPUT (	<b>OUTPUT COMPARE REGISTER</b>	E REG		MAP											
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0190	I	-	OCSIDL	OCTSEL2	OCTSEL1	<b>OCTSEL0</b>	ENFLT2	ENFLT1	ENFLTO	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCMO	0000
OC1CON2	0192	FLTMD	FLTOUT	FLTTRIEN	OCINV	1	DCB1	DCB0	0C32	OCTRIG .	OCTRIG TRIGSTAT OCTRIS	OCTRIS (	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	<b>SYNCSEL0</b>	0000
OC1RS	0194									OC1RS								0000
OC1R	0196									OC1R								0000
OC1TMR	0198									OC1TMR								XXXXX
OC2CON1	019A	1	I	OCSIDL	OCTSEL2 OCTSE	OCTSEL1	EL1 OCTSEL0 ENFLT2 ENFLT1	ENFLT2	ENFLT1	<b>ENFLTO</b>	ENFLT0 OCFLT2 OCFLT1		<b>OCFLT0</b>	TRIGMODE	OCM2	OCM1	OCMO	0000
OC2CON2 019C	019C	FLTMD	FLTOUT	FLTTRIEN	OCINV	I	DCB1	DCB0	OC32	OCTRIG .	TRIGSTAT	OCTRIS :	SYNCSEL4	OCTRIG TRIGSTAT OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1 SYNCSEL0	SYNCSEL2	SYNCSEL1	<b>SYNCSEL0</b>	0000
OC2RS	019E									OC2RS								0000
OC2R	01A0									0C2R								0000
<b>OC2TMR</b>	01A2									OC2TMR								XXXXX
OC3CON1	01A4	Ι		OCSIDL	OCTSEL2 OCTSE	OCTSEL1	EL1 OCTSEL0 ENFLT2	ENFLT2	ENFLT1	<b>ENFLTO</b>	ENFLT0 OCFLT2 OCFLT1		<b>OCFLT0</b>	TRIGMODE	OCM2	OCM1	OCMO	0000
<b>OC3CON2</b>	01A6	FLTMD	FLTOUT	FLTTRIEN	OCINV	Ι	DCB1	DCB0	0C32	OCTRIG .	TRIGSTAT	OCTRIS (	SYNCSEL4	OCTRIG TRIGSTAT OCTRIS SYNCSEL4 SYNCSEL3 SYNCSEL2 SYNCSEL1	SYNCSEL2	SYNCSEL1	<b>SYNCSEL0</b>	0000
OC3RS	01A8									OC3RS								0000
OC3R	01AA									OC3R								0000
<b>OC3TMR</b>	01AC									<b>OC3TMR</b>								XXXX
Legend:	un =  -	implemen	ted, read	— = unimplemented, read as '0'. Reset values are shown in hexadecimal	values are s	thown in hex	adecimal.											

DS39995C-page 43

dutyBit1Bit1Bit1Bit1Bit1Bit1Bit1Bit1Bit1Bit2Bit1Bit1Bit3Bit2Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bit3Bi	I2CX RE	GISTER	MAP														
<th></th> <th>Bit 14</th> <th>Bit 13</th> <th>Bit 12</th> <th>Bit 11</th> <th>Bit 10</th> <th>Bit 9</th> <th>Bit 8</th> <th>Bit 7</th> <th>Bit 6</th> <th>Bit 5</th> <th>Bit 4</th> <th>Bit 3</th> <th>Bit 2</th> <th>Bit 1</th> <th>Bit 0</th> <th>All Resets</th>		Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
<td></td> <td> </td> <td>1</td> <td>I</td> <td>1</td> <td>I</td> <td>1</td> <td>I</td> <td></td> <td></td> <td></td> <td>I2CF</td> <td>{CV</td> <td></td> <td></td> <td></td> <td>0000</td>			1	I	1	I	1	I				I2CF	{CV				0000
		Ι	1	I	Ι	Ι	Ι	I				I2CT	-RN				00FF
IZCENIZCENIZCENDSCUENIPMIENAIOMDISSLWSMENGCENSTRENACKENRCENPENRENSENACKSTATTRSTATUUUUUUUUNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN<		Ι	1	I	1	Ι	I					12CE	RG				0000
ACKSTATTRSTATLUUUUUUIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII <th< td=""><td></td><td>I</td><td>12CSIDL</td><td>SCLREL</td><td>IPMIEN</td><td>A10M</td><td>DISSLW</td><td>SMEN</td><td>GCEN</td><td>STREN</td><td>ACKDT</td><td>ACKEN</td><td>RCEN</td><td>PEN</td><td>RSEN</td><td>SEN</td><td>1000</td></th<>		I	12CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
			I		l	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	٩	S	R/W	RBF	TBF	0000
<td></td> <td>I</td> <td> </td> <td>I</td> <td> </td> <td>I</td> <td></td> <td></td> <td></td> <td></td> <td>I2CAI</td> <td>DD</td> <td></td> <td></td> <td></td> <td></td> <td>0000</td>		I		I		I					I2CAI	DD					0000
<td>-</td> <td>I</td> <td>I</td> <td>I</td> <td> </td> <td>I</td> <td>AMSK9</td> <td>AMSK8</td> <td>AMSK7</td> <td>AMSK6</td> <td>AMSK5</td> <td>AMSK4</td> <td>AMSK3</td> <td>AMSK2</td> <td>AMSK1</td> <td>AMSKO</td> <td>0000</td>	-	I	I	I		I	AMSK9	AMSK8	AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSKO	0000
<td></td> <td>Ι</td> <td> </td> <td> </td> <td> </td> <td>I</td> <td>I</td> <td> </td> <td></td> <td></td> <td></td> <td>I2CF</td> <td>SCV</td> <td></td> <td></td> <td></td> <td>0000</td>		Ι				I	I					I2CF	SCV				0000
I2CBRG           I2CEN          I2CSIDL         SCIREL         IPMIE         A10M         DISSLW         SMEN         GCEN         STEN         ACKDT         RCEN         PN         RC         PN         SEN         SEN           ACKSTAT         TRSTAT           BCL         GCSTAT         ADD10         INCOL         I2COV         D/Ā         P         S         R/W         RE         TBF           ACKSTAT         TRSTAT           BCL         GCSTAT         ADD10         INCOL         I2COV         D/Ā         P         S         R/W         RF         TBF           ACK            BCL         GCSTAT         ADD10         INCOL         I2COV         D/Ā         P         S         R/W         RF         TBF <td< td=""><td></td><td>I</td><td> </td><td>I</td><td> </td><td>I</td><td>I</td><td> </td><td></td><td></td><td></td><td>I2CT</td><td>-RN</td><td></td><td></td><td></td><td>00 FF</td></td<>		I		I		I	I					I2CT	-RN				00 FF
I2CEN         —         I2CSIDL         SCLREL         IPMIE         A10M         DISSLW         SMEN         GCEN         STREN         ACKDT         ACKDR         RCEN         PEN         RSEN         SEN           ACKSTAT         TRSTA         —         —         —         BCL         BCL         GCSTAT         ADD10         IWCOL         IZCOV         D/Ā         P         S         R/W         RF         TBF         TBF		Ι				Ι						12CE	RG				0000
ACKSTAT         TRSTAT         -         -         -         BCL         GCSTAT         ADD10         WCOL         I2COV         D/A         P         S         R/M         RBF         TBF                                                                                             <		Ι	12CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
-         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -					I	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	٩	S	R/W	RBF	TBF	0000
		Ι	Ι	Ι		Ι					I2CAI	DD					0000
		Ι	Ι	Ι	Ι	Ι	AMSK9	AMSK8	AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2		AMSK0	0000
– = uni		I2CX RE           dr         Bit 15           00         -           02         -           03         ACKSTA           04         12CEN           05         ACKSTA           06         12CEN           12         -           12         -           12         -           14         -           16         12CEN           18         ACKSTA           16         12CEN           17         -           18         ACKSTA	I2CX REGISTER           dr         Bit 15         Bit 14           00             02             04             05             06         12CEN            07             08         ACKSTAT         TRSTAT           06         12CEN            07             06             10             12             14             15             16         12CEN            18         ACKSTAT         TRSTAT           18         ACKSTAT         TRSTAT           1             1          -           18         ACKSTAT         TRSTAT           18         ACKSTAT            17          -           18         ACKSTAT            17 <td>I2Cx REGISTER MAP           dr         Bit 15         Bit 14         Bit 13           00              01              02              04              05         I2CEN             06         I2CEN          12CSIDL           08         ACKSTAT         TRSTAT            04              05         ACKSTAT         TRSTAT            10              11              12              12              12              12              12              12              13         ACKSTAT         TRSTAT            14        <td>I2Cx REGISTER MAP           dr         Bit 15         Bit 14         Bit 13         Bit 12           00               01               02               03         ACKSTAT         TRSTAT             04               05         ACKSTAT         TRSTAT             06         I2CEN              06               07               10               12               12               12               12               12               14</td><td>I2Cx REGISTER MAP           dr         Bit 15         Bit 14         Bit 13         Bit 12         Bit 11           00                 01                 02                 03         ACKSTAT         TRSTAT               04           12CSIDL         SCLREL         IPMIEN           05         ACKSTAT         TRSTAT              06         12CEN               06                07                06         ISCEN               07                10                114</td><td>ISCX REGISTER MAP         Bit 15       Bit 14       Bit 13       Bit 12       Bit 11                                    I2CEN        I2CSIDL       SCLREL       IPMIEN            ACKSTAT       TRSTAT                 ACKSTAT       TRSTAT                                                      </td><td></td><td>I0         Bit 9           M         —           M         DISSLW           M         DISSLW           M         AMSK9           M         AMSK9           M         DISSLW           M         DISSLW</td><td>I0         Bit 9         Bit 8           M             M             M         DISSLW         SMEN           M         DISSLW         SMEN</td><td>I0     Bit 9     Bit 8     Bit 7       ····     ····     ····     Bit 8     Bit 7       ····     ····     ····     ····     ····       ····     ····     ····     ····     ····       M     DISSLW     SMEN     GCEN       M     DISSLW     SMEN     GCEN       M     DISSLW     AMSK3     AMSK7       ···     ····     ····     ····       ···     ····     ····     ····       M     DISSLW     SMEN     GCEN       M     DISSLW     AMSK3     AMSK7       M     DISSLW     SMEN     GCEN       M     DISSLW     SMEN     GCEN       M     DISSLW     AMSK3     AMSK7       L     ····     ····     ····       M     DISSLW     SMEN     GCEN       M     DISSLW     AMSK3     AMSK7       I     ····     ····     ····       AMSK9     AMSK8     AMSK7</td><td>I0     Bit 9     Bit 8     Bit 7     Bit 6     Bit      </td><td>I0     Bit 9     Bit 7     Bit 6     Bit 5     Bit 7       10     Bit 9     Bit 7     Bit 6     Bit 5     Bit 7       11     11     11     11     11     11       12     11     11     11     11     11       13     11     11     11     11     11       14     11     11     11     11     11       14     11     11     11     11     11       15     11     11     12     11     12       15     11     12     12     11     12       15     12     12     12     12     12       15     12     12     12     12     12       15     12     12     12     12     12       15     12     12     12     12     12       16     11     11     12     14     14       16     11     13     13     14       16     11     13     12     14       16     11     13     12     14       16     13     13     12     14       16     13     13     12     1</td><td>ID     Bit 3     Bit 7     Bit 6     Bit 5     Bit 4       ID     ID     ID     ID     ID     ID     ID       <t< td=""><td>10     Bit 9     Bit 7     Bit 6     Bit 5     Bit 4     Bit 3       1        -     -     -       1        -     -     -       1        -     -     -       1        -     -     -       1        -     -     -       1        -     -     -       1        -     -     -       1        -     -     -       1     GCSTAT     ADD10     WCOL     I2COV     D/A     P     S       1     GCSTAT     AMSK7     AMSK6     AMSK6     AMSK3     AMSK3       1     AMSK9     AMSK7     AMSK6     AMSK6     AMSK3       1        I2COV     D/A     S       1        I2CR     S     S       1        I2CR     S     S       1        I2CR     S     <td< td=""><td>10     Bit 9     Bit 7     Bit 6     Bit 5     Bit 4     Bit 3     Bit 2       1        -     -     -     -     -       1        -     -     -     -     -       1        -     -     -     -     -       1        -     -     -     -       1        -     -     -       1        -     -     -       1        -     -     -       1     CSTAT     ADD10     WCOL     12COV     D/A     P     S     R/W       1     GSTAT     AMSK9     AMSK6     AMSK6     AMSK3     AMSK2     AMSK2       1     GSTAT     AMSK9     AMSK6     AMSK6     AMSK4     AMSK2       1     AMSK9     AMSK6     AMSK6     AMSK3     AMSK2       1       -     12CRV     -       1       -     12CRV     -       1      -     -     -</td><td>10     Bit 3     Bit 4     Bit 3     Bit 2     Bit 1       1        12CRV     12CRV       1       12CRV     12CRV       1       12CRV     12CRV       1       12CRV     12CRV       1       12CRV     REN       1     0     NCOL     12COV     D/A     P     S     RM       1     0     NCOL     12COV     D/A     P     S     RM       1     0     NCOL     12COV     D/A     P     S     RM       1     AMSK9     AMSK3     AMSK6     AMSK3     AMSK2     AMSK1       1     AMSK9     AMSK6     AMSK5     AMSK2     AMSK1       1     CCT     1     2     1     1       1     AMSK9     AMSK6     AMSK5     AMSK2     AMSK1       1     AMSK9     AMSK6     AMSK6     AMSK2     AMSK1       1     0     1     1     1     1       1     0     1     1     1     1       1     0     1     1     1     1       1</td></td<></td></t<></td></td>	I2Cx REGISTER MAP           dr         Bit 15         Bit 14         Bit 13           00              01              02              04              05         I2CEN             06         I2CEN          12CSIDL           08         ACKSTAT         TRSTAT            04              05         ACKSTAT         TRSTAT            10              11              12              12              12              12              12              12              13         ACKSTAT         TRSTAT            14 <td>I2Cx REGISTER MAP           dr         Bit 15         Bit 14         Bit 13         Bit 12           00               01               02               03         ACKSTAT         TRSTAT             04               05         ACKSTAT         TRSTAT             06         I2CEN              06               07               10               12               12               12               12               12               14</td> <td>I2Cx REGISTER MAP           dr         Bit 15         Bit 14         Bit 13         Bit 12         Bit 11           00                 01                 02                 03         ACKSTAT         TRSTAT               04           12CSIDL         SCLREL         IPMIEN           05         ACKSTAT         TRSTAT              06         12CEN               06                07                06         ISCEN               07                10                114</td> <td>ISCX REGISTER MAP         Bit 15       Bit 14       Bit 13       Bit 12       Bit 11                                    I2CEN        I2CSIDL       SCLREL       IPMIEN            ACKSTAT       TRSTAT                 ACKSTAT       TRSTAT                                                      </td> <td></td> <td>I0         Bit 9           M         —           M         DISSLW           M         DISSLW           M         AMSK9           M         AMSK9           M         DISSLW           M         DISSLW</td> <td>I0         Bit 9         Bit 8           M             M             M         DISSLW         SMEN           M         DISSLW         SMEN</td> <td>I0     Bit 9     Bit 8     Bit 7       ····     ····     ····     Bit 8     Bit 7       ····     ····     ····     ····     ····       ····     ····     ····     ····     ····       M     DISSLW     SMEN     GCEN       M     DISSLW     SMEN     GCEN       M     DISSLW     AMSK3     AMSK7       ···     ····     ····     ····       ···     ····     ····     ····       M     DISSLW     SMEN     GCEN       M     DISSLW     AMSK3     AMSK7       M     DISSLW     SMEN     GCEN       M     DISSLW     SMEN     GCEN       M     DISSLW     AMSK3     AMSK7       L     ····     ····     ····       M     DISSLW     SMEN     GCEN       M     DISSLW     AMSK3     AMSK7       I     ····     ····     ····       AMSK9     AMSK8     AMSK7</td> <td>I0     Bit 9     Bit 8     Bit 7     Bit 6     Bit      </td> <td>I0     Bit 9     Bit 7     Bit 6     Bit 5     Bit 7       10     Bit 9     Bit 7     Bit 6     Bit 5     Bit 7       11     11     11     11     11     11       12     11     11     11     11     11       13     11     11     11     11     11       14     11     11     11     11     11       14     11     11     11     11     11       15     11     11     12     11     12       15     11     12     12     11     12       15     12     12     12     12     12       15     12     12     12     12     12       15     12     12     12     12     12       15     12     12     12     12     12       16     11     11     12     14     14       16     11     13     13     14       16     11     13     12     14       16     11     13     12     14       16     13     13     12     14       16     13     13     12     1</td> <td>ID     Bit 3     Bit 7     Bit 6     Bit 5     Bit 4       ID     ID     ID     ID     ID     ID     ID       <t< td=""><td>10     Bit 9     Bit 7     Bit 6     Bit 5     Bit 4     Bit 3       1        -     -     -       1        -     -     -       1        -     -     -       1        -     -     -       1        -     -     -       1        -     -     -       1        -     -     -       1        -     -     -       1     GCSTAT     ADD10     WCOL     I2COV     D/A     P     S       1     GCSTAT     AMSK7     AMSK6     AMSK6     AMSK3     AMSK3       1     AMSK9     AMSK7     AMSK6     AMSK6     AMSK3       1        I2COV     D/A     S       1        I2CR     S     S       1        I2CR     S     S       1        I2CR     S     <td< td=""><td>10     Bit 9     Bit 7     Bit 6     Bit 5     Bit 4     Bit 3     Bit 2       1        -     -     -     -     -       1        -     -     -     -     -       1        -     -     -     -     -       1        -     -     -     -       1        -     -     -       1        -     -     -       1        -     -     -       1     CSTAT     ADD10     WCOL     12COV     D/A     P     S     R/W       1     GSTAT     AMSK9     AMSK6     AMSK6     AMSK3     AMSK2     AMSK2       1     GSTAT     AMSK9     AMSK6     AMSK6     AMSK4     AMSK2       1     AMSK9     AMSK6     AMSK6     AMSK3     AMSK2       1       -     12CRV     -       1       -     12CRV     -       1      -     -     -</td><td>10     Bit 3     Bit 4     Bit 3     Bit 2     Bit 1       1        12CRV     12CRV       1       12CRV     12CRV       1       12CRV     12CRV       1       12CRV     12CRV       1       12CRV     REN       1     0     NCOL     12COV     D/A     P     S     RM       1     0     NCOL     12COV     D/A     P     S     RM       1     0     NCOL     12COV     D/A     P     S     RM       1     AMSK9     AMSK3     AMSK6     AMSK3     AMSK2     AMSK1       1     AMSK9     AMSK6     AMSK5     AMSK2     AMSK1       1     CCT     1     2     1     1       1     AMSK9     AMSK6     AMSK5     AMSK2     AMSK1       1     AMSK9     AMSK6     AMSK6     AMSK2     AMSK1       1     0     1     1     1     1       1     0     1     1     1     1       1     0     1     1     1     1       1</td></td<></td></t<></td>	I2Cx REGISTER MAP           dr         Bit 15         Bit 14         Bit 13         Bit 12           00               01               02               03         ACKSTAT         TRSTAT             04               05         ACKSTAT         TRSTAT             06         I2CEN              06               07               10               12               12               12               12               12               14	I2Cx REGISTER MAP           dr         Bit 15         Bit 14         Bit 13         Bit 12         Bit 11           00                 01                 02                 03         ACKSTAT         TRSTAT               04           12CSIDL         SCLREL         IPMIEN           05         ACKSTAT         TRSTAT              06         12CEN               06                07                06         ISCEN               07                10                114	ISCX REGISTER MAP         Bit 15       Bit 14       Bit 13       Bit 12       Bit 11                                    I2CEN        I2CSIDL       SCLREL       IPMIEN            ACKSTAT       TRSTAT                 ACKSTAT       TRSTAT		I0         Bit 9           M         —           M         DISSLW           M         DISSLW           M         AMSK9           M         AMSK9           M         DISSLW           M         DISSLW	I0         Bit 9         Bit 8           M             M             M         DISSLW         SMEN           M         DISSLW         SMEN	I0     Bit 9     Bit 8     Bit 7       ····     ····     ····     Bit 8     Bit 7       ····     ····     ····     ····     ····       ····     ····     ····     ····     ····       M     DISSLW     SMEN     GCEN       M     DISSLW     SMEN     GCEN       M     DISSLW     AMSK3     AMSK7       ···     ····     ····     ····       ···     ····     ····     ····       M     DISSLW     SMEN     GCEN       M     DISSLW     AMSK3     AMSK7       M     DISSLW     SMEN     GCEN       M     DISSLW     SMEN     GCEN       M     DISSLW     AMSK3     AMSK7       L     ····     ····     ····       M     DISSLW     SMEN     GCEN       M     DISSLW     AMSK3     AMSK7       I     ····     ····     ····       AMSK9     AMSK8     AMSK7	I0     Bit 9     Bit 8     Bit 7     Bit 6     Bit	I0     Bit 9     Bit 7     Bit 6     Bit 5     Bit 7       10     Bit 9     Bit 7     Bit 6     Bit 5     Bit 7       11     11     11     11     11     11       12     11     11     11     11     11       13     11     11     11     11     11       14     11     11     11     11     11       14     11     11     11     11     11       15     11     11     12     11     12       15     11     12     12     11     12       15     12     12     12     12     12       15     12     12     12     12     12       15     12     12     12     12     12       15     12     12     12     12     12       16     11     11     12     14     14       16     11     13     13     14       16     11     13     12     14       16     11     13     12     14       16     13     13     12     14       16     13     13     12     1	ID     Bit 3     Bit 7     Bit 6     Bit 5     Bit 4       ID     ID     ID     ID     ID     ID     ID       ID     ID     ID     ID     ID     ID     ID <t< td=""><td>10     Bit 9     Bit 7     Bit 6     Bit 5     Bit 4     Bit 3       1        -     -     -       1        -     -     -       1        -     -     -       1        -     -     -       1        -     -     -       1        -     -     -       1        -     -     -       1        -     -     -       1     GCSTAT     ADD10     WCOL     I2COV     D/A     P     S       1     GCSTAT     AMSK7     AMSK6     AMSK6     AMSK3     AMSK3       1     AMSK9     AMSK7     AMSK6     AMSK6     AMSK3       1        I2COV     D/A     S       1        I2CR     S     S       1        I2CR     S     S       1        I2CR     S     <td< td=""><td>10     Bit 9     Bit 7     Bit 6     Bit 5     Bit 4     Bit 3     Bit 2       1        -     -     -     -     -       1        -     -     -     -     -       1        -     -     -     -     -       1        -     -     -     -       1        -     -     -       1        -     -     -       1        -     -     -       1     CSTAT     ADD10     WCOL     12COV     D/A     P     S     R/W       1     GSTAT     AMSK9     AMSK6     AMSK6     AMSK3     AMSK2     AMSK2       1     GSTAT     AMSK9     AMSK6     AMSK6     AMSK4     AMSK2       1     AMSK9     AMSK6     AMSK6     AMSK3     AMSK2       1       -     12CRV     -       1       -     12CRV     -       1      -     -     -</td><td>10     Bit 3     Bit 4     Bit 3     Bit 2     Bit 1       1        12CRV     12CRV       1       12CRV     12CRV       1       12CRV     12CRV       1       12CRV     12CRV       1       12CRV     REN       1     0     NCOL     12COV     D/A     P     S     RM       1     0     NCOL     12COV     D/A     P     S     RM       1     0     NCOL     12COV     D/A     P     S     RM       1     AMSK9     AMSK3     AMSK6     AMSK3     AMSK2     AMSK1       1     AMSK9     AMSK6     AMSK5     AMSK2     AMSK1       1     CCT     1     2     1     1       1     AMSK9     AMSK6     AMSK5     AMSK2     AMSK1       1     AMSK9     AMSK6     AMSK6     AMSK2     AMSK1       1     0     1     1     1     1       1     0     1     1     1     1       1     0     1     1     1     1       1</td></td<></td></t<>	10     Bit 9     Bit 7     Bit 6     Bit 5     Bit 4     Bit 3       1        -     -     -       1        -     -     -       1        -     -     -       1        -     -     -       1        -     -     -       1        -     -     -       1        -     -     -       1        -     -     -       1     GCSTAT     ADD10     WCOL     I2COV     D/A     P     S       1     GCSTAT     AMSK7     AMSK6     AMSK6     AMSK3     AMSK3       1     AMSK9     AMSK7     AMSK6     AMSK6     AMSK3       1        I2COV     D/A     S       1        I2CR     S     S       1        I2CR     S     S       1        I2CR     S <td< td=""><td>10     Bit 9     Bit 7     Bit 6     Bit 5     Bit 4     Bit 3     Bit 2       1        -     -     -     -     -       1        -     -     -     -     -       1        -     -     -     -     -       1        -     -     -     -       1        -     -     -       1        -     -     -       1        -     -     -       1     CSTAT     ADD10     WCOL     12COV     D/A     P     S     R/W       1     GSTAT     AMSK9     AMSK6     AMSK6     AMSK3     AMSK2     AMSK2       1     GSTAT     AMSK9     AMSK6     AMSK6     AMSK4     AMSK2       1     AMSK9     AMSK6     AMSK6     AMSK3     AMSK2       1       -     12CRV     -       1       -     12CRV     -       1      -     -     -</td><td>10     Bit 3     Bit 4     Bit 3     Bit 2     Bit 1       1        12CRV     12CRV       1       12CRV     12CRV       1       12CRV     12CRV       1       12CRV     12CRV       1       12CRV     REN       1     0     NCOL     12COV     D/A     P     S     RM       1     0     NCOL     12COV     D/A     P     S     RM       1     0     NCOL     12COV     D/A     P     S     RM       1     AMSK9     AMSK3     AMSK6     AMSK3     AMSK2     AMSK1       1     AMSK9     AMSK6     AMSK5     AMSK2     AMSK1       1     CCT     1     2     1     1       1     AMSK9     AMSK6     AMSK5     AMSK2     AMSK1       1     AMSK9     AMSK6     AMSK6     AMSK2     AMSK1       1     0     1     1     1     1       1     0     1     1     1     1       1     0     1     1     1     1       1</td></td<>	10     Bit 9     Bit 7     Bit 6     Bit 5     Bit 4     Bit 3     Bit 2       1        -     -     -     -     -       1        -     -     -     -     -       1        -     -     -     -     -       1        -     -     -     -       1        -     -     -       1        -     -     -       1        -     -     -       1     CSTAT     ADD10     WCOL     12COV     D/A     P     S     R/W       1     GSTAT     AMSK9     AMSK6     AMSK6     AMSK3     AMSK2     AMSK2       1     GSTAT     AMSK9     AMSK6     AMSK6     AMSK4     AMSK2       1     AMSK9     AMSK6     AMSK6     AMSK3     AMSK2       1       -     12CRV     -       1       -     12CRV     -       1      -     -     -	10     Bit 3     Bit 4     Bit 3     Bit 2     Bit 1       1        12CRV     12CRV       1       12CRV     12CRV       1       12CRV     12CRV       1       12CRV     12CRV       1       12CRV     REN       1     0     NCOL     12COV     D/A     P     S     RM       1     0     NCOL     12COV     D/A     P     S     RM       1     0     NCOL     12COV     D/A     P     S     RM       1     AMSK9     AMSK3     AMSK6     AMSK3     AMSK2     AMSK1       1     AMSK9     AMSK6     AMSK5     AMSK2     AMSK1       1     CCT     1     2     1     1       1     AMSK9     AMSK6     AMSK5     AMSK2     AMSK1       1     AMSK9     AMSK6     AMSK6     AMSK2     AMSK1       1     0     1     1     1     1       1     0     1     1     1     1       1     0     1     1     1     1       1

MAP	
REGISTER	
<b>UARTx</b> F	
4-10:	
ABLE	

<b>TABLE 4-10:</b>		UARTx	REGIS ⁻	UARTX REGISTER MAP	۵													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	I	NSIDL	IREN	RTSMD	I	UEN1	UENO	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	<b>UTXISEL0</b>		UTXBRK	UTXEN	UTXBF	TRMT	<b>URXISEL1</b>	<b>URXISELO</b>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	Ι		I		I	I	I				U1T	U1TXREG					XXXX
U1RXREG	0226	Ι		-		I	I	I				U1R	U1RXREG					0000
U1BRG	0228									BRG								0000
U2MODE	0230	UARTEN		NSIDF	IREN	RTSMD	Ι	UEN1	UENO	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	<b>PDSEL0</b>	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	<b>UTXISEL0</b>		UTXBRK	UTXEN	UTXBF	TRMT	<b>URXISEL1</b>	<b>URXISELO</b>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	Ι		-		I	Ι					U2T	U2TXREG					XXXX
U2RXREG	0236	Ι		-		I	Ι	I				U2R	U2RXREG					0000
U2BRG	0238									BRG								0000
Legend: — = unimplemented, read as '0'. Reset values are shown	– = unimp	plemented, re	ead as '0'.	Reset values	s are sho		n hexadecimal.											

#### © 2011-2012 Microchip Technology Inc.

# PIC24FV32KA304 FAMILY

<b>TABLE 4-11</b> :	4-11:	SPIx	SPIX REGISTER MAP	ER MAP														
File Name	Addr	dr Bit 15	5 Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
<b>SPI1STAT</b>	0240	O SPIEN	7	SPISIDL	1	I	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SR1MPT	SISEL2	SISEL1	SISELO	SPITBF	SPIRBF	0000
SPI1CON1	1 0242	2	1	I	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	СКР	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	<b>PPRE0</b>	0000
SPI1CON2	2 0244	4 FRMEN	N SPIFSD	DI SPIFPOL	Ι	Ι			I		1	Ι		Ι		SPIFE	SPIBEN	0000
SPI1BUF	0248	.00							SPI1BUF	BUF								0000
<b>SPI2STAT</b>	0260	0 SPIEN		SPISIDL	Ι	I	SPIBEC2	SPIBEC1	<b>SPIBEC0</b>	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI2CON1	1 0262	2	Ι	Ι	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	СКР	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	<b>PPRE0</b>	0000
<b>SPI2CON2</b>	2 0264	4 FRMEN	N SPIFSD	<b>SPIFPOL</b>	Ι	Ι	Ι	Ι		Ι	Ι	Ι	Ι	Ι	Ι	SPIFE	SPIBEN	0000
<b>SPI2BUF</b>	0268	80							SP12BUF	BUF								0000
Legend:	= 	implemente	d, read as '0	= unimplemented, read as '0'. Reset values are shown in	es are show	/n in hexadecimal	ecimal.											
<b>TABLE</b> 4-12:	4-12:	PORT	A REGI	PORTA REGISTER MAP	٩													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12 Bit	Bit 11 ^(2,3) Bi	Bit 10 ^(2,3) B	Bit 9 ^(2,3) Bi	Bit 8 ^(2,3) B	Bit 7 ⁽²⁾ E	Bit 6 ⁽⁴⁾	Bit 5 ⁽¹⁾	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0				1	TRISA11 TF	TRISA10 T	TRISA9 TI	TRISA8 TI	TRISA7 T	TRISA6		TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	00 DF
PORTA	02C2	Ι	Ι	1	-	RA11 I	RA10	RA9	RA8	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	XXXX
LATA	02C4	Ι	Ι	1	ב 	LATA11 L	LATA10 L	LATA9 L	LATA8 L	LATA7 I	LATA6		LATA4	LATA3	LATA2	LATA1	LATA0	XXXX
ODCA	02C6	Ι	Ι	1	0	ODA11 C	ODA10 (	ODA9 (	ODA8 (	ODA7 (	ODA6		ODA4	ODA3	ODA2	0DA1	ODA0	0000
Legend:	un = —	implemente	d, read as '0'	— = unimplemented, read as '0'. Reset values are shown in	es are show	n in hexadecimal	scimal.											
Note 1: 2: 3: 4:	This bit These I These I These I	is available bits are not i bits are not i bits are not i	This bit is available only when MCLRE = 1 These bits are not implemented in 20-pin d These bits are not implemented in 28-pin d These bits are not implemented in FV devi	This bit is available only when MCLRE = 1. These bits are not implemented in 20-pin devices. These bits are not implemented in 28-pin devices. These bits are not implemented in FV devices.	vices. vices. s.													
<b>TABLE 4-13</b> :	4-13:	PORT	B REGI	PORTB REGISTER MAP	٩P													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11 ⁽¹⁾	Bit 10 ⁽¹⁾	) Bit 9	Bit 8	Bit 7	Bit 6 ⁽¹⁾	1) Bit 5 ⁽¹⁾	Bit 4	Bit 3 ⁽¹⁾	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	1 TRISB10	0 TRISB9	9 TRISB8	8 TRISB7	7 TRISB6	36 TRISB5	5 TRISB4	TRISB3	TRISB2	TRISB1	<b>TRISB0</b>	FFF

LATB3 ODB3 RB3 LATB4 ODB4 RB4 LATB5 ODB5 RB5 LATB6 ODB6 RB6 LATB7 ODB7 RB7 LATB8 ODB8 RB8 LATB9 ODB9 RB9 LATB10 ODB10 RB10 --- = unimplemented, read as '0'. Reset values are shown in hexadecimal. LATB11 ODB11 RB11 LATB12 **ODB12** RB12 ODB13 LATB13 RB13 LATB14 **ODB14** RB14 LATB15 ODB15 RB15 02CC 02CA 02CE Legend: PORTB ODCB LATB

xxxx 0000

> LATB0 ODB0

> LATB1 ODB1

LATB2 ODB2

RB0

RB1

RB2

Legend: — = unimplemented, read as '0.' Reset values are shown in Note 1: These bits are not implemented in 20-pin devices.

DS39995C-page 45

TABLE 4-14: PORTC REGISTER MAP⁽¹⁾

File Addr Bit 15 Bit 14 Bit 13 Bit 12	Bit 14 Bit 13	Bit 13		Bit 1	2	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC 02D0		1	1	1		I		TRISC9	TRISC8	TRISC7	TRISC8 TRISC7 TRISC6 TRISC5	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF
PORTC 02D2						Ι		RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX
-ATC 02D4						Ι		LATC9	LATC8	LATC7	LATC8 LATC7 LATC6 LATC5	LATC5	LATC4	LATC3	LATC2 LATC1	LATC1	LATC0	XXXX
ODCC 02D6						Ι		ODC9	ODC8	ODC7	ODC6	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Note 1: PORTC is not implemented in 20-pin devices or 28-pin devices.

# TABLE 4-15: PAD CONFIGURATION REGISTER MAP

ts	
All Rese	0000
Bit 0	I
Bit 1	I
Bit 2	I
Bit 3	I
Bit 4	SMBUSDEL1
Bit 5	SMBUSDEL2
Bit 6	I
Bit 7	I
	I
Bit 9 Bit 8	Ι
Bit 10	I
Bit 11	I
Bit 12	I
Bit 13	I
Bit 14	I
Bit 15	I
Addr	02FC
File Name	PADCFG1

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

© 2011-2012 Microchip Technology Inc.

<b>TABLE 4-16:</b>	-16:	A/D R	A/D REGISTER MAP	ER MAP														
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC1BUF0	0								XXXX
ADC1BUF1	0302								ADC1BUF1									XXXX
ADC1BUF2	0304								ADC1BUF2	~								XXXX
ADC1BUF3	0306								ADC1BUF3	~								XXXXX
ADC1BUF4	0308								ADC1BUF4									XXXXX
ADC1BUF5	030A								ADC1BUF5	10								XXXXX
ADC1BUF6	030C								ADC1BUF6	(0)								XXXX
ADC1BUF7	030E								ADC1BUF7	~								XXXX
ADC1BUF8	0310								ADC1BUF8	~								XXXX
ADC1BUF9	0312								ADC1BUF9	6								XXXXX
ADC1BUF10 0314	0314								ADC1BUF10	0								XXXXX
ADC1BUF11	0316								ADC1BUF11	1								XXXXX
ADC1BUF12 0318	0318								ADC1BUF12	2								XXXXX
ADC1BUF13	031A								ADC1BUF13	3								XXXX
ADC1BUF14 031C	031C								ADC1BUF14	4								XXXX
ADC1BUF15 031E	031E								ADC1BUF15	5								XXXX
ADC1BUF16	0320								ADC1BUF16	9								XXXXX
ADC1BUF17 0322	0322								ADC1BUF17	7								XXXXX
AD1CON1	0340	ADON	Ι	ADSIDL	Ι	Ι	MODE12	FORM1	FORMO	SSRC3	SSRC2	SSRC1	SSRCO	Ι	ASAM	SAMP	DONE	0000
AD1CON2	0342	PVCFG1	PVCFG0	<b>NVCFG0</b>	OFFCAL	BUFREGEN	CSCNA	Ι	—	BUFS	SMP14	SMP13	SMP12	SMP11	<b>SMPIO</b>	BUFM	ALTS	0000
AD1CON3	0344	ADRC	EXTSAM	Ι	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0	ADCS7	ADCS6	ADCS5	ADCS4	ADCS3	ADCS2	ADCS1	ADCS0	0000
AD1CHS	0348	CH0NB2	CH0NB1	CHONBO	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0	CH0NA2	CH0NA1	CH0NA0 CH0SA4	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0	0000
AD1CSSH	034E		CSSL30	CSSL29	CSSL28	CSSL27	CSSL26	-							I	CSSL17	CSSL16	0000
AD1CSSL	0350	CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8	CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0	0000
AD1CON5	0354	ASEN	LPEN	CTMUREQ	BGREQ	L		ASINT1	<b>ASINT0</b>				I	WM1	WMO	CM1	CM0	0000
AD1CHITH	0356				Ι	Ι		Ι	I						Ι	CHH17	CHH16	0000
AD1CHITL	0358	CHH15	CHH14	CHH13	CHH12	CHH11	CHH10	CHH9	CHH8	CHH7	CHH6	CHH5	CHH4	CHH3	CHH2	CHH1	CHH0	0000
Legend: —		plemented,	read as '0';	; r = reserved	. Reset valu	= unimplemented, read as '0'; r = reserved. Reset values are shown in hexadecimal	in hexadecir	nal.										

DS39995C-page 47

<b>TABLE 4-17:</b>	-17:	CTMU	REGIST	CTMU REGISTER MAP															
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5		Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CTMUCON1	035A	CTMUEN	1	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	1					1	1	1	I	0000
<b>CTMUCON2</b>	035C	EDG1EDGE	E EDG1POL		EDG1SEL3 EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2	EDG1	EDG2EDGE	SE EDG2POL		EDG2SEL3 EDG2SEL2		EDG2SEL1 EI	EDG2SEL0		Ι	0000
CTMUICON	035E	ITRIM5	ITRIM4	ITRIMB	ITRIM2	ITRIM1	ITRIMO	IRNG1	IRNGO							1			0000
AD1CTMUENH 0360	H 0360	Ι	I	I	I	I	I	I	I	I						1	CTMEN17	CTMEN16	0000
AD1CTMUENL 0362	L 0362	CTMEN15	CTMEN14	L CTMEN13	CTMEN12	CTMEN11	CTMEN10	CTMEN9 CTMEN8	<b>CTMEN8</b>	<b>CTMEN7</b>	CTMEN6	46 CTMEN5		CTMEN4 C	CTMEN3 0	CTMEN2 (	CTMEN1 CTMEN0	CTMEN0	0000
Legend:	– = unimp	lemented, re	ad as '0'. Res	et values are :	= unimplemented, read as '0'. Reset values are shown in hexadecimal.	decimal.													
<b>TABLE 4-18:</b>	-18:	ANALC	JG SELE	ECT REG	ANALOG SELECT REGISTER MA	ИАР													
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10 B	Bit 9 Bi	Bit 8 E	Bit 7 B	Bit 6 B	Bit 5 E	Bit 4	Bit 3	Bit 2	Bit 1		Bit 0 Re	All Resets
ANSA	04E0			1	I									ANSA3	ANSA2	ANSA1		ANSA0 0	000F
ANSB	04E2	ANSB15	ANSB14	ANSB13	ANSB12	1						A A	ANSB4 A	ANSB3 ⁽¹⁾	ANSB2	ANSB1		ANSB0 F	FO1F
ANSC	04E4			1	1										ANSC2 ^(1,2)	2) ANSC1 ^(1,2)		ANSC0 ^(1,2) 0	0007
Legend: Note 1: T 2: T <b>TABLE 4</b> .	— = unimp These bits These bits <b>4-19:</b>	plemented, u s are not im s are not im <b>REAL-</b>	read as '0'. F plemented i plemented i <b>TIME CL</b>	<ul> <li>— = unimplemented, read as '0.' Reset values are s These bits are not implemented in 20-pin devices. These bits are not implemented in 28-pin devices.</li> <li><b>1.19: REAL-TIME CLOCK AND</b></li> </ul>	<ul> <li> = unimplemented, read as '0.' Reset values are shown in hexadecimal. These bits are not implemented in 20-pin devices. These bits are not implemented in 28-pin devices.</li> <li>I-19: REAL-TIME CLOCK AND CALENDAR R</li> </ul>	hexadecima NDAR F	adecimal. DAR REGISTER MAP	R MAP	-										
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10		Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	0620								ALRMVAL	/AL									XXXX
ALCFGRPT	0622	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASKO		ALRMPTR1 4	<b>ALRMPTR0</b>	0 ARPT7	7 ARPT6	3 ARPT5	5 ARPT4	4 ARPT3	3 ARPT2	ARPT1	<b>ARPT0</b>	0000
RTCVAL	0624								RTCVAL	AL									XXXX
RCFGCAL	0626	RTCEN	1	RTCWREN	RTCSYNC	HALFSEC	C RTCOE		RTCPTR1	<b>RTCPTR0</b>	0 CAL7	CAL6	CAL5	5 CAL4	4 CAL3	CAL2	CAL1	CAL0	0000
RTCPWC	0628	0628 PWCEN P	WCPOL F	PWCPOL PWCCPRE	PWCSPRE	RTCCLK1	<b>RTCCLK0</b>		RTCOUT1	RTCOUT0		Ι				I	I	I	XXXX
Legend: –	– = unim	plemented,	read as '0'.	Reset value	= unimplemented, read as '0'. Reset values are shown in F	in hexadecimal	nal.												
TABLE 4	4-20:	TRIPLE	E COMP	ARATOF	TRIPLE COMPARATOR REGISTE	TER MAP	٩												
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9		Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2 B	Bit 1 E	Bit 0 Re	All Resets
CMSTAT	0630	CMIDL		Ι	1	I	C3EVT	C2EVT		C1EVT			1			C3OUT C2	C2OUT C	C10UT ×	XXXX
CVRCON	0632	Ι	I	Ι	I	I	I	I	1				CVRSS	CVR4	CVR3 0	CVR2 C			0000
CM1CON	0634	CON	COE	CPOL	CLPWR	I		CEVT		COUT EV	EVPOL1 EV	EVPOL0		CREF		0	CCH1 C	CCH0 ×	XXXX
CM2CON	0636	CON	COE	CPOL	CLPWR	Ι	Ι	CEVT		COUT EV	EVPOL1 EV	EVPOL0		CREF	1	0			0000
CM3CON	0638	CON	COE	CPOL	CLPWR	Ι	Ι	CEVT		COUT EV	EVPOL1 EV	EVPOL0		CREF	1	0	CCH1 C	CCH0 0	0000
Legend: –	– = unim	plemented,	read as '0'.	Reset value	= unimplemented, read as '0'. Reset values are shown in	in hexadecimal	nal.												

© 2011-2012 Microchip Technology Inc.

<b>TABLE 4-21</b> :		<b>CRC REGISTER MAP</b>	<b>ISTER N</b>	ИАР														
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON1	0640	CRCEN	I	CSIDL	VWORD4 \	VWORD3	VWORD3 VWORD2 VWORD1 VWORD0	WORD1		CRCFUL	CRCMPT CRCISEL	CRCISEL	CRCGO	LENDIAN	I	1	1	0000
<b>CRCCON2</b>	0642	Ι	Ι		DWIDTH4	DWIDTH3	оміотнз рміотнг рміотні рміотно	DWIDTH1	DWIDTHO	I	I	I	PLEN4	PLEN3	<b>PLEN2</b>	PLEN1	PLENO	0000
CRCXORL	0644	X15	X14	X13	X12	X11	X10	6X	X8	X7	9X	X5	X4	£Х	X2	X1	I	0000
CRCXORH	0646	X31	X30	X29	X28	X27	X26	X25	X24	X23	X22	X21	X20	X19	X18	X17	X16	0000
CRCDATL	0648								CRCDATI									XXXX
CRCDATH	064A								CRCDATH	Ŧ								XXXX
CRCWDATL	064C								CRCWDATL	лL								XXXX
CRCWDATH	064E								CRCWDATH	TH								XXXX
Legend: — = unimplemented, read as '0'. Reset values are shown	= unimple	emented, read	as '0'. Res	et values a	-	n hexadecimal.	al.											

# **CLOCK CONTROL REGISTER MAP TABLE 4-22**:

File Name Addr Bit 15	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10 Bit 9		Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	0740 TRAPR IOPUWR SBOREN LVREN	LVREN	I	DPSLP CM	CM	PMSLP	EXTR	SWR	SWR SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	(Note 1)
OSCCON	0742	I	COSC2	COSC1	cosco	I	NOSC2 NOSC1	NOSC1	NOSCO	NOSCO CLKLOCK	I	LOCK	I	СF	SOSCDRV	SOSCEN	OSWEN	(Note 2)
CLKDIV	0744	ROI	DOZE2	DOZE1	DOZE0	DOZEN RCDIV2 RCDIV1	<b>RCDIV2</b>	RCDIV1	<b>RCDIV0</b>	I	Ι	Ι	I		I	—	I	3140
OSCTUN	0748	-	I	Ι	I	Ι	-	Ι	Ι	I	Ι	TUN5	TUN4	TUN3	TUN2	<b>TUN1</b>	TUN0	0000
REFOCON 074E ROEN	074E	ROEN	I	ROSSLP	ROSSLP ROSEL	RODIV3 RODIV2 RODIV1 RODIV0	<b>RODIV2</b>	RODIV1	RODIVO	I	Ι	Ι	I		I	—	I	0000
HLVDCON 0756 HLVDEN	0756	HLVDEN	Ι	HLSIDL	I	Ι	-	Ι	Ι	VDIR	BGVST	IRVST	I	HLVDL3	НГИРЦЗ НГИРЦЗ	НГИРЦ1 НГИРС0		0000
Legend: — = unimplemented, read as '0'. Reset values are shown in	- = unimp	lemented,	read as '0'.	Reset value	es are show		hexadecimal.											

÷ ∺ Note

RCON register Reset values are dependent on the type of Reset. OSCCON register Reset values are dependent on the configuration fuses and by type of Reset.

# DEEP SLEEP REGISTER MAP **TABLE 4-23**:

															•			
File Name         Addr         Bit 15         Bit 14         Bit 13         Bit 12	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DSCON	0758 DSEN	DSEN	Ι					I	RTCCWDIS		I				ULPWDIS	DSBOR	ULPWDIS DSBOR RELEASE	0000
DSWAKE	075A				Ι	Ι	Ι	Ι	DSINTO	DSFLT	-		DSWDT	DSRTCC	DSWDT DSRTCC DSMCLR	Ι	DSPOR	0000
DSGPR0 ⁽¹⁾ 075C	075C									DSGPR0								0000
DSGPR1 ⁽¹⁾ 075E	075E									DSGPR1								0000
Legend: — = unimplemented, read as '0'. Reset values are shown in	- = unimp	demented	d, read as	; '0'. Rese	st values a	re shown ir	n hexadecimal.	nal.										

The Deep Sleep registers, DSGPR0 and DSGPR1, are only reset on a VDD POR event. Note 1:

# PIC24FV32KA304 FAMILY

Downloaded from Arrow.com.

<b>TABLE 4-24:</b>	-24:	NVM	REGIS	<b>NVM REGISTER MAP</b>	IAP														
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit	11 Bit 10	0 Bit 9		Bit 8 Bit 7		Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets ⁽¹⁾
NVMCON	0970	WR	WREN	WRERR	R PGMONLY	ר ורל			1			ERASE N	NVMOP5	NVMOP4	NVMOP3	NVMOP2	NVMOP1	NVMOP0	0 0 0 0
NVMKEY	0766	I	Ι	I					1	-				NVMKEY	<ΕΥ				0 0 0 0
Legend: – Note 1: R	– = unim teset valt	plemente Je shown	d, read at is for PO	s '0'. Rese R only. Th	tt values ar le value on	= unimplemented, read as '0.' Reset values are shown in hexadecimal set value shown is for POR only. The value on other Reset states is de	i hexadec et states i	imal. s depend€	ent on the	— = unimplemented, read as '0.' Reset values are shown in hexadecimal. Reset value shown is for POR only. The value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.	mory write	) or erase o	perations a	at the time	of Reset.				
<b>TABLE 4-25</b> :	-25:	ULTR	A LOV	V-POV	IER WA	ULTRA LOW-POWER WAKE-UP REGISTER MAP	REGI	STER I	ИАР										
File Name	Addr	Bit 15	Bit 14	Bit 13	3 Bit 12	2 Bit 11	Bit 10		Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ULPWCON	0768	ULPEN		NLPSIDL	DL –	1				ULPSINK		1	I	1	I	I	I	1	0000
Legend: —= un TABLE 4-26:	- = unim -26:	plemente. PMD	d, read as REGIS	lemented, read as '0'. Reset valu PMD REGISTER MAP	t values ar	= unimplemented, read as '0'. Reset values are shown in hexadecimal 26: PMD REGISTER MAP	i hexadec	imal.											
File Name	Addr	Bit 15	Bit 14	Bit 13 E	Bit 12 Bit 11	11 Bit 10		Bit 9	Bit 8	Bit 7	Bit 6	Bit 5		Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD 1	T2MD T1MD	- D			I	I2C1MD	UZMD	D U1MD		SPI2MD S	SP11MD	1	I	ADC1MD	0000
PMD2	0772				-	- IC3MD		IC2MD IC	IC1MD	Ι	Ι			-		OC3MD	OC2MD	OC1MD	0000
PMD3	0774					- CMPMD		RTCCMD		CRCPMD							I2C2MD		0000

--- = unimplemented, read as '0'. Reset values are shown in hexadecimal. I 0776 Legend: PMD4

#### © 2011-2012 Microchip Technology Inc.

# PIC24FV32KA304 FAMILY

0000

I

EEMD REFOMD CTMUMD HLVDMD

I

T

ULPWUMD

T

I

I

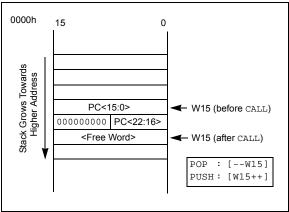
I

#### 4.2.5 SOFTWARE STACK

In addition to its use as a working register, the W15 register in PIC24F devices is also used as a Software Stack Pointer. The pointer always points to the first available free word and grows from lower to higher addresses. It predecrements for stack pops and post-increments for stack pushes, as shown in Figure 4-4.

Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.


Note:	A PC push during exception processing
	will concatenate the SRL register to the
	MSB of the PC prior to the push.


The Stack Pointer Limit Value (SPLIM) register, associated with the Stack Pointer, sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' as all stack operations must be word-aligned. Whenever an EA is generated, using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal, and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation.

Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address, 0DF6 in RAM, initialize the SPLIM with the value, 0DF4.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0800h. This prevents the stack from interfering with the Special Function Register (SFR) space.

**Note:** A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.





#### 4.3 Interfacing Program and Data Memory Spaces

The PIC24F architecture uses a 24-bit wide program space and 16-bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Apart from the normal execution, the PIC24F architecture provides two methods by which the program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space, PSV

Table instructions allow an application to read or write small areas of the program memory. This makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. It can only access the least significant word (lsw) of the program word.

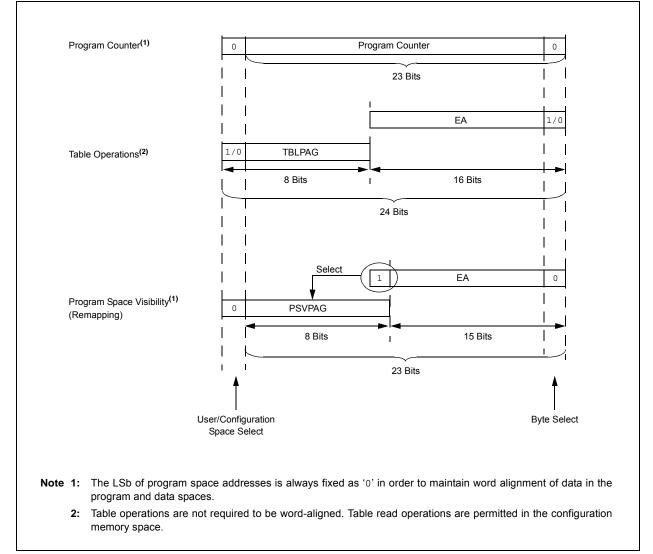
#### 4.3.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Memory Page Address register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit (MSb) of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility Page Address register (PSVPAG) is used to define a 16K word page in the program space. When the MSb of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike the table operations, this limits remapping operations strictly to the user memory area.

Table 4-27 and Figure 4-5 show how the program EA is created for table operations and remapping accesses from the data EA. Here, the P<23:0> bits refer to a program space word, whereas the D<15:0> bits refer to a data space word.


TABLE 4-27: PROGRAM SPACE ADDRESS CONSTRUCTION
------------------------------------------------

	Access		Progra	m Space A	Address	
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>
Instruction Access	User	0		PC<22:1>		0
(Code Execution)			0xx xxxx >	xxxx xxxx	x xxxx xxx0	
TBLRD/TBLWT	User	TBI	_PAG<7:0>		Data EA<15:0>	
(Byte/Word Read/Write)		0x	xxx xxxx	XXX	x xxxx xxxx x	xxx
	Configuration	TBI	_PAG<7:0>		Data EA<15:0>	
		1x	xxx xxxx	XXX	x xxxx xxxx x	xxx
Program Space Visibility	User	0	PSVPAG<7	:0> ⁽²⁾	Data EA<14	:0> <b>(1)</b>
(Block Remap/Read)		0	xxxx xx	xx	XXX XXXX XXX	x xxxx

**Note 1:** Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

2: PSVPAG can have only two values ('00' to access program memory and FF to access data EEPROM) in the PIC24FV32KA304 family.





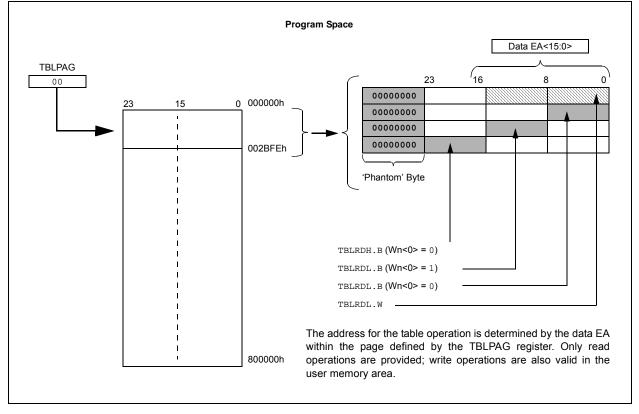
#### 4.3.2 DATA ACCESS FROM PROGRAM MEMORY AND DATA EEPROM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program memory without going through data space. It also offers a direct method of reading or writing a word of any address within data EEPROM memory. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

Note:	The TBLRDH and TBLWTH instructions are
	not used while accessing data EEPROM
	memory.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.


- TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>). In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'.

In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (byte select = 1). In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only table read operations will execute in the configuration memory space, and only then, in implemented areas, such as the Device ID. Table write operations are not allowed.

#### FIGURE 4-6: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS



^{© 2011-2012} Microchip Technology Inc.

#### 4.3.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

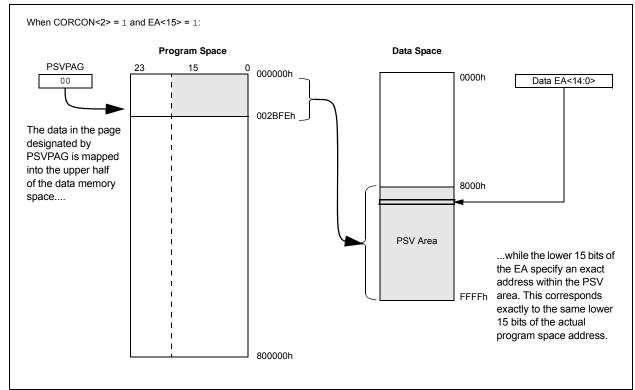
The upper 32 Kbytes of data space may optionally be mapped into a 16K word page (in PIC24FV16KA3XX devices) and a 32K word page (in PIC24FV32KA3XX devices) of the program space. This provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the MSb of the data space EA is '1' and PSV is enabled by setting the PSV bit in the CPU Control (CORCON<2>) register. The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page Address (PSVPAG) register. This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits.

By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads from this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-7), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.


Note:	PSV access is temporarily disabled during
	table reads/writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV. D instructions will require one instruction cycle in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.



#### FIGURE 4-7: PROGRAM SPACE VISIBILITY OPERATION

© 2011-2012 Microchip Technology Inc.

NOTES:

#### 5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Flash programming, refer to the "PIC24F Family Reference Manual", Section 4. "Program Memory" (DS39715).

The PIC24FV32KA304 of devices contains internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable when operating with VDD over 1.8V.

Flash memory can be programmed in three ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self Programming (RTSP)
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FV32KA304 device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (which are named PGECx and PGEDx, respectively), and three other lines for power (VDD), ground (VSS) and Master Clear/Program mode Entry voltage (MCLR/VPP). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or custom firmware to be programmed. Run-Time Self Programming (RTSP) is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user may write program memory data in blocks of 32 instructions (96 bytes) at a time, and erase program memory in blocks of 32, 64 and 128 instructions (96,192 and 384 bytes) at a time.

The NVMOP<1:0> (NVMCON<1:0>) bits decide the erase block size.

#### 5.1 Table Instructions and Flash Programming

Regardless of the method used, Flash memory programming is done with the table read and write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register, specified in the table instruction, as depicted in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

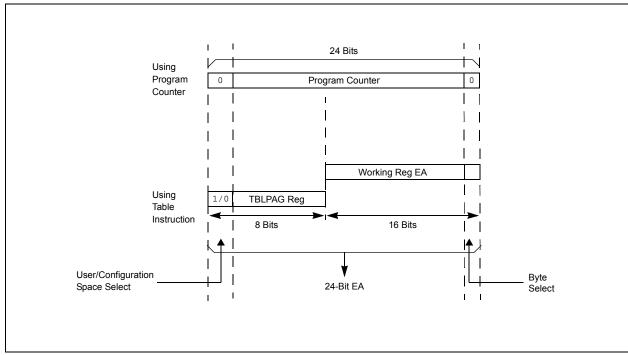



FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

^{© 2011-2012} Microchip Technology Inc.

#### 5.2 RTSP Operation

The PIC24F Flash program memory array is organized into rows of 32 instructions or 96 bytes. RTSP allows the user to erase blocks of 1 row, 2 rows and 4 rows (32, 64 and 128 instructions) at a time, and to program one row at a time. It is also possible to program single words.

The 1-row (96 bytes), 2-row (192 bytes) and 4-row (384 bytes) erase blocks, and single row write block (96 bytes) are edge-aligned from the beginning of program memory.

When data is written to program memory using TBLWT instructions, the data is not written directly to memory. Instead, data written using table writes is stored in holding latches until the programming sequence is executed.

Any number of TBLWT instructions can be executed and a write will be successfully performed. However, 32 TBLWT instructions are required to write the full row of memory.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register.

Data can be loaded in any order and the holding registers can be written to multiple times before performing a write operation. Subsequent writes, however, will wipe out any previous writes.

Note:	Writing to a location multiple times without
	erasing it is not recommended.

All of the table write operations are single-word writes (two instruction cycles), because only the buffers are written. A programming cycle is required for programming each row.

#### 5.3 Enhanced In-Circuit Serial Programming

Enhanced ICSP uses an on-board bootloader, known as the program executive, to manage the programming process. Using an SPI data frame format, the program executive can erase, program and verify program memory. For more information on Enhanced ICSP, see the device programming specification.

#### 5.4 Control Registers

There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls the blocks that need to be erased, which memory type is to be programmed and when the programming cycle starts.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 55h and AAh to the NVMKEY register. For more information, refer to **Section 5.5 "Programming Operations"**.

#### 5.5 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. During a program or erase operation, the processor stalls (Waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

#### REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

R/SO-0, HC	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	PGMONLY ⁽⁴⁾	_	_	—	—
bit 15			•				bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	ERASE	NVMOP5 ⁽¹⁾	NVMOP4 ⁽¹⁾	NVMOP3 ⁽¹⁾	NVMOP2 ⁽¹⁾	NVMOP1 ⁽¹⁾	NVMOP0 ⁽¹⁾
bit 7							bit 0

Legend:	SO = Settable Only bit	HC = Hardware Clearable b	bit
-n = Value at POR	'1' = Bit is set	R = Readable bit	W = Writable bit
'0' = Bit is cleared	x = Bit is unknown	U = Unimplemented bit, rea	id as '0'

bit 15	WR: Write Control bit
	<ul> <li>1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is cleared by hardware once the operation is complete.</li> </ul>
	0 = Program or erase operation is complete and inactive
bit 14	WREN: Write Enable bit
	<ul> <li>1 = Enables Flash program/erase operations</li> <li>0 = Inhibits Flash program/erase operations</li> </ul>
bit 13	WRERR: Write Sequence Error Flag bit
	<ul> <li>1 = An improper program or erase sequence attempt, or termination, has occurred (bit is set automatically on any set attempt of the WR bit)</li> </ul>
	0 = The program or erase operation completed normally
bit 12	PGMONLY: Program Only Enable bit ⁽⁴⁾
bit 11-7	Unimplemented: Read as '0'
bit 6	ERASE: Erase/Program Enable bit
	1 = Performs the erase operation specified by NVMOP<5:0> on the next WR command
	0 = Performs the program operation specified by NVMOP<5:0> on the next WR command
bit 5-0	NVMOP<5:0>: Programming Operation Command Byte bits ⁽¹⁾
	Erase Operations (when ERASE bit is '1'):
	1010xx = Erase entire boot block (including code-protected boot block) ⁽²⁾
	1001xx = Erase entire memory (including boot block, configuration block, general block) ⁽²⁾ 011010 = Erase 4 rows of Flash memory ⁽³⁾
	$011010 = \text{Erase 4 rows of Flash memory}^{(3)}$
	011000 = Erase 1 row of Flash memory ⁽³⁾
	0101xx = Erase entire configuration block (except code protection bits)
	0100xx = Erase entire data EEPROM ⁽⁴⁾
	0011xx = Erase entire general memory block programming operations
	0001xx = Write 1 row of Flash memory (when ERASE bit is '0') ⁽³⁾
Note 1:	All other combinations of NVMOP<5:0> are no operation.
2:	These values are available in ICSP [™] mode only. Refer to the device programming specification.

- 3: The address in the Table Pointer decides which rows will be erased.
- 4: This bit is used only while accessing data EEPROM.

#### 5.5.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time by erasing the programmable row. The general process is as follows:

- 1. Read a row of program memory (32 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase a row (see Example 5-1):
  - a) Set the NVMOPx bits (NVMCON<5:0>) to '011000' to configure for row erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
  - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
  - c) Write 55h to NVMKEY.
  - d) Write AAh to NVMKEY.
  - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 32 instructions from data RAM into the program memory buffers (see Example 5-1).
- 5. Write the program block to Flash memory:
  - a) Set the NVMOPx bits to '011000' to configure for row programming. Clear the ERASE bit and set the WREN bit.
  - b) Write 55h to NVMKEY.
  - c) Write AAh to NVMKEY.
  - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-5.

MOV	#0x4058, W0	;	
MOV	W0, NVMCON	;	Initialize NVMCON
Init pointer	to row to be ERASED		
MOV	<pre>#tblpage(PROG_ADDR), W0</pre>	;	
MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;	Initialize in-page EA[15:0] pointer
TBLWTL	W0, [W0]	;	Set base address of erase block
DISI	#5	;	Block all interrupts
			for next 5 instructions
MOV	#0x55, W0		
MOV	W0, NVMKEY	;	Write the 55 key
MOV	#0xAA, W1	;	
MOV	W1, NVMKEY	;	Write the AA key
BSET	NVMCON, #WR	;	Start the erase sequence
NOP		;	Insert two NOPs after the erase
NOP		;	command is asserted

#### EXAMPLE 5-1: ERASING A PROGRAM MEMORY ROW – ASSEMBLY LANGUAGE CODE

#### EXAMPLE 5-2: ERASING A PROGRAM MEMORY ROW – 'C' LANGUAGE CODE

// C example using MPLAB C30							
<pre>intattribute ((space(auto_psv))) progAddr = 0x1234;// Global variable located in Pgm Memory unsigned int offset;</pre>							
//Set up pointer to the first memory location to be wri	tten						
<pre>TBLPAG =builtin_tblpage(&amp;progAddr);</pre>	// Initialize PM Page Boundary SFR						
<pre>offset =builtin_tbloffset(&amp;progAddr);</pre>	// Initialize lower word of address						
builtin_tblwtl(offset, 0x0000);	// Set base address of erase block						
	// with dummy latch write						
NVMCON = $0 \times 4058;$	// Initialize NVMCON						
asm("DISI #5");	// Block all interrupts for next 5						
builtin_write_NVM();	// instructions // C30 function to perform unlock // sequence and set WR						

#### EXAMPLE 5-3: LOADING THE WRITE BUFFERS – ASSEMBLY LANGUAGE CODE

	The second se							
-	N for row programming operation	IS						
MOV	#0x4004, W0	;						
MOV	W0, NVMCON	; Initialize NVMCON						
	; Set up a pointer to the first program memory location to be written							
	ory selected, and writes enabled							
MOV	#0x0000, W0	;						
	W0, TBLPAG	; Initialize PM Page Boundary SFR						
MOV	#0x6000, W0	; An example program memory address						
; Perform the	TBLWT instructions to write the	latches						
; Oth_program_	word							
MOV	#LOW_WORD_0, W2	;						
MOV	<pre>#HIGH_BYTE_0, W3</pre>	;						
TBLWTL	W2, [W0]	; Write PM low word into program latch						
TBLWTH	W3, [W0++]	; Write PM high byte into program latch						
; 1st_program_	word							
MOV	#LOW_WORD_1, W2	;						
MOV	#HIGH_BYTE_1, W3	;						
TBLWTL	W2, [W0]	; Write PM low word into program latch						
TBLWTH	W3, [W0++]	; Write PM high byte into program latch						
; 2nd_program	n_word							
MOV	#LOW_WORD_2, W2	;						
MOV	#HIGH_BYTE_2, W3	;						
TBLWTL	W2, [W0]	; Write PM low word into program latch						
TBLWTH	W3, [W0++]	; Write PM high byte into program latch						
•								
•								
•								
; 32nd_program	_word							
MOV	#LOW_WORD_31, W2	i						
MOV	#HIGH_BYTE_31, W3	;						
TBLWTL	W2, [W0]	; Write PM low word into program latch						
TBLWTH	W3, [W0]	; Write PM high byte into program latch						

1

^{© 2011-2012} Microchip Technology Inc.

#### EXAMPLE 5-4: LOADING THE WRITE BUFFERS – 'C' LANGUAGE CODE

```
// C example using MPLAB C30
  #define NUM_INSTRUCTION_PER_ROW 64
  int __attribute__ ((space(auto_psv))) progAddr = 0x1234; // Global variable located in Pgm Memory
  unsigned int offset;
  unsigned int i;
  unsigned int progData[2*NUM_INSTRUCTION_PER_ROW]; // Buffer of data to write
  //Set up NVMCON for row programming
  NVMCON = 0 \times 4001;
                                                           // Initialize NVMCON
  //\ensuremath{\mathsf{Set}} up pointer to the first memory location to be written
  TBLPAG = __builtin_tblpage(&progAddr); // Initialize PM Page Boundary SFR
  offset = __builtin_tbloffset(&progAddr);
                                                          // Initialize lower word of address
  //Perform TBLWT instructions to write necessary number of latches
  for(i=0; i < 2*NUM_INSTRUCTION_PER_ROW; i++)</pre>
  {
      __builtin_tblwtl(offset, progData[i++]);
                                                          // Write to address low word
      __builtin_tblwth(offset, progData[i]);
                                                          // Write to upper byte
      offset = offset + 2;
                                                           // Increment address
   }
```

#### EXAMPLE 5-5: INITIATING A PROGRAMMING SEQUENCE – ASSEMBLY LANGUAGE CODE

DISI	#5	; Block all interrupts for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; 2 NOPs required after setting WR
NOP		;
BTSC	NVMCON, #15	; Wait for the sequence to be completed
BRA	\$-2	;

#### EXAMPLE 5-6: INITIATING A PROGRAMMING SEQUENCE – 'C' LANGUAGE CODE

// C example using MPLAB C30	
asm("DISI #5");	// Block all interrupts for next 5 instructions
builtin_write_NVM();	// Perform unlock sequence and set WR

#### 6.0 DATA EEPROM MEMORY

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Data EEPROM, refer to the *"PIC24F Family Reference Manual"*, Section 5. "Data EEPROM" (DS39720).

The data EEPROM memory is a Nonvolatile Memory (NVM), separate from the program and volatile data RAM. Data EEPROM memory is based on the same Flash technology as program memory, and is optimized for both long retention and a higher number of erase/write cycles.

The data EEPROM is mapped to the top of the user program memory space, with the top address at program memory address, 7FFE00h to 7FFFFFh. The size of the data EEPROM is 256 words in PIC24FV32KA304 devices.

The data EEPROM is organized as 16-bit wide memory. Each word is directly addressable, and is readable and writable during normal operation over the entire VDD range.

Unlike the Flash program memory, normal program execution is not stopped during a data EEPROM program or erase operation.

The data EEPROM programming operations are controlled using the three NVM Control registers:

- NVMCON: Nonvolatile Memory Control Register
- NVMKEY: Nonvolatile Memory Key Register
- NVMADR: Nonvolatile Memory Address Register

#### 6.1 NVMCON Register

The NVMCON register (Register 6-1) is also the primary control register for data EEPROM program/erase operations. The upper byte contains the control bits used to start the program or erase cycle, and the flag bit to indicate if the operation was successfully performed. The lower byte of NVMCOM configures the type of NVM operation that will be performed.

#### 6.2 NVMKEY Register

The NVMKEY is a write-only register that is used to prevent accidental writes or erasures of data EEPROM locations.

To start any programming or erase sequence, the following instructions must be executed first, in the exact order provided:

- 1. Write 55h to NVMKEY.
- 2. Write AAh to NVMKEY.

After this sequence, a write will be allowed to the NVMCON register for one instruction cycle. In most cases, the user will simply need to set the WR bit in the NVMCON register to start the program or erase cycle. Interrupts should be disabled during the unlock sequence.

The MPLAB[®] C30 C compiler provides a defined library procedure (builtin_write_NVM) to perform the unlock sequence. Example 6-1 illustrates how the unlock sequence can be performed with in-line assembly.

#### EXAMPLE 6-1: DATA EEPROM UNLOCK SEQUENCE

//Disable Inte	rrupts For 5 instruc	ctions			
asm volatile	("disi #5");				
//Issue Unlock	Sequence				
asm volatile	("mov #0x55, W0	\n"			
	"mov W0, NVMKEY	\n"			
	"mov #0xAA, W1	\n"			
	"mov W1, NVMKEY	\n");			
// Perform Write/Erase operations					
asm volatile	("bset NVMCON, #WR	\n"			
	"nop	\n"			
	"nop	\n");			

				RY CONTRO			
R/S-0, HC	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	PGMONLY	_	-	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	ERASE	NVMOP5	NVMOP4	NVMOP3	NVMOP2	NVMOP1	NVMOP0
bit 7							bit 0
			<u></u>				
Legend:	1.11	HC = Hardware		•	mented bit, re	ead as '0'	
R = Readable		W = Writable bit		S = Settable		<b>D</b>	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	known
bit 15	1 = Initiates a 0 = Write cyc	ntrol bit (program a data EEPROM e le is complete (cle	erase or write cyc eared automatica			red in softwar	e)
bit 14	1 = Enables a	Enable bit (erase in erase or progra ion allowed (device	im operation	on completion	of the write/e	erase operatio	on)
bit 13	<ul> <li>WRERR: Flash Error Flag bit</li> <li>1 = A write operation is prematurely terminated (any MCLR or WDT Reset during programming operation)</li> <li>0 = The write operation completed successfully</li> </ul>						
bit 12	<b>PGMONLY:</b> Program Only Enable bit 1 = Write operation is executed without erasing target address(es) first 0 = Automatic erase-before-write Write operations are preceded automatically by an erase of the target address(es).						
bit 11-7	Unimplement	ted: Read as '0'					
bit 6	<ul> <li>ERASE: Erase Operation Select bit</li> <li>1 = Performs an erase operation when WR is set</li> <li>0 = Performs a write operation when WR is set</li> </ul>						
bit 5-0	0 = Performs a write operation when WR is set <b>NVMOP&lt;5:0&gt;:</b> Programming Operation Command Byte bits <u>Erase Operations (when ERASE bit is '1'):</u> 011010 = Erase 8 words 011001 = Erase 4 words 011000 = Erase 1 word 0100xx = Erase entire data EEPROM <u>Programming Operations (when ERASE bit is '0'):</u> 0010xx = Write 1 word						

#### REGISTER 6-1: NVMCON: NONVOLATILE MEMORY CONTROL REGISTER

#### 6.3 NVM Address Register

As with Flash program memory, the NVM Address Registers, NVMADRU and NVMADR, form the 24-bit Effective Address (EA) of the selected row or word for data EEPROM operations. The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA. These registers are not mapped into the Special Function Register (SFR) space; instead, they directly capture the EA<23:0> of the last table write instruction that has been executed and selects the data EEPROM row to erase. Figure 6-1 depicts the program memory EA that is formed for programming and erase operations.

Like program memory operations, the Least Significant bit (LSb) of NVMADR is restricted to even addresses. This is because any given address in the data EEPROM space consists of only the lower word of the program memory width; the upper word, including the uppermost "phantom byte", are unavailable. This means that the LSb of a data EEPROM address will always be '0'.

Similarly, the Most Significant bit (MSb) of NVMADRU is always '0', since all addresses lie in the user program space.

#### FIGURE 6-1: DATA EEPROM ADDRESSING WITH TBLPAG AND NVM ADDRESS REGISTERS



#### 6.4 Data EEPROM Operations

The EEPROM block is accessed using table read and write operations similar to those used for program memory. The TBLWTH and TBLRDH instructions are not required for data EEPROM operations since the memory is only 16 bits wide (data on the lower address is valid only). The following programming operations can be performed on the data EEPROM:

- · Erase one, four or eight words
- · Bulk erase the entire data EEPROM
- Write one word
- Read one word

Note 1: Unexpected results will be obtained if the user attempts to read the EEPROM while a programming or erase operation is underway.

2: The C30 C compiler includes library procedures to automatically perform the table read and table write operations, manage the Table Pointer and write buffers, and unlock and initiate memory write sequences. This eliminates the need to create assembler macros or time critical routines in C for each application.

The library procedures are used in the code examples detailed in the following sections. General descriptions of each process are provided for users who are not using the C30 compiler libraries.

© 2011-2012 Microchip Technology Inc.

#### 6.4.1 ERASE DATA EEPROM

The data EEPROM can be fully erased, or can be partially erased, at three different sizes: one word, four words or eight words. The bits, NVMOP<1:0> (NVMCON<1:0>), decide the number of words to be erased. To erase partially from the data EEPROM, the following sequence must be followed:

- 1. Configure NVMCON to erase the required number of words: one, four or eight.
- 2. Load TBLPAG and WREG with the EEPROM address to be erased.
- 3. Clear the NVMIF status bit and enable the NVM interrupt (optional).
- 4. Write the key sequence to NVMKEY.
- 5. Set the WR bit to begin the erase cycle.
- 6. Either poll the WR bit or wait for the NVM interrupt (NVMIF is set).

A typical erase sequence is provided in Example 6-2. This example shows how to do a one-word erase. Similarly, a four-word erase and an eight-word erase can be done. This example uses C library procedures to manage the Table Pointer (builtin_tblpage and builtin_tbloffset) and the Erase Page Pointer (builtin_tblwt1). The memory unlock sequence (builtin_write_NVM) also sets the WR bit to initiate the operation and returns control when complete.

#### EXAMPLE 6-2: SINGLE-WORD ERASE

```
int __attribute__ ((space(eedata))) eeData = 0x1234;
/*_____
The variable eeData must be a Global variable declared outside of any method
the code following this comment can be written inside the method that will execute the erase
_____
*/
   unsigned int offset;
   // Set up NVMCON to erase one word of data EEPROM
   NVMCON = 0x4058;
   // Set up a pointer to the EEPROM location to be erased
   TBLPAG = __builtin_tblpage(&eeData); // Initialize EE Data page pointer
   offset = __builtin_tbloffset(&eeData);
                                          // Initizlize lower word of address
   __builtin_tblwtl(offset, 0);
                                           // Write EEPROM data to write latch
   asm volatile ("disi #5");
                                           // Disable Interrupts For 5 Instructions
   __builtin_write_NVM();
                                           // Issue Unlock Sequence & Start Write Cycle
   while(NVMCONbits.WR=1);
                                            // Optional: Poll WR bit to wait for
                                            // write sequence to complete
```

#### 6.4.1.1 Data EEPROM Bulk Erase

To erase the entire data EEPROM (bulk erase), the address registers do not need to be configured because this operation affects the entire data EEPROM. The following sequence helps in performing a bulk erase:

- 1. Configure NVMCON to Bulk Erase mode.
- 2. Clear NVMIF status bit and enable NVM interrupt (optional).
- 3. Write the key sequence to NVMKEY.
- 4. Set the WR bit to begin the erase cycle.
- 5. Either poll the WR bit or wait for the NVM interrupt (NVMIF is set).

A typical bulk erase sequence is provided in Example 6-3.

#### 6.4.2 SINGLE-WORD WRITE

To write a single word in the data EEPROM, the following sequence must be followed:

- Erase one data EEPROM word (as mentioned in the previous section) if the PGMONLY bit (NVMCON<12>) is set to '1'.
- 2. Write the data word into the data EEPROM latch.
- 3. Program the data word into the EEPROM:
  - Configure the NVMCON register to program one EEPROM word (NVMCON<5:0> = 0001xx).
  - Clear the NVMIF status bit and enable the NVM interrupt (optional).
  - Write the key sequence to NVMKEY.
  - Set the WR bit to begin the erase cycle.
  - Either poll the WR bit or wait for the NVM interrupt (NVMIF is set).
  - To get cleared, wait until NVMIF is set.

A typical single-word write sequence is provided in Example 6-4.

#### EXAMPLE 6-3: DATA EEPROM BULK ERASE

// Set up NVMCON to bulk erase the data EEPROM NVMCON =  $0 \times 4050$ ;

// Disable Interrupts For 5 Instructions
asm volatile ("disi #5");

// Issue Unlock Sequence and Start Erase Cycle
__builtin_write_NVM();

#### EXAMPLE 6-4: SINGLE-WORD WRITE TO DATA EEPROM

<pre>intattribute ((space(eedata))) eeData = 0x1234; int newData; /*</pre>	// New data to write to EEPROM
. The variable eeData must be a Global variable declar	
the code following this comment can be written insid	
<pre>*/ unsigned int offset; // Set up NVMCON to erase one word of data EEPROM</pre>	
NVMCON = 0x4004;	
// Set up a pointer to the EEPROM location to be en	rased
<pre>TBLPAG =builtin_tblpage(&amp;eeData);</pre>	// Initialize EE Data page pointer
offset =builtin_tbloffset(&eeData);	// Initizlize lower word of address
builtin_tblwtl(offset, newData);	// Write EEPROM data to write latch
<pre>asm volatile ("disi #5"); builtin_write_NVM(); while(NVMCONbits.WR=1);</pre>	<pre>// Disable Interrupts For 5 Instructions // Issue Unlock Sequence &amp; Start Write Cycle // Optional: Poll WR bit to wait for // write sequence to complete</pre>

#### 6.4.3 READING THE DATA EEPROM

To read a word from data EEPROM, the table read instruction is used. Since the EEPROM array is only 16 bits wide, only the TBLRDL instruction is needed. The read operation is performed by loading TBLPAG and WREG with the address of the EEPROM location, followed by a TBLRDL instruction.

A typical read sequence, using the Table Pointer management (builtin_tblpage and builtin_tbloffset) and table read (builtin_tblrdl) procedures from the C30 compiler library, is provided in Example 6-5.

Program Space Visibility (PSV) can also be used to read locations in the data EEPROM.

#### EXAMPLE 6-5: READING THE DATA EEPROM USING THE TBLRD COMMAND

```
int __attribute__ ((space(eedata))) eeData = 0x1234;
int data;
                                               // Data read from EEPROM
/*_____
                                             _____
The variable eeData must be a Global variable declared outside of any method
the code following this comment can be written inside the method that will execute the read
___
* /
   unsigned int offset;
   \ensuremath{{\prime}}\xspace // Set up a pointer to the EEPROM location to be erased
   TBLPAG = __builtin_tblpage(&eeData);
                                                  // Initialize EE Data page pointer
   offset = __builtin_tbloffset(&eeData);
                                                  // Initizlize lower word of address
   data = __builtin_tblrdl(offset);
                                                   // Write EEPROM data to write latch
```

#### 7.0 RESETS

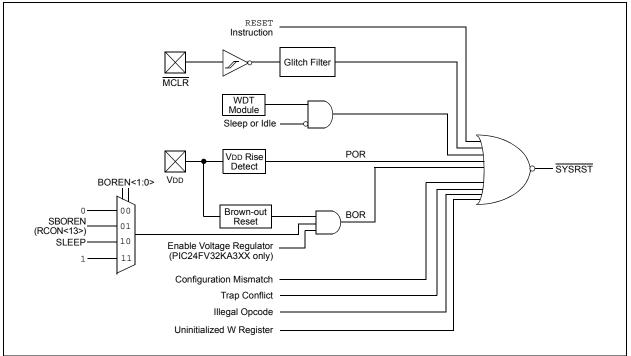
Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Resets, refer to the "PIC24F Family Reference Manual", Section 40. "Reset with Programmable Brown-out Reset" (DS39728).

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- MCLR: Pin Reset
- SWR: RESET Instruction
- WDTR: Watchdog Timer Reset
- · BOR: Brown-out Reset
- Low-Power BOR/Deep Sleep BOR
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Opcode Reset
- UWR: Uninitialized W Register Reset

A simplified block diagram of the Reset module is shown in Figure 7-1.

Any active source of Reset will make the SYSRST signal active. Many registers associated with the CPU and peripherals are forced to a known Reset state. Most registers are unaffected by a Reset; their status is unknown on Power-on Reset (POR) and unchanged by all other Resets.


Note: Refer to the specific peripheral or Section 3.0 "CPU" of this data sheet for register Reset states.

All types of device Reset will set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 7-1). A Power-on Reset will clear all bits except for the BOR and POR bits (RCON<1:0>) which are set. The user may set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software will not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer (WDT) and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

#### FIGURE 7-1: RESET SYSTEM BLOCK DIAGRAM



TRAPF bit 15 R/W-0, F EXTR bit 7 Legend: R = Read -n = Valu	IS R/W-0, HS	SBOREN	LVREN ⁽³⁾		DPSLP	СМ		
R/W-0, H EXTR bit 7 Legend: R = Read					DI GLI	CIVI	PMSLP	
EXTR bit 7 Legend: R = Read							bit 8	
EXTR bit 7 Legend: R = Read								
bit 7 <b>Legend:</b> R = Read		R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS	
Legend: R = Read	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR	
R = Read							bit C	
R = Read		C = Clearable	bit	HS = Hardwa	re Settable bit			
		W = Writable bit		U = Unimplemented bit, read as '0'				
	e at POR	'1' = Bit is set		$0^{\circ}$ = Bit is cleared $x = Bit is unknown$				
							<u> </u>	
bit 15	TRAPR: Trap	Reset Flag bit						
	<ul> <li>1 = A Trap Conflict Reset has occurred</li> <li>0 = A Trap Conflict Reset has not occurred</li> </ul>							
bit 14	IOPUWR: Ille	IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit						
	1 = An illegal opcode detection, an illegal address mode or uninitialized W register used as an Addres Pointer caused a Reset							
	0 = An illega	l opcode or unin	itialized W Re	set has not occ	curred			
bit 13	SBOREN: So	SBOREN: Software Enable/Disable of BOR bit						
		<ul> <li>1 = BOR is turned on in software</li> <li>0 = BOR is turned off in software</li> </ul>						
bit 12	LVREN: Low-	LVREN: Low-Voltage Sleep Mode ⁽³⁾						
	<ul> <li>1 = Regulated voltage supply provided solely by the Low-Voltage Regulator (LVREG) during Sleep</li> <li>0 = Regulated voltage supply provided by the main voltage regulator (HVREG) during Sleep</li> </ul>							
bit 11	Unimplemen	Unimplemented: Read as '0'						
bit 10	DPSLP: Deep Sleep Mode Flag bit							
		ep has occurred ep has not occu						
bit 9	CM: Configur	CM: Configuration Word Mismatch Reset Flag bit						
	Ų	uration Word Mis uration Word Mis			ed			
bit 8	PMSLP: Prog	gram Memory Po	ower During Sl	leep bit				
	0 = Program	<ul> <li>1 = Program memory bias voltage remains powered during Sleep</li> <li>0 = Program memory bias voltage is powered down during Sleep and the voltage regulator enters Standby mode</li> </ul>						
bit 7		nal Reset (MCLF	R) Pin bit					
	1 = A Master	Clear (pin) Rese Clear (pin) Rese	et has occurre					
bit 6		re Reset (Instru						
-		instruction has t						
	0 = A reset	instruction has r	not been exect	uted				
Note 1:	All of the Reset cause a device	-	be set or cleare	ed in software.	Setting one of th	nese bits in soft	ware does not	
2:	If the FWDTEN SWDTEN bit se		oit is '1' (unpro	grammed), the	e WDT is always	enabled regard	dless of the	
	This is impleme	nted on PIC24F	V32KA3XX pa	rts only; not us	ed on PIC24F3	2KA3XX device	s.	

#### REGISTER 7-1: RCON: RESET CONTROL REGISTER⁽¹⁾

#### **REGISTER 7-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)**

bit 5	SWDTEN: Software Enable/Disable of WDT bit ⁽²⁾				
	1 = WDT is enabled				
	0 = WDT is disabled				
bit 4	WDTO: Watchdog Timer Time-out Flag bit				
	1 = WDT time-out has occurred				
	0 = WDT time-out has not occurred				
bit 3	SLEEP: Wake-up from Sleep Flag bit				
	1 = Device has been in Sleep mode				
	0 = Device has not been in Sleep mode				
bit 2	IDLE: Wake-up from Idle Flag bit				
	1 = Device has been in Idle mode				
	0 = Device has not been in Idle mode				
bit 1	BOR: Brown-out Reset Flag bit				
	1 = A Brown-out Reset has occurred (the BOR is also set after a POR)				
	0 = A Brown-out Reset has not occurred				
bit 0	POR: Power-on Reset Flag bit				
	1 = A Power-up Reset has occurred				
	0 = A Power-up Reset has not occurred				

- **Note 1:** All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
  - 2: If the FWDTENx Configuration bit is '1' (unprogrammed), the WDT is always enabled regardless of the SWDTEN bit setting.
  - 3: This is implemented on PIC24FV32KA3XX parts only; not used on PIC24F32KA3XX devices.

#### TABLE 7-1:RESET FLAG BIT OPERATION

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap Conflict Event	POR
IOPUWR (RCON<14>)	Illegal Opcode or Uninitialized W Register Access	POR
CM (RCON<9>)	Configuration Mismatch Reset	POR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET Instruction	POR
WDTO (RCON<4>)	WDT Time-out	PWRSAV Instruction, POR
SLEEP (RCON<3>)	PWRSAV #SLEEP Instruction	POR
IDLE (RCON<2>)	PWRSAV #IDLE Instruction	POR
BOR (RCON<1>)	POR, BOR	—
POR (RCON<0>)	POR	—
DPSLP (RCON<10>)	PWRSAV #SLEEP instruction with DSCON <dsen> set</dsen>	POR

**Note:** All Reset flag bits may be set or cleared by the user software.

^{© 2011-2012} Microchip Technology Inc.

#### 7.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 7-2. If clock switching is disabled, the system clock source is always selected according to the Oscillator Configuration bits. For more information, see Section 9.0 "Oscillator Configuration".

# TABLE 7-2:OSCILLATOR SELECTION vs.TYPE OF RESET (CLOCK<br/>SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	FNOSCx Configuration bits
BOR	(FNOSC<10:8>)
MCLR	COSCx Control bits
WDTO	(OSCCON<14:12>)
SWR	

#### 7.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 7-3. Note that the system Reset signal, SYSRST, is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	Notes
POR ⁽⁶⁾	EC	TPOR + TPWRT	_	1, 2
	FRC, FRCDIV	TPOR + TPWRT	TFRC	1, 2, 3
	LPRC	TPOR + TPWRT	TLPRC	1, 2, 3
	ECPLL	TPOR + TPWRT	Тьоск	1, 2, 4
	FRCPLL	TPOR + TPWRT	TFRC + TLOCK	1, 2, 3, 4
	XT, HS, SOSC	TPOR+ TPWRT	Тоѕт	1, 2, 5
	XTPLL, HSPLL	TPOR + TPWRT	Tost + Tlock	1, 2, 4, 5
BOR	EC	TPWRT	—	2
	FRC, FRCDIV	TPWRT	TFRC	2, 3
	LPRC	TPWRT	TLPRC	2, 3
	ECPLL	TPWRT	Тьоск	2, 4
	FRCPLL	TPWRT	TFRC + TLOCK	2, 3, 4
	XT, HS, SOSC	TPWRT	Тоѕт	2, 5
	XTPLL, HSPLL	TPWRT	TFRC + TLOCK	2, 3, 4
All Others	Any Clock	—	_	None

#### TABLE 7-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay.

- 2: TPWRT = 64 ms nominal if the Power-up Timer is enabled; otherwise, it is zero.
- **3:** TFRC and TLPRC = RC Oscillator start-up times.
- **4:** TLOCK = PLL lock time.
- 5: TOST = Oscillator Start-up Timer (OST). A 10-bit counter waits 1024 oscillator periods before releasing the oscillator clock to the system.
- **6:** If Two-Speed Start-up is enabled, regardless of the primary oscillator selected, the device starts with FRC, and in such cases, FRC start-up time is valid.

Note: For detailed operating frequency and timing specifications, see Section 29.0 "Electrical Characteristics".

#### 7.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer (OST) has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

#### 7.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC Oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).

#### 7.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the PIC24F CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset with the exception of four registers. The Reset value for the Reset Control register, RCON, will depend on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, will depend on the type of Reset and the programmed values of the FNOSCx bits in the Flash Configuration Word (FOSCSEL<2:0>); see Table 7-2. The RCFGCAL and NVMCON registers are only affected by a POR.

#### 7.4 Deep Sleep BOR (DSBOR)

Deep Sleep BOR is a very low-power BOR circuitry, used when the device is in Deep Sleep mode. Due to low current consumption, accuracy may vary.

The DSBOR trip point is around 2.0V. DSBOR is enabled by configuring DSLPBOR (FDS<6>) = 1. DSLPBOR will re-arm the POR to ensure the device will reset if VDD drops below the POR threshold.

#### 7.5 Brown-out Reset (BOR)

The PIC24FV32KA304 family devices implement a BOR circuit, which provides the user several configuration and power-saving options. The BOR is controlled by the BORV<1:0> and BOREN<1:0> Configuration bits (FPOR<6:5,1:0>). There are a total of four BOR configurations, which are provided in Table 7-3.

The BOR threshold is set by the BORV<1:0> bits. If BOR is enabled (any values of BOREN<1:0>, except '00'), any drop of VDD below the set threshold point will reset the device. The chip will remain in BOR until VDD rises above the threshold.

If the Power-up Timer is enabled, it will be invoked after VDD rises above the threshold. Then, it will keep the chip in Reset for an additional time delay, TPWRT, if VDD drops below the threshold while the Power-up Timer is running. The chip goes back into a BOR and the Power-up Timer will be initialized. Once VDD rises above the threshold, the Power-up Timer will execute the additional time delay.

BOR and the Power-up Timer (PWRT) are independently configured. Enabling the Brown-out Reset does not automatically enable the PWRT.

#### 7.5.1 SOFTWARE ENABLED BOR

When BOREN<1:0> = 01, the BOR can be enabled or disabled by the user in software. This is done with the control bit, SBOREN (RCON<13>). Setting SBOREN enables the BOR to function as previously described. Clearing the SBOREN disables the BOR entirely. The SBOREN bit operates only in this mode; otherwise, it is read as '0'.

Placing BOR under software control gives the user the additional flexibility of tailoring the application to its environment without having to reprogram the device to change the BOR configuration. It also allows the user to tailor the incremental current that the BOR consumes. While the BOR current is typically very small, it may have some impact in low-power applications.

Note: Even when the BOR is under software control, the Brown-out Reset voltage level is still set by the BORV<1:0> Configuration bits; it can not be changed in software.

^{© 2011-2012} Microchip Technology Inc.

### 7.5.2 DETECTING BOR

When BOR is enabled, the BOR bit (RCON<1>) is always reset to '1' on any BOR or POR event. This makes it difficult to determine if a BOR event has occurred just by reading the state of BOR alone. A more reliable method is to simultaneously check the state of both POR and BOR. This assumes that the POR and BOR bits are reset to '0' in the software immediately after any POR event. If the BOR bit is '1' while POR is '0', it can be reliably assumed that a BOR event has occurred.

Note: Even when the device exits from Deep Sleep mode, both the POR and BOR bits are set.

### 7.5.3 DISABLING BOR IN SLEEP MODE

When BOREN<1:0> = 10, BOR remains under hardware control and operates as previously described. However, whenever the device enters Sleep mode, BOR is automatically disabled. When the device returns to any other operating mode, BOR is automatically re-enabled.

This mode allows for applications to recover from brown-out situations, while actively executing code when the device requires BOR protection the most. At the same time, it saves additional power in Sleep mode by eliminating the small incremental BOR current.

Note: BOR levels differ depending on device type; PIC24FV32KA3XX devices are at different levels than those of PIC24F32KA3XX devices. See Section 29.0 "Electrical Characteristics" for BOR voltage levels.

### 8.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Interrupt Controller, refer to the *"PIC24F Family Reference Manual"*, Section 8. *"Interrupts"* (DS39707).

The PIC24F interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the CPU. It has the following features:

- Up to eight processor exceptions and software traps
- Seven user-selectable priority levels
- · Interrupt Vector Table (IVT) with up to 118 vectors
- Unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

### 8.1 Interrupt Vector Table (IVT)

The IVT is shown in Figure 8-1. The IVT resides in the program memory, starting at location, 000004h. The IVT contains 126 vectors, consisting of eight non-maskable trap vectors, plus, up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with Vector 0 will take priority over interrupts at any other vector address.

PIC24FV32KA304 family devices implement non-maskable traps and unique interrupts; these are summarized in Table 8-1 and Table 8-2.

### 8.1.1 ALTERNATE INTERRUPT VECTOR TABLE (AIVT)

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 8-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run-time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

### 8.2 Reset Sequence

A device Reset is not a true exception, because the interrupt controller is not involved in the Reset process. The PIC24F devices clear their registers in response to a Reset, which forces the Program Counter (PC) to zero. The microcontroller then begins program execution at location, 000000h. The user programs a GOTO instruction at the Reset address, which redirects the program execution to the appropriate start-up routine.

**Note:** Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.



Decreasing Natural Order Priority	Reset – GOTO Address Reserved Oscillator Fail Trap Vector Address Error Trap Vector Stack Error Trap Vector Math Error Trap Vector Reserved Reserved Reserved Interrupt Vector 0 Interrupt Vector 0 Interrupt Vector 52 Interrupt Vector 53 Interrupt Vector 54 	000002h 000004h 0000014h 00007Ch 00007Ch 00007Eh 000080h	Interrupt Vector Table (IVT) ⁽¹⁾
tural Order Priority	Oscillator Fail Trap Vector Address Error Trap Vector Stack Error Trap Vector Math Error Trap Vector Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 — — Interrupt Vector 52 Interrupt Vector 53	000014h 00007Ch 00007Eh	Interrupt Vector Table (IVT) ⁽¹⁾
tural Order Priority	Address Error Trap Vector Stack Error Trap Vector Math Error Trap Vector Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 — — Interrupt Vector 52 Interrupt Vector 53	00007Ch 00007Eh	Interrupt Vector Table (IVT) ⁽¹⁾
tural Order Priority	Stack Error Trap Vector Math Error Trap Vector Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 — — Interrupt Vector 52 Interrupt Vector 53	00007Ch 00007Eh	Interrupt Vector Table (IVT) ⁽¹⁾
tural Order Priority	Math Error Trap Vector Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 — — Interrupt Vector 52 Interrupt Vector 53	00007Ch 00007Eh	Interrupt Vector Table (IVT) ⁽¹⁾
tural Order Priority	Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 — — Interrupt Vector 52 Interrupt Vector 53	00007Ch 00007Eh	Interrupt Vector Table (IVT) ⁽¹⁾
tural Order Priority	Reserved Reserved Interrupt Vector 0 Interrupt Vector 1 — — Interrupt Vector 52 Interrupt Vector 53	00007Ch 00007Eh	Interrupt Vector Table (IVT) ⁽¹⁾
tural Order Priority	Reserved Interrupt Vector 0 Interrupt Vector 1 — — Interrupt Vector 52 Interrupt Vector 53	00007Ch 00007Eh	Interrupt Vector Table (IVT) ⁽¹⁾
tural Order Priority	Interrupt Vector 0 Interrupt Vector 1 — — Interrupt Vector 52 Interrupt Vector 53	00007Ch 00007Eh	Interrupt Vector Table (IVT) ⁽¹⁾
tural Order Priority	Interrupt Vector 1 — — Interrupt Vector 52 Interrupt Vector 53	00007Ch 00007Eh	Interrupt Vector Table (IVT) ⁽¹⁾
tural Order Priority	Interrupt Vector 52	00007Eh	Interrupt Vector Table (IVT) ⁽¹⁾
tural Order Priority	Interrupt Vector 53	00007Eh	Interrupt Vector Table (IVT) ⁽¹⁾
tural Order Priority	Interrupt Vector 53	00007Eh	Interrupt Vector Table (IVT) ⁽¹⁾
tural Order Priority	Interrupt Vector 53	00007Eh	Interrupt Vector Table (IVT) ⁽¹⁾
tural Order Priority	Interrupt Vector 53	00007Eh	Interrupt Vector Table (IVT) ⁽¹⁾
tural Order Prior			
tural Order Pr			
tural Order		_	
- Intral Orc		1	
tural		-	
– t	Interrupt Vector 116	0000ECh	
	Interrupt Vector 116	0000FCh	1
– Na	Interrupt Vector 117	0000FEh	
6u	Reserved	000100h	
asii	Reserved	000102h	
	Reserved	_	
)ec	Oscillator Fail Trap Vector	-	
	Address Error Trap Vector	_	
	Stack Error Trap Vector	-	
	Math Error Trap Vector	_	
	Reserved	_	
	Reserved		
	Reserved	0001111	
	Interrupt Vector 0	000114h	
	Interrupt Vector 1	-	
	—	4	
	—	4	Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrunt Vector 52	00017Ch	Alternate interrupt vector Table (AIVI)(*)
	Interrupt Vector 52	00017Ch	
	Interrupt Vector 53	00017Eh	
	Interrupt Vector 54	000180h	
		-	
	—	4	
			-
↓ ⊢	Interrupt Vector 116	0004555	
▼  _	Interrupt Vector 117	0001FEh	
L	Start of Code	000200h	

Vector Number	IVT Address	AIVT Address	Trap Source
0	000004h	000104h	Reserved
1	000006h	000106h	Oscillator Failure
2	000008h	000108h	Address Error
3	00000Ah	00010Ah	Stack Error
4	00000Ch	00010Ch	Math Error
5	00000Eh	00010Eh	Reserved
6	000010h	000110h	Reserved
7	000012h	000112h	Reserved

### TABLE 8-1: TRAP VECTOR DETAILS

#### TABLE 8-2:IMPLEMENTED INTERRUPT VECTORS

Interment Course		IV/T Address	AIVT	In	terrupt Bit Loca	ations
Interrupt Source	Vector Number	IVT Address	Address	Flag	Enable	Priority
ADC1 Conversion Done	13	00002Eh	00012Eh	IFS0<13>	IEC0<13>	IPC3<6:4>
Comparator Event	18	000038h	000138h	IFS1<2>	IEC1<2>	IPC4<10:8>
CRC Generator	67	00009Ah	00019Ah	IFS4<3>	IEC4<3>	IPC16<14:12>
СТМИ	77	0000AEh	0001AEh	IFS4<13>	IEC4<13>	IPC19<6:4>
External Interrupt 0	0	000014h	000114h	IFS0<0>	IEC0<0>	IPC0<2:0>
External Interrupt 1	20	00003Ch	00013Ch	IFS1<4>	IEC1<4>	IPC5<2:0>
External Interrupt 2	29	00004Eh	00014Eh	IFS1<13>	IEC1<13>	IPC7<6:4>
I2C1 Master Event	17	000036h	000136h	IFS1<1>	IEC1<1>	IPC4<6:4>
I2C1 Slave Event	16	000034h	000134h	IFS1<0>	IEC1<0>	IPC4<2:0>
I2C2 Master Event	50	000078h	000178h	IFS3<2>	IEC3<2>	IPC12<10:8>
I2C2 Slave Event	49	000076h	000176h	IFS3<1>	IEC3<1>	IPC12<6:4>
Input Capture 1	1	000016h	000116h	IFS0<1>	IEC0<1>	IPC0<6:4>
Input Capture 2	5	00001Eh	00011Eh	IFS0<5>	IEC0<5>	IPC1<6:4>
Input Capture 3	37	00005Eh	00015Eh	IFS2<5>	IEC2<5>	IPC9<6:4>
Input Change Notification	19	00003Ah	00013Ah	IFS1<3>	IEC1<3>	IPC4<14:12>
HLVD (High/Low-Voltage Detect)	72	0000A4h	0001A4h	IFS4<8>	IEC4<8>	IPC17<2:0>
NVM – NVM Write Complete	15	000032h	000132h	IFS0<15>	IEC0<15>	IPC3<14:12>
Output Compare 1	2	000018h	000118h	IFS0<2>	IEC0<2>	IPC0<10:8>
Output Compare 2	6	000020h	000120h	IFS0<6>	IEC0<6>	IPC1<10:8>
Output Compare 3	25	000046h	000146h	IFS1<9>	IEC1<9>	IPC6<6:4>
Real-Time Clock/Calendar	62	000090h	000190h	IFS3<14>	IEC3<14>	IPC15<10:8>
SPI1 Error	9	000026h	000126h	IFS0<9>	IEC0<9>	IPC2<6:4>
SPI1 Event	10	000028h	000128h	IFS0<10>	IEC0<10>	IPC2<10:8>
SPI2 Error	32	000054h	000154h	IFS2<0>	IEC2<2>	IPC8<2:0>
SPI2 Event	33	000056h	000156h	IFS2<1>	IEC2<1>	IPC8<6:4>
Timer1	3	00001Ah	00011Ah	IFS0<3>	IEC0<3>	IPC0<14:12>
Timer2	7	000022h	000122h	IFS0<7>	IEC0<7>	IPC1<14:12>
Timer3	8	000024h	000124h	IFS0<8>	IEC0<8>	IPC2<2:0>
Timer4	27	00004Ah	00014Ah	IFS1<11>	IEC1<11>	IPC6<14:12>
Timer5	28	00004Ch	00015Ch	IFS1<12>	IEC1<12>	IPC7<2:0>
UART1 Error	65	000096h	000196h	IFS4<1>	IEC4<1>	IPC16<6:4>
UART1 Receiver	11	00002Ah	00012Ah	IFS0<11>	IEC0<11>	IPC2<14:12>
UART1 Transmitter	12	00002Ch	00012Ch	IFS0<12>	IEC0<12>	IPC3<2:0>
UART2 Error	66	000098h	000198h	IFS4<2>	IEC4<2>	IPC16<10:8>
UART2 Receiver	30	000050h	000150h	IFS1<14>	IEC1<14>	IPC7<10:8>
UART2 Transmitter	31	000052h	000152h	IFS1<15>	IEC1<15>	IPC7<14:12>
Ultra Low-Power Wake-up	80	0000B4h	0001B4h	IFS5<0>	IEC5<0>	IPC20<2:0>

### 8.3 Interrupt Control and Status Registers

The PIC24FV32KA304 family of devices implements a total of 22 registers for the interrupt controller:

- INTCON1
- INTCON2
- · IFS0, IFS1, IFS3 and IFS4
- · IEC0, IEC1, IEC3 and IEC4
- IPC0 through IPC5, IPC7 and IPC15 through IPC19
- INTTREG

Global Interrupt Enable (GIE) control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the AIV table.

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals, or external signal, and is cleared via software.

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels. The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into the Vector Number (VECNUM<6:0>) and the Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence listed in Table 8-2. For example, the INT0 (External Interrupt 0) is depicted as having a vector number and a natural order priority of 0. The INT0IF status bit is found in IFS0<0>, the INT0IE enable bit in IEC0<0> and the INT0IP<2:0> priority bits are in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. The ALU STATUS Register (SR) contains the IPL<2:0> bits (SR<7:5>). These indicate the current CPU Interrupt Priority Level. The user may change the current CPU Interrupt Priority Level by writing to the IPLx bits.

The CORCON register contains the IPL3 bit, which together with IPL<2:0>, also indicates the current CPU Interrupt Priority Level. IPL3 is a read-only bit so that the trap events cannot be masked by the user's software.

All Interrupt registers are described in Register 8-1 through Register 8-33, in the following sections.

#### REGISTER 8-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0, HSC
_	—	—	—	—	—	_	DC ⁽¹⁾
bit 15							bit 8

R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC
IPL2 ^(2,3)	IPL1 ^(2,3)	IPL0 ^(2,3)	RA ⁽¹⁾	N ⁽¹⁾	OV ⁽¹⁾	Z ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:	HSC = Hardware Settable/C	Clearable bit	
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9 Unimplemented: Read as '0'

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits^(2,3) 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)

Note 1: See Register 3-1 for the description of these bits, which are not dedicated to interrupt control functions.

- 2: The IPL<2:0> bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the Interrupt Priority Level if IPL3 = 1.
- 3: The IPLx Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

Note: Bit 8 and bits 4 through 0 are described in Section 3.0 "CPU".

^{© 2011-2012} Microchip Technology Inc.

### REGISTER 8-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15				· · · · · · · · · · · · · · · · · · ·		•	bit 8
U-0	U-0	U-0	U-0	R/C-0, HSC	R/W-0	U-0	U-0
_	—	_	_	IPL3 ⁽²⁾	PSV ⁽¹⁾	—	—
bit 7						•	bit 0
Legend:		C = Clearable	bit	HSC = Hardwa	are Settable/Cl	learable bit	
R = Readabl	e bit	W = Writable	bit	U = Unimplem	ented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkr	nown
bit 15-4	Unimplemen	ted: Read as 'd	)'				
bit 3	IPL3: CPU In	terrupt Priority I	Level Status bi	t <b>(2)</b>			
	1 = CPU Inter	rupt Priority Le	vel is greater t	han 7			
		rupt Priority Le	•				
bit 1-0	Unimplemen	ted: Read as 'o	)'				

- **Note 1:** See Register 3-2 for the description of this bit, which is not dedicated to interrupt control functions.
  - 2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

Note: Bit 2 is described in Section 3.0 "CPU".

REGISTER	0-3. INTCO						
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
NSTDIS	—		_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0
	_	_	MATHERR	ADDRERR	STKERR	OSCFAIL	_
bit 7							bit C
Legend:		HS - Hardwa	re Settable bit				
R = Readab	lo hit	W = Writable			nented bit, read	d ac 'O'	
-n = Value a		'1' = Bit is set		'0' = Bit is clea	,	x = Bit is unkno	
					areu		
bit 15	NSTDIS: Inte	rrupt Nesting E	isable bit				
		nesting is disat					
bit 14-5	Unimplemen	ted: Read as '	0'				
bit 4	MATHERR: A	rithmetic Error	[.] Trap Status bi	t			
	1 = Overflow	trap has occur	red				
	0 = Overflow	trap has not oc	curred				
bit 3	ADDRERR: A	Address Error 7	rap Status bit				
		error trap has o					
1.1.0		error trap has n					
bit 2		ck Error Trap					
		or trap has occ or trap has not					
bit 1		•	Trap Status bi	t			
		failure trap ha	-				
		failure trap has					
bit 0		ted: Read as '					

### REGISTER 8-3: INTCON1: INTERRUPT CONTROL REGISTER 1

REGISTER	8-4: INTC	UNZ: INTERR	UPI CONTR	KOL REGIST	ERZ		
R/W-0	R-0, HSC	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI	—	—	—	—	_	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_		—	_		INT2EP	INT1EP	INT0EP
bit 7							bit 0
Legend:		HSC = Hardwa	are Settable/C	learable bit			
R = Readab	le bit	W = Writable b	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	x = Bit is unkr	s unknown	
bit 15	ALTIVT: Enat	ole Alternate Inte	errupt Vector 7	lable bit			
		rnate Interrupt \					
		ndard (default) Ir	-	r Table (IVT)			
bit 14		struction Status					
		ruction is active ruction is not ac					
bit 13-3		ted: Read as '0					
bit 2	•	ernal Interrupt 2		Polarity Solact	hit		
		s on the negativ	•	olarity Select	bit		
		s on the positive	0				
bit 1	INT1EP: Exte	ernal Interrupt 1	Edge Detect F	Polarity Select	bit		
		s on the negativ	•	2			
	0 = Interrupt i	s on the positive	e edge				
bit 0	INTOEP: Exte	ernal Interrupt 0	Edge Detect F	Polarity Select	bit		
		s on the negativ					
	0 = Interrupt i	s on the positive	e edge				

### REGISTER 8-4: INTCON2: INTERRUPT CONTROL REGISTER2

### REGISTER 8-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

R/W-0, HS	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS		
NVMIF	—	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF		
bit 15							bit 8		
R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS		
T2IF	OC2IF	IC2IF	—	T1IF	OC1IF	IC1IF	INT0IF		
bit 7							bit 0		
Legend:		HS = Hardwa	e Settable bit						
R = Readabl	e hit	W = Writable		II = I Inimplen	nented bit, read	las '0'			
-n = Value at		'1' = Bit is set	JI	'0' = Bit is clea		x = Bit is unkr	NOW/D		
					arco		IOWIT		
bit 15	NVMIF: NVM	Interrupt Flag	Status bit						
		request has occ							
	0 = Interrupt r	equest has not	occurred						
bit 14	Unimplemen	ted: Read as 'd	)'						
bit 13	AD1IF: A/D C	Conversion Corr	plete Interrupt	Flag Status bit	t				
	1 = Interrupt r	request has occ	urred						
	0 = Interrupt r	request has not	occurred						
bit 12	U1TXIF: UAR	RT1 Transmitter	Interrupt Flag	Status bit					
		request has occ							
	•	request has not							
bit 11		U1RXIF: UART1 Receiver Interrupt Flag Status bit							
		request has occ							
h:+ 10		request has not							
bit 10		Event Interrupt	-	t					
		request has occ request has not							
bit 9				+					
bit 9	<b>SPF1IF:</b> SPI1 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred								
		request has not							
bit 8		Interrupt Flag S							
		request has occ							
		equest has not							
bit 7	T2IF: Timer2	Interrupt Flag S	Status bit						
	1 = Interrupt r	equest has occ	urred						
	0 = Interrupt r	request has not	occurred						
bit 6	OC2IF: Outpu	ut Compare Cha	annel 2 Interru	pt Flag Status b	oit				
		request has occ							
	•	request has not							
bit 5		Capture Channe		ag Status bit					
		request has occ							
		equest has not							
bit 4	-	ted: Read as '(							
bit 3		Interrupt Flag S							
		request has occ							
	0 = Interrupt r	request has not	occurred						

### REGISTER 8-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	INTOIF: External Interrupt 0 Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

#### REGISTER 8-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS	U-0			
U2TXIF	U2RXIF	INT2IF	T5IF	T4IF		OC3IF	—			
bit 15							bit 8			
U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0	R/W-0			
	_		INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF			
bit 7							bit 0			
Legend:		HS = Hardwa	re Settable bit							
R = Readable	- hit	W = Writable		II = I Inimplem	nented bit, read	las 'O'				
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own			
ii valae at							0000			
bit 15	U2TXIF: UAR	T2 Transmitter	Interrupt Flag	Status bit						
		equest has occ								
	0 = Interrupt r	equest has not	occurred							
bit 14		RT2 Receiver Ir		atus bit						
		equest has occ								
h# 40		equest has not								
bit 13		NT2IF: External Interrupt 2 Flag Status bit 1 = Interrupt request has occurred								
		request has not								
bit 12	-	Interrupt Flag §								
		L = Interrupt request has occurred								
	0 = Interrupt r	equest has not	occurred							
bit 11	T4IF: Timer4	4IF: Timer4 Interrupt Flag Status bit								
	1 = Interrupt r	equest has occ	curred							
	0 = Interrupt r	equest has not	occurred							
bit 10	•	ted: Read as '								
bit 9	OC3IF: Output Compare Channel 3 Interrupt Flag Status bit									
	1 = Interrupt request has occurred									
	-	equest has not								
bit 8-5	•	ted: Read as '								
bit 4	INT1IF: External Interrupt 1 Flag Status bit									
	<ul> <li>1 = Interrupt request has occurred</li> <li>0 = Interrupt request has not occurred</li> </ul>									
bit 3	CNIF: Input Change Notification Interrupt Flag Status bit									
	-	equest has occ	-	0						
		equest has not								
bit 2	CMIF: Comparator Interrupt Flag Status bit									
		equest has occ								
	-	equest has not								
bit 1		ster I2C1 Even		Status bit						
		equest has occ equest has not								
bit 0	-	/e I2C1 Event I		Status bit						
		request has occ								
		equest has not								

### REGISTER 8-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	_	—	—
bit 15							bit 8

U-0	U-0	R/W-0, HS	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS
—	—	IC3IF	—	—	—	SPI2IF	SPF2IF
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6	Unimplemented: Read as '0'
bit 5	IC3IF: Input Capture Channel 3 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 4-2	Unimplemented: Read as '0'
bit 1	SPI2IF: SPI2 Event Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	SPF2IF: SPI2 Fault Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

### REGISTER 8-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	R/W-0, HS	U-0	U-0	U-0	U-0	U-0	U-0
—	RTCIF	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	U-0
—	—	—	—	—	MI2C2IF	SI2C2IF	—
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14	RTCIF: Real-Time Clock and Calendar Interrupt Flag Status bit
	<ul><li>1 = Interrupt request has occurred</li><li>0 = Interrupt request has not occurred</li></ul>
bit 13-3	Unimplemented: Read as '0'
bit 2	MI2C2IF: Master I2C2 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 1	<b>SI2C2IF:</b> Slave I2C2 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 0	Unimplemented: Read as '0'

^{© 2011-2012} Microchip Technology Inc.

REGISTER	8-9: IFS4	: INTERRUPT	FLAG STAT	US REGISTE	:R 4		
U-0	U-0	R/W-0, HS	U-0	U-0	U-0	U-0	R/W-0, HS
_	_	CTMUIF			_		HLVDIF
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0
_	—	—		CRCIF	U2ERIF	U1ERIF	—
bit 7							bit C
Legend:		HS = Hardward					
R = Readab		W = Writable b	bit		nented bit, read		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-14	-	nted: Read as '0					
bit 13		MU Interrupt Fla	0				
		request has occur request has not					
bit 12-9	•	nted: Read as '0					
bit 8	•	h/Low-Voltage D		t Eloa Statua bit	L.		
DILO	•	request has occi	•	I Flag Status Di	L		
		request has not					
bit 7-4	•	nted: Read as '0					
bit 3	CRCIF: CRC	Generator Inter	rupt Flag Stat	us bit			
	1 = Interrupt	request has occu	urred				
	0 = Interrupt	request has not	occurred				
bit 2	U2ERIF: UA	RT2 Error Interru	pt Flag Status	s bit			
		request has occu					
	-	request has not					
bit 1		RT1 Error Interru		s bit			
		request has occurrequest has not					
bit 0	-	nted: Read as '0					
	ommplemen	neu. Redu do U					

### REGISTER 8-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

### REGISTER 8-10: IFS5: INTERRUPT FLAG STATUS REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS
—	—	—	—	—	—	_	ULPWUIF
bit 7							bit 0

Legend:	HS = Hardware Settable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-1 Unimplemented: Read as '0'

bit 0 ULPWUIF: Ultra Low-Power Wake-up Interrupt Flag Status bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

^{© 2011-2012} Microchip Technology Inc.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NVMIE		AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE
bit 15							bit 8
			11.0				
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IE	OC2IE	IC2IE		T1IE	OC1IE	IC1IE	INTOIE
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15		/ Interrupt Enat	le hit				
		request is enat					
		request is not e					
bit 14	-	nted: Read as '					
bit 13	-	Conversion Cor		t Enable bit			
		request is enab	-				
	0 = Interrupt	request is not e	enabled				
bit 12	U1TXIE: UA	RT1 Transmitte	r Interrupt Ena	ble bit			
		request is enab					
	0 = Interrupt	request is not e	enabled				
bit 11		RT1 Receiver I	•	e bit			
		request is enab					
1.1.40		request is not e		<b>-</b>			
bit 10		Transfer Com	•	Enable bit			
		request is enable request is not e					
bit 9		1 Fault Interrup					
bit 5		request is enab					
		request is not e					
bit 8		Interrupt Enab					
		request is enab					
	•	request is not e					
bit 7	T2IE: Timer2	Interrupt Enab	le bit				
	1 = Interrupt	request is enab	oled				
	•	request is not e					
bit 6		ut Compare Ch		upt Enable bit			
		request is enab					
L:L F	•	request is not e		a shi shi t			
bit 5		Capture Chann	-	nable bit			
	•	request is enable request is not e					
bit 4		nted: Read as '					
bit 3	-	Interrupt Enab					
		request is enab					
		request is not e					
bit 2		out Compare Ch		upt Enable bit			
	-	request is enat					
		request is enar					

### REGISTER 8-11: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

#### REGISTER 8-11: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

IC1IE: Input Capture Channel 1 Interrupt Enable bit
1 = Interrupt request is enabled
0 = Interrupt request is not enabled
INTOIE: External Interrupt 0 Enable bit
1 = Interrupt request is enabled

0 = Interrupt request is not enabled

### REGISTER 8-12: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

-							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	—	OC3IE	—
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	U2TXIE: UAF	T2 Transmitter	Interrupt Ena	ble bit			
		equest is enabl					
	-	equest is not er					
bit 14		RT2 Receiver In	•	e bit			
		equest is enabl					
1.11.40	•	equest is not er					
bit 13		nal Interrupt 2 E					
		equest is enabl equest is not er					
bit 12	-	Interrupt Enable					
DIT 12		equest is enabl					
		equest is not er					
bit 11		Interrupt Enable					
		equest is enabl					
		equest is not er					
bit 10		ted: Read as '0					
bit 9	OC3IE: Outpu	ut Compare 3 Ir	terrupt Enable	e bit			
	1 = Interrupt r	equest is enabl	ed				
	0 = Interrupt r	equest is not er	nabled				
bit 8-5	Unimplemen	ted: Read as '0	,				
bit 4	INT1IE: Exter	nal Interrupt 1	Enable bit				
	1 = Interrupt r	equest is enabl	ed				
	•	equest is not er					
bit 3	-	Change Notificat		Enable bit			
		equest is enabl					
		equest is not er					
bit 2	-	arator Interrupt					
		equest is enabl					
	o = interrupt r	equest is not er	labled				

### REGISTER 8-12: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

bit 1	MI2C1IE: Master I2C1 Event Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled
bit 0	SI2C1IE: Slave I2C1 Event Interrupt Enable bit
	1 = Interrupt request is enabled
	0 = Interrupt request is not enabled

### REGISTER 8-13: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—		-	—
bit 15							bit 8

U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
_	—	IC3IE	_		_	SPI2IE	SPF2IE
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6	Unimplemented: Read as '0'
bit 5	IC3IE: Input Capture Channel 3 Interrupt Enable bit
	<ul><li>1 = Interrupt request is enabled</li><li>0 = Interrupt request is not enabled</li></ul>
bit 4-2	Unimplemented: Read as '0'
bit 1	SPI2IE: SPI2 Event Interrupt Enable bit
	<ul><li>1 = Interrupt request is enabled</li><li>0 = Interrupt request is not enabled</li></ul>
bit 0	SPF2IE: SPI2 Fault Interrupt Enable bit
	<ul><li>1 = Interrupt request is enabled</li><li>0 = Interrupt request is not enabled</li></ul>

### REGISTER 8-14: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0
_	RTCIE	—	_	—		—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0
	—	—	_	—	MI2C2IE	SI2C2IE	—
bit 7							bit C
Legend:							
R = Readal	ble bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	Unimplemer	nted: Read as '0	)'				
bit 14	RTCIE: Real	-Time Clock and	l Calendar Inte	errupt Enable b	it		
		request is enabl					
	0 = Interrupt	request is not e	nabled				
bit 13-3	Unimplemer	nted: Read as '0	)'				
bit 2	MI2C2IE: Ma	aster I2C2 Event	Interrupt Ena	ble bit			
		request is enabl					
	0 = Interrupt	request is not e	nabled				
bit 1	SI2C2IE: Sla	ve I2C2 Event I	nterrupt Enabl	le bit			
		request is enabl					
	0 = Interrupt	request is not e	nabled				
bit 0	Unimplemer	nted: Read as 'o	)'				

^{© 2011-2012} Microchip Technology Inc.

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
	_	CTMUIE		_		—	HLVDIE
bit 15						-	bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0
_	—	—	—	CRCIE	U2ERIE	U1ERIE	—
bit 7							bit (
Legend:	1. 1.1		•,			1	
R = Readab		W = Writable b	JI	U = Unimplem			
-n = Value a	IT POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-14	Unimplement	nted: Read as '0	3				
bit 13	•	MU Interrupt Ena					
		request is enable					
		request is not en					
bit 12-9	Unimplemer	nted: Read as '0	,				
bit 8	HLVDIE: Hig	h/Low-Voltage D	etect Interrup	t Enable bit			
		request is enable					
	•	request is not en					
bit 7-4	-	nted: Read as '0	,				
	COCIE·(CD()						
bit 3		Generator Inter	•	it			
bit 3	1 = Interrupt	request is enable	ed	it			
bit 3 bit 2	1 = Interrupt 0 = Interrupt	request is enable request is not en	ed nabled				
	1 = Interrupt 0 = Interrupt <b>U2ERIE:</b> UA	request is enable request is not en RT2 Error Interru	ed nabled ıpt Enable bit				
	1 = Interrupt 0 = Interrupt <b>U2ERIE:</b> UA 1 = Interrupt	request is enable request is not en	ed nabled ipt Enable bit ed				
	1 = Interrupt 0 = Interrupt <b>U2ERIE:</b> UA 1 = Interrupt 0 = Interrupt	request is enable request is not en RT2 Error Interru request is enable	ed nabled upt Enable bit ed nabled				
bit 2	1 = Interrupt 0 = Interrupt <b>U2ERIE:</b> UA 1 = Interrupt 0 = Interrupt <b>U1ERIE:</b> UA 1 = Interrupt	request is enable request is not en RT2 Error Interru request is enable request is not en RT1 Error Interru request is enable	ed nabled upt Enable bit ed nabled upt Enable bit ed				
bit 2	<ol> <li>1 = Interrupt</li> <li>0 = Interrupt</li> <li>U2ERIE: UA</li> <li>1 = Interrupt</li> <li>0 = Interrupt</li> <li>U1ERIE: UA</li> <li>1 = Interrupt</li> <li>0 = Interrupt</li> <li>0 = Interrupt</li> </ol>	request is enable request is not en RT2 Error Interru request is enable request is not en RT1 Error Interru	ed nabled upt Enable bit ed nabled upt Enable bit ed nabled				

### REGISTER 8-16: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—	—	—	—	—	ULPWUIE
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-1 Unimplemented: Read as '0'

bit 0 ULPWUIE: Ultra Low-Power Wake-up Interrupt Enable Bit

1 = Interrupt request is enabled

0 = Interrupt request is not enabled

^{© 2011-2012} Microchip Technology Inc.

REGISTER	8-17: IPC0	: INTERRUPT	PRIORITY	CONTROL RE	EGISTER 0		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	T1IP2	T1IP1	T1IP0	—	OC1IP2	OC1IP1	OC1IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	IC1IP2	IC1IP1	IC1IP0		INT0IP2	INT0IP1	INT0IP0
bit 7							bit 0
Legend:							
R = Readab		W = Writable t	bit	-	nented bit, rea		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
L:1 4 F			,				
bit 15	-	nted: Read as '0					
bit 14-12		Fimer1 Interrupt upt is Priority 7 (I	-	v intorrunt)			
	•		lighest phone	y interrupt)			
	•						
		upt is Priority 1					
	000 <b>= Interru</b>	upt source is disa	abled				
bit 11	Unimplemer	nted: Read as '0	,				
bit 10-8	OC1IP<2:0>	: Output Compa	re Channel 1	Interrupt Priority	y bits		
	111 = Interru	upt is Priority 7 (ł	nighest priorit	y interrupt)			
	•						
	• 001 – Interru	upt is Priority 1					
		ipt source is disa	abled				
bit 7		nted: Read as '0					
bit 6-4	-	Input Capture C		rrupt Priority bits	s		
		upt is Priority 7 (I			-		
	•			,			
	•						
		pt is Priority 1					
		upt source is disa					
bit 3	-	nted: Read as '0					
bit 2-0		: External Interro					
	111 = Interru	upt is Priority 7 (I	nighest priorit	y interrupt)			
	•						
	• 001 = Interri	upt is Priority 1					
		ipt source is disa	abled				

### REGISTER 8-18: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	T2IP2	T2IP1	T2IP0	—	OC2IP2	OC2IP1	OC2IP0
bit 15							bit 8
U-0			D/M/ O	11.0	U-0	U-0	11.0
0-0	R/W-1 IC2IP2	R/W-0	R/W-0 IC2IP0	U-0	0-0	0-0	U-0
 bit 7	IC2IP2	ICZIP I	ICZIPU	_		_	bit (
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	-	nted: Read as '					
bit 14-12		imer2 Interrupt	,				
	111 = Interru	pt is Priority 7(	highest priority	r interrupt)			
	•						
	•						
	•	unt in Duinuit 1					
		pt is Priority 1	abled				
bit 11	000 <b>= Interru</b>	pt source is dis					
bit 11 bit 10-8	000 = Interru Unimplemer	ipt source is dis nted: Read as '	כ'	nterrupt Priority	/ hits		
bit 11 bit 10-8	000 = Interru Unimplemer OC2IP<2:0>:	ipt source is dis <b>ited:</b> Read as '( : Output Compa	o' are Channel 2 I		v bits		
	000 = Interru Unimplemer OC2IP<2:0>:	ipt source is dis nted: Read as '	o' are Channel 2 I		/ bits		
	000 = Interru Unimplemer OC2IP<2:0>:	ipt source is dis <b>ited:</b> Read as '( : Output Compa	o' are Channel 2 I		/ bits		
	000 = Interru Unimplemer OC2IP<2:0>: 111 = Interru	ipt source is dis <b>ited:</b> Read as '( : Output Compa	o' are Channel 2 I		/ bits		
	000 = Interru Unimplemer OC2IP<2:0>: 111 = Interru	nted: Read as 'o ted: Read as 'o Output Compa pt is Priority 7 (	₀ , ire Channel 2 I highest priority		/ bits		
bit 10-8	000 = Interru Unimplemen OC2IP<2:0>: 111 = Interru	nted: Read as ' toutput Compa pt is Priority 7 ( pt is Priority 1	₀ ' Ire Channel 2 I highest priority abled		/ bits		
bit 10-8 bit 7	000 = Interru Unimplemen OC2IP<2:0>: 111 = Interru	pt source is dis nted: Read as 'n : Output Compa pt is Priority 7 ( pt is Priority 1 pt source is dis	^{D'} Ire Channel 2 I highest priority abled	interrupt)			
bit 10-8 bit 7	000 = Interru Unimplemen OC2IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen IC2IP<2:0>:	pt source is dis <b>ted:</b> Read as '( : Output Compa pt is Priority 7 ( pt is Priority 1 pt source is dis <b>ted:</b> Read as '(	D' are Channel 2 I highest priority abled D' Channel 2 Inter	rupt Priority bits			
bit 10-8 bit 7	000 = Interru Unimplemen OC2IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen IC2IP<2:0>:	pt source is dis <b>ited:</b> Read as '( : Output Compa pt is Priority 7 ( pt is Priority 1 pt source is dis <b>ited:</b> Read as '( Input Capture C	D' are Channel 2 I highest priority abled D' Channel 2 Inter	rupt Priority bits			
	000 = Interru Unimplemen OC2IP<2:0>: 111 = Interru 001 = Interru Unimplemen IC2IP<2:0>: 111 = Interru	pt source is dis nted: Read as ' : Output Compa pt is Priority 7 ( pt is Priority 1 pt source is dis nted: Read as ' Input Capture C pt is Priority 7 (	D' are Channel 2 I highest priority abled D' Channel 2 Inter	rupt Priority bits			
bit 10-8 bit 7	000 = Interru Unimplemen OC2IP<2:0>: 111 = Interru 001 = Interru Unimplemen IC2IP<2:0>: 111 = Interru	pt source is dis nted: Read as ' : Output Compa pt is Priority 7 ( pt is Priority 1 pt source is dis nted: Read as ' Input Capture C pt is Priority 7 (	^{D'} Ire Channel 2 I highest priority abled D' Channel 2 Inter highest priority	rupt Priority bits			
bit 10-8 bit 7	000 = Interru Unimplemen OC2IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen IC2IP<2:0>: 111 = Interru 001 = Interru 001 = Interru	pt source is dis nted: Read as ' : Output Compa pt is Priority 7 ( pt is Priority 1 pt source is dis nted: Read as ' Input Capture C pt is Priority 7 (	^{D'} are Channel 2 I highest priority abled D' Channel 2 Inter highest priority abled	rupt Priority bits			

^{© 2011-2012} Microchip Technology Inc.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	U1RXIP2	U1RXIP1	U1RXIP0	—	SPI1IP2	SPI1IP1	SPI1IP0
bit 15	·						bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
 bit 7	SPF1IP2	SPF1IP1	SPF1IP0	—	T3IP2	T3IP1	T3IP0 bit
							Dit
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	)'				
bit 14-12		: UART1 Rece	-	-			
	111 = Interrup	pt is Priority 7(	highest priority	interrupt)			
	•						
	• 001 = Interrup	nt is Priority 1					
		pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	)'				
bit 10-8	SPI1IP<2:0>:	SPI1 Event In	terrupt Priority	bits			
	111 = Interrup	pt is Priority 7 (	highest priority	interrupt)			
	•						
	• 001 = Interrup	nt in Driarity 1					
		pt is Fridity 1	abled				
bit 7	-	ted: Read as '					
bit 6-4	-	: SPI1 Fault In		bits			
		pt is Priority 7 (					
	•						
	•						
	001 = Interrup	pt is Priority 1 pt source is dis	abled				
bit 3	-	ted: Read as '					
bit 2-0	-	imer3 Interrupt					
		pt is Priority 7 (	-	(interrunt)			
	•		ingricer priority	interrupt)			
	•						
		pt is Priority 1 pt source is dis					

### REGISTER 8-19: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

### REGISTER 8-20: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	NVMIP2	NVMIP1	NVMIP0	_			
pit 15							bit 8
	<b>D</b> 444 4	<b></b>	<b>D</b> /11/0		<b>D</b> 444 4	<b>D</b> 444 0	<b>D</b> 444.0
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	AD1IP2	AD1IP1	AD1IP0	—	U1TXIP2	U1TXIP1	U1TXIP0
bit 7							bit (
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	Unimplemer	nted: Read as '	כי				
bit 14-12		: NVM Interrupt					
	111 = Interru	pt is Priority 7 (	highest priority	y interrupt)			
	•						
	•	ntin Drierity (					
		pt is Priority 1 pt source is dis	abled				
bit 11-7		nted: Read as '					
bit 6-4	-			Iterrupt Priority	hite		
		pt is Priority 7 (	•		5115		
	•		nightest phone	y interrupt)			
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 3	Unimplemer	ted: Read as '	כי				
oit 2-0	U1TXIP<2:0:	-: UART1 Trans	smitter Interrup	ot Priority bits			
	111 = Interru	pt is Priority 7 (	highest priority	/ interrupt)			
	•						
		pt is Priority 1 pt source is dis					

^{© 2011-2012} Microchip Technology Inc.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	CNIP2	CNIP1	CNIP0		CMIP2	CMIP1	CMIP0
bit 15	·					·	bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	MI2C1P2	MI2C1P1	MI2C1P0	_	SI2C1P2	SI2C1P1	SI2C1P0
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15	-	ted: Read as 'o					
bit 14-12		nput Change N			ts		
	111 = Interru	pt is Priority 7 (	highest priority	interrupt)			
	•						
	• 001 = Interru	pt is Priority 1					
		pt source is dis	abled				
bit 11	Unimplemen	ted: Read as 'd	)'				
bit 10-8	CMIP<2:0>: (	Comparator Inte	errupt Priority b	oits			
	111 = Interru	pt is Priority 7 (	highest priority	interrupt)			
	•						
	• 001 = Interru	ot is Priority 1					
		pt source is dis	abled				
bit 7	Unimplemen	ted: Read as 'o	)'				
bit 6-4	MI2C1P<2:0>	-: Master I2C1	Event Interrupt	Priority bits			
	111 = Interru	pt is Priority 7 (	highest priority	interrupt)			
	•						
	• 001 = Interru	nt is Priority 1					
		pt source is dis	abled				
	Unimplemen	ted: Read as 'd	)'				
bit 3							
bit 3 bit 2-0	SI2C1P<2:0>	: Slave I2C1 E	vent Interrupt F	Priority bits			
		: Slave I2C1 E pt is Priority 7 (	-	-			
			-	-			
		pt is Priority 7(	-	-			

#### REGISTER 8-21: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

### REGISTER 8-22: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—		—	—	INT1IP2	INT1IP1	INT1IP0
bit 7							bit 0

### Legend:

bit 2-0

Logona.				
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

### bit 15-3 Unimplemented: Read as '0'

- INT1IP<2:0>: External Interrupt 1 Priority bits
  - 111 = Interrupt is Priority 7 (highest priority interrupt)
  - •
  - 001 = Interrupt is Priority 1
  - 000 = Interrupt source is disabled

^{© 2011-2012} Microchip Technology Inc.

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	T4IP2	T4IP1	T4IP0	—	—	—	_
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	OC3IP2	OC3IP1	OC3IP0	—	_	—	—
oit 7							bit 0
Legend:							
R = Readabl		W = Writable			ented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15	Unimplemen	ted: Read as '	0'				
	-	ted: Read as ' imer4 Interrupt					
	T4IP<2:0>: ⊺	t <b>ed:</b> Read as ' ïmer4 Interrupt pt is Priority 7 (	Priority bits	∕ interrupt)			
	T4IP<2:0>: T 111 = Interru	imer4 Interrupt pt is Priority 7 (	Priority bits highest priority	/ interrupt)			
bit 15 bit 14-12 bit 11-7	T4IP<2:0>: T 111 = Interru 001 = Interru 000 = Interru	imer4 Interrupt pt is Priority 7 ( pt is Priority 1	Priority bits highest priority abled	/ interrupt)			
bit 14-12	T4IP<2:0>: T 111 = Interru 001 = Interru 000 = Interru Unimplemen OC3IP<2:0>: 111 = Interru	imer4 Interrupt pt is Priority 7 ( pt is Priority 1 pt source is dis <b>ted:</b> Read as ' Output Compa pt is Priority 7 (	Priority bits highest priority abled 0' are Channel 3 highest priority	Interrupt Priority	' bits		

#### REGISTER 8-23: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

REGISTER	8-24: IPC7:	INTERRUPT	PRIORITY C	ONTROL RE	EGISTER 7		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	U2TXIP2	U2TXIP1	U2TXIP0	—	U2RXIP2	U2RXIP1	U2RXIP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	INT2IP2	INT2IP1	INT2IP0	—	T5IP2	T5IP1	T5IP0
bit 7							bit 0
Legend:	- 1-14					1 (0)	
R = Readabl		W = Writable	DIt	-	nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN
bit 15	Unimplemen	ted: Read as '	ı'				
bit 14-12	•	UART2 Trans		t Priority bite			
DIL 14-12		pt is Priority 7 (	-	-			
	•		nighest phonty	interrupt)			
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as 'd	)'				
bit 10-8	U2RXIP<2:0>	: UART2 Rece	iver Interrupt F	riority bits			
	111 = Interru	pt is Priority 7 (	highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1 pt source is dis	abled				
bit 7	-	ted: Read as '					
	•			:4-			
bit 6-4		External Interr					
	•	pt is Priority 7 (	nignest phonty	interrupt)			
	•						
	• 001 = Interru	pt is Priority 1					
		pt source is dis	abled				
bit 3	Unimplemen	ted: Read as 'd	)'				
bit 2-0	<b>T5IP&lt;2:0&gt;:</b> Ti	imer5 Interrupt	Priority bits				
		pt is Priority 7 (	-	interrupt)			
	•						
	•						
	001 = Interru						
	000 = Interru	pt source is dis	abled				

#### AIATE

REGISTER 8	8-25: IPC8:	INTERRUPT	PRIORITY	CONTROL RE	GISTER 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	_	—		—	—	—	_	
bit 15							bit 8	
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
—	SPI2IP2	SPI2IP1	SPI2IP0		SPF2IP2	SPF2IP1	SPF2IP0	
bit 7							bit C	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown	
bit 15-7	Unimplement	ted: Read as '	o'					
bit 6-4		SPI2 Event In						
	111 = Interrup	ot is Priority 7(	highest priority	v interrupt)				
	•							
	•							
	001 = Interrup	ot is Priority 1	abled					
bit 3	•	ted: Read as '						
bit 2-0	-	: SPI2 Fault In		bite				
DIL 2-0		ot is Priority 7 (						
	•		nighest phonty	milenupi)				
	•							
	001 = Interrup	ot is Priority 1						
	000 = Interrur	ot source is dis	ahled					

U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	_
						bit 8
R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
IC3IP2	IC3IP1	IC3IP0	—	—	—	_
						bit 0
ole bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'	
It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
Unimplemer	ted: Read as '0	)'				
IC3IP<2:0>:	Input Capture C	hannel 3 Ever	nt Interrupt Prior	rity bits		
111 = Interru	pt is Priority 7 (I	nighest priority	interrupt)			
•		0 , ,	. ,			
•						
001 = Interru	pt is Priority 1					
		abled				
	R/W-1           IC3IP2           ole bit           tt POR           Unimplement           IC3IP           III1 = Interrut           001 = Interrut	R/W-1       R/W-0         IC3IP2       IC3IP1         ole bit       W = Writable H         tt POR       '1' = Bit is set         Unimplemented:       Read as '0'         IC3IP       Input Capture C         111 = Interrupt is Priority 7 (H         001 = Interrupt is Priority 1	R/W-1       R/W-0       R/W-0         IC3IP2       IC3IP1       IC3IP0         ble bit       W = Writable bit         tt POR       '1' = Bit is set         Unimplemented: Read as '0'         IC3IP         IC3IP         IC3IP         IC3IP         IC3IP         IC3IP         W = Writable bit         IC3IP         IC3IP	-       -       -         R/W-1       R/W-0       R/W-0       U-0         IC3IP2       IC3IP1       IC3IP0       -         ole bit       W = Writable bit       U = Unimplemented:         tt POR       '1' = Bit is set       '0' = Bit is cleat         Unimplemented:       Read as '0'         IC3IP       IC3IP         IC3IP       Sevent Interrupt Prior         111 = Interrupt is Priority 7 (highest priority interrupt)         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .	R/W-1       R/W-0       R/W-0       U-0         IC3IP2       IC3IP1       IC3IP0       —       —         ole bit       W = Writable bit       U = Unimplemented bit, read         tt POR       '1' = Bit is set       '0' = Bit is cleared         Unimplemented: Read as '0'       IC3IP       IC3IP       Event Interrupt Priority bits         111 = Interrupt is Priority 7 (highest priority interrupt)       •       •         •       •       •       •         •       •       •       •	R/W-1       R/W-0       R/W-0       U-0       U-0       U-0         IC3IP2       IC3IP1       IC3IP0       —       —       —       —         ble bit       W = Writable bit       U = Unimplemented bit, read as '0'       IC3IP2       IC3IP1       IC3IP2         Unimplemented:       Read as '0'       IO' = Bit is cleared       x = Bit is unknown         Unimplemented:       Read as '0'       IC3IP       IC3IP       Interrupt Priority bits         I11 = Interrupt is Priority 7 (highest priority interrupt)       Image: Interrupt is Priority 1       Image: Interrupt is Priority 1

**IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9** 

bit 3-0 Unimplemented: Read as '0'

**REGISTER 8-26:** 

^{© 2011-2012} Microchip Technology Inc.

REGISTER	0-27: IPC14			CONTROL	CEGISTER 12					
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0			
_	—	—	—	—	MI2C2IP2	MI2C2IP1	MI2C2IP0			
bit 15						•	bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
—	SI2C2IP2	SI2C2IP1	SI2C2IP0	_	—		—			
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-11	Unimplemen	ted: Read as '	0'							
bit 10-8	MI2C2IP <2:0	D>: Master I2C2	2 Event Interru	pt Priority bits						
	111 = Interru	pt is Priority 7(	highest priority	interrupt)						
	•									
	• 001 = Interru	pt is Priority 1								
		pt source is dis	abled							
bit 7	Unimplemen	ted: Read as '	0'							
bit 6-4	SI2C2IP<2:0:	>: Slave I2C2 E	Event Interrupt	Priority bits						
	111 = Interru	1 = Interrupt is Priority 7 (highest priority interrupt)								
	•									
	•	et is Deiseite 4								
	001 = Interru	pt is Priority 1 pt source is dis	abled							
bit 3-0		ted: Read as '								
			0							

#### REGISTER 8-27: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12

### REGISTER 8-28: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—		—	RTCIP2	RTCIP1	RTCIP0
bit 15	-						bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	_
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is			iown
bit 15-11	Unimplemen	ted: Read as '0	,				
bit 10-8	RTCIP<2:0>:	Real-Time Cloc	k and Calend	ar Interrupt Pric	ority bits		
	111 = Interru	pt is Priority 7 (h	nighest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is disa	abled				

bit 7-0 Unimplemented: Read as '0'

^{© 2011-2012} Microchip Technology Inc.

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
_	CRCIP2	CRCIP1	CRCIP0	—	U2ERIP2	U2ERIP1	U2ERIP0	
bit 15							bit 8	
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
	U1ERIP2	U1ERIP1	U1ERIP0					
bit 7	O TEI (II E	01EI (III 1	O I EI (II O				bit	
Legend:								
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
	<pre>111 = Interrupt is Priority 7 (highest priority interrupt)</pre>							
bit 11 bit 10-8	Unimplemen U2ERIP<2:0;	ited: Read as ' >: UART2 Error	)' Interrupt Prior	•				
	Unimplemen U2ERIP<2:02 111 = Interru 001 = Interru 000 = Interru Unimplemen U1ERIP<2:02 111 = Interru	<ul> <li>ted: Read as '</li> <li>: UART2 Error</li> <li>pt is Priority 7 (</li> <li>pt is Priority 1</li> <li>pt source is dis</li> <li>ted: Read as '</li> <li>: UART1 Error</li> <li>pt is Priority 7 (</li> </ul>	^{D'} Interrupt Prior highest priority abled D' Interrupt Prior highest priority	v interrupt)				

### REGISTER 8-29: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

### REGISTER 8-30: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18

-         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
bit 15 bit	—	—	—	—	—	—	-	—
	bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	—	—	HLVDIP2	HLVDIP1	HLVDIP0
bit 7							bit 0

### Legend:

bit 6-4

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

#### bit 15-3 Unimplemented: Read as '0'

bit 2-0	HLVDIP<2:0>: High/Low-Voltage Detect Interrupt Priority bits
	111 = Interrupt is Priority 7 (highest priority interrupt)
	•
	•
	•
	001 = Interrupt is Priority 1

000 = Interrupt source is disabled

#### REGISTER 8-31: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15	•	•				•	bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	CTMUIP2	CTMUIP1	CTMUIP0	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	id as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'

CTMUIP<2:0>: CTMU Interrupt Priority bits

111 = Interrupt is Priority 7 (highest priority interrupt)
•

•

- 001 = Interrupt is Priority 1 000 = Interrupt source is disabled
- bit 3-0 **Unimplemented:** Read as '0'

^{© 2011-2012} Microchip Technology Inc.

### REGISTER 8-32: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	_	—	_	ULPWUIP2	ULPWUIP1	ULPWUIP0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

### bit 15-3 Unimplemented: Read as '0'

bit 6-4 ULPWUIP<2:0>: Ultra Low-Power Wake-up Interrupt Priority bits

111 = Interrupt is Priority 7 (highest priority interrupt)

:

001 = Interrupt is Priority 1

000 = Interrupt source is disabled

### REGISTER 8-33: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

R-0	U-0	R/W-0	U-0	R-0	R-0	R-0	R-0						
CPUIRQ	_	VHOLD	—	ILR3	ILR2	ILR1	ILR0						
bit 15							bit 8						
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0						
—	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0						
bit 7							bit 0						
Legend: R = Readabl	o hit	W = Writable	hit		nonted hit read	0,							
-n = Value at		'1' = Bit is set		0 = Onimpler 0' = Bit is cle	nented bit, read	x = Bit is unkr	0000						
	FUR				areu		IOWII						
bit 15	CPUIRQ: Inte	errupt Request	from Interrupt	Controller CPI	J bit								
					been Acknowl	edged by the	CPU (this will						
	happen v	when the CPU	oriority is high	er than the inte		0	,						
		upt request is le		edged									
bit 14	Unimplemented: Read as '0'												
bit 13	VHOLD: Vector Hold bit												
	Allows Vector Number Capture and Changes which Interrupt is Stored in the VECNUM bit:												
	<ol> <li>VECNUM will contain the value of the highest priority pending interrupt, instead of the current interrupt</li> </ol>												
	0 = VECNUM will contain the value of the last Acknowledged interrupt (last interrupt that has occurred												
	with high	er priority than	the CPU, eve	n if other interr	upts are pendin	ig)							
bit 12	Unimplemen	ted: Read as '	0'										
bit 11-8	ILR<3:0>: Ne	ew CPU Interru	pt Priority Leve	el bits									
	1111 = CPU Interrupt Priority Level is 15												
	• 0001 = CPU Interrupt Priority Level is 1												
		Interrupt Priorit											
bit 7		ted: Read as '	•										
bit 6-0	VECNUM<6:0	0>: Vector Num	ber of Pendin	g Interrupt bits	;								
	0111111 = lr	nterrupt vector	pending is Nur	mber 135									
	:												
	•		:										
	0000001 = Interrupt vector pending is Number 9 0000000 = Interrupt vector pending is Number 8												
			•										

^{© 2011-2012} Microchip Technology Inc.

### 8.4 Interrupt Setup Procedures

### 8.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS control bit (INTCON1<15>) if nested interrupts are not desired.
- 2. Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value.

**Note:** At a device Reset, the IPCx registers are initialized, such that all user interrupt sources are assigned to Priority Level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

### 8.4.2 INTERRUPT SERVICE ROUTINE

The method that is used to declare an ISR (Interrupt Service Routine) and initialize the IVT with the correct vector address depends on the programming language (i.e., C or assembly) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

### 8.4.3 TRAP SERVICE ROUTINE (TSR)

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

### 8.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

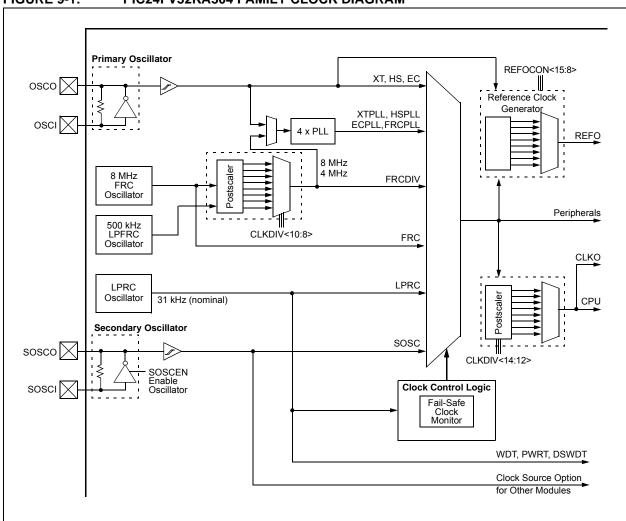
- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value, OEh with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Only user interrupts with a priority level of 7 or less can be disabled. Trap sources (Level 8-15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels 1-6 for a fixed period. Level 7 interrupt sources are not disabled by the DISI instruction.

### 9.0 OSCILLATOR CONFIGURATION


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Oscillator Configuration, refer to the *"PIC24F Family Reference Manual"*, Section 38. "Oscillator with 500 kHz Low-Power FRC" (DS39726).

The oscillator system for the PIC24FV32KA304 family of devices has the following features:

- A total of five external and internal oscillator options as clock sources, providing 11 different clock modes.
- On-chip 4x Phase Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources.

- Software-controllable switching between various clock sources.
- Software-controllable postscaler for selective clocking of CPU for system power savings.
- System frequency range declaration bits for EC mode. When using an external clock source, the current consumption is reduced by setting the declaration bits to the expected frequency range.
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown.

A simplified diagram of the oscillator system is shown in Figure 9-1.



### FIGURE 9-1: PIC24FV32KA304 FAMILY CLOCK DIAGRAM

© 2011-2012 Microchip Technology Inc.

### 9.1 CPU Clocking Scheme

The system clock source can be provided by one of four sources:

- Primary Oscillator (POSC) on the OSCI and OSCO pins
- Secondary Oscillator (SOSC) on the SOSCI and SOSCO pins

The PIC24FV32KA304 family devices consist of two types of secondary oscillator:

- High-Power Secondary Oscillator
- Low-Power Secondary Oscillator

These can be selected by using the SOSCSEL (FOSC<5>) bit.

- Fast Internal RC (FRC) Oscillator
  - 8 MHz FRC Oscillator
  - 500 kHz Lower Power FRC Oscillator
- Low-Power Internal RC (LPRC) Oscillator with two modes:
  - High-Power/High Accuracy mode
  - Low-Power/Low Accuracy mode

The primary oscillator and 8 MHz FRC sources have the option of using the internal 4x PLL. The frequency of the FRC clock source can optionally be reduced by the programmable clock divider. The selected clock source generates the processor and peripheral clock sources.

The processor clock source is divided by two to produce the internal instruction cycle clock, Fcy. In this document, the instruction cycle clock is also denoted by Fosc/2. The internal instruction cycle clock, Fosc/2, can be provided on the OSCO I/O pin for some operating modes of the primary oscillator.

### 9.2 Initial Configuration on POR

The oscillator source (and operating mode) that is used at a device Power-on Reset (POR) event is selected using Configuration bit settings. The Oscillator Configuration bit settings are located in the Configuration registers in the program memory (for more information, see Section 26.1 "Configuration Bits"). The Primary Configuration POSCMD<1:0> Oscillator bits, (FOSC<1:0>), and the Initial Oscillator Select Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), select the oscillator source that is used at a POR. The FRC Primary Oscillator with Postscaler (FRCDIV) is the default (unprogrammed) selection. The secondary oscillator, or one of the internal oscillators, may be chosen by programming these bit locations. The EC mode Frequency Range Configuration bits, POSCFREQ<1:0> (FOSC<4:3>), optimize power consumption when running in EC mode. The default configuration is "frequency range is greater than 8 MHz".

The Configuration bits allow users to choose between the various clock modes, shown in Table 9-1.

### 9.2.1 CLOCK SWITCHING MODE CONFIGURATION BITS

The FCKSMx Configuration bits (FOSC<7:6>) are used jointly to configure device clock switching and the FSCM. Clock switching is enabled only when FCKSM1 is programmed ('0'). The FSCM is enabled only when FCKSM<1:0> are both programmed ('00').

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Notes
8 MHz FRC Oscillator with Postscaler (FRCDIV)	Internal	11	111	1, 2
500 kHz FRC Oscillator with Postscaler (LPFRCDIV)	Internal	11	110	1
Low-Power RC Oscillator (LPRC)	Internal	11	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	00	100	1
Primary Oscillator (HS) with PLL Module (HSPLL)	Primary	10	011	
Primary Oscillator (EC) with PLL Module (ECPLL)	Primary	00	011	
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	
8 MHz FRC Oscillator with PLL Module (FRCPLL)	Internal	11	001	1
8 MHz FRC Oscillator (FRC)	Internal	11	000	1

### TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

**Note 1:** The OSCO pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

### 9.3 Control Registers

The operation of the oscillator is controlled by three Special Function Registers (SFRs):

- OSCCON
- CLKDIV
- OSCTUN

The OSCCON register (Register 9-1) is the main control register for the oscillator. It controls clock source switching and allows the monitoring of clock sources.

The Clock Divider register (Register 9-2) controls the features associated with Doze mode, as well as the postscaler for the FRC oscillator.

The FRC Oscillator Tune register (Register 9-3) allows the user to fine tune the FRC oscillator over a range of approximately  $\pm 5.25\%$ . Each bit increment or decrement changes the factory calibrated frequency of the FRC oscillator by a fixed amount.

### REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER

U-0	R-0, HSC	R-0, HSC	R-0, HSC	U-0	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾	R/W-x ⁽¹⁾
—	COSC2	COSC1	COSC0	—	NOSC2	NOSC1	NOSC0
bit 15							bit 8

R/SO-0, HSC	U-0	R-0, HSC ⁽²⁾	U-0	R/CO-0, HS	R/W-0 ⁽³⁾	R/W-0	R/W-0
CLKLOCK	—	LOCK	—	CF	SOSCDRV	SOSCEN	OSWEN
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
HS = Hardware Settable bit	CO = Clearable Only bit	SO = Settable Only bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	Unimplemented: Read as '0'
bit 14-12	COSC<2:0>: Current Oscillator Selection bits
	<ul> <li>111 = 8 MHz Fast RC Oscillator with Postscaler (FRCDIV)</li> <li>110 = 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV)</li> <li>101 = Low-Power RC Oscillator (LPRC)</li> <li>100 = Secondary Oscillator (SOSC)</li> <li>011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)</li> <li>010 = Primary Oscillator (XT, HS, EC)</li> <li>001 = 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL)</li> <li>000 = 8 MHz FRC Oscillator (FRC)</li> </ul>
bit 11	Unimplemented: Read as '0'
bit 10-8	NOSC<2:0>: New Oscillator Selection bits ⁽¹⁾
	<ul> <li>111 = 8 MHz Fast RC Oscillator with Postscaler (FRCDIV)</li> <li>110 = 500 kHz Low-Power Fast RC Oscillator (FRC) with Postscaler (LPFRCDIV)</li> <li>101 = Low-Power RC Oscillator (LPRC)</li> <li>100 = Secondary Oscillator (SOSC)</li> <li>011 = Primary Oscillator with PLL module (XTPLL, HSPLL, ECPLL)</li> <li>010 = Primary Oscillator (XT, HS, EC)</li> <li>001 = 8 MHz FRC Oscillator with Postscaler and PLL module (FRCPLL)</li> <li>000 = 8 MHz FRC Oscillator (FRC)</li> </ul>
Note 1:	Reset values for these bits are determined by the FNOSCx Configuration bits.
2:	This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.
э.	When SOSS is adjusted to run from a digital alook input rather than an external envetal (SOSSERC = 0

**3:** When SOSC is selected to run from a digital clock input, rather than an external crystal (SOSCSRC = 0), this bit has no effect.

© 2011-2012 Microchip Technology Inc.

### REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER (CONTINUED)

bit 7	CLKLOCK: Clock Selection Lock Enabled bit <u>If FSCM is enabled (FCKSM1 = 1):</u> 1 = Clock and PLL selections are locked 0 = Clock and PLL selections are not locked and may be modified by setting the OSWEN bit <u>If FSCM is disabled (FCKSM1 = 0):</u> Clock and PLL selections are never locked and may be modified by setting the OSWEN bit.
bit 6	Unimplemented: Read as '0'
bit 5	LOCK: PLL Lock Status bit ⁽²⁾ 1 = PLL module is in lock or PLL module start-up timer is satisfied 0 = PLL module is out of lock, PLL start-up timer is running or PLL is disabled
bit 4	Unimplemented: Read as '0'
bit 3	<b>CF:</b> Clock Fail Detect bit 1 = FSCM has detected a clock failure 0 = No clock failure has been detected
bit 2	<b>SOSCDRV</b> : Secondary Oscillator Drive Strength bit ⁽³⁾ 1 = High-power SOSC circuit is selected 0 = Low/high-power select is done via the SOSCSRC Configuration bit
bit 1	<b>SOSCEN:</b> 32 kHz Secondary Oscillator (SOSC) Enable bit 1 = Enables the secondary oscillator 0 = Disables the secondary oscillator
bit 0	<b>OSWEN:</b> Oscillator Switch Enable bit 1 = Initiates an oscillator switch to the clock source specified by the NOSC<2:0> bits 0 = Oscillator switch is complete
Note 1:	Reset values for these bits are determined by the FNOSCx Configuration bits.

- 2: This bit also resets to '0' during any valid clock switch or whenever a non-PLL Clock mode is selected.
- **3:** When SOSC is selected to run from a digital clock input, rather than an external crystal (SOSCSRC = 0), this bit has no effect.

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-1					
ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDIV0					
pit 15							bit 8					
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
 bit 7	_	—	_	_	_	_	 bit (					
							Dit t					
Legend:												
R = Readab	le bit	W = Writable b	oit	U = Unimplem	ented bit, rea	d as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkr	nown					
bit 15		on Interrupt bit		set the CPU and	h narinharal cl	ock ratio to 1.1						
		<ul> <li>1 = Interrupts clear the DOZEN bit, and reset the CPU and peripheral clock ratio to 1:1</li> <li>0 = Interrupts have no effect on the DOZEN bit</li> </ul>										
bit 14-12	DOZE<2:0>:	<b>DOZE&lt;2:0&gt;:</b> CPU and Peripheral Clock Ratio Select bits										
	111 = <b>1</b> : <b>128</b>	·										
	110 = 1:64											
	101 = 1:32 100 = 1:16											
	100 = 1.16 011 = 1.8											
	010 = 1:4											
	001 = 1:2											
	000 = 1:1											
bit 11	<b>DOZEN:</b> Doze Enable bit ⁽¹⁾ 1 = DOZE<2:0> bits specify the CPU and peripheral clock ratio											
		peripheral cloc			ratio							
bit 10-8												
	RCDIV<2:0>: FRC Postscaler Select bits When COSC<2:0> (OSCCON<14:12>) = <u>111:</u>											
	$\frac{\text{When } \cos(\sqrt{2.0^2}) + \cos(\sqrt{14.12^2}) - 111}{111 = 31.25 \text{ kHz} (\text{divide-by-256})}$											
	110 = 125 kHz (divide-by-64)											
	101 = 250 kHz (divide-by-32)											
	100 = 500 kHz (divide-by-16)											
	011 = 1 MHz (divide-by-8) 010 = 2 MHz (divide-by-4)											
	010 = 2  MHz (divide-by-2) (default) 001 = 4  MHz (divide-by-2) (default)											
	000 = 8  MHz (divide-by-1)											
	When COSC<2:0> (OSCCON<14:12>) = 110:											
	111 = 1.95  kHz (divide-by-256)											
		110 = 7.81 kHz (divide-by-64) 101 = 15.62 kHz (divide-by-32)										
		Hz (divide-by-1										
	011 <b>= 62.5 kH</b>	Iz (divide-by-8)										
		z (divide-by-4)	(defeult)									
		z (divide-by-2) z (divide-by-1)	(uerault)									
		ted: Read as '0										

### REGISTER 9-2: CLKDIV: CLOCK DIVIDER REGISTER

bit 7-0 Unimplemented: Read as '0'

**Note 1:** This bit is automatically cleared when the ROI bit is set and an interrupt occurs.

^{© 2011-2012} Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—				_			
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		TUN5 ⁽¹⁾	TUN4 ⁽¹⁾	TUN3 ⁽¹⁾	TUN2 ⁽¹⁾	TUN1 ⁽¹⁾	TUN0 ⁽¹⁾	
bit 7							bit 0	
r								
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read		d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-6 bit 5-0								

### REGISTER 9-3: OSCTUN: FRC OSCILLATOR TUNE REGISTER

**Note 1:** Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC tuning range and may not be monotonic.

### 9.4 Clock Switching Operation

With few limitations, applications are free to switch between any of the four clock sources (POSC, SOSC, FRC and LPRC) under software control and at any time. To limit the possible side effects that could result from this flexibility, PIC24F devices have a safeguard lock built into the switching process.

Note: The Primary Oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMDx Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

### 9.4.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the FOSC Configuration register must be programmed to '0'. (Refer to **Section 26.0** "**Special Features**" for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and FSCM function are disabled. This is the default setting.

The NOSCx control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSCx bits (OSCCON<14:12>) will reflect the clock source selected by the FNOSCx Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled; it is held at '0' at all times.

#### 9.4.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSCx bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- 3. Write the appropriate value to the NOSCx bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically, as follows:

- 1. The clock switching hardware compares the COSCx bits with the new value of the NOSCx bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and CF (OSCCON<3>) bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware will wait until the OST expires. If the new source is using the PLL, then the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSCx bits value is transferred to the COSCx bits.
- The old clock source is turned off at this time, with the exception of LPRC (if WDT, FSCM or RTCC with LPRC as a clock source is enabled) or SOSC (if SOSCEN remains enabled).

Note 1: The processor will continue to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.

2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes. The following code sequence for a clock switch is recommended:

- 1. Disable interrupts during the OSCCON register unlock and write sequence.
- Execute the unlock sequence for the OSCCON high byte by writing 78h and 9Ah to OSCCON<15:8>, in two back-to-back instructions.
- 3. Write new oscillator source to the NOSCx bits in the instruction immediately following the unlock sequence.
- Execute the unlock sequence for the OSCCON low byte by writing 46h and 57h to OSCCON<7:0>, in two back-to-back instructions.
- 5. Set the OSWEN bit in the instruction immediately following the unlock sequence.
- 6. Continue to execute code that is not clock-sensitive (optional).
- 7. Invoke an appropriate amount of software delay (cycle counting) to allow the selected oscillator and/or PLL to start and stabilize.
- 8. Check to see if OSWEN is '0'. If it is, the switch was successful. If OSWEN is still set, then check the LOCK bit to determine the cause of failure.

The core sequence for unlocking the OSCCON register and initiating a clock switch is shown in Example 9-1.

#### EXAMPLE 9-1: BASIC CODE SEQUENCE FOR CLOCK SWITCHING

### 9.5 Reference Clock Output

In addition to the CLKO output (Fosc/2) available in certain oscillator modes, the device clock in the PIC24FV32KA304 family devices can also be configured to provide a reference clock output signal to a port pin. This feature is available in all oscillator configurations and allows the user to select a greater range of clock submultiples to drive external devices in the application.

This reference clock output is controlled by the REFOCON register (Register 9-4). Setting the ROEN bit (REFOCON<15>) makes the clock signal available on the REFO pin. The RODIV bits (REFOCON<11:8>) enable the selection of 16 different clock divider options.

The ROSSLP and ROSEL bits (REFOCON<13:12>) control the availability of the reference output during Sleep mode. The ROSEL bit determines if the oscillator on OSC1 and OSC2, or the current system clock source, is used for the reference clock output. The ROSSLP bit determines if the reference source is available on REFO when the device is in Sleep mode.

To use the reference clock output in Sleep mode, both the ROSSLP and ROSEL bits must be set. The device clock must also be configured for one of the primary modes (EC, HS or XT); otherwise, if the ROSEL bit is not also set, the oscillator on OSC1 and OSC2 will be powered down when the device enters Sleep mode. Clearing the ROSEL bit allows the reference output frequency to change as the system clock changes during any clock switches.

### REGISTER 9-4: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

KLGIJILK :	5-4. KLIO						
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROEN		ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0
bit 15					·		bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0
bit 7		_			_		bit C
Legend:							
R = Readable	e bit	W = Writable I	oit	•	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	1 = Reference 0 = Reference	ence Oscillator e oscillator is er e oscillator is di	nabled on REF sabled				
bit 14	-	ted: Read as '0					
bit 13 bit 12	1 = Reference 0 = Reference	ference Oscillat e oscillator cont e oscillator is dis rence Oscillato	inues to run in sabled in Slee	Sleep			
011 12	1 = Primary c	scillator is used as	d as the base	clock ⁽¹⁾	eflects any cloc	k switching of t	he device
bit 11-8	1111 = Base 1110 = Base 1101 = Base 1001 = Base 1011 = Base 1001 = Base 1000 = Base 0111 = Base 0110 = Base 0101 = Base 0100 = Base 0011 = Base 0011 = Base	Reference Osc clock value divi clock value divi	ded by 32,768 ded by 16,384 ded by 8,192 ded by 4,096 ded by 2,048 ded by 1,024 ded by 512 ded by 512 ded by 256 ded by 128 ded by 64 ded by 32 ded by 16 ded by 8 ded by 4	3			
bit 7-0	Unimplemen	ted: Read as 'o	)'				

**Note 1:** The crystal oscillator must be enabled using the FOSC<2:0> bits; the crystal maintains the operation in Sleep mode.

NOTES:

### **10.0 POWER-SAVING FEATURES**

Note:	This data sheet summarizes the features							
	of this group of PIC24F devices. It is							
	not intended to be a comprehensive							
	reference source. For more information,							
	refer to the "PIC24F Family Reference							
	Manual", "Section 39. Power-Saving							
	Features with Deep Sleep" (DS39727).							

The PIC24FV32KA304 family of devices provides the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. All PIC24F devices manage power consumption in four different ways:

- Clock frequency
- Instruction-based Sleep, Idle and Deep Sleep modes
- · Software Controlled Doze mode
- Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption, while still maintaining critical application features, such as timing-sensitive communications.

### 10.1 Clock Frequency and Clock Switching

PIC24F devices allow for a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSCx bits. The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in Section 9.0 "Oscillator Configuration".

### 10.2 Instruction-Based Power-Saving Modes

PIC24F devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution; Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. Deep Sleep mode stops clock operation, code execution and all peripherals, except RTCC and DSWDT. It also freezes I/O states and removes power to SRAM and Flash memory. The assembly syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

#### 10.2.1 SLEEP MODE

Sleep mode includes these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum provided that no I/O pin is sourcing current.
- The I/O pin directions and states are frozen.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Sleep mode if the WDT or RTCC with LPRC as the clock source is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items, such as the input change notification on the I/O ports, or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode.

The device will wake-up from Sleep mode on any of these events:

- On any interrupt source that is individually enabled
- · On any form of device Reset
- · On a WDT time-out

On wake-up from Sleep, the processor will restart with the same clock source that was active when Sleep mode was entered.

#### EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

mode

© 2011-2012 Microchip Technology Inc.

### 10.2.2 IDLE MODE

Idle mode has these features:

- The CPU will stop executing instructions.
- · The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.6 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- Any interrupt that is individually enabled
- · Any device Reset
- · A WDT time-out

On wake-up from Idle, the clock is re-applied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

#### 10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

### 10.2.4 DEEP SLEEP MODE

In PIC24FV32KA304 family devices, Deep Sleep mode is intended to provide the lowest levels of power consumption available without requiring the use of external switches to completely remove all power from the device. Entry into Deep Sleep mode is completely under software control. Exit from Deep Sleep mode can be triggered from any of the following events:

- POR event
- MCLR event
- RTCC alarm (If the RTCC is present)
- External Interrupt 0
- Deep Sleep Watchdog Timer (DSWDT) time-out
- Ultra Low-Power Wake-up (ULPWU) event

In Deep Sleep mode, it is possible to keep the device Real-Time Clock and Calendar (RTCC) running without the loss of clock cycles.

The device has a dedicated Deep Sleep Brown-out Reset (DSBOR) and a Deep Sleep Watchdog Timer Reset (DSWDT) for monitoring voltage and time-out events. The DSBOR and DSWDT are independent of the standard BOR and WDT used with other power-managed modes (Sleep, Idle and Doze).

### 10.2.4.1 Entering Deep Sleep Mode

Deep Sleep mode is entered by setting the DSEN bit in the DSCON register and then executing a Sleep command (PWRSAV #SLEEP_MODE). An unlock sequence is required to set the DSEN bit. Once the DSEN bit has been set, there is no time limit before the SLEEP command can be executed. The DSEN bit is automatically cleared when exiting the Deep Sleep mode.

Note:	To re-enter Deep Sleep after a Deep Sleep
	wake-up, allow a delay of at least 3 TCY
	after clearing the RELEASE bit.

The sequence to enter Deep Sleep mode is:

- If the application requires the Deep Sleep WDT, enable it and configure its clock source. For more information on Deep Sleep WDT, see Section 10.2.4.5 "Deep Sleep WDT".
- If the application requires Deep Sleep BOR, enable it by programming the DSLPBOR Configuration bit (FDS<6>).
- 3. If the application requires wake-up from Deep Sleep on RTCC alarm, enable and configure the RTCC module For more information on RTCC, see Section 19.0 "Real-Time Clock and Calendar (RTCC)".
- If needed, save any critical application context data by writing it to the DSGPR0 and DSGPR1 registers (optional).
- 5. Enable Deep Sleep mode by setting the DSEN bit (DSCON<15>).

Note: An unlock sequence is required to set the DSEN bit.

 Enter Deep Sleep mode by issuing a PWRSAV #0 instruction.

Any time the DSEN bit is set, all bits in the DSWAKE register will be automatically cleared.

To set the DSEN bit, the unlock sequence in Example 10-2 is required:

### EXAMPLE 10-2: THE UNLOCK SEQUENCE

//Disa	able Interrupts For 5 instructions
asm	<pre>volatile("disi #5");</pre>
//Issu	le Unlock Sequence
asm	volatile
mov	#0x55, W0;
mov	W0, NVMKEY;
mov	#0xAA, W1;
mov	W1, NVMKEY;
bset	DSCON, #DSEN

### 10.2.4.2 Exiting Deep Sleep Mode

Deep Sleep mode exits on any one of the following events:

- A POR event on VDD supply. If there is no DSBOR circuit to re-arm the VDD supply POR circuit, the external VDD supply must be lowered to the natural arming voltage of the POR circuit.
- A DSWDT time-out. When the DSWDT timer times out, the device exits Deep Sleep.
- An ARTCC alarm (if RTCEN = 1).
- An assertion ('0') of the  $\overline{\text{MCLR}}$  pin.
- An assertion of the INT0 pin (if the interrupt was enabled before Deep Sleep mode was entered). The polarity configuration is used to determine the assertion level ('0' or '1') of the pin that will cause an exit from Deep Sleep mode. Exiting from Deep Sleep mode requires a change on the INT0 pin while in Deep Sleep mode.

Note: Any interrupt pending when entering Deep Sleep mode is cleared.

Exiting Deep Sleep mode generally does not retain the state of the device and is equivalent to a Power-on Reset (POR) of the device. Exceptions to this include the RTCC (if present), which remains operational through the wake-up, the DSGPRx registers and DSWDT.

Wake-up events that occur after Deep Sleep exits, but before the POR sequence completes, are ignored and are not be captured in the DSWAKE register.

The sequence for exiting Deep Sleep mode is:

- 1. After a wake-up event, the device exits Deep Sleep and performs a POR. The DSEN bit is cleared automatically. Code execution resumes at the Reset vector.
- To determine if the device exited Deep Sleep, read the Deep Sleep bit, DPSLP (RCON<10>). This bit will be set if there was an exit from Deep Sleep mode; if the bit is set, clear it.
- 3. Determine the wake-up source by reading the DSWAKE register.
- Determine if a DSBOR event occurred during Deep Sleep mode by reading the DSBOR bit (DSCON<1>).
- 5. If application context data has been saved, read it back from the DSGPR0 and DSGPR1 registers.
- 6. Clear the RELEASE bit (DSCON<0>).

### 10.2.4.3 Saving Context Data with the DSGPR0/DSGPR1 Registers

As exiting Deep Sleep mode causes a POR, most Special Function Registers reset to their default POR values. In addition, because VCORE power is not supplied in Deep Sleep mode, information in data RAM may be lost when exiting this mode. Applications which require critical data to be saved prior to Deep Sleep may use the Deep Sleep General Purpose registers, DSGPR0 and DSGPR1 or data EEPROM (if available). Unlike other SFRs, the contents of these registers are preserved while the device is in Deep Sleep mode. After exiting Deep Sleep, software can restore the data by reading the registers and clearing the RELEASE bit (DSCON<0>).

### 10.2.4.4 I/O Pins During Deep Sleep

During Deep Sleep, the general purpose I/O pins retain their previous states and the Secondary Oscillator (SOSC) will remain running, if enabled. Pins that are configured as inputs (TRISx bit is set), prior to entry into Deep Sleep, remain high-impedance during Deep Sleep. Pins that are configured as outputs (TRISx bit is clear), prior to entry into Deep Sleep, remain as output pins during Deep Sleep. While in this mode, they continue to drive the output level determined by their corresponding LATx bit at the time of entry into Deep Sleep.

Once the device wakes back up, all I/O pins continue to maintain their previous states, even after the device has finished the POR sequence and is executing application code again. Pins configured as inputs during Deep Sleep remain high-impedance and pins configured as outputs continue to drive their previous value. After waking up, the TRIS and LAT registers, and the SOSCEN bit (OSCCON<1>) are reset. If firmware modifies any of these bits or registers, the I/O will not immediately go to the newly configured states. Once the firmware clears the RELEASE bit (DSCON<0>), the I/O pins are "released". This causes the I/O pins to take the states configured by their respective TRISx and LATx bit values.

This means that keeping the SOSC running after waking up requires the SOSCEN bit to be set before clearing RELEASE.

If the Deep Sleep BOR (DSBOR) is enabled, and a DSBOR or a true POR event occurs during Deep Sleep, the I/O pins will be immediately released, similar to clearing the RELEASE bit. All previous state information will be lost, including the general purpose DSGPR0 and DSGPR1 contents.

If a MCLR Reset event occurs during Deep Sleep, the DSGPRx, DSCON and DSWAKE registers will remain valid, and the RELEASE bit will remain set. The state of the SOSC will also be retained. The I/O pins, however, will be reset to their MCLR Reset state. Since RELEASE is still set, changes to the SOSCEN bit (OSCCON<1>) cannot take effect until the RELEASE bit is cleared.

In all other Deep Sleep wake-up cases, application firmware must clear the RELEASE bit in order to reconfigure the I/O pins.

### 10.2.4.5 Deep Sleep WDT

To enable the DSWDT in Deep Sleep mode, program the Configuration bit, DSWDTEN (FDS<7>). The device Watchdog Timer (WDT) need not be enabled for the DSWDT to function. Entry into Deep Sleep mode automatically resets the DSWDT.

The DSWDT clock source is selected by the DSWDTOSC Configuration bit (FDS<4>). The postscaler options are programmed by the DSWDTPS<3:0> Configuration bits (FDS<3:0>). The minimum time-out period that can be achieved is 2.1 ms and the maximum is 25.7 days. For more details on the FDS Configuration register and DSWDT configuration options, refer to **Section 26.0 "Special Features"**.

### 10.2.4.6 Switching Clocks in Deep Sleep Mode

Both the RTCC and the DSWDT may run from either SOSC or the LPRC clock source. This allows both the RTCC and DSWDT to run without requiring both the LPRC and SOSC to be enabled together, reducing power consumption.

Running the RTCC from LPRC will result in a loss of accuracy in the RTCC of approximately 5 to 10%. If a more accurate RTCC is required, it must be run from the SOSC clock source. The RTCC clock source is selected with the RTCOSC Configuration bit (FDS<5>).

Under certain circumstances, it is possible for the DSWDT clock source to be off when entering Deep Sleep mode. In this case, the clock source is turned on automatically (if DSWDT is enabled), without the need for software intervention. However, this can cause a delay in the start of the DSWDT counters. In order to avoid this delay when using SOSC as a clock source, the application can activate SOSC prior to entering Deep Sleep mode.

### 10.2.4.7 Checking and Clearing the Status of Deep Sleep

Upon entry into Deep Sleep mode, the status bit, DPSLP (RCON<10>), becomes set and must be cleared by the software.

On power-up, the software should read this status bit to determine if the Reset was due to an exit from Deep Sleep mode and clear the bit if it is set. Of the four possible combinations of DPSLP and POR bit states, three cases can be considered:

- Both the DPSLP and POR bits are cleared. In this case, the Reset was due to some event other than a Deep Sleep mode exit.
- The DPSLP bit is clear, but the POR bit is set; this is a normal POR.
- Both the DPSLP and POR bits are set. This means that Deep Sleep mode was entered, the device was powered down and Deep Sleep mode was exited.

### 10.2.4.8 Power-on Resets (PORs)

VDD voltage is monitored to produce PORs. Since exiting from Deep Sleep functionally looks like a POR, the technique described in Section 10.2.4.7 "Checking and Clearing the Status of Deep Sleep" should be used to distinguish between Deep Sleep and a true POR event.

When a true POR occurs, the entire device, including all Deep Sleep logic (Deep Sleep registers: RTCC, DSWDT, etc.) is reset.

### 10.2.4.9 Summary of Deep Sleep Sequence

To review, these are the necessary steps involved in invoking and exiting Deep Sleep mode:

- 1. The device exits Reset and begins to execute its application code.
- 2. If DSWDT functionality is required, program the appropriate Configuration bit.
- 3. Select the appropriate clock(s) for the DSWDT and RTCC (optional).
- 4. Enable and configure the DSWDT (optional).
- 5. Enable and configure the RTCC (optional).
- 6. Write context data to the DSGPRx registers (optional).
- 7. Enable the INT0 interrupt (optional).
- 8. Set the DSEN bit in the DSCON register.
- 9. Enter Deep Sleep by issuing a PWRSV #SLEEP_MODE command.
- 10. The device exits Deep Sleep when a wake-up event occurs.
- 11. The DSEN bit is automatically cleared.
- 12. Read and clear the DPSLP status bit in RCON, and the DSWAKE status bits.
- 13. Read the DSGPRx registers (optional).
- 14. Once all state related configurations are complete, clear the RELEASE bit.
- 15. The application resumes normal operation.

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0			
DSEN	_	_		_	_		RTCCWDIS			
bit 15	Ļ						bit 8			
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/C-0, HS			
_	—	—	_	_	ULPWUDIS	DSBOR ⁽²⁾	RELEASE			
bit 7							bit (			
Legend:		C = Clearable	bit	HS = Hardw	/are Settable bit	:				
R = Reada	ble bit	W = Writable b	it	U = Unimple	emented bit, rea	id as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cl	leared	x = Bit is unkr	iown			
bit 14-9 bit 8 bit 7-3	Unimplemer RTCCWDIS: 1 = Wake-up	0 = Enters normal Sleep on execution of PWRSAV #0 Unimplemented: Read as '0' RTCCWDIS: RTCC Wake-up Disable bit 1 = Wake-up from Deep Sleep with RTCC is disabled 0 = Wake-up from Deep Sleep with RTCC is enabled								
bit 2	-	ULPWU Wake-u								
	1 = Wake-up	from Deep Slee from Deep Slee	p with ULPWL							
bit 1	DSBOR: Dee	ep Sleep BOR Ev	vent bit ⁽²⁾							
		OR was active a OR was not active					eep Sleep			
bit 0	RELEASE: I	O Pin State Rele	ease bit							
	0 = Release	aking from Deep I/O pins from the s to control their	ir state previo		•	•				
Note 1:	All register bits a	are only reset in	the case of a l	POR event ou	utside of Deep S	Sleep mode.				
2:	Unlike all other	events, a Deep S	leep BOR eve	ent will NOT ca	ause a wake-up	from Deep Sle	ep: this re-arm			

2: Unlike all other events, a Deep Sleep BOR event will NOT cause a wake-up from Deep Sleep; this re-arms POR.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS			
	—	—	—	_	—	_	DSINT0			
bit 15							bit 8			
R/W-0, HS	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS			
DSFLT	_	—	DSWDT	DSRTCC	DSMCLR	_	DSPOR ^(2,3)			
bit 7							bit (			
Legend:		HS = Hardwa	re Settable bit							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	known			
bit 15-9	Unimpleme	ented: Read as	ʻ0'							
bit 8		errupt-on-Chan	-							
	<ul> <li>1 = Interrupt-on-change was asserted during Deep Sleep</li> <li>0 = Interrupt-on-change was not asserted during Deep Sleep</li> </ul>									
	-	-		uring Deep Siee	ep					
bit 7	<b>DSFLT:</b> Deep Sleep Fault Detect bit									
	1 = A Fault occurred during Deep Sleep and some Deep Sleep configuration settings may have beer corrupted									
			during Deep Sle	ер						
bit 6-5	Unimpleme	ented: Read as	ʻ0'							
bit 4	DSWDT: De	ep Sleep Watch	ndog Timer Time	-out bit						
			dog Timer timed							
		• •	dog Timer did no		• · ·					
bit 3			and Calendar (F	,						
			nd Calendar trigg nd Calendar did r							
bit 2	DSMCLR:	MCLR Event bit								
	$1 = \text{The } \overline{\text{MC}}$	LR pin was acti	ve and was asse	rted during Dee	ep Sleep					
	$0 = \text{The } \overline{\text{MC}}$	LR pin was not	active, or was ac	ctive, but not as	serted during I	Deep Sleep				
bit 1		ented: Read as								
bit 0		wer-on Reset E								
			rcuit was active a rcuit was not act				event			
Note 1: A	All register bits	are cleared who	en the DSEN (DS	SCON<15>) bit	is set.					
			n the case of a P on a POR event				cept bit,			
<b>.</b> .					=					

3: Unlike the other bits in this register, this bit can be set outside of Deep Sleep.

### 10.3 Ultra Low-Power Wake-up

The Ultra Low-Power Wake-up (ULPWU) on pin, RB0, allows a slow falling voltage to generate an interrupt without excess current consumption.

To use this feature:

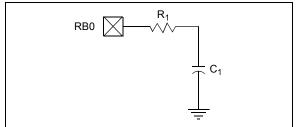
- 1. Charge the capacitor on RB0 by configuring the RB0 pin to an output and setting it to '1'.
- 2. Stop charging the capacitor by configuring RB0 as an input.
- 3. Discharge the capacitor by setting the ULPEN and ULPSINK bits in the ULPWCON register.
- 4. Configure Sleep mode.
- 5. Enter Sleep mode.

When the voltage on RB0 drops below VIL, the device wakes up and executes the next instruction.

This feature provides a low-power technique for periodically waking up the device from Sleep mode.

The time-out is dependent on the discharge time of the RC circuit on RB0.

When the ULPWU module wakes the device from Sleep mode, the ULPWUIF bit (IFS5<0>) is set. Software can check this bit upon wake-up to determine the wake-up source.


See Example 10-3 for initializing the ULPWU module

#### EXAMPLE 10-3: ULTRA LOW-POWER WAKE-UP INITIALIZATION

```
// 1. Charge the capacitor on RBO
TRISBbits.TRISB0 = 0;
  LATBbits.LATB0 = 1;
  for(i = 0; i < 10000; i++) Nop();</pre>
//********
//2. Stop Charging the capacitor
   on RBO
TRISBbits.TRISB0 = 1;
//*********
//3. Enable ULPWU Interrupt
IFS5bits.ULPWUIF = 0;
IEC5bits.ULPWUIE = 1;
IPC21bits.ULPWUIP = 0x7;
//********************************
//4. Enable the Ultra Low Power
   Wakeup module and allow
11
11
   capacitor discharge
//*********************************
  ULPWCONbits.ULPEN = 1;
  ULPWCONbit.ULPSINK = 1;
//5. Enter Sleep Mode
//*********
   Sleep();
//for sleep, execution will
//resume here
```

A series resistor, between RB0 and the external capacitor, provides overcurrent protection for the RB0/AN0/ULPWU pin and enables software calibration of the time-out (see Figure 10-1).

### FIGURE 10-1: SERIAL RESISTOR



A timer can be used to measure the charge time and discharge time of the capacitor. The charge time can then be adjusted to provide the desired delay in Sleep. This technique compensates for the affects of temperature, voltage and component accuracy. The peripheral can also be configured as a simple, programmable Low-Voltage Detect (LVD) or temperature sensor.

REGISTER	R 10-3: ULP	WCON: ULPV	VU CONTROL	REGISTER						
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0			
ULPEN		ULPSIDL	—	—	—	—	ULPSINK			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
					_	—	_			
bit 7							bit 0			
Legend:										
R = Reada	ble bit	W = Writable b	bit	U = Unimplemented bit, read as '0'						
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is			nown			
bit 15		PWU Module En	able bit							
	1 = Module i 0 = Module i									
bit 14	Unimpleme	nted: Read as 'o	)'							
bit 13	ULPSIDL: U	LPWU Stop in Id	dle Select bit							
		nues module ope			Idle mode					
	0 = Continues module operation in Idle mode									
bit 12-9	Unimpleme	Unimplemented: Read as '0'								
bit 8	ULPSINK: U	JLPWU Current	Sink Enable bit							
		sink is enabled sink is disabled								
hit 7 0	Unimplemented: Pood as '0'									

bit 7-0 Unimplemented: Read as '0'

### 10.4 Voltage Regulator-Based Power-Saving Features

The PIC24FV32KA304 series devices have a voltage regulator that has the ability to alter functionality to provide power savings. The on-board regulator is made up of two basic modules: the High-Voltage Regulator (HVREG) and the Low-Voltage Regulator (LVREG). With the combination of HVREG and LVREG, the following power modes are available:

### 10.4.1 RUN MODE

In Run mode, the main HVREG is providing a regulated voltage with enough current to supply a device running at full speed, and the device is not in Sleep or Deep Sleep Mode. The LVREG may or may not be running, but is unused.

### 10.4.2 FAST WAKE-UP SLEEP MODE

In Fast Wake-up Sleep mode, the device is in Sleep, but the main HVREG is still providing the regulated voltage at full supply current. This mode consumes the most power in Sleep, but provides the fastest wake-up from Sleep.

### 10.4.3 SLEEP (STANDBY) MODE

In Sleep mode, the device is in Sleep and the main HVREG is providing a regulated voltage at a reduced (standby) supply current. This mode provides for limited functionality due to the reduced supply current. It consumes less power than Fast Wake-up Sleep mode, but requires a longer time to wake-up from Sleep.

### 10.4.4 LOW-VOLTAGE SLEEP MODE

In Low-Voltage Sleep mode, the device is in Sleep and all regulated voltage is provided solely by the LVREG. Consequently, this mode provides the lowest Sleep power consumption, but is also the most limited in terms of how much functionality can be enabled while in this mode. The low-voltage Sleep wake-up time is longer than Sleep mode due to the extra time required to raise the VCORE supply rail back to normal regulated levels.

Note:		The PIC24F32KA30X family devices do not have any internal voltage regulation,								
	and therefore, do not supp Low-Voltage Sleep mode.									

### 10.4.5 DEEP SLEEP MODE

In Deep Sleep mode, both the main HVREG and LVREG are shut down, providing the lowest possible device power consumption. However, this mode provides no retention or functionality of the device and has the longest wake-up time.

^{© 2011-2012} Microchip Technology Inc.

### TABLE 10-1:VOLTAGE REGULATION CONFIGURATION SETTINGS FOR<br/>PIC24FV32KA304 DEVICES

LVRCFG Bit (FPOR<2>)	LVREN Bit (RCON<12>	PMSLP Bit (RCON<8>)	Power Mode During Sleep	Description
0	0	1	Fast Wake-up	HVREG mode (normal) is unchanged during Sleep.
			Sleep	LVREG is unused.
0	0	0	Sleep	HVREG goes to Low-Power Standby mode during Sleep.
			(Standby)	LVREG is unused.
0	1	0	Low Voltage	HVREG is off during Sleep
			Sleep	LVREG is enabled and provides Sleep voltage regulation.
1	Х	1	Fast Wake-up	HVREG mode (normal) is unchanged during Sleep.
			Sleep	LVREG is disabled at all times.
1	Х	0	Sleep	HVREG goes to Low-Power Standby mode during Sleep.
			(Standby)	LVREG is disabled at all times

### 10.5 Doze Mode

Generally, changing clock speed and invoking one of the power-saving modes are the preferred strategies for reducing power consumption. There may be circumstances, however, where this is not practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed may introduce communication errors, while using a power-saving mode may stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default.

It is also possible to use Doze mode to selectively reduce power consumption in event driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption. Meanwhile, the CPU Idles, waiting for something to invoke an interrupt routine. Enabling the automatic return to full-speed CPU operation on interrupts is enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

### 10.6 Selective Peripheral Module Control

Idle and Doze modes allow users to substantially reduce power consumption by slowing or stopping the CPU clock. Even so, peripheral modules still remain clocked, and thus, consume power. There may be cases where the application needs what these modes do not provide: the allocation of power resources to CPU processing, with minimal power consumption from the peripherals.

PIC24F devices address this requirement by allowing peripheral modules to be selectively disabled, reducing or eliminating their power consumption. This can be done with two control bits:

- The Peripheral Enable bit, generically named, "XXXEN", located in the module's main control SFR.
- The Peripheral Module Disable (PMD) bit, generically named, "XXXMD", located in one of the PMD Control registers.

Both bits have similar functions in enabling or disabling its associated module. Setting the PMDx bits for a module disables all clock sources to that module, reducing its power consumption to an absolute minimum. In this state, the control and status registers associated with the peripheral will also be disabled, so writes to those registers will have no effect, and read values will be invalid. Many peripheral modules have a corresponding PMDx bit.

In contrast, disabling a module by clearing its XXXEN bit, disables its functionality, but leaves its registers available to be read and written to. Power consumption is reduced, but not by as much as the PMDx bits are used. Most peripheral modules have an enable bit; exceptions include capture, compare and RTCC.

To achieve more selective power savings, peripheral modules can also be selectively disabled when the device enters Idle mode. This is done through the control bit of the generic name format, "XXXIDL". By default, all modules that can operate during Idle mode will do so. Using the disable on Idle feature disables the module while in Idle mode, allowing further reduction of power consumption during Idle mode, enhancing power savings for extremely critical power applications.

NOTES:

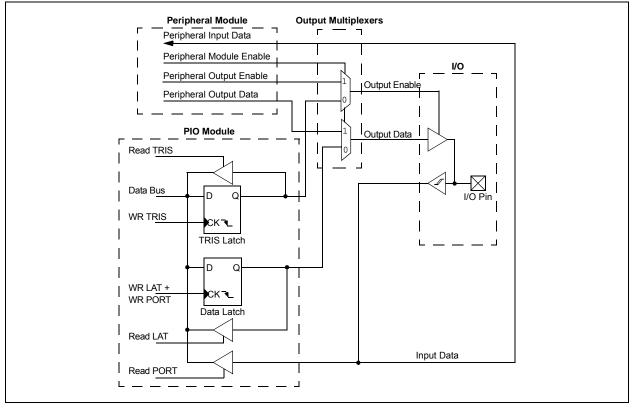
### 11.0 I/O PORTS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the I/O Ports, refer to the "PIC24F Family Reference Manual", Section 12. "I/O Ports with Peripheral Pin Select (PPS)" (DS39711). Note that the PIC24FV32KA304 family devices do not support Peripheral Pin Select features.

All of the device pins (except VDD and Vss) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

### 11.1 Parallel I/O (PIO) Ports

A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.


All port pins have three registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the Data Latch register (LAT), read the latch. Writes to the latch, write the latch. Reads from the port (PORT), read the port pins; writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers, and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

Note: The I/O pins retain their state during Deep Sleep. They will retain this state at wake-up until the software restore bit (RELEASE) is cleared.





© 2011-2012 Microchip Technology Inc.

### 11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORT, LAT and TRIS registers for data control, each port pin can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The maximum open-drain voltage allowed is the same as the maximum VIH specification.

### 11.2 Configuring Analog Port Pins

The use of the ANS and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRISx bit set (input). If the TRISx bit is cleared (output), the digital output level (VOH or VOL) will be converted.

When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level). Analog levels on any pin that is defined as a digital input (including the ANx pins) may cause the input buffer to consume current that exceeds the device specifications.

### 11.2.1 ANALOG SELECTION REGISTER

I/O pins with shared analog functionality, such as A/D inputs and comparator inputs, must have their digital inputs shut off when analog functionality is used. Note that analog functionality includes an analog voltage being applied to the pin externally.

To allow for analog control, the ANSx registers are provided. There is one ANS register for each port (ANSA, ANSB and ANSC). Within each ANSx register, there is a bit for each pin that shares analog functionality with the digital I/O functionality.

If a particular pin does not have an analog function, that bit is unimplemented. See Register 11-1 to Register 11-3 for implementation.

### REGISTER 11-1: ANSA: ANALOG SELECTION (PORTA)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	_	_	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	_	ANSA3	ANSA2	ANSA1	ANSA0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown

bit 15-4 Unimplemented: Read as '0'

bit 3-0 ANSA<3:0>: Analog Select Control bits

1 = Digital input buffer is not active (use for analog input)

0 = Digital input buffer is active

### REGISTER 11-2: ANSB: ANALOG SELECTION (PORTB)

R/W-1	R/W-1	R/W-1	R/W-1	U-0	U-0	U-0	U-0
ANSB15	ANSB14	ANSB13	ANSB12	—	—	—	—
bit 15							

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	_	ANSB4	ANSB3 ⁽¹⁾	ANSB2	ANSB1	ANSB0
bit 7							bit 0

# Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-12	ANSB<15:12>: Analog Select Control bits
	1 = Digital input buffer is not active (use for analog input)
	0 = Digital input buffer is active
bit 11-5	Unimplemented: Read as '0'
bit 4-0	ANSB<4:0>: Analog Select Control bits ⁽¹⁾
	1 = Digital input buffer is not active (use for analog input)

0 = Digital input buffer is active

Note 1: The ANSB3 bit is not available on 20-pin devices.

### **REGISTER 11-3: ANSC ANALOG SELECTION (PORTC)**

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	_	—	—	—
bit 15		•					bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1
		—	—	—	ANSC2 ⁽¹⁾	ANSC1 ⁽¹⁾	ANSC0 ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

### bit 15-3 Unimplemented: Read as '0'

bit 2-0 ANSC<2:0>: Analog Select Control bits⁽¹⁾

- 1 = Digital input buffer is not active (use for analog input)
- 0 = Digital input buffer is active

**Note 1:** These bits are not available on 20-pin or 28-pin devices.

^{© 2011-2012} Microchip Technology Inc.

### 11.2.2 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

### 11.3 Input Change Notification

The input change notification function of the I/O ports allows the PIC24FV32KA304 family of devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature is capable of detecting input change of states, even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 23 external signals (CN0 through CN22) that may be selected (enabled) for generating an interrupt request on a Change-of-State.

There are six control registers associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up/pull-down connected to it. The pull-ups act as a current source that is connected to the pin. The pull-downs act as a current sink to eliminate the need for external resistors when push button or keypad devices are connected.

On any pin, only the pull-up resistor or the pull-down resistor should be enabled, but not both of them. If the push button or the keypad is connected to VDD, enable the pull-down, or if they are connected to VSS, enable the pull-up resistors. The pull-ups are enabled separately, using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins.

Setting any of the control bits enables the weak pull-ups for the corresponding pins. The pull-downs are enabled separately, using the CNPD1 and CNPD2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-downs for the corresponding pins.

When the internal pull-up is selected, the pin uses VDD as the pull-up source voltage. When the internal pull-down is selected, the pins are pulled down to VSS by an internal resistor. Make sure that there is no external pull-up source/pull-down sink when the internal pull-ups/pull-downs are enabled.

**Note:** Pull-ups and pull-downs on change notification pins should always be disabled whenever the port pin is configured as a digital output.

### EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

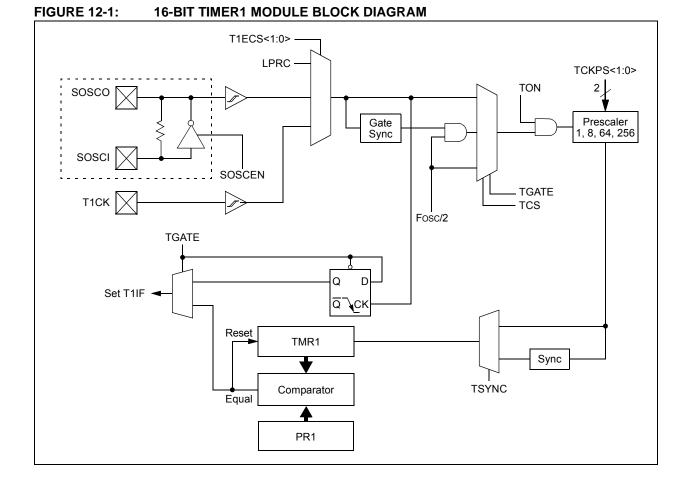
MOV 0xFF00, W0; MOV W0, TRISB;	//Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs
NOP ;	//Delay 1 cycle
BTSS PORTB, #13;	//Next Instruction
Equivalent `C' Code	
<pre>TRISB = 0xFF00; NOP();</pre>	//Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs //Delay 1 cycle
<pre>if(PORTBbits.RB13 == 1) { }</pre>	// execute following code if PORTB pin 13 is set.

### 12.0 TIMER1

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Timers, refer to the "PIC24F Family Reference Manual", Section 14. "Timers" (DS39704).

The Timer1 module is a 16-bit timer which can serve as the time counter for the Real-Time Clock (RTC) or operate as a free-running, interval timer/counter. Timer1 can operate in three modes:

- 16-Bit Timer
- 16-Bit Synchronous Counter
- 16-Bit Asynchronous Counter


Timer1 also supports these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation During CPU Idle and Sleep modes
- Interrupt on 16-bit Period Register Match or Falling Edge of External Gate Signal

Figure 12-1 illustrates a block diagram of the 16-bit Timer1 module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Set or clear the TSYNC bit to configure synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the Timer1 Interrupt Enable bit, T1IE. Use the Timer1 Interrupt Priority bits, T1IP<2:0>, to set the interrupt priority.



© 2011-2012 Microchip Technology Inc.

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

bit 15       U-0       R/W-0       R/W-0       R/W-0       U-0       R/W-0       R/W-0       U-0         —       TGATE       TCKPS1       TCKPS0       —       TSYNC       TCS       —       bit         egend:       R       Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'       n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15       TON: Timer1 On bit       1       = Stops 16-bit Timer1       0 = Discontinues module operation when device enters Idle mode       0 = Continues module operation in Idle mode       0 = Timer1 uses the UPR Cas the clock source       0 = Timer1 uses the UPR Cas the clock source       0 = Timer1 uses the External Clock from T1CK       0 = Timer1 uses the External Clock from T1CK       0 = Timer1 uses the External Clock from T1CK       0 = Timer1 uses the External Clock from T1CK       0 = Timer1 uses the External Clock from T1CK       0 = Timer1 uses the External Clock from T1CK       0 = Gated time accumulation is disabled       0 = 1:1       0 = 1:1       0 = 1:1       0 = 1:1       0 = 1:1       0 = 1:1       0 = 1:1       0 = 1:1:1       0 = 0 = 0:1:1 <t< th=""><th>R/W-0</th><th>U-0</th><th>R/W-0</th><th>U-0</th><th>U-0</th><th>U-0</th><th>R/W-0</th><th>R/W-0</th></t<>	R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0			
U-0       R/W-0       R/W-0       R/W-0       U-0       R/W-0       R/W-0       U-0 $=$ TGATE       TCKPS1       TCKPS0 $=$ TSYNC       TCS $=$ if 7	TON		TSIDL	_		_	T1ECS1 ⁽¹⁾	T1ECS0 ⁽¹⁾			
-         TGATE         TCKPS1         TCKPS0         -         TSYNC         TCS         -           egend:         R= Readable bit         W = Writable bit         U = Unimplemented bit, read as '0'         bit           n = Value at POR         '1' = Bit is set         '0' = Bit is cleared         x = Bit is unknown           point 15         TON: Timer1 On bit         1 = Starts 16-bit Timer1         0 = Stops 16-bit Timer1           o = Stops 16-bit Timer1         0 = Stops 16-bit Timer1         1 = Discontinues module operation when device enters Idle mode         0 = Continues           o = Continues module operation in Idle mode         0 = Continues module operation to Idle mode         0 = Continues           oit 13         TSIDL: Stop in Idle Mode bit         1 = Reserved; do not use         1 = Timer1 uses the LEVRC as the clock source           01 = Timer1 uses the Secondary Oscillator (SOSC) as the clock source         0 = Timer1 uses the External Clock from TiCK           00 = Timer1 uses the Secondary Oscillator (SOSC) as the clock source         0 = Timer1 uses the External Clock from TiCK           01 = Gated time accumulation is enabled         0 = Gated time accumulation is disabled           01 = 1:64         1 = 1:266         10 = 1:18           01 = 1:8         0 = 1:1         1 = Synchronizes external Clock input           0 = Does not synchronize external clock input	bit 15							bit 8			
-         TGATE         TCKPS1         TCKPS0         -         TSYNC         TCS         -           egend:         R= Readable bit         W = Writable bit         U = Unimplemented bit, read as '0'         bit           n = Value at POR         '1' = Bit is set         '0' = Bit is cleared         x = Bit is unknown           point 15         TON: Timer1 On bit         1 = Starts 16-bit Timer1         0 = Stops 16-bit Timer1           o = Stops 16-bit Timer1         0 = Stops 16-bit Timer1         1 = Discontinues module operation when device enters Idle mode         0 = Continues           o = Continues module operation in Idle mode         0 = Continues module operation to Idle mode         0 = Continues           oit 13         TSIDL: Stop in Idle Mode bit         1 = Reserved; do not use         1 = Timer1 uses the LEVRC as the clock source           01 = Timer1 uses the Secondary Oscillator (SOSC) as the clock source         0 = Timer1 uses the External Clock from TiCK           00 = Timer1 uses the Secondary Oscillator (SOSC) as the clock source         0 = Timer1 uses the External Clock from TiCK           01 = Gated time accumulation is enabled         0 = Gated time accumulation is disabled           01 = 1:64         1 = 1:266         10 = 1:18           01 = 1:8         0 = 1:1         1 = Synchronizes external Clock input           0 = Does not synchronize external clock input											
asit 7       bit         cegend:       Se Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15       TON: Timer1 On bit       1       as '0'         1 = Starts 16-bit Timer1       0 = Stops 16-bit Timer1       0 = Stops 16-bit Timer1         0 = Stops 16-bit Timer1       0 = Stops 16-bit Timer1       0 = Stops 16-bit Timer1         1 = Discontinues module operation when device enters Idle mode       0 = Continues module operation in Idle mode         0 = Continues module operation when device enters Idle mode       0 = Continues module operation in Idle mode         0 = Continues module operation when device enters Idle mode       0 = Continues module operation in Idle mode         1 = Discontinues module operation in Idle mode       0 = Continues module operation in Idle mode         0 = Continues module operation in Idle mode       0 = Continues module operation in Idle mode         1 = 10       Unimplemented: Read as '0'       11 = Reserved; do not use         1 = Timer1 uses the LPRC as the clock source       0 = Timer1 uses the EXERCI Clock from TICK         0 = Timer1 uses the EXERCI Solitator (SOSC) as the clock source of 1 = Timer1 Gost Timer1 Extended Clock from TICK       0 = Continues module operation is disabled         0 = Gated time accumulation is disabled <t< td=""><td>U-0</td><td>-</td><td>-</td><td>-</td><td>U-0</td><td>-</td><td>_</td><td>U-0</td></t<>	U-0	-	-	-	U-0	-	_	U-0			
egend:         R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15       TON: Timer1 On bit       1 = Stars 16-bit Timer1       0 = Stops 16-bit Timer1         0 = Stops 16-bit Timer1       0 = Stops 16-bit Timer1       0 = Stops 16-bit Timer1         1 = Discontinues module operation in Idle mode       0 = Continues module operation in Idle mode         0 = Continues module operation in Idle mode       0 = Continues module operation in Idle mode         0 = Continues module operation in Idle mode       0 = Continues the LPRC as the clock Select bits ⁽¹⁾ 11 = Reserved; do not use       10 = Timer1 uses the EXErnal Clock Select bits ⁽¹⁾ 11 = Reserved; do not use       10 = Timer1 uses the EXErnal Clock from T1CK         00 = Timer1 uses the EXErnal Clock from T1CK       00 = Timer1 uses the EXErnal Clock from T1CK         00 = Timer1 uses the EXErnal Clock from SOL as the clock source       0 = Timer1 Gated Time Accumulation Enable bit         When TCS = 1;       This bit is ignored.         When TCS = 1;       This bit is ginored.         11 = 1:266       10 = 1:64         11 = 1:276       11 = 1:276         12 = TSYNC: Timer1 External Clock input       0 = Does not synchronize external clock input <t< td=""><td></td><td>TGATE</td><td>TCKPS1</td><td>TCKPS0</td><td>_</td><td>TSYNC</td><td>TCS</td><td>—</td></t<>		TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	—			
R = Readable bit       W = Writable bit       U = Unimplemented bit, read as '0'         n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         pit 15       TON: Timer1 On bit       1       = Starts 16-bit Timer1         0 = Stops 16-bit Timer1       0 = Stops 16-bit Timer1       0         pit 14       Unimplemented: Read as '0'       0         pit 13       TSDL: Stop in Idle Mode bit       1         1 = Discontinues module operation in Idle mode       0 = Continues module operation in Idle mode         pit 12-10       Unimplemented: Read as '0'       0         pit 9-8       TEECs-1:0-: Timer1 Extended Clock Select bits ⁽¹⁾ 1         1 = Reserved; do not use       10 = Timer1 uses the External Clock from T1CK       00 = Timer1 uses the External Clock from T1CK         0 = Timer1 uses the External Clock from T1CK       00 = Timer1 uses the External Clock from T1CK       00 = Timer1 uses the External Clock from T1CK         0 = Timer1 uses the External Clock from T1CK       0 = Gated time accumulation is enabled       0         0 = Gated time accumulation is enabled       0 = Gated time accumulation is disabled       0         bit 5       TIES       1       1: Signored.         When TCS = 1:       Timer Input Clock Input Synchronization Select bit       1         1	bit /							bit C			
n = Value at POR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unknown         bit 15       TON: Timer1 On bit       1       Starts 16-bit Timer1         0 = Stops 16-bit Timer1       0 = Stops 16-bit Timer1       0         bit 13       TSIDL: Stop in Idle Mode bit       1       Discontinues module operation when device enters Idle mode         0 = Continues module operation in Idle mode       0 = Continues module operation in Idle mode       0         bit 12-10       Unimplemented: Read as '0'       11       Reserved; do not use         10 = Timer1 uses the External Clock from T1CK       00 = Timer1 uses the External Clock from T1CK       00 = Timer1 uses the Secondary Oscillator (SOSC) as the clock source         01 = Timer1 uses the Secondary Oscillator (SOSC) as the clock source       01 = Timer1 uses the Secondary Oscillator (SOSC) as the clock source         01 = Timer1 uses the Secondary Oscillator (SOSC) as the clock source       01 = Timer1 uses the Secondary Oscillator (SOSC) as the clock source         01 = Timer1 uses the External Clock from T1CK       00 = Timer1 uses the External Clock from T1CK         00 = Timer1 uses the External Clock from T1CK       00 = Timer1 Gated Time accumulation is enabled         0 = Timer1 Gated Time accumulation is enabled       0 = Gated time accumulation is enabled         0 = Gated time accumulation is enabled       0 = Gated time accumulation is disabled         0 = 1:	Legend:										
bit 15 TON: Timer1 On bit 1 = Starts 16-bit Timer1 0 = Stops 16-bit Timer1 0 = Stops 16-bit Timer1 0 = Stops 16-bit Timer1 1 = Discontinues module operation when device enters ldle mode 0 = Continues module operation in Idle mode 1 = Discontinues module operation in Idle mode 1 = Timer1 constant function is the Idle mode 0 = Timer1 uses the LPRC as the clock Select bits ⁽¹⁾ 1 = Reserved; do not use 1 = Timer1 uses the External Clock from T1CK 0 = Timer1 uses the External Clock from T1CK 0 = Timer1 uses the Secondary Oscillator (SOSC) as the clock source 0 = Timer1 uses the Secondary Oscillator (SOSC) as the clock source 0 = Timer1 Gated Time Accumulation Enable bit When TCS = 0; 1 = Gated time accumulation is enabled 0 = Gated time accumulation is enabled 0 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled 0 = 1:1 0 = 1:64 0 = 1:1 0 = 1:1 0 = 1:1 0 = 1:1 0 = 1:1 1 = Synchronizes external Clock Input Synchronization Select bit When TCS = 0; This bit is ignored. 0 = Does not synchronize external clock input 0 = Does not synchronize external clock input When TCS = 0; This bit is ignored. 0 = Internal clock Source Select bit 1 = Timer1 clock Source Select bit 1 = Timer1 clock Source is selected by T1ECS<1:0> 0 = Internal clock (Fosc/2) 0 = Internal clock (Fosc/2) 0 = Internal clock (Fosc/2) 0 = Internal clock (Fosc/2) 0 = Internal clock Read as '0' 0 = Internal clock (Fosc/2) 0 = Internal clock Read as '0' 0 = Internal clock (Fosc/2) 0 = Internal clock Read as '0' 0 = Internal clock (Fosc/2) 0 = Internal clock Read as '0' 0 = Internal clock Read as '0'	-	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'				
$\begin{array}{llllllllllllllllllllllllllllllllllll$	-n = Value at	t POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkn	own			
$\begin{array}{llllllllllllllllllllllllllllllllllll$											
0 = Stops 16-bit Timer1         0it 13       TSIDL: Stop in Idle Mode bit         1 = Discontinues module operation when device enters Idle mode       0         0 = Continues module operation in Idle mode       0         0 = Continues module operation in Idle mode       0         0 = Continues module operation in Idle mode       0         0 = Continues module operation in Idle mode       0         0 = Continues module operation in Idle mode       0         0 = Timer1 cost Read as '0'       11         11 = Reserved; do not use       10         10 = Timer1 uses the LPRC as the clock source       01 = Timer1 uses the Secondary Oscillator (SOSC) as the clock source         01 = Timer1 uses the Secondary Oscillator (SOSC) as the clock source       01 = Timer1 Clock from T1CK         00 = Timer1 uses the Secondary Oscillator (SOSC) as the clock source       01         01 = Timer1 uses the Secondary Oscillator (SOSC) as the clock source       01         01 = Timer1 Gated Time Accumulation Enable bit       When TCS = 0:         1 = Gated time accumulation is enabled       0         0 = Gated time accumulation is disabled       0         0 = 1:64       0 = 1:64         0 = 1:64       0 = 1:64         0 = 1:1       1         0 = 1:1       1         1 = SynChonizes external clock	bit 15	TON: Timer1	On bit								
bit 14       Unimplemented: Read as '0'         bit 13       TSIDL: Stop in Idle Mode bit         1 = Discontinues module operation when device enters Idle mode       0 = Continues module operation in Idle mode         0 = Continues module operation in Idle mode       0 = Continues module operation in Idle mode         0 = Continues module operation in Idle mode       0 = Continues module operation in Idle mode         0 = Continues module operation in Idle mode       0 = Continues module operation in Idle mode         0 = Continues module operation in Idle mode       0 = Continues module operation in Idle mode         0 = Continues module operation in Idle mode       0 = Continues module operation when device enters Idle mode         0 = Continues module operation in Idle mode       0 = Continues module operation in Idle mode         0 = Timer1 uses the LPRC as the clock source       0 = Timer1 uses the LPRC as the clock source         0 = Timer1 uses the LPRC as the clock source       0 = Timer1 uses the LPRC as the clock source         0 = Timer1 uses the LPRC as the clock from T1CK       0 = Timer1 uses the LPRC as the clock from T1CK         0 = Timer1 uses the LPRC as the clock from T1CK       0 = Timer1 Clock from T1CK         0 = Gated time accumulation is enabled       0 = Gated time accumulation is enabled         0 = Gated time accumulation is disabled       1 = 1:266         1 = 1:256       1 = 1:256         1 = Timer1											
bit 13TSIDL: Stop in Idle Mode bit 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode 11 = Reserved; do not use 11 = Timer1 uses the LPRC as the clock source 01 = Timer1 uses the External Clock from T1CK 00 = Timer1 uses the External Clock from T1CK 00 = Timer1 uses the External Clock from T1CK 00 = Timer1 Gated Time Accumulation Enable bit When TCS = 0; 1 = Gated time accumulation is enabled 0 = Gated time accumulation is enabled 0 = Gated time accumulation is disabledbit 5-4TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:4 00 = 1:1bit 3Unimplemented: Read as '0' When TCS = 1; TSYNC: Timer1 External Clock Input Synchronization Select bit When TCS = 1; This bit is ignored.bit 4TCKPS<1:0>: Timer1 External Clock input 0 = Does not synchronize external clock input 0 = Does not synchronize external clock input When TCS = 0; This bit is ignored.bit 1TCS: Timer1 Clock Source Select bit 1 = Timer1 clock (FOSC/2) bit 0bit 0Unimplemented: Read as '0'		-									
1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode0 = Timer1 uses the Lended Clock Select bits ⁽¹⁾ 1 = Reserved; do not use0 = Timer1 uses the External Clock from T1CK0 = Timer1 uses the External Clock from T1CK0 = Timer1 uses the Secondary Oscillator (SOSC) as the clock source0 = Timer1 uses the Secondary Oscillator (SOSC) as the clock source0 = Timer1 uses the Secondary Oscillator (SOSC) as the clock source0 = Timer1 uses the Secondary Oscillator (SOSC) as the clock source0 = Timer1 uses the Secondary Oscillator (SOSC) as the clock source0 = Timer1 uses the Secondary Oscillator (SOSC) as the clock source0 = Timer1 uses the Secondary Oscillator (SOSC) as the clock source0 = Gated time accumulation is enabled0 = Gated time accumulation is disabled0 = Gated time accumulation is enabled0 = Gated time accumulation is disabled0 = Timer1 Input Clock Prescale Select bits11 = 125610 = 1:640 = 1:10 = 1:10 = 1:11 = Synchronizes external Clock input0 = Does not synchronize external clock input0 = Does not synchronize external clock input<		-									
<ul> <li>0 = Continues module operation in Idle mode</li> <li>0 = Continues module operation in Idle mode</li> <li>0 if 12-10</li> <li>0 Inimplemented: Read as '0'</li> <li>11 = Reserved; do not use</li> <li>11 = Reserved; do not use</li> <li>10 = Timer1 uses the LPRC as the clock source</li> <li>01 = Timer1 uses the External Clock from T1CK</li> <li>00 = Timer1 uses the External Clock from T1CK</li> <li>00 = Timer1 uses the Secondary Oscillator (SOSC) as the clock source</li> <li>01 = Timer1 uses the Secondary Oscillator (SOSC) as the clock source</li> <li>01 = Timer1 Gated Time Accumulation Enable bit</li> <li>When TCS = 1: This bit is ignored.</li> <li>When TCS = 0:</li> <li>1 = Gated time accumulation is enabled</li> <li>0 = Gated time accumulation is disabled</li> <li>0 = 1:64</li> <li>0 = 1:64</li> <li>0 = 1:1</li> <li>00 = 0:</li> <li>0 = Does not synchronize external Clock input</li> <li>When TCS = 0:</li> <li>This bit is ignored.</li> <li>0 = Timer1 External Clock input</li> <li>0 = Does not synchronize select bit</li> <li>1 = Timer1 Clock Source Select bit</li> <li>1 = Timer1 Clock (FoSC/2)</li> <li>0 = Internal clock (FoSC/2)</li> </ul>	bit 13				vice entere la	llo modo					
bit 12-10       Unimplemented: Read as 'o'         bit 9-8       T1ECS<1:0>: Timer1 Extended Clock Select bits ⁽¹⁾ 11 = Reserved; do not use       10 = Timer1 uses the LPRC as the clock source         10 = Timer1 uses the External Clock from T1CK       00 = Timer1 uses the External Clock from T1CK         00 = Timer1 uses the External Clock from T1CK       00 = Timer1 uses the External Clock from T1CK         01 = Timer1 uses the External Clock from T1CK       00 = Timer1 uses the External Clock from T1CK         01 = Timer1 uses the External Clock from T1CK       00 = Timer1 uses the External Clock from T1CK         01 = Timer1 uses the External Clock from T1CK       00 = Timer1 uses the External Clock from T1CK         01 = TGKPS       10 = 1:2         This bit is ignored.       When TCS = 0:         11 = 1:256       10 = 1:64         01 = 1:1       11 = 1:256         11 = 1:256       10 = 1:64         01 = 1:1       11 = 1:2         12       TSYNC: Timer1 External Clock Input Synchronization Select bit         When TCS = 1:       1 = Synchronize external clock input         0 = Does not synchronize external clock input       0 = Does not synchronize external clock input         When TCS = 0:       This bit is ignored.         11 1       TCS: Timer1 Clock Source Select bit         1 = Timer1 clock source is selected b			•			lie mode					
11 = Reserved; do not use10 = Timer1 uses the LPRC as the clock source01 = Timer1 uses the External Clock from T1CK00 = Timer1 uses the Secondary Oscillator (SOSC) as the clock sourcebit 7Unimplemented: Read as '0'bit 6TGATE: Timer1 Gated Time Accumulation Enable bitWhen TCS = 1: This bit is ignored.When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is enabled 0 = Gated time accumulation is disabledbit 5-4TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 00 = 1:1bit 3Unimplemented: Read as '0'bit 4Unimplemented: Read as '0'bit 5TSYNC: Timer1 External Clock Input Synchronization Select bit When TCS = 1: 1 = Synchronize external clock input 0 = Does not synchronize external clock input 0 = Does not synchronize external clock input 0 = Does not synchronize external clock input 1 = Timer1 Clock Source Select bit 1 = Timer1 Clock Source is selected by T1ECS<1:0> 0 = Internal clock (Fosc/2)bit 0bit 0Unimplemented: Read as '0'	bit 12-10										
10 = Timer1 uses the LPRC as the clock source01 = Timer1 uses the External Clock from T1CK00 = Timer1 uses the Secondary Oscillator (SOSC) as the clock sourceoit 7Unimplemented: Read as '0'oit 6TGATE: Timer1 Gated Time Accumulation Enable bitWhen TCS = 1:This bit is ignored.When TCS = 0:1 = Gated time accumulation is enabled0 = Gated time accumulation is disabled0 = Gated time accumulation is disabled0 = 1:640 = 1:10 = 1:1Out of the	bit 9-8	T1ECS<1:0>	: Timer1 Exten	ded Clock Sele	ct bits ⁽¹⁾						
01 = Timer1 uses the External Clock from T1CK $00 = Timer1$ uses the Secondary Oscillator (SOSC) as the clock sourceobit 7Unimplemented: Read as '0'obit 6 <b>TGATE:</b> Timer1 Gated Time Accumulation Enable bit When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is enabled 0 = Gated time accumulation is disabledobit 5-4 <b>TCKPS&lt;1:0&gt;:</b> Timer1 Input Clock Prescale Select bits 10 = 1:26 10 = 1:64 00 = 1:1obit 3 <b>Unimplemented:</b> Read as '0'obit 4 <b>TSYNC:</b> Timer1 External Clock Input Synchronization Select bit When TCS = 1: 1 = Synchronize external clock input 0 = Does not synchronize external clock input When TCS = 0: This bit is ignored.obit 1 <b>TCS:</b> Timer1 Clock Source Select bit 1 = Timer1 clock Source Select bit 1 = Timer1 clock source is selected by T1ECS<1:0> 0 = Internal clock (FOSC/2)obit 0 <b>Unimplemented:</b> Read as '0'		11 = Reserved; do not use									
00 = Timer1 uses the Secondary Oscillator (SOSC) as the clock sourceoit 7Unimplemented: Read as '0'oit 6TGATE: Timer1 Gated Time Accumulation Enable bitWhen TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabledoit 5-4TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1oit 3Unimplemented: Read as '0'oit 4Unimplemented: Read as '0'oit 5TSYNC: Timer1 External Clock Input Synchronization Select bit When TCS = 1: 1 = Synchronize external clock input 0 = Does not synchronize external clock input When TCS = 0: This bit is ignored.oit 1TCS: Timer1 Clock Source Select bit 1 = Timer1 clock source is selected by T1ECS<1:0> 0 = Internal clock (F0SC/2)oit 0Unimplemented: Read as '0'											
bit 7       Unimplemented: Read as '0'         bit 6       TGATE: Timer1 Gated Time Accumulation Enable bit         When TCS = 1:       This bit is ignored.         When TCS = 0:       1 = Gated time accumulation is enabled         0 = Gated time accumulation is disabled       0 = Gated time accumulation is disabled         bit 5-4       TCKPS<1:0>: Timer1 Input Clock Prescale Select bits         11 = 1:256       10 = 1:64         01 = 1:8       00 = 1:1         00 = 1:1       0 = Clock Input Synchronization Select bit         When TCS = 1:       1 = Synchronizes external Clock Input Synchronization Select bit         When TCS = 0:       This bit is ignored.         bit 1       TCS: Timer1 Clock Source Select bit         1 = Timer1 Clock Source is selected by T1ECS<1:0>       0 = Internal clock (Fosc/2)         bit 0       Unimplemented: Read as '0'						e clock source					
bit 6TGATE: Timer1 Gated Time Accumulation Enable bit $When TCS = 1$ : This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabledbit 5-4TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1bit 3Unimplemented: Read as '0' TSYNC: Timer1 External Clock Input Synchronization Select bit When TCS = 1: 1 = Synchronize external clock input 0 = Does not synchronize external clock input When TCS = 0: This bit is ignored.bit 1TCS: Timer1 Clock Source Select bit 1 = Timer1 clock source is selected by T1ECS<1:0> 0 = Internal clock (Fosc/2)bit 0Unimplemented: Read as '0'	bit 7			-	(0000) as th						
When TCS = 1: This bit is ignored.When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabledbit 5-4TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1bit 3Unimplemented: Read as '0' When TCS = 1: 1 = Synchronize external Clock Input Synchronization Select bit When TCS = 0: This bit is ignored.bit 1TCS: Timer1 Clock Source Select bit 1 = Timer1 Clock Source Select bit 0 = Internal clock input 0 = Does not synchronize external clock input 0 = Does not synchronize external clock input 0 = Internal clock Source Select bit 1 = Timer1 Clock Source Select bit 1 = Timer1 Clock Source Select bit 1 = Timer1 clock (Fosc/2)bit 0Unimplemented: Read as '0'	bit 6	•			-nable bit						
When $TCS = 0$ : 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabledbit 5-4 <b>TCKPS&lt;1:0&gt;:</b> Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1bit 3 <b>Unimplemented:</b> Read as '0'bit 4 <b>Unimplemented:</b> Read as '0'bit 5 <b>TSYNC:</b> Timer1 External Clock Input Synchronization Select bit When $TCS = 1$ : 1 = Synchronizes external clock input 0 = Does not synchronize external clock input When $TCS = 0$ : This bit is ignored.bit 1 <b>TCS:</b> Timer1 Clock Source Select bit 1 = Timer1 clock source is selected by T1ECS<1:0> 0 = Internal clock (Fosc/2)bit 0 <b>Unimplemented:</b> Read as '0'		When TCS =	<u>1:</u>								
1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabledbit 5-4TCKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1bit 3Unimplemented: Read as '0'bit 3Unimplemented: Read as '0'bit 4 $\frac{When TCS = 1:}{1 = Synchronizes external clock input}$ 0 = Does not synchronize external clock input 0 = Does not synchronize external clock input $\frac{When TCS = 0:}{This bit is ignored.}$ bit 1TCS: Timer1 Clock Source Select bit 1 = Timer1 clock source is selected by T1ECS<1:0> 0 = Internal clock (Fosc/2)bit 0Unimplemented: Read as '0'		-									
$0 = Gated time accumulation is disabledoit 5-4TCKPS<1:0>: Timer1 Input Clock Prescale Select bits11 = 1:25610 = 1:6401 = 1:800 = 1:1oit 3Unimplemented: Read as '0'TSYNC: Timer1 External Clock Input Synchronization Select bit\frac{When TCS = 1:}{1 = Synchronizes external clock input}0 = Does not synchronize external clock input0 = Does not synchronize external clock input\frac{When TCS = 0:}{This bit is ignored.}This bit is ignored.1 = Timer1 Clock Source Select bit1 = Timer1 clock source is selected by T1ECS<1:0>0 = Internal clock (Fosc/2)0 Unimplemented: Read as '0'$				n is enabled							
11 = 1:25610 = 1:6401 = 1:800 = 1:1bit 3Unimplemented: Read as '0'TSYNC: Timer1 External Clock Input Synchronization Select bit $\frac{When TCS = 1:}{1 = Synchronizes external clock input0 = Does not synchronize external clock input0 = Does not synchronize external clock input\frac{When TCS = 0:}{This bit is ignored.}TCS: Timer1 Clock Source Select bit1 = Timer1 clock source is selected by T1ECS<1:0>0 = Internal clock (Fosc/2)bit 0Unimplemented: Read as '0'$											
$11 = 1:256$ $10 = 1:64$ $01 = 1:8$ $00 = 1:1$ bit 3Unimplemented: Read as '0'TSYNC: Timer1 External Clock Input Synchronization Select bit $\frac{When TCS = 1:}{1 = Synchronizes external clock input}$ $0 = Does not synchronize external clock input$ $\frac{When TCS = 0:}{This bit is ignored.}$ bit 1tot 1TCS: Timer1 Clock Source Select bit $1 = Timer1 clock source is selected by T1ECS<1:0>$ $0 = Internal clock (Fosc/2)$ bit 0Unimplemented: Read as '0'	bit 5-4	TCKPS<1:0>	: Timer1 Input	Clock Prescale	Select bits						
01 = 1:8 00 = 1:1 Dif 3 Unimplemented: Read as '0' TSYNC: Timer1 External Clock Input Synchronization Select bit $\frac{When TCS = 1:}{1 = Synchronizes external clock input}$ 0 = Does not synchronize external clock input $\frac{When TCS = 0:}{This bit is ignored.}$ Dif 1 TCS: Timer1 Clock Source Select bit 1 = Timer1 clock source is selected by T1ECS<1:0> 0 = Internal clock (Fosc/2) Dif 0 Unimplemented: Read as '0'			·								
00 = 1:1         bit 3       Unimplemented: Read as '0'         bit 2       TSYNC: Timer1 External Clock Input Synchronization Select bit         When TCS = 1:       1 = Synchronizes external clock input         0 = Does not synchronize external clock input       0 = Does not synchronize external clock input         When TCS = 0:       This bit is ignored.         Dit 1       TCS: Timer1 Clock Source Select bit         1 = Timer1 clock source is selected by T1ECS<1:0>         0 = Internal clock (Fosc/2)         Dit 0       Unimplemented: Read as '0'											
bit 3       Unimplemented: Read as '0'         bit 2       TSYNC: Timer1 External Clock Input Synchronization Select bit         When TCS = 1:       1 = Synchronizes external clock input         0 = Does not synchronize external clock input       0 = Does not synchronize external clock input         When TCS = 0:       This bit is ignored.         Dit 1       TCS: Timer1 Clock Source Select bit         1 = Timer1 clock source is selected by T1ECS<1:0>         0 = Internal clock (Fosc/2)         Dit 0         Unimplemented: Read as '0'											
bit 2       TSYNC: Timer1 External Clock Input Synchronization Select bit         When TCS = 1:       1 = Synchronizes external clock input         0 = Does not synchronize external clock input       0 = Does not synchronize external clock input         When TCS = 0:       This bit is ignored.         Dit 1       TCS: Timer1 Clock Source Select bit         1 = Timer1 clock source is selected by T1ECS<1:0>         0 = Internal clock (Fosc/2)         Dit 0         Unimplemented: Read as '0'	hit 3		ted: Read as '	٥'							
When TCS = 1: 1 = Synchronizes external clock input 0 = Does not synchronize external clock input When TCS = 0: This bit is ignored.When TCS: Timer1 Clock Source Select bit 1 = Timer1 clock source is selected by T1ECS<1:0> 0 = Internal clock (Fosc/2)Dit 0Unimplemented: Read as '0'	bit 2	•			ronization Sel	ect bit					
1 = Synchronizes external clock input         0 = Does not synchronize external clock input         When TCS = 0:         This bit is ignored.         bit 1         TCS: Timer1 Clock Source Select bit         1 = Timer1 clock source is selected by T1ECS<1:0>         0 = Internal clock (Fosc/2)         bit 0         Unimplemented: Read as '0'											
When TCS = 0:         This bit is ignored.         Dit 1         TCS: Timer1 Clock Source Select bit         1 = Timer1 clock source is selected by T1ECS<1:0>         0 = Internal clock (Fosc/2)         Dit 0         Unimplemented: Read as '0'											
This bit is ignored. TCS: Timer1 Clock Source Select bit 1 = Timer1 clock source is selected by T1ECS<1:0> 0 = Internal clock (Fosc/2) Dit 0 Unimplemented: Read as '0'		•									
Dit 1       TCS: Timer1 Clock Source Select bit         1 = Timer1 clock source is selected by T1ECS<1:0>         0 = Internal clock (Fosc/2)         Dit 0         Unimplemented: Read as '0'											
1 = Timer1 clock source is selected by T1ECS<1:0> 0 = Internal clock (Fosc/2)Dit 0Unimplemented: Read as '0'	bit 1	•		Select bit							
0 = Internal clock (Fosc/2)bit 0Unimplemented: Read as '0'					CS<1:0>						
				<b>-</b> , <b>-</b>							
Note 1: The T1ECSx bits are valid only when TCS = 1.	bit 0	Unimplemen	ted: Read as '	0'							
	Note 1: ⊤	he T1ECSx bits	are valid only	when TCS = 1.							

### 13.0 TIMER2/3 AND TIMER4/5

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on Timers, refer to the "PIC24F Family Reference Manual", Section 14. "Timers" (DS39704).

The Timer2/3 and Timer4/5 modules are 32-bit timers, which can also be configured as four independent, 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3 or Timer4/5 operate in three modes:

- Two independent 16-bit timers (Timer2 and Timer3) with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit timer
- · Single 32-bit synchronous counter

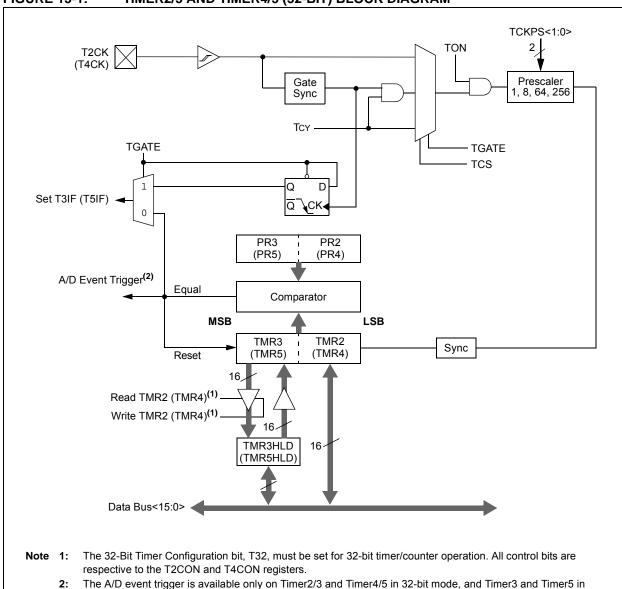
They also support these features:

- · Timer gate operation
- · Selectable prescaler settings
- · Timer operation during Idle mode
- Interrupt on a 32-bit Period register match
- A/D event trigger

Individually, all four of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the A/D event trigger (this is implemented only with Timer3). The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON and T5CON registers. The T2CON,T3CON, T4CON and T5CON registers are provided in generic form in Register 13-1 and Register 13-2, respectively.

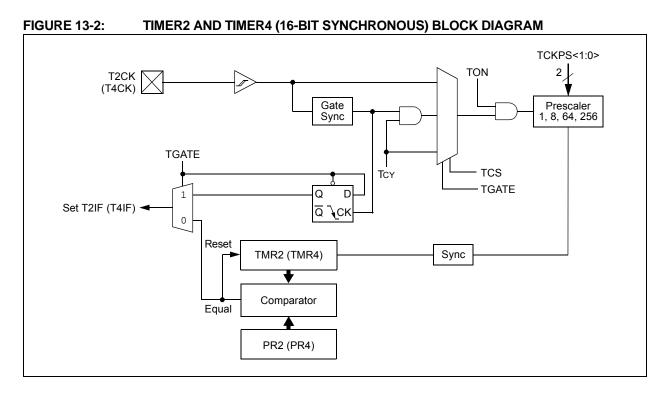
For 32-bit timer/counter operation, Timer2/Timer4 is the least significant word (lsw) and Timer3/Timer5 is the most significant word (msw) of the 32-bit timer.

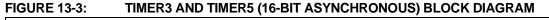
Note:	For 32-bit operation, T3CON or T5CON
	control bits are ignored. Only T2CON or
	T4CON control bits are used for setup and
	control. Timer2 or Timer4 clock and gate
	inputs are utilized for the 32-bit timer
	modules, but an interrupt is generated with
	the Timer3 or Timer5 interrupt flags.

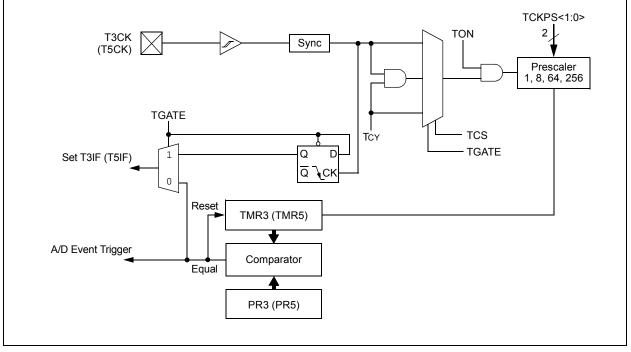

To configure Timer2/3 or Timer4/5 for 32-bit operation:

- 1. Set the T32 bit (T2CON<3> or T4CON<3> = 1).
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value. PR3 (or PR5) will contain the most significant word of the value, while PR2 (or PR4) contains the least significant word.
- 5. If interrupts are required, set the Timerx Interrupt Enable bit, TxIE. Use the Timerx Interrupt Priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit (TxCON<15> = 1).

The timer value, at any point, is stored in the register pair, TMR3:TMR2 (or TMR5:TMR4). TMR3 (TMR5) always contains the most significant word of the count, while TMR2 (TMR4) contains the least significant word.


To configure any of the timers for individual 16-bit operation:


- Clear the T32 bit corresponding to that timer (T2CON<3> for Timer2 and Timer3 or T4CON<3> for Timer4 and Timer5).
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the Timerx Interrupt Enable bit, TxIE; use the Timer1 Interrupt Priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit (TxCON<15> = 1).




### FIGURE 13-1: TIMER2/3 AND TIMER4/5 (32-BIT) BLOCK DIAGRAM

 The A/D event trigger is available only on Timer2/3 and Timer4/5 in 32-bit mode, and Timer3 and Timer 16-bit mode.







^{© 2011-2012} Microchip Technology Inc.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON	—	TSIDL	—	—	_	_					
bit 15							bit				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0				
	TGATE	TCKPS1	TCKPS0	T32 ⁽¹⁾	—	TCS					
bit 7							bit				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own				
bit 15	TON: Timer2	On hit									
bit 15	When TxCON										
	1 = Starts 32	-bit Timerx/y									
	•	0 = Stops 32-bit Timerx/y When TxCON<3> = 0:									
	1 = Starts 16										
L:1 1 1	0 = Stops 16		o'								
bit 14 bit 13	Unimplemented: Read as '0' TSIDL: Stop in Idle Mode bit										
DIL 13	1 = Discontinues module operation when device enters Idle mode										
	0 = Continues	s module opera	ation in Idle mo	de							
bit 12-7	Unimplemen	ted: Read as '	0'								
bit 6	TGATE: Timerx Gated Time Accumulation Enable bit										
	$\frac{\text{When TCS} = 1}{\text{This bit is imposed}}$										
	This bit is ignored. When TCS = 0:										
	1 = Gated time accumulation is enabled										
	0 = Gated time accumulation is disabled										
bit 5-4	TCKPS<1:0>	: Timerx Input	Clock Prescale	e Select bits							
	11 <b>= 1</b> :256										
	10 = 1:64										
	01 = 1:8										
hit 2	00 = 1:1 <b>T32:</b> 22 Bit Timer Mode Select hit ⁽¹⁾										
bit 3	<b>T32:</b> 32-Bit Timer Mode Select bit ⁽¹⁾ 1 = Timer2 and Timer3 or Timer4 and Timer5 form a single 32-bit timer										
				er5 act as two 1							
bit 2	Unimplemen	ted: Read as '	0'								
bit 1	TCS: Timerx	Clock Source S	Select bit								
		clock from pin clock (Fosc/2)	, TxCK (on the	rising edge)							
bit 0		ted: Read as '	0'								

### REGISTER 13-1: TxCON: TIMER2 AND TIMER4 CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
TON ⁽¹⁾	0-0	TSIDL ⁽¹⁾	0-0	0-0	0-0	0-0	0-0		
bit 15	—						 bit		
bit 15							DI		
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0		
	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾	—	_	TCS ⁽¹⁾	_		
bit 7							bit		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkno	wn		
bit 15	TON: Timery	On bit ⁽¹⁾							
	1 = Starts 16								
	0 = Stops 16	-bit Timery							
bit 14	Unimplemen	ted: Read as '	כ'						
bit 13	TSIDL: Stop in Idle Mode bit ⁽¹⁾								
	1 = Discontinues module operation when device enters Idle mode								
	0 = Continues	s module opera	tion in Idle moo	de					
oit 12-7	Unimplemen	ted: Read as '	כי						
bit 6	TGATE: Timery Gated Time Accumulation Enable bit ⁽¹⁾								
	When TCS = 1:								
	This bit is ignored.								
	<u>When TCS = 0:</u> 1 = Cated time accumulation is enabled								
	<ul> <li>1 = Gated time accumulation is enabled</li> <li>0 = Gated time accumulation is disabled</li> </ul>								
bit 5-4	<b>TCKPS&lt;1:0&gt;:</b> Timery Input Clock Prescale Select bits ⁽¹⁾								
	11 = 1:256								
	11 = 1.256 10 = 1.64								
	01 = 1:8								
	00 = 1:1								
bit 3-2	Unimplemen	ted: Read as '	כי						
bit 1	TCS: Timery	Clock Source S	Select bit ⁽¹⁾						
	1 = External	clock is from th	e T3CK pin (or	n the rising edge	e)				
	0 = Internal o	clock (Fosc/2)							
bit 0	Unimplemen	ted: Read as '	כי						
	/hen 32-hit opor	ation is onabled		1) these bits h	avo no offoct	on Timery operat			

#### CIGTED 12 ONI- TIMED2 AND TIMEDE CONTROL DECISTED

Note 1: When 32-bit operation is enabled (TxCON<3> = 1), these bits have no effect on Timery operation. All timer functions are set through the TxCON register.

NOTES:

# 14.0 INPUT CAPTURE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 34. "Input Capture with Dedicated Timer" (DS39722).

All devices in the PIC24FV32KA304 family feature three independent input capture modules. Each of the modules offers a wide range of configuration and operating options for capturing external pulse events, and generating interrupts.

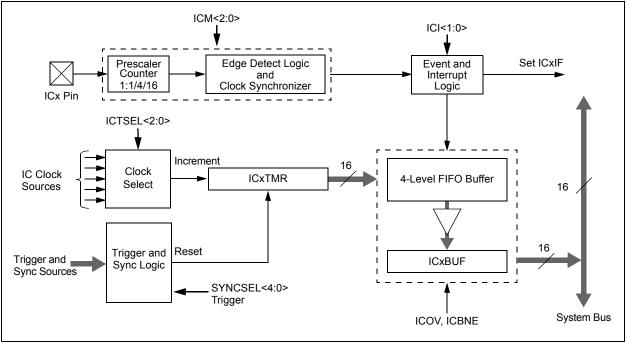
Key features of the input capture module include:

- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 20 user-selectable Sync/trigger sources available
- A 4-level FIFO buffer for capturing and holding timer values for several events
- · Configurable interrupt generation
- Up to 6 clock sources available for each module, driving a separate internal 16-bit counter

The module is controlled through two registers: ICxCON1 (Register 14-1) and ICxCON2 (Register 14-2). A general block diagram of the module is shown in Figure 14-1.

## 14.1 General Operating Modes

#### 14.1.1 SYNCHRONOUS AND TRIGGER MODES


By default, the input capture module operates in a Free-Running mode. The internal 16-bit counter, ICxTMR, counts up continuously, wrapping around from FFFFh to 0000h on each overflow, with its period synchronized to the selected external clock source. When a capture event occurs, the current 16-bit value of the internal counter is written to the FIFO buffer.

In Synchronous mode, the module begins capturing events on the ICx pin as soon as its selected clock source is enabled. Whenever an event occurs on the selected Sync source, the internal counter is reset. In Trigger mode, the module waits for a Sync event from another internal module to occur before allowing the internal counter to run.

Standard, free-running operation is selected by setting the SYNCSELx bits to '00000' and clearing the ICTRIG bit (ICxCON2<7>). Synchronous and Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The ICTRIG bit selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the Sync/trigger source.

When the SYNCSELx bits are set to '00000' and ICTRIG is set, the module operates in Software Trigger mode. In this case, capture operations are started by manually setting the TRIGSTAT bit (ICxCON2<6>).





© 2011-2012 Microchip Technology Inc.

## 14.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own 16-bit timer. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd-numbered module (ICx) provides the Least Significant 16 bits of the 32-bit register pairs, and the even module (ICy) provides the Most Significant 16 bits. Wrap arounds of the ICx registers cause an increment of their corresponding ICy registers.

Cascaded operation is configured in hardware by setting the IC32 bit (ICxCON2<8>) for both modules.

## 14.2 Capture Operations

The input capture module can be configured to capture timer values and generate interrupts on rising edges on ICx, or all transitions on ICx. Captures can be configured to occur on all rising edges or just some (every 4th or 16th). Interrupts can be independently configured to generate on each event or a subset of events.

To set up the module for capture operations:

- 1. If Synchronous mode is to be used, disable the Sync source before proceeding.
- Make sure that any previous data has been removed from the FIFO by reading ICxBUF until the ICBNE bit (ICxCON1<3>) is cleared.
- 3. Set the SYNCSELx bits (ICxCON2<4:0>) to the desired Sync/trigger source.
- Set the ICTSELx bits (ICxCON1<12:10>) for the desired clock source. If the desired clock source is running, set the ICTSELx bits before the input capture module is enabled, for proper synchronization with the desired clock source.
- 5. Set the ICIx bits (ICxCON1<6:5>) to the desired interrupt frequency.
- 6. Select Synchronous or Trigger mode operation:
  - a) Check that the SYNCSELx bits are not set to '00000'.
  - For Synchronous mode, clear the ICTRIG bit (ICxCON2<7>).
  - c) For Trigger mode, set ICTRIG and clear the TRIGSTAT bit (ICxCON2<6>).
- 7. Set the ICMx bits (ICxCON1<2:0>) to the desired operational mode.
- 8. Enable the selected Sync/trigger source.

For 32-bit cascaded operations, the setup procedure is slightly different:

- 1. Set the IC32 bits for both modules (ICyCON2<8> and (ICxCON2<8>), enabling the even-numbered module first. This ensures the modules will start functioning in unison.
- 2. Set the ICTSELx and SYNCSELx bits for both modules to select the same Sync/trigger and time base source. Set the even module first, then the odd module. Both modules must use the same ICTSELx and SYNCSELx bit settings.
- Clear the ICTRIG bit of the even module (ICyCON2<7>). This forces the module to run in Synchronous mode with the odd module, regardless of its trigger setting.
- 4. Use the odd module's ICIx bits (ICxCON1<6:5>) to the desired interrupt frequency.
- Use the ICTRIG bit of the odd module (ICxCON2<7>) to configure Trigger or Synchronous mode operation.
- **Note:** For Synchronous mode operation, enable the Sync source as the last step. Both input capture modules are held in Reset until the Sync source is enabled.
- 6. Use the ICMx bits of the odd module (ICxCON1<2:0>) to set the desired capture mode.

The module is ready to capture events when the time base and the Sync/trigger source are enabled. When the ICBNE bit (ICxCON1<3>) becomes set, at least one capture value is available in the FIFO. Read input capture values from the FIFO until the ICBNE clears to '0'.

For 32-bit operation, read both the ICxBUF and ICyBUF for the full 32-bit timer value (ICxBUF for the Isw, ICyBUF for the msw). At least one capture value is available in the FIFO buffer when the odd module's ICBNE bit (ICxCON1<3>) becomes set. Continue to read the buffer registers until ICBNE is cleared (performed automatically by hardware).

#### REGISTER 14-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0					
_	_	ICSIDL	ICTSEL2	ICTSEL1	ICTSEL0		_					
bit 15	•						bit 8					
U-0	R/W-0	R/W-0	R-0, HSC	R-0, HSC	R/W-0	R/W-0	R/W-0					
_	ICI1	ICI0	ICOV	ICBNE	ICM2	ICM1	ICM0					
bit 7							bit 0					
Legend:		HSC = Hardy	vare Settable/C	learable bit								
R = Readat	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'						
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unk	nown					
bit 15-14	Unimplemen	ted: Read as	0'									
bit 13-14	-		o Idule Stop in Idl	o Control hit								
DIL 15		-	alts in CPU Idle									
			ontinues to oper		e mode							
bit 12-10	ICTSEL<2:0>	: Input Captur	e Timer Select	bits								
	111 = Syster	111 = System clock (Fosc/2)										
	110 = Reserved											
	101 = Reserved 100 = Timer1											
	100 = Timer1 011 = Timer5											
	010 = Timer4											
	001 = Timer2 000 = Timer3											
bit 9-7		o i <b>ted:</b> Read as '	0'									
bit 6-5	-		Captures per Ir	nterrunt hits								
			th capture even	-								
		•	capture event	•								
			ond capture eve	ent								
L 11 A	-	t on every capt			N N							
bit 4	•	ture overflow c	flow Status Flag	g bit (read-only	)							
		capture overflo										
bit 3			fer Empty Statu	s bit (read-only	()							
		ture buffer is n ture buffer is e	ot empty, at lea	st one more ca	pture value ca	n be read						
bit 2-0	• •		ode Select bits									
5112 0			t capture function	ons as an inter	rupt pin only w	hen the device	e is in Sleep or					
			ge detect only, a									
		ed (module disa										
			ode: Capture o									
			ode: Capture of e: Capture on e									
			e: Capture on e									
	001 = Edge	Detect Captur	e mode: Captu	re on every e		falling); ICI<	1:0 bits do no					
	contro	l interrupt gen	eration for this r	node								

000 = Input capture module is turned off

#### REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
	—	_	—	—	—	—	IC32
bit 15							bit 8
R/W-0	R/W-0, HS	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
ICTRIG	TRIGSTAT	_	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
oit 7							bit 0
Legend:		HS = Hardwa	re Settable bit				
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-9	Unimplement	ed: Read as '	0'				
bit 8	-		ules Enable bit	(32-bit operatio	on)		
	1 = ICx and I	Cy operate in o	cascade as a 32 ently as a 16-bit	2-bit module (th		set in both mod	dules)
bit 7		x from source	designated by				
	-		ource designate	d by the SYNC	CSELx bits		
bit 6		urce has been	atus bit triggered and is een triggered ar			n be set in soft	ware)
bit 5	Unimplement			ia is being new			
bit 4-0	-		o nchronization S	Source Selectio	on bits		
	11111 = Rese	erved					
	11110 = Rese 11101 = Rese						
	11100 = CTM	լլ( <mark>1</mark> )					
	11011 = A/D( 11010 = Com						
	11001 = Com	parator 2 ⁽¹⁾					
	11000 <b>= Com</b>						
	10111 = Input 10110 = Input						
	10101 = Inpu	t Capture 2					
	10100 = Input 10011 = Rese						
	10010 = Rese	erved					
	1000x = Rese 01111 = Time						
	01110 <b>= Time</b>	er4					
	01101 = Time 01100 = Time	•					
	01011 <b>= Time</b>	er1					
	01010 = Input 01001 = Rese						
	01000 = Rese						
	00111 = Rese						
	00110 = Rese 00101 = Outp						
	00100 = Outp	out Compare 4					
	00011 = Outp 00010 = Outp						
	00001 = Outp	out Compare 1					
	00000 <b>= Not</b> s	synchronized t	o any other mo	dule			

Note 1: Use these inputs as trigger sources only and never as Sync sources.

## 15.0 OUTPUT COMPARE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 35. "Output Compare with Dedicated Timer" (DS39723).

All devices in the PIC24FV32KA304 family feature 3 independent output compare modules. Each of these modules offers a wide range of configuration and operating options for generating pulse trains on internal device events. Also, the modules can produce Pulse-Width Modulated (PWM) waveforms for driving power applications.

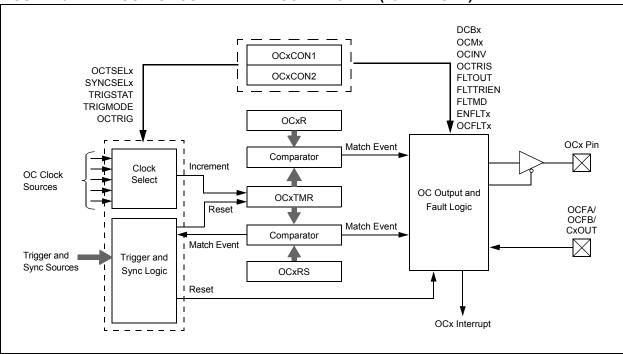
Key features of the output compare module include:

- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 21 user-selectable Sync/trigger sources available
- Two separate Period registers (a main register, OCxR, and a secondary register, OCxRS) for greater flexibility in generating pulses of varying widths
- Configurable for single pulse or continuous pulse generation on an output event, or continuous PWM waveform generation
- Up to 6 clock sources available for each module driving a separate internal 16-bit counter

## 15.1 General Operating Modes

#### 15.1.1 SYNCHRONOUS AND TRIGGER MODES

By default, the output compare module operates in a Free-Running mode. The internal 16-bit counter, OCxTMR, counts up continuously, wrapping around from FFFFh to 0000h on each overflow, with its period synchronized to the selected external clock source. Compare or PWM events are generated each time a match between the internal counter and one of the Period registers occurs.


In Synchronous mode, the module begins performing its compare or PWM operation as soon as its selected clock source is enabled. Whenever an event occurs on the selected Sync source, the module's internal counter is reset. In Trigger mode, the module waits for a Sync event from another internal module to occur before allowing the counter to run.

Free-Running mode is selected by default or any time that the SYNCSELx bits (OCxCON2<4:0>) are set to '00000'. Synchronous or Trigger modes are selected any time the SYNCSELx bits are set to any value except '00000'. The OCTRIG bit (OCxCON2<7>) selects either Synchronous or Trigger mode. Setting this bit selects Trigger mode operation. In both modes, the SYNCSELx bits determine the Sync/trigger source.

## 15.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own set of 16-bit Timer and Duty Cycle registers. To increase the range, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd-numbered module (OCx) provides the Least Significant 16 bits of the 32-bit register pairs, and the even-numbered module (OCy) provides the Most Significant 16 bits. Wrap arounds of the OCx registers cause an increment of their corresponding OCy registers.

Cascaded operation is configured in hardware by setting the OC32 bit (OCxCON2<8>) for both modules.



#### FIGURE 15-1: OUTPUT COMPARE x BLOCK DIAGRAM (16-BIT MODE)

## 15.2 Compare Operations

In Compare mode (Figure 15-1), the output compare module can be configured for single-shot or continuous pulse generation. It can also repeatedly toggle an output pin on each timer event.

To set up the module for compare operations:

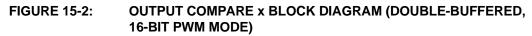
- Calculate the required values for the OCxR and (for Double Compare modes) OCxRS Duty Cycle registers:
  - a) Determine the instruction clock cycle time. Take into account the frequency of the external clock to the timer source (if one is used) and the timer prescaler settings.
  - b) Calculate time to the rising edge of the output pulse relative to the timer start value (0000h).
  - c) Calculate the time to the falling edge of the pulse, based on the desired pulse width and the time to the rising edge of the pulse.
- 2. Write the rising edge value to OCxR and the falling edge value to OCxRS.
- For Trigger mode operations, set OCTRIG to enable Trigger mode. Set or clear TRIGMODE to configure the trigger operation and TRIGSTAT to select a hardware or software trigger. For Synchronous mode, clear OCTRIG.
- Set the SYNCSEL<4:0> bits to configure the trigger or synchronization source. If free-running timer operation is required, set the SYNCSELx bits to '00000' (no Sync/trigger source).
- 5. Select the time base source with the OCTSEL<2:0> bits. If the desired clock source is running, set the OCTSEL<2:0> bits before the output compare module is enabled for proper synchronization with the desired clock source. If necessary, set the TON bit for the selected timer which enables the compare time base to count. Synchronous mode operation starts as soon as the synchronization source is enabled; Trigger mode operation starts after a trigger source event occurs.
- 6. Set the OCM<2:0> bits for the appropriate compare operation ('0xx').

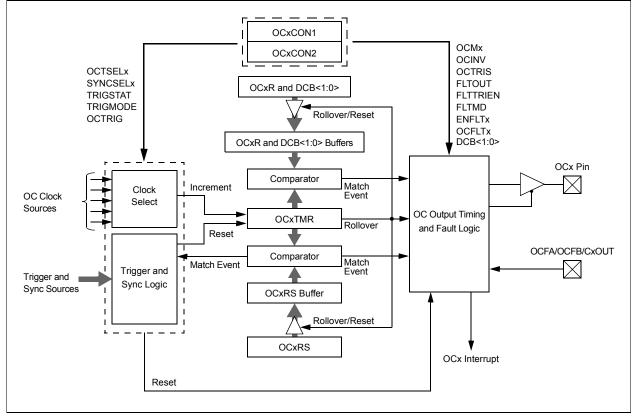
For 32-bit cascaded operation, these steps are also necessary:

- 1. Set the OC32 bits for both registers (OCyCON2<8> and (OCxCON2<8>). Enable the even-numbered module first to ensure the modules will start functioning in unison.
- Clear the OCTRIG bit of the even module (OCyCON2), so the module will run in Synchronous mode.
- 3. Configure the desired output and Fault settings for OCy.
- 4. Force the output pin for OCx to the output state by clearing the OCTRIS bit.
- If Trigger mode operation is required, configure the trigger options in OCx by using the OCTRIG (OCxCON2<7>), TRIGSTAT (OCxCON2<6>) and SYNCSELx (OCxCON2<4:0>) bits.
- Configure the desired Compare or PWM mode of operation (OCM<2:0>) for OCy first, then for OCx.

Depending on the output mode selected, the module holds the OCx pin in its default state and forces a transition to the opposite state when OCxR matches the timer. In Double Compare modes, OCx is forced back to its default state when a match with OCxRS occurs. The OCxIF interrupt flag is set after an OCxR match in Single Compare modes and after each OCxRS match in Double Compare modes.

Single-shot pulse events only occur once, but may be repeated by simply rewriting the value of the OCxCON1 register. Continuous pulse events continue indefinitely until terminated.


#### 15.3 Pulse-Width Modulation (PWM) Mode


In PWM mode, the output compare module can be configured for edge-aligned or center-aligned pulse waveform generation. All PWM operations are double-buffered (buffer registers are internal to the module and are not mapped into SFR space).

To configure the output compare module for edge-aligned PWM operation:

- 1. Calculate the desired on-time and load it into the OCxR register.
- 2. Calculate the desired period and load it into the OCxRS register.
- Select the current OCx as the synchronization source by writing 0x1F to SYNCSEL<4:0> (OCxCON2<4:0>) and '0' to OCTRIG (OCxCON2<7>).

- 4. Select a clock source by writing the OCTSEL2<2:0> (OCxCON<12:10>) bits.
- 5. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- 6. Select the desired PWM mode in the OCM<2:0> (OCxCON1<2:0>) bits.
- 7. If a timer is selected as a clock source, set the TMRy prescale value and enable the time base by setting the TON (TxCON<15>) bit.





DS39995C-page 154

### 15.3.1 PWM PERIOD

In Edge-Aligned PWM mode, the period is specified by the value of the OCxRS register. In Center-Aligned PWM mode, the period of the synchronization source, such as the Timers' PRy, specifies the period. The period in both cases can be calculated using Equation 15-1.

#### EQUATION 15-1: CALCULATING THE PWM PERIOD⁽¹⁾

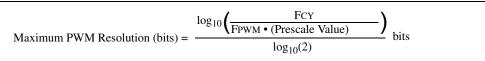
PWM Period = [Value + 1] x TCY x (Prescaler Value)

Where:

Value = OCxRS in Edge-Aligned PWM mode and can be PRy in Center-Aligned PWM mode (if TMRy is the Sync source).

**Note 1:** Based on Tcy = Tosc * 2; Doze mode and PLL are disabled.

### 15.3.2 PWM DUTY CYCLE


The PWM duty cycle is specified by writing to the OCxRS and OCxR registers. The OCxRS and OCxR registers can be written to at any time, but the duty cycle value is not latched until a period is complete. This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation.

Some important boundary parameters of the PWM duty cycle include:

- · Edge-Aligned PWM:
  - If OCxR and OCxRS are loaded with 0000h, the OCx pin will remain low (0% duty cycle).
  - If OCxRS is greater than OCxR, the pin will remain high (100% duty cycle).
- Center-Aligned PWM (with TMRy as the Sync source):
  - If OCxR, OCxRS and PRy are all loaded with 0000h, the OCx pin will remain low (0% duty cycle).
  - If OCxRS is greater than PRy, the pin will go high (100% duty cycle).

See Example 15-3 for PWM mode timing details. Table 15-1 and Table 15-2 show example PWM frequencies and resolutions for a device operating at 4 MIPS and 10 MIPS, respectively.

### EQUATION 15-2: CALCULATION FOR MAXIMUM PWM RESOLUTION⁽¹⁾



Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

## EQUATION 15-3: PWM PERIOD AND DUTY CYCLE CALCULATIONS⁽¹⁾

 Find the OCxRS register value for a desired PWM frequency of 52.08 kHz, where FOSC = 8 MHz with PLL (32 MHz device clock rate) and a prescaler setting of 1:1 using Edge-Aligned PWM mode:

TCY = 2 * TOSC = 62.5 nsPWM Period = 1/PWM Frequency =  $1/52.08 \text{ kHz} = 19.2 \text{ }\mu\text{s}$ PWM Period = (OCxRS + 1) • TCY • (OCx Prescale Value)

PWM Period =  $(OCxRS + 1) \cdot TCY \cdot (OCx Prescale Value)$ 19.2 us =  $(OCxRS + 1) \cdot 62.5 \text{ ns} \cdot 1$ 

$$OCxRS = 306$$

#### Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate: PWM Resolution = log₁₀(FCY/FPWM)/log₁₀2) bits

- =  $(\log_{10}(16 \text{ MHz}/52.08 \text{ kHz})/\log_{10}2)$  bits
- = 8.3 bits
- **Note 1:** Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.

## 15.4 Subcycle Resolution

The DCBx bits (OCxCON2<10:9>) provide for resolution better than one instruction cycle. When used, they delay the falling edge generated from a match event by a portion of an instruction cycle.

For example, setting DCB<1:0> = 10 causes the falling edge to occur halfway through the instruction cycle in which the match event occurs, instead of at the beginning. These bits cannot be used when OCM<2:0> = 001. When operating the module in PWM mode (OCM<2:0> = 110 or 111), the DCBx bits will be double-buffered. The DCBx bits are intended for use with a clock source identical to the system clock. When an OCx module with enabled prescaler is used, the falling edge delay caused by the DCBx bits will be referenced to the system clock period, rather than the OCx module's period.

TABLE 15-1:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (FCY = 4 MHz) ⁽¹⁾
-------------	--------------------------------------------------------------------------------

PWM Frequency	7.6 Hz	61 Hz	122 Hz	977 Hz	3.9 kHz	31.3 kHz	125 kHz
Prescaler Ratio	8	1	1	1	1	1	1
Period Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

**Note 1:** Based on FCY = FOSC/2; Doze mode and PLL are disabled.

PWM Frequency	30.5 Hz	244 Hz	488 Hz	3.9 kHz	15.6 kHz	125 kHz	500 kHz
Prescaler Ratio	8	1	1	1	1	1	1
Period Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

**Note 1:** Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

### REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1
bit 15							bit 8

R/W-0	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0
ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2 ⁽¹⁾	OCM1 ⁽¹⁾	OCM0 ⁽¹⁾
bit 7							bit 0

Legend:	HSC = Hardware Settable/C	HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

-n = Value	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-14	Unimple	mented: Read as '0'		
bit 13	OCSIDL:	Stop Output Compare x in	Idle Mode Control bit	
	1 = Outp	ut Compare x halts in CPU	Idle mode	
	-	ut Compare x continues to		
bit 12-10	OCTSEL	<2:0>: Output Compare x 1	Timer Select bits	
	,	stem clock		
	110 = Re 101 = Re			
	101 <b>–</b> Re 100 <b>–</b> Tir			
	011 = Tir			
	010 <b>= Tir</b>			
	001 = Tir			
1.1.0	000 = Tir	-		
bit 9		Comparator Fault Input En		
		parator Fault input is enable parator Fault input is disable		
bit 8		OCFB Fault Input Enable t		
bit o		B Fault input is enabled		
		B Fault input is disabled		
bit 7	ENFLT0:	OCFA Fault Input Enable b	bit	
	1 = OCF	A Fault input is enabled		
	0 = OCF	A Fault input is disabled		
bit 6		PWM Comparator Fault C		
			n has occurred (this is cleared in	
				sed only when OCM<2:0> = 111)
bit 5		PWM OCFB Fault Input E		
			occurred (this is cleared in hard not occurred (this bit is used or	
bit 4		PWM OCFA Fault Condition		$\frac{1}{2} = 1 $
Dit 4			occurred (this is cleared in hard	dware only)
			not occurred (this bit is used or	
bit 3		DE: Trigger Status Mode So		,
			leared when OCxRS = OCxTM	R or in software
	0 = TRIG	STAT is only cleared by so	ftware	
Note 1:	The compara	tor module used for Fault in	nput varies with the OCx module	• OC1 and OC2 use
			arator 2; OC5 uses Comparator	

### **REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)**

## bit 2-0 OCM<2:0>: Output Compare x Mode Select bits⁽¹⁾

- 111 = Center-Aligned PWM mode on OCx
  - 110 = Edge-Aligned PWM mode on OCx
  - 101 = Double Compare Continuous Pulse mode: Initialize OCx pin low; toggle OCx state continuously on alternate matches of OCxR and OCxRS
  - 100 = Double Compare Single-Shot mode: Initialize OCx pin low; toggle OCx state on matches of OCxR and OCxRS for one cycle
  - 011 = Single Compare Continuous Pulse mode: Compare events continuously toggle the OCx pin
  - 010 = Single Compare Single-Shot mode: Initialize OCx pin high; compare event forces the OCx pin low
  - 001 = Single Compare Single-Shot mode: Initialize OCx pin low, compare event forces the OCx pin high
  - 000 = Output compare channel is disabled
- **Note 1:** The comparator module used for Fault input varies with the OCx module. OC1 and OC2 use Comparator 1; OC3 and OC4 use Comparator 2; OC5 uses Comparator 3.

#### REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1 ⁽³⁾	DCB0 ⁽³⁾	OC32
bit 15							bit 8

R/W-0	R/W-0, HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0
bit 7							bit 0

Legend:	HS = Hardware Settab	le bit	
R = Read	able bit W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value	e at POR '1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	FLTMD: Fault Mode Select bit		
	1 = Fault mode is maintained until the	e Fault source is removed and	d the corresponding OCFLTx bit is
	cleared in software 0 = Fault mode is maintained until th	e Fault source is removed and	a new PWM period starts
bit 14	FLTOUT: Fault Out bit		·
	1 = PWM output is driven high on a F	Fault	
	0 = PWM output is driven low on a F		
bit 13	FLTTRIEN: Fault Output State Select		
	<ul> <li>1 = Pin is forced to an output on a Fa</li> <li>0 = Pin I/O condition is unaffected by</li> </ul>		
bit 12	OCINV: OCMP Invert bit		
	1 = OCx output is inverted		
	0 = OCx output is not inverted		
bit 11	Unimplemented: Read as '0'		
bit 10-9	DCB<1:0>: OC Pulse-Width Least Si	•	
	11 = Delays OCx falling edge by $3/4$	-	
	10 = Delays OCx falling edge by 1/2 01 = Delays OCx falling edge by 1/4		
	00 = OCx falling edge occurs at start	-	
bit 8	OC32: Cascade Two OC Modules Er	nable bit (32-bit operation)	
	<ul> <li>1 = Cascade module operation is en</li> <li>0 = Cascade module operation is dis</li> </ul>		
bit 7	OCTRIG: OCx Sync/Trigger Select bi	it	
	<ol> <li>1 = Triggers OCx from source desigr</li> <li>0 = Synchronizes OCx with source d</li> </ol>		pits
bit 6	TRIGSTAT: Timer Trigger Status bit		
	<ul><li>1 = Timer source has been triggered</li><li>0 = Timer source has not been triggered</li></ul>	Ū	
bit 5	OCTRIS: OCx Output Pin Direction S	Select bit	
	1 = OCx pin is tri-stated 0 = Output Compare Peripheral x is c	connected to the OCx pin	
		-	
Note 1:	Do not use an Output Compare module a equivalent SYNCSELx setting.	s its own trigger source, either	by selecting this mode or another
2:	Use these inputs as trigger sources only	-	
3:	These bits affect the rising edge when OG (OCxCON1<2:0>) = 001.	CINV = 1. The bits have no effe	ect when the OCMx bits

^{© 2011-2012} Microchip Technology Inc.

#### REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
  - 11111 = This OC module⁽¹⁾ 11110 = Reserved 11101 = Reserved 11100 = CTMU⁽²⁾ 11011 = A/D⁽²⁾ 11010 = Comparator 3⁽²⁾ 11001 = Comparator 2⁽²⁾ 11000 = Comparator 1⁽²⁾ 10111 = Input Capture 4⁽²⁾ 10110 = Input Capture 3⁽²⁾ 10101 = Input Capture 2⁽²⁾ 10100 = Input Capture 1⁽²⁾ 100xx = Reserved 01111 = Timer5 01110 = Timer4 01101 = Timer3 01100 = Timer2 01011 = Timer1 01010 = Input Capture 5⁽²⁾ 01001 = Reserved 01000 = Reserved 00111 = Reserved 00110 = Reserved 00101 = Output Compare 5⁽¹⁾ 00100 = Output Compare 4⁽¹⁾ 00011 = Output Compare 3⁽¹⁾ 00010 = Output Compare 2⁽¹⁾ 00001 = Output Compare 1⁽¹⁾ 00000 = Not synchronized to any other module
- **Note 1:** Do not use an Output Compare module as its own trigger source, either by selecting this mode or another equivalent SYNCSELx setting.
  - 2: Use these inputs as trigger sources only and never as Sync sources.
  - **3:** These bits affect the rising edge when OCINV = 1. The bits have no effect when the OCMx bits (OCxCON1<2:0>) = 001.

## 16.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Serial Peripheral Interface, refer to the *"PIC24F Family Reference Manual"*, Section 23. *"Serial Peripheral Interface (SPI)"* (DS39699).

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial data EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with Motorola[®] SPI and SIOP interfaces.

The module supports operation in two buffer modes. In Standard mode, data is shifted through a single serial buffer. In Enhanced Buffer mode, data is shifted through an 8-level FIFO buffer.

Note:	Do not perform read-modify-write opera-
	tions (such as bit-oriented instructions) on
	the SPI1BUF register in either Standard or
	Enhanced Buffer mode.

The module also supports a basic framed SPI protocol while operating in either Master or Slave mode. A total of four framed SPI configurations are supported.

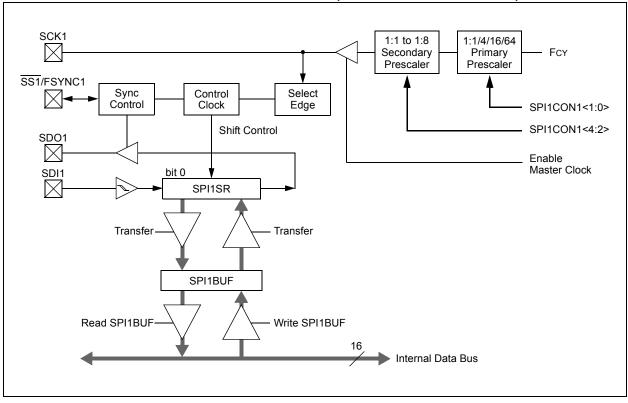
The SPI serial interface consists of four pins:

- SDI1: Serial Data Input
- SDO1: Serial Data Output
- SCK1: Shift Clock Input or Output
- SS1: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPI module can be configured to operate using 2, 3 or 4 pins. In the 3-pin mode,  $\overline{SS1}$  is not used. In the 2-pin mode, both SDO1 and  $\overline{SS1}$  are not used.

Block diagrams of the module, in Standard and Enhanced Buffer modes, are shown in Figure 16-1 and Figure 16-2.

The devices of the PIC24FV32KA304 family offer two SPI modules on a device.


Note: In this section, the SPI modules are referred to as SPIx. Special Function Registers (SFRs) will follow a similar notation. For example, SPI1CON1 or SPI1CON2 refers to the control register for the SPI1 module. To set up the SPI1 module for the Standard Master mode of operation:

- 1. If using interrupts:
  - a) Clear the SPI1IF bit in the IFS0 register.
  - b) Set the SPI1IE bit in the IEC0 register.
  - c) Write the respective SPI1IPx bits in the IPC2 register to set the interrupt priority.
- Write the desired settings to the SPI1CON1 and SPI1CON2 registers with the MSTEN bit (SPI1CON1<5>) = 1.
- 3. Clear the SPIROV bit (SPI1STAT<6>).
- 4. Enable SPI operation by setting the SPIEN bit (SPI1STAT<15>).
- 5. Write the data to be transmitted to the SPI1BUF register. Transmission (and reception) will start as soon as data is written to the SPI1BUF register.

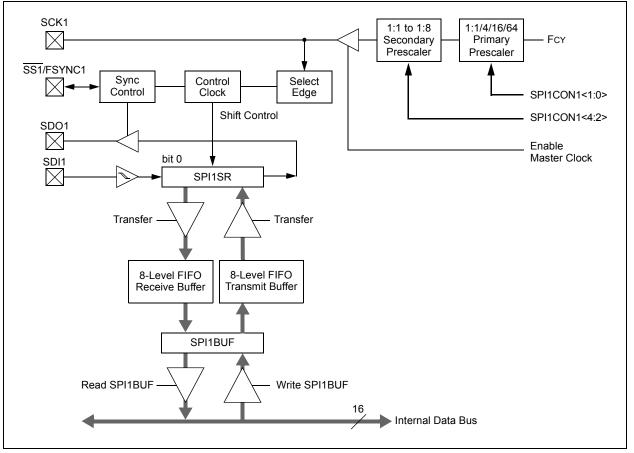
To set up the SPI1 module for the Standard Slave mode of operation:

- 1. Clear the SPI1BUF register.
- 2. If using interrupts:
  - a) Clear the SPI1IF bit in the IFS0 register.
  - b) Set the SPI1IE bit in the IEC0 register.
  - c) Write the respective SPI1IPx bits in the IPC2 register to set the interrupt priority.
- Write the desired settings to the SPI1CON1 and SPI1CON2 registers with the MSTEN bit (SPI1CON1<5>) = 0.
- 4. Clear the SMP bit.
- 5. If the CKE bit is set, then the SSEN bit (SPI1CON1<7>) must be set to enable the SS1 pin.
- 6. Clear the SPIROV bit (SPI1STAT<6>).
- 7. Enable SPI operation by setting the SPIEN bit (SPI1STAT<15>).

© 2011-2012 Microchip Technology Inc.



#### FIGURE 16-1: SPI1 MODULE BLOCK DIAGRAM (STANDARD BUFFER MODE)


To set up the SPI1 module for the Enhanced Buffer Master (EBM) mode of operation:

- 1. If using interrupts:
  - a) Clear the SPI1IF bit in the IFS0 register.
  - b) Set the SPI1IE bit in the IEC0 register.
  - c) Write the respective SPI1IPx bits in the IPC2 register.
- Write the desired settings to the SPI1CON1 and SPI1CON2 registers with the MSTEN bit (SPI1CON1<5>) = 1.
- 3. Clear the SPIROV bit (SPI1STAT<6>).
- 4. Select Enhanced Buffer mode by setting the SPIBEN bit (SPI1CON2<0>).
- 5. Enable SPI operation by setting the SPIEN bit (SPI1STAT<15>).
- Write the data to be transmitted to the SPI1BUF register. Transmission (and reception) will start as soon as data is written to the SPI1BUF register.

To set up the SPI1 module for the Enhanced Buffer Slave mode of operation:

- 1. Clear the SPI1BUF register.
- 2. If using interrupts:
  - a) Clear the SPI1IF bit in the IFS0 register.
  - b) Set the SPI1IE bit in the IEC0 register.
  - c) Write the respective SPI1IPx bits in the IPC2 register to set the interrupt priority.
- Write the desired settings to the SPI1CON1 and SPI1CON2 registers with the MSTEN bit (SPI1CON1<5>) = 0.
- 4. Clear the SMP bit.
- 5. If the CKE bit is set, then the SSEN bit must be set, thus enabling the SS1 pin.
- 6. Clear the SPIROV bit (SPI1STAT<6>).
- 7. Select Enhanced Buffer mode by setting the SPIBEN bit (SPI1CON2<0>).
- Enable SPI operation by setting the SPIEN bit (SPI1STAT<15>).

### FIGURE 16-2: SPI1 MODULE BLOCK DIAGRAM (ENHANCED BUFFER MODE)



^{© 2011-2012} Microchip Technology Inc.

## REGISTER 16-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC		
SPIEN		SPISIDL		—	SPIBEC2	SPIBEC1	SPIBEC0		
bit 15							bit		
R-0,HSC	R/C-0, HS	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R-0, HSC	R-0, HSC		
SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF		
bit 7							bit		
Legend:		C = Clearable	bit	HS = Hardwa	re Settable bit	HSC = Hardware S	ettable/Clearable bit		
R = Readal	ble bit	W = Writable			nented bit, read				
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unknown			
bit 15	SPIEN: SF	Plx Enable bit							
	1 = Enable 0 = Disable		configures	SCKx, SDO	, SDIx and SSx	as serial port pins			
bit 14	Unimplem	ented: Read	<b>as</b> '0'						
bit 13	SPISIDL:	Stop in Idle Mo	ode bit						
	1 = Discontinues module operation when device enters Idle mode								
		ues module o		Idle mode					
bit 12-11	-	ented: Read							
bit 10-8		SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode)							
	<u>Master mode:</u> Number of SPI transfers pending.								
	<u>Slave mod</u> Number of	<u>le:</u> SPI transfers	unread.						
bit 7	SRMPT: Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode)								
		Shift register is Shift register is		•	d or receive				
bit 6	SPIROV: F	Receive Overf	low Flag bi	t					
	1 = A new byte/word is completely received and discarded								
		user software l erflow has occ		d the previous	s data in the SP	I1BUF register.)			
bit 5	SRXMPT:	Receive FIFO	Empty bit	(valid in Enha	nced Buffer mo	de)			
	<b>SRXMPT:</b> Receive FIFO Empty bit (valid in Enhanced Buffer mode) 1 = Receive FIFO is empty								
	0 = Receive FIFO is not empty								
bit 4-2	SISEL<2:0	>: SPIx Buffe	r Interrupt	Mode bits (val	id in Enhanced	Buffer mode)			
	111 = Interrupt when SPIx transmit buffer is full (SPITBF bit is set)								
						the TX FIFO is empt			
						ne transmit is comple a result_the TX FIFO			
	100 = Interrupt when one data byte is shifted into the SPIxSR; as a result, the TX FIFO has one open spot 011 = Interrupt when SPIx receive buffer is full (SPIRBF bit is set)								
		errupt when SI	JIX receive	butter is tull (	SPIRDE DILIS SE	50			
	011 = Inte 010 = Inte	errupt when SI	Plx receive	buffer is 3/4 c	or more full				
	011 = Inte 010 = Inte 001 = Inte	errupt when SI errupt when da	Plx receive ata is availa	buffer is 3/4 o able in receive	or more full buffer (SRMPT				

#### REGISTER 16-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

bit 1 SPITBF: SPIx Transmit Buffer Full Status bit 1 = Transmit has not yet started, SPIxTXB is full 0 = Transmit has started, SPIxTXB is empty In Standard Buffer mode: Automatically set in hardware when the CPU writes the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR. In Enhanced Buffer mode: Automatically set in hardware when the CPU writes the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write. SPIRBF: SPIx Receive Buffer Full Status bit bit 0 1 = Receive is complete, SPIxRXB is full 0 = Receive is not complete, SPIxRXB is empty In Standard Buffer mode: Automatically set in hardware when the SPIx transfers data from the SPIxSR to SPIxRXB. Automatically cleared in hardware when the core reads the SPIxBUF location, reading SPIxRXB.

#### In Enhanced Buffer mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

^{© 2011-2012} Microchip Technology Inc.

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾				
bit 15			2.00011	2.002.0		0	bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0				
bit 7	· · · · · · · · · · · · · · · · · · ·						bit 0				
Legend:											
R = Readab	le hit	W = Writable	bit	II = I Inimpler	nented bit, read	as '0'					
-n = Value a		'1' = Bit is set	bit	'0' = Bit is cle		x = Bit is unkr	lown				
				0 21110 010							
bit 15-13	Unimplemen	ted: Read as '	)'								
bit 12	DISSCK: Disa	able SCKx pin I	bit (SPIx Maste	er modes only)							
		PIx clock is dis		tions as an I/O	)						
		Plx clock is ena									
bit 11		ables SDOx pir									
		<ul> <li>1 = SDOx pin is not used by the module; pin functions as an I/O</li> <li>0 = SDOx pin is controlled by the module</li> </ul>									
bit 10		0 = SDOX pin is controlled by the module <b>MODE16:</b> Word/Byte Communication Select bit									
		1 = Communication is word-wide (16 bits)									
	0 = Communication is byte-wide (8 bits)										
bit 9	SMP: SPIx Data Input Sample Phase bit										
	Master mode:										
	<ul> <li>1 = Input data is sampled at the end of data output time</li> <li>0 = Input data is sampled at the middle of data output time</li> </ul>										
	Slave mode:	a is sumpled at									
		cleared when	SPIx is used ir	n Slave mode.							
bit 8	CKE: SPIx C	KE: SPIx Clock Edge Select bit ⁽¹⁾									
	<ul> <li>1 = Serial output data changes on transition from active clock state to Idle clock state (see bit 6)</li> <li>0 = Serial output data changes on transition from Idle clock state to active clock state (see bit 6)</li> </ul>										
					ck state to activ	e clock state (s	see bit 6)				
bit 7		Select Enable	-	e)							
	1 = $\overline{SSx}$ pin is used for Slave mode 0 = $\overline{SSx}$ pin is not used by the module; pin is controlled by port function										
bit 6	<b>CKP:</b> Clock Polarity Select bit										
	1 = Idle state for clock is a high level; active state is a low level										
	0 = Idle state for clock is a low level; active state is a high level										
bit 5	MSTEN: Master Mode Enable bit										
	1 = Master mode 0 = Slave mode										
bit 4-2	SPRE<2:0>: Secondary Prescale bits (Master mode)										
		111 = Secondary prescale 1:1									
		dary prescale 2									
	•										
	•										
	000 <b>= Secon</b>	dary prescale 8	:1								
	he CKE bit is no		amed SPI mo	des. The user s	should program	this bit to '0' fo	or the Framed				

#### REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

bit 1-0 **PPRE<1:0>:** Primary Prescale bits (Master mode)

- 11 = Primary prescale 1:1
- 10 = Primary prescale 4:1
- 01 = Primary prescale 16:1
- 00 = Primary prescale 64:1
- **Note 1:** The CKE bit is not used in the Framed SPI modes. The user should program this bit to '0' for the Framed SPI modes (FRMEN = 1).

#### REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	SPIFPOL	_			—	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	—	—	—	—	_	SPIFE	SPIBEN
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable b	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 14	SPIFSD: Frar 1 = Frame Sy 0 = Frame Sy	nc pulse input ( nc pulse output	Direction Con slave) (master)	trol on SSx Pin			
bit 13	<ul> <li>SPIFPOL: Frame Sync Pulse Polarity bit (Frame mode only)</li> <li>1 = Frame Sync pulse is active-high</li> <li>0 = Frame Sync pulse is active-low</li> </ul>						
bit 12-2	Unimplemen	ted: Read as '0	,				
bit 1	SPIFE: Frame Sync Pulse Edge Select bit						
	<ul> <li>1 = Frame Sync pulse coincides with the first bit clock</li> <li>0 = Frame Sync pulse precedes the first bit clock</li> </ul>						
bit 0	SPIBEN: Enh	anced Buffer E	nable bit				
		d buffer is enabl					
	0 = Enhanced	t huffar is disahl	od (Logoov m	ada)			

## EQUATION 16-1: RELATIONSHIP BETWEEN DEVICE AND SPIX CLOCK SPEED⁽¹⁾

FCY

FSCK = Primary Prescaler * Secondary Prescaler

**Note 1:** Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

## TABLE 16-1: SAMPLE SCKx FREQUENCIES^(1,2)

Fcy = 16 MHz		Secondary Prescaler Settings					
		1:1	2:1	4:1	6:1	8:1	
Primary Prescaler Settings	1:1	Invalid	8000	4000	2667	2000	
	4:1	4000	2000	1000	667	500	
	16:1	1000	500	250	167	125	
	64:1	250	125	63	42	31	
Fcy = 5 MHz							
Primary Prescaler Settings	1:1	5000	2500	1250	833	625	
	4:1	1250	625	313	208	156	
	16:1	313	156	78	52	39	
	64:1	78	39	20	13	10	

**Note 1:** Based on FCY = FOSC/2; Doze mode and PLL are disabled.

2: SCKx frequencies are indicated in kHz.

## 17.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Inter-Integrated Circuit, refer to the "PIC24F Family Reference Manual", Section 24. "Inter-Integrated Circuit™ (I²C™)" (DS39702).

The Inter-Integrated Circuit  $(I^2C^{TM})$  module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial data EEPROMs, display drivers, A/D Converters, etc.

The I²C modules support these features:

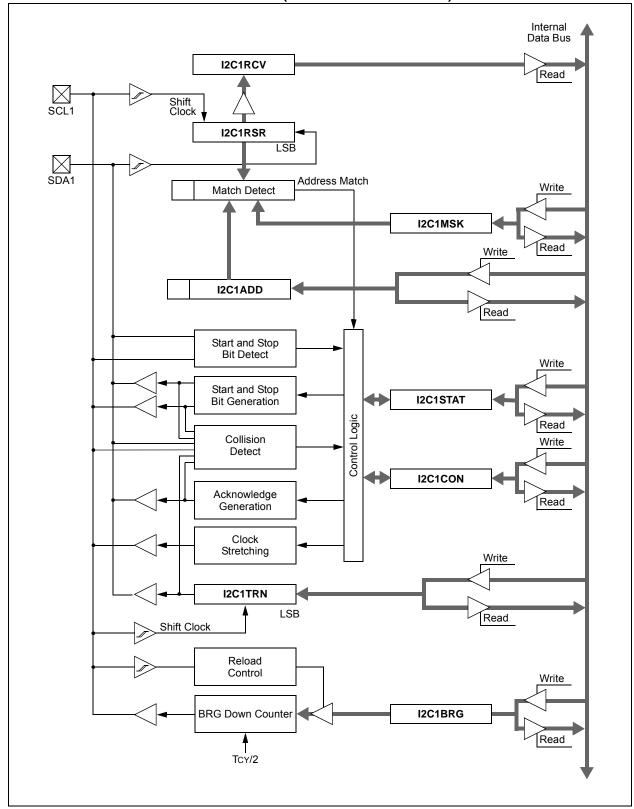
- Independent master and slave logic
- 7-bit and 10-bit device addresses
- General call address, as defined in the I²C protocol
- Clock stretching to provide delays for the processor to respond to a slave data request
- Both 100 kHz and 400 kHz bus specifications
- Configurable address masking
- Multi-Master modes to prevent loss of messages in arbitration
- Bus Repeater mode, allowing the acceptance of all messages as a slave, regardless of the address
- Automatic SCL

A block diagram of the module is shown in Figure 17-1.

## 17.1 Pin Remapping Options

The  $I^2C$  modules are tied to a fixed pin. To allow flexibility with peripheral multiplexing, the I2C1 module, in 28-pin devices, can be reassigned to the alternate pins. These alternate pins are designated as SCL1 and SDA1 during device configuration.

Pin assignment is controlled by the I2CxSEL Configuration bit. Programming this bit (= 0) multiplexes the module to the SCL1 and SDA1 pins.

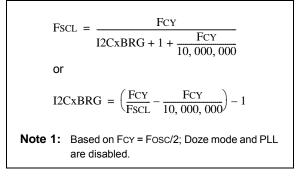

**Note:** Throughout this section, references to register and bit names that may be associated with a specific I²C module are referred to generically by the use of 'x' in place of the specific module number. Thus, "I2CxSTAT" might refer to the Receive Status register for either I2C1 or I2C2.

## 17.2 Communicating as a Master in a Single Master Environment

The details of sending a message in Master mode depends on the communication protocols for the device being communicated with. Typically, the sequence of events is as follows:

- 1. Assert a Start condition on SDAx and SCLx.
- 2. Send the I²C device address byte to the slave with a write indication.
- 3. Wait for and verify an Acknowledge from the slave.
- 4. Send the first data byte (sometimes known as the command) to the slave.
- 5. Wait for and verify an Acknowledge from the slave.
- 6. Send the serial memory address low byte to the slave.
- 7. Repeat Steps 4 and 5, until all data bytes are sent.
- 8. Assert a Repeated Start condition on SDAx and SCLx.
- 9. Send the device address byte to the slave with a read indication.
- 10. Wait for and verify an Acknowledge from the slave.
- 11. Enable master reception to receive serial memory data.
- 12. Generate an ACK or NACK condition at the end of a received byte of data.
- 13. Generate a Stop condition on SDAx and SCLx.

© 2011-2012 Microchip Technology Inc.




## FIGURE 17-1: I²C[™] BLOCK DIAGRAM (I2C1 MODULE IS SHOWN)

## 17.3 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator (BRG) reload value, use Equation 17-1.

## EQUATION 17-1: COMPUTING BAUD RATE RELOAD VALUE⁽¹⁾



### TABLE 17-1: I²C[™] CLOCK RATES⁽¹⁾

### 17.4 Slave Address Masking

The I2CxMSK register (Register 17-3) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the slave module to respond, whether the corresponding address bit value is '0' or '1'. For example, when I2CxMSK is set to '00100000', the slave module will detect both addresses: '0000000' and '00100000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the IPMIEN bit (I2C1CON<11>).

**Note:** As a result of changes in the I²C protocol, the addresses in Table 17-2 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

Required		I2CxB	Actual	
System FscL	Fcy	(Decimal)	(Hexadecimal)	FSCL
100 kHz	16 MHz	157	9D	100 kHz
100 kHz	8 MHz	78	4E	100 kHz
100 kHz	4 MHz	39	27	99 kHz
400 kHz	16 MHz	37	25	404 kHz
400 kHz	8 MHz	18	12	404 kHz
400 kHz	4 MHz	9	9	385 kHz
400 kHz	2 MHz	4	4	385 kHz
1 MHz	16 MHz	13	D	1.026 MHz
1 MHz	8 MHz	6	6	1.026 MHz
1 MHz	4 MHz	3	3	0.909 MHz

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

### TABLE 17-2: $I^2C^{TM}$ RESERVED ADDRESSES⁽¹⁾

Slave Address	R/W Bit	Description
0000 000	0	General Call Address ⁽²⁾
0000 000	1	Start Byte
0000 001	x	CBus Address
0000 010	x	Reserved
0000 011	x	Reserved
0000 1xx	x	HS Mode Master Code
1111 1xx	x	Reserved
1111 0xx	х	10-Bit Slave Upper Byte ⁽³⁾

Note 1: The address bits listed here will never cause an address match, independent of the address mask settings.

2: This address will be Acknowledged only if GCEN = 1.

3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0			
I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN			
bit 15		• •					bit 8			
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC			
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN			
bit 7	STREM	ACKDT	ACKEN	KCEN	FEN	KOEN	bit (			
							Dit C			
Legend:		HC = Hardwa	re Clearable bit							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'				
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 15	I2CEN: I2Cx	Enable bit								
		he I2Cx module the I2Cx modul								
bit 14		ted: Read as '	•		.,					
bit 13	-	p in Idle Mode I								
		1 = Discontinues module operation when the device enters an Idle mode								
		s module opera		_						
bit 12		Lx Release Co	ntrol bit (when o	operating as I ²	C slave)					
	1 = Releases 0 = Holds SC	SCLx clock	ock stretch)							
	If STREN = 1									
	The bit is R/V	 Ⅴ (i.e., software eginning of the								
	<u>If STREN = 0</u> The bit is R/S slave transmi	(i.e., software	may only write	'1' to release of	clock). Hardwa	re is clear at th	e beginning o			
bit 11	IPMIEN: Intel	lligent Periphera	al Management	Interface (IPM	I) Enable bit					
	1 = IPMI Sup	port mode is er	abled; all addre							
bit 10	A10M: 10-Bit	Slave Address	ing bit							
		is a 10-bit slav is a 7-bit slave								
bit 9										
bit 5	DISSLW: Disable Slew Rate Control bit 1 = Slew rate control is disabled									
		control is enab								
bit 8	SMEN: SMBI	us Input Levels	bit							
		/O pin threshold the SMBus inpu		th the SMBus s	pecification					
bit 7	GCEN: Gene	ral Call Enable	bit (when opera	ating as I ² C sla	ve)					
	1 = Enables for recep	interrupt when a tion)	a general call a	ddress is receiv	ved in the I2Cx	RSR (module is	s enabled			
		call address is o	disabled							
	STREN: SCI				$1^2$ C alove)					
bit 6	••••••	x Clock Stretch	Enable bit (who	en operating as	si C slave)					
bit 6	Used in conju	x Clock Stretch inction with the software or rece	SCLREL bit.		si C slave)					

## REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	<b>ACKDT:</b> Acknowledge Data bit (when operating as I ² C master; applicable during master receive) Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge
bit 4	0 = Sends ACK during Acknowledge ACKEN: Acknowledge Sequence Enable bit
	<ul> <li>(when operating as I²C master; applicable during master receive)</li> <li>1 = Initiates the Acknowledge sequence on the SDAx and SCLx pins, and transmits the ACKDT data bit; hardware is clear at the end of the master Acknowledge sequence</li> <li>0 = Acknowledge sequence is not in progress</li> </ul>
bit 3	<b>RCEN:</b> Receive Enable bit (when operating as I ² C master)
	<ul> <li>1 = Enables Receive mode for l²C; hardware is clear at the end of the eighth bit of the master receive data byte</li> </ul>
	0 = Receive sequence is not in progress
bit 2	<b>PEN:</b> Stop Condition Enable bit (when operating as I ² C master)
	<ul> <li>1 = Initiates Stop condition on SDAx and SCLx pins; hardware is clear at end of master Stop sequence</li> <li>0 = Stop condition is not in progress</li> </ul>
bit 1	<b>RSEN:</b> Repeated Start Condition Enable bit (when operating as I ² C master)
	1 = Initiates Repeated Start condition on SDAx and SCLx pins; hardware is clear at the end of the master Repeated Start sequence
	0 = Repeated Start condition is not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	<ul> <li>1 = Initiates Start condition on SDAx and SCLx pins; hardware is clear at the end of the master Start sequence</li> </ul>
	O - Start condition is not in program.

0 = Start condition is not in progress

^{© 2011-2012} Microchip Technology Inc.

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC				
ACKSTAT	TRSTAT				BCL	GCSTAT	ADD10				
bit 15							bit 8				
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC				
IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF				
bit 7							bit 0				
Legend:		C = Cleara	ble bit	HS = Hardware	Settable bit	HSC = Hardware S	ettable/Clearable bit				
R = Readal	ole bit	W = Writab	le bit	U = Unimpleme	nted bit, read as	s 'O'					
-n = Value a	at POR	'1' = Bit is s	set	'0' = Bit is cleare	ed	x = Bit is unknown					
bit 15	ACKSTAT	: Acknowled	ge Status bit								
	-	was detecte									
		as detected									
				of Acknowledge							
bit 14		ransmit Sta		licable to maste	r transmit oper	ration)					
		hen operating as I ² C master; applicable to master transmit operation) = Master transmit is in progress (8 bits + ACK)									
			not in progres								
			beginning of	the master trans	smission; hardv	ware is clear at the	end of				
	slave Ackn	•									
bit 13-11	-	ented: Rea									
bit 10			sion Detect b								
		<ul> <li>A bus collision has been detected during a master operation</li> <li>No collision</li> </ul>									
			detection of a	a bus collision.							
bit 9		General Cal									
			ss was receiv	ved							
	0 = General call address was not received										
	Hardware	is set when	an address n	natches the gene	eral call addres	s; hardware is clea	r at Stop detection.				
bit 8	ADD10: 10	)-Bit Addres	s Status bit								
		1 = 10-bit address was matched									
			s not matched atch of the 2 nd		hed 10-bit addr	ess: hardware is cle	ar at Stop detection.				
bit 7		/rite Collisio		byte of the mate							
				RN register faile	ed because the	I ² C module is busy	1				
	0 = No coll										
	Hardware	is set at an o	occurrence of	a write to I2Cx	FRN while busy	y (cleared by softwa	ıre).				
bit 6	I2COV: Re	ceive Overf	low Flag bit								
			ed while the la	2CxRCV registe	r is still holding	the previous byte					
	0 = No ove Hardware i		attemnt to tra	nefer I2CvRSR f		eared by software).					
bit 5	_		-	ting as I ² C slave		carea by soliwale).					
DIL D			· ·	•	;)						
		1 = Indicates that the last byte received was data									
	0 = Indicat	es that the I	ast byte rece	ived was the dev	vice address						
		is clear at a		ived was the dev ss match; hardv		write to I2CxTRN	or by reception of				

## REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 4	P: Stop bit
	<ul> <li>1 = Indicates that a Stop bit has been detected last</li> <li>0 = Stop bit was not detected last</li> </ul>
	Hardware is set or cleared when a Start, Repeated Start or Stop is detected.
bit 3	Start bit
	<ul> <li>1 = Indicates that a Start (or Repeated Start) bit has been detected last</li> <li>0 = Start bit was not detected last</li> </ul>
	Hardware is set or clear when a Start, Repeated Start or Stop is detected.
bit 2	<b>R/W</b> : Read/Write Information bit (when operating as I ² C slave)
	1 = Read – indicates data transfer is output from the slave 0 = Write – indicates data transfer is input to the slave Hardware is set or clear after the reception of an $I^2C$ device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	<ul> <li>1 = Receive is complete, I2CxRCV is full</li> <li>0 = Receive is not complete, I2CxRCV is empty</li> <li>Hardware is set when I2CxRCV is written with a received byte; hardware is clear when the software reads</li> <li>I2CxRCV.</li> </ul>
bit 0	TBF: Transmit Buffer Full Status bit
	<ul> <li>1 = Transmit is in progress, I2CxTRN is full</li> <li>0 = Transmit is complete, I2CxTRN is empty</li> <li>Hardware is set when the software writes to I2CxTRN; hardware is clear at the completion of</li> </ul>
	Haruware is set when the software whites to izox i RN, haruware is clear at the completion of

data transmission.

### REGISTER 17-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—			—		AMSK9	AMSK8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| AMSK7 | AMSK6 | AMSK5 | AMSK4 | AMSK3 | AMSK2 | AMSK1 | AMSK0 |
| bit 7 |       |       |       |       |       |       | bit 0 |

Legend:				
R = Readable bit	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-10 Unimplemented: Read as '0'

bit 9-0 AMSK<9:0>: Mask for Address Bit x Select bits

1 = Enables masking for bit x of an incoming message address; bit match is not required in this position
 0 = Disables masking for bit x; bit match is required in this position

### REGISTER 17-4: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
—	—	SMBUSDEL2	SMBUSDEL1		—	—	—	
bit 7								

Legend:				
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-6 Unimplemented: Read as '0'

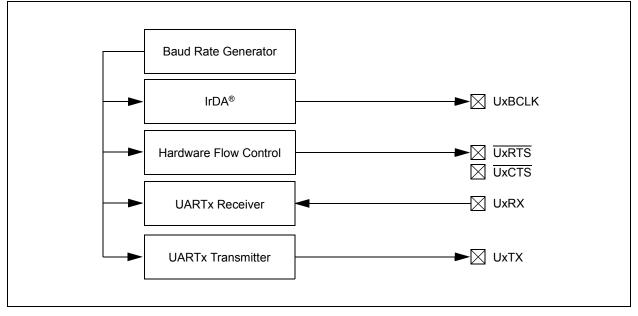
bit 5	SMBUSDEL2: SMBus SDA2 Input Delay Select bit
	<ul> <li>1 = The I2C2 module is configured for a longer SMBus input delay (nominal 300 ns delay)</li> <li>0 = The I2C2 module is configured for a legacy input delay (nominal 150 ns delay)</li> </ul>
bit 4	SMBUSDEL1: SMBus SDA1 Input Delay Select bit
	<ul> <li>1 = The I2C1 module is configured for a longer SMBus input delay (nominal 300 ns delay)</li> <li>0 = The I2C1 module is configured for a legacy input delay (nominal 150 ns delay)</li> </ul>
bit 3-0	Unimplemented: Read as '0'

## 18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive Reference source. For more information on the Universal Asynchronous Receiver Transmitter, refer to the *"PIC24F Family Reference Manual"*, Section 21. *"UART"* (DS39708).

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in this PIC24F device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. This module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:


- Full-Duplex, 8-Bit or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS pins
- Fully Integrated Baud Rate Generator (IBRG) with 16-Bit Prescaler

- Baud Rates Ranging from 1 Mbps to 15 bps at 16 MIPS
- 4-Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- · 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- Transmit and Receive Interrupts
- Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UARTx is shown in Figure 18-1. The UARTx module consists of these important hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver
- Note: Throughout this section, references to register and bit names that may be associated with a specific USART module are referred to generically by the use of 'x' in place of the specific module number. Thus, "UxSTA" might refer to the USART Status register for either USART1 or USART2.





© 2011-2012 Microchip Technology Inc.

#### 18.1 UARTx Baud Rate Generator (BRG)

The UARTx module includes a dedicated 16-bit Baud Rate Generator (BRG). The UxBRG register controls the period of a free-running, 16-bit timer. Equation 18-1 provides the formula for computation of the baud rate with BRGH = 0.

## EQUATION 18-1: UARTX BAUD RATE WITH BRGH = $0^{(1)}$

Baud Rate =  $\frac{FCY}{16 \cdot (UxBRG + 1)}$ UxBRG =  $\frac{FCY}{16 \cdot Baud Rate} - 1$ 

**Note 1:** Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

Example 18-1 provides the calculation of the baud rate error for the following conditions:

- Fcy = 4 MHz
- Desired Baud Rate = 9600

```
The maximum baud rate (BRGH = 0) possible is FCY/16 (for UxBRG = 0) and the minimum baud rate possible is FCY/(16 * 65536).
```

Equation 18-2 shows the formula for computation of the baud rate with BRGH = 1.

## EQUATION 18-2: UARTx BAUD RATE WITH BRGH = $1^{(1)}$

Baud Rate =  $\frac{FCY}{4 \cdot (UxBRG + 1)}$   $UxBRG = \frac{FCY}{4 \cdot Baud Rate} - 1$ Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

The maximum baud rate (BRGH = 1) possible is FcY/4 (for UxBRG = 0) and the minimum baud rate possible is FcY/(4 * 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

## EXAMPLE 18-1: BAUD RATE ERROR CALCULATION (BRGH = 0)⁽¹⁾

Desired Baud Rate	= FCY/(16 (UxBRG + 1))
Solving for UxBRG va	alue:
UxBRG UxBRG	= ((FCY/Desired Baud Rate)/16) - 1 = ((4000000/9600)/16) - 1
UxBRG	= 25
Calculated Baud Rate	= 4000000/(16 (25 + 1)) = 9615
Error	<ul> <li>= (Calculated Baud Rate – Desired Baud Rate) Desired Baud Rate</li> <li>= (9615 – 9600)/9600</li> <li>= 0.16%</li> </ul>
Note 1: Based on	FCY = FOSC/2; Doze mode and PLL are disabled.

## 18.2 Transmitting in 8-Bit Data Mode

- 1. Set up the UARTx:
  - a) Write appropriate values for data, parity and Stop bits.
  - b) Write appropriate baud rate value to the UxBRG register.
  - c) Set up transmit and receive interrupt enable and priority bits.
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
- 4. Write the data byte to the lower byte of the UxTXREG word. The value will be immediately transferred to the Transmit Shift Register (TSR) and the serial bit stream will start shifting out with the next rising edge of the baud clock.
- Alternately, the data byte may be transferred while UTXEN = 0 and then, the user may set UTXEN. This will cause the serial bit stream to begin immediately, because the baud clock will start from a cleared state.
- 6. A transmit interrupt will be generated as per interrupt control bit, UTXISELx.

## 18.3 Transmitting in 9-Bit Data Mode

- 1. Set up the UARTx (as described in Section 18.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UARTx.
- 3. Set the UTXEN bit (causes a transmit interrupt, two cycles after being set).
- 4. Write UxTXREG as a 16-bit value only.
- 5. A word write to UxTXREG triggers the transfer of the 9-bit data to the TSR. The serial bit stream will start shifting out with the first rising edge of the baud clock.
- 6. A transmit interrupt will be generated as per the setting of control bit, UTXISELx.

## 18.4 Break and Sync Transmit Sequence

The following sequence will send a message frame header made up of a Break, followed by an auto-baud Sync byte.

- 1. Configure the UARTx for the desired mode.
- 2. Set UTXEN and UTXBRK this sets up the Break character.
- 3. Load the UxTXREG with a dummy character to initiate transmission (value is ignored).
- 4. Write '55h' to UxTXREG loads the Sync character into the transmit FIFO.
- 5. After the Break has been sent, the UTXBRK bit is reset by hardware. The Sync character now transmits.

## 18.5 Receiving in 8-Bit or 9-Bit Data Mode

- 1. Set up the UARTx (as described in Section 18.2 "Transmitting in 8-Bit Data Mode").
- 2. Enable the UARTx.
- 3. A receive interrupt will be generated when one or more data characters have been received, as per interrupt control bit, URXISELx.
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- 5. Read UxRXREG.

The act of reading the UxRXREG character will move the next character to the top of the receive FIFO, including a new set of PERR and FERR values.

## 18.6 Operation of UxCTS and UxRTS Control Pins

UARTx Clear-to-Send (UxCTS) and Request-to-Send (UxRTS) are the two hardware-controlled pins that are associated with the UARTx module. These two pins allow the UARTx to operate in Simplex and Flow Control modes. They are implemented to control the transmission and reception between the Data Terminal Equipment (DTE). The UEN<1:0> bits in the UxMODE register configure these pins.

## 18.7 Infrared Support

The UARTx module provides two types of infrared UARTx support: one is the IrDA clock output to support an external IrDA encoder and decoder device (legacy module support), and the other is the full implementation of the IrDA encoder and decoder.

As the IrDA modes require a 16x baud clock, they will only work when the BRGH bit (UxMODE<3>) is '0'.

#### 18.7.1 EXTERNAL IrDA SUPPORT – IrDA CLOCK OUTPUT

To support external IrDA encoder and decoder devices, the UxBCLK pin (same as the UxRTS pin) can be configured to generate the 16x baud clock. When UEN<1:0> = 11, the UxBCLK pin will output the 16x baud clock if the UARTx module is enabled; it can be used to support the IrDA codec chip.

## 18.7.2 BUILT-IN IrDA ENCODER AND DECODER

The UARTx has full implementation of the IrDA encoder and decoder as part of the UARTx module. The built-in IrDA encoder and decoder functionality is enabled using the IREN bit (UxMODE<12>). When enabled (IREN = 1), the receive pin (UxRX) acts as the input from the infrared receiver. The transmit pin (UxTX) acts as the output to the infrared transmitter.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0 ⁽²⁾	R/W-0 ⁽²⁾		
UARTEN	—	USIDL	IREN ⁽¹⁾	RTSMD	_	UEN1	UEN0		
bit 15							bit 8		
	DAMO		DAMO	DAMO	DAMA	DAMA	DAMO		
R/C-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL		
bit 7							bit 0		
Legend:		C = Clearable	bit	HC = Hardwa	are Clearable bi	t			
R = Readabl	e bit	W = Writable b	pit	U = Unimpler	nented bit, read	l as '0'			
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own		
bit 15	UARTEN: UA	ARTx Enable bit							
	1 = UARTx is	s enabled; all U	ARTx pins are	controlled by l	JARTx, as defir	ned by UEN<1:	0>		
	0 = UARTx i minimal	s disabled; all L	IARTx pins ar	e controlled by	port latches; L	JARTx power c	onsumption is		
bit 14	Unimplemen	nted: Read as '0	,						
bit 13	USIDL: Stop	in Idle Mode bit							
		nues module op			rs Idle mode				
		es module opera							
bit 12	IREN: IrDA [®] Encoder and Decoder Enable bit ⁽¹⁾ 1 = IrDA encoder and decoder are enabled								
		oder and decod oder and decod							
bit 11	RTSMD: Mod	de Selection for	UxRTS Pin bi	t					
		oin is in Simplex oin is in Flow Co							
bit 10	Unimplemen	ted: Read as '0	,						
bit 9-8	UEN<1:0>: L	JARTx Enable b	its ⁽²⁾						
	10 = UxTX, 01 = UxTX,	UxRX and UxB( UxRX, UxCTS a UxRX and UxR and UxRX pins a ches	and UxRTS pi TS pins are er	ns are enabled nabled a <u>nd use</u>	an <u>d used</u> d; UxCTS pin is	s controlled by	port latches		
bit 7	WAKE: Wake	e-up on Start Bit	Detect During	g Sleep Mode E	Enable bit				
		will continue to n hardware on t			rupt is generate	ed on the fallin	ig edge, bit is		
	0 = No wake	-up is enabled							
bit 6		ARTx Loopback		bit					
		Loopback mode k mode is disab							
bit 5	ABAUD: Aut	o-Baud Enable I	oit						
	cleared i	baud rate meas n hardware upo e measurement	n completion		er – requires re	ception of a Sy	nc field (55h);		
bit 4		eive Polarity Inve							
	1 = UxRX Id 0 = UxRX Id	le state is '0'							
	his feature is is	only available for y depends on the			<b>i</b> = 0).				

## REGISTER 18-1: UxMODE: UARTx MODE REGISTER

### REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

- bit 3 BRGH: High Baud Rate Enable bit
  - 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode)
     0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
- bit 2-1 **PDSEL<1:0>:** Parity and Data Selection bits
  - 11 = 9-bit data, no parity
    - 10 = 8-bit data, odd parity
    - 01 = 8-bit data, even parity
    - 00 = 8-bit data, no parity
- bit 0 STSEL: Stop Bit Selection bit
  - 1 = Two Stop bits
    - 0 = One Stop bit
- **Note 1:** This feature is is only available for the 16x BRG mode (BRGH = 0).
  - 2: The bit availability depends on the pin availability.

^{© 2011-2012} Microchip Technology Inc.

### REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0, HSC	R-1, HSC
UTXISEL1	UTXINV	UTXISEL0	—	UTXBRK	UTXEN	UTXBF	TRMT
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-1, HSC	R-0, HSC	R-0, HSC	R/C-0, HS	R-0, HSC
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7 bit (					bit 0		

Legend:	HC = Hardware Clearable bit		
HS = Hardware Settable bit	C = Clearable bit	HSC = Hardware Settable/Cle	earable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15,13 UTXISEL<1:0>: Transmission Interrupt Mode Selection bits

- 11 = Reserved; do not use
- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR) and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)

bit 14 UTXINV: IrDA[®] Encoder Transmit Polarity Inversion bit

2	
	<u>If IREN = 0:</u>
	1 = UxTX Idle '0'
	0 = UxTX Idle '1'
	If IREN = <u>1</u> :
	1 = UxTX Idle '1'
	0 = UxTX Idle '0'
bit 12	Unimplemented: Read as '0'
bit 11	UTXBRK: Transmit Break bit
	<ul> <li>1 = Sends Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion</li> </ul>
	0 = Sync Break transmission is disabled or completed
bit 10	UTXEN: Transmit Enable bit
	1 = Transmit is enabled; UxTX pin is controlled by UARTx
	<ul> <li>Transmit is disabled; any pending transmission is aborted and the buffer is reset. UxTX pin is controlled by the PORT register.</li> </ul>
bit 9	UTXBF: Transmit Buffer Full Status bit (read-only)
	1 = Transmit buffer is full
	0 = Transmit buffer is not full, at least one more character can be written
bit 8	TRMT: Transmit Shift Register Empty bit (read-only)
	<ul> <li>1 = Transmit Shift Register is empty and the transmit buffer is empty (the last transmission has completed)</li> </ul>
	0 = Transmit Shift Register is not empty; a transmission is in progress or queued
bit 7-6	URXISEL<1:0>: Receive Interrupt Mode Selection bits
	11 = Interrupt is set on a RSR transfer, making the receive buffer full (i.e., has 4 data characters)
	10 = Interrupt is set on a RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)
	$0_x$ = Interrupt is set when any character is received and transferred from the RSR to the receive buffer;

## REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	<ul> <li>1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect</li> <li>0 = Address Detect mode is disabled</li> </ul>
bit 4	RIDLE: Receiver Idle bit (read-only)
	<ul><li>1 = Receiver is Idle</li><li>0 = Receiver is active</li></ul>
bit 3	PERR: Parity Error Status bit (read-only)
	<ul><li>1 = Parity error has been detected for the current character (character at the top of the receive FIFO)</li><li>0 = Parity error has not been detected</li></ul>
bit 2	FERR: Framing Error Status bit (read-only)
	<ul> <li>1 = Framing error has been detected for the current character (character at the top of the receive FIFO)</li> <li>0 = Framing error has not been detected</li> </ul>
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	<ul> <li>1 = Receive buffer has overflowed</li> <li>0 = Receive buffer has not overflowed (clearing a previously set OERR bit (1 → 0 transition) will reset the receiver buffer and the RSR to the empty state)</li> </ul>
bit 0	URXDA: Receive Buffer Data Available bit (read-only)
	<ul> <li>1 = Receive buffer has data; at least one more characters can be read</li> <li>0 = Receive buffer is empty</li> </ul>

© 2011-2012 Microchip Technology Inc.

#### REGISTER 18-3: UXTXREG: UARTX TRANSMIT REGISTER

U-x	U-x	U-x	U-x	U-x	U-x	U-x	W-x
—	—	—	_	—	—	—	UTX8
bit 15							bit 8
W-x	W-x	W-x	W-x	W-x	W-x	W-x	W-x
UTX7	UTX6	UTX5	UTX4	UTX3	UTX2	UTX1	UTX0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-9 Unimplemented: Read as '0'

bit 8 UTX8: Data of the Transmitted Character bit (in 9-bit mode)

bit 7-0 UTX<7:0>: Data of the Transmitted Character bits

## **REGISTER 18-4: UXRXREG: UARTX RECEIVE REGISTER**

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0, HSC
—	—	—	—	—	—	—	URX8
bit 15							bit 8

| R-0, HSC |
|----------|----------|----------|----------|----------|----------|----------|----------|
| URX7     | URX6     | URX5     | URX4     | URX3     | URX2     | URX1     | URX0     |
| bit 7    |          |          |          |          |          |          | bit 0    |

Legend:	HSC = Hardware Settable/Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9 Unimplemented: Read as '0'

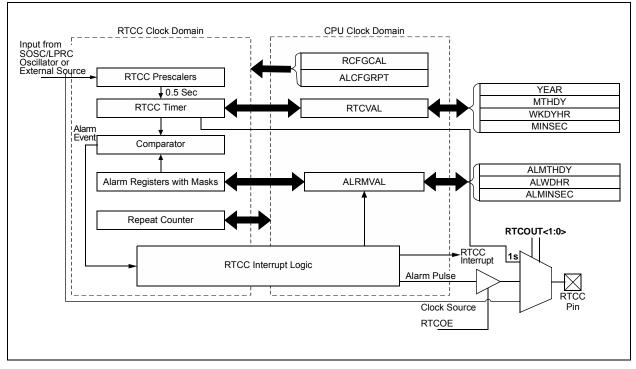
bit 8 URX8: Data of the Received Character bit (in 9-bit mode)

bit 7-0 URX<7:0>: Data of the Received Character bits

## 19.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Real-Time Clock and Calendar, refer to the "PIC24F Family Reference Manual", Section 29. "Real-Time Clock and Calendar (RTCC)" (DS39696).

The RTCC provides the user with a Real-Time Clock and Calendar (RTCC) function that can be calibrated.


Key features of the RTCC module are:

- Operates in Deep Sleep mode
- Selectable clock source
- Provides hours, minutes and seconds using 24-hour format
- · Visibility of one half second period
- Provides calendar weekday, date, month and year
- Alarm-configurable for half a second, one second, 10 seconds, one minute, 10 minutes, one hour, one day, one week, one month or one year
- · Alarm repeat with decrementing counter
- · Alarm with indefinite repeat chime
- · Year 2000 to 2099 leap year correction

- · BCD format for smaller software overhead
- Optimized for long term battery operation
- User calibration of the 32.768 kHz clock crystal/32K INTRC frequency with periodic auto-adjust
- · Optimized for long term battery operation
- Fractional second synchronization
- Calibration to within ±2.64 seconds error per month
- · Calibrates up to 260 ppm of crystal error
- Ability to periodically wake up external devices without CPU intervention (external power control)
- · Power control output for external circuit control
- · Calibration takes effect every 15 seconds
- · Runs from any one of the following:
  - External Real-Time Clock of 32.768 kHz
  - Internal 31.25 kHz LPRC Clock
  - 50 Hz or 60 Hz External Input

## 19.1 RTCC Source Clock

The user can select between the SOSC crystal oscillator, LPRC internal oscillator or an external 50 Hz/60 Hz power line input as the clock reference for the RTCC module. This gives the user an option to trade off system cost, accuracy and power consumption, based on the overall system needs.



#### © 2011-2012 Microchip Technology Inc.

## FIGURE 19-1: RTCC BLOCK DIAGRAM

### 19.2 RTCC Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control Registers
- RTCC Value Registers
- Alarm Value Registers

#### 19.2.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through corresponding register pointers. The RTCC Value register window (RTCVALH and RTCVALL) uses the RTCPTR bits (RCFGCAL<9:8>) to select the desired Timer register pair (see Table 19-1).

By writing the RTCVALH byte, the RTCC Pointer value, the RTCPTR<1:0> bits decrement by one until they reach '00'. Once they reach '00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

TABLE 19-1: RTCVAL REGISTER MAPPING

RTCPTR<1:0>	RTCC Value Register Window				
RICFIR(1.0>	RTCVAL<15:8>	RTCVAL<7:0>			
00	MINUTES	SECONDS			
01	WEEKDAY	HOURS			
10	MONTH	DAY			
11	—	YEAR			

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTRx bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 19-2).

By writing the ALRMVALH byte, the Alarm Pointer value (ALRMPTR<1:0> bits) decrements by one until they reach '00'. Once they reach '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL, until the pointer value is manually changed.

#### EXAMPLE 19-1: SETTING THE RTCWREN BIT

#### volatile asm ("push w7"); asm volatile ("push w8"); ("disi #5"); asm volatile volatile ("mov #0x55, w7"); asm volatile ("mov w7, _NVMKEY"); asm volatile ("mov #0xAA, w8"); asm asm volatile ("mov w8, _NVMKEY"); asm volatile ("bset _RCFGCAL, #13"); //set the RTCWREN bit asm volatile ("pop w8"); asm volatile ("pop w7");

#### TABLE 19-2: ALRMVAL REGISTER MAPPING

ALRMPTR	Alarm Value Register Window				
<1:0>	ALRMVAL<15:8>	ALRMVAL<7:0>			
00	ALRMMIN	ALRMSEC			
01	ALRMWD	ALRMHR			
10	ALRMMNTH	ALRMDAY			
11	PWCSTAB	PWCSAMP			

Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL bytes, the ALRMPTR<1:0> value will be decremented. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented.

Note:	This only applies to read operations and
	not write operations.

### 19.2.2 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RTCPWC<13>) must be set (see Example 19-1).

Note:	To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept clear at any other time. For the RTCWREN bit to be set, there is only one instruction cycle time window allowed between the 55h/AA sequence and the setting of RTCWREN.
	Therefore, it is recommended that code follow the procedure in Example 19-1.

## 19.2.3 SELECTING RTCC CLOCK SOURCE

There are four reference source clock options that can be selected for the RTCC using the RTCCSEL<1:0> bits: 00 = Secondary Oscillator, 01 = LPRC, 10 = 50 Hz External Clock and 11 = 60 Hz External Clock.

#### 19.2.4 RTCC CONTROL REGISTERS

## REGISTER 19-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R-0, HSC	R-0, HSC	R/W-0	R/W-0	R/W-0	
RTCEN ⁽²⁾	—	RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPTR1	RTCPTR0	
bit 15 bit 8								

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	
bit 7 bit 0								

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	RTCEN: RTCC Enable bit ⁽²⁾
	<ul><li>1 = RTCC module is enabled</li><li>0 = RTCC module is disabled</li></ul>
bit 14	Unimplemented: Read as '0'
bit 13	RTCWREN: RTCC Value Registers Write Enable bit
	<ul> <li>1 = RTCVALH and RTCVALL registers can be written to by the user</li> <li>0 = RTCVALH and RTCVALL registers are locked out from being written to by the user</li> </ul>
bit 12	RTCSYNC: RTCC Value Registers Read Synchronization bit
	<ul> <li>1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover ripple resulting in an invalid data read. If the register is read twice and results in the same data, the data can be assumed to be valid.</li> <li>0 = RTCVALH, RTCVALL or ALCFGRPT registers can be read without concern over a rollover ripple</li> </ul>
bit 11	HALFSEC: Half Second Status bit ⁽³⁾
	<ul> <li>1 = Second half period of a second</li> <li>0 = First half period of a second</li> </ul>
bit 10	RTCOE: RTCC Output Enable bit
	<ul> <li>1 = RTCC output is enabled</li> <li>0 = RTCC output is disabled</li> </ul>
bit 9-8	RTCPTR<1:0>: RTCC Value Register Window Pointer bits
	Points to the corresponding RTCC Value registers when reading the RTCVALH and RTCVALL registers. The RTCPTR<1:0> value decrements on every read or write of RTCVALH until it reaches '00'.
	<u>RTCVAL&lt;15:8&gt;:</u> 00 = MINUTES 01 = WEEKDAY 10 = MONTH 11 = Reserved
	RTCVAL<7:0>:
	00 = SECONDS 01 = HOURS
	10 = DAY
	11 <b>=</b> YEAR
Note 1:	The RCFGCAL register is only affected by a POR.

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- 3: This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

^{© 2011-2012} Microchip Technology Inc.

## REGISTER 19-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾ (CONTINUED)

- **Note 1:** The RCFGCAL register is only affected by a POR.
  - 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
  - 3: This bit is read-only; it is cleared to '0' on a write to the lower half of the MINSEC register.

## **REGISTER 19-2: RTCPWC: RTCC CONFIGURATION REGISTER 2⁽¹⁾**

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PWCEN	PWCPOL	PWCCPRE	PWCSPRE	RTCCLK1 ⁽²⁾	RTCCLK0 ⁽²⁾	RTCOUT1	RTCOUT0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—	—	—	—	—	—
bit 7							bit (
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpleme	nted bit, read as	'0'	
-n = Value		'1' = Bit is set		'0' = Bit is cleare		x = Bit is unkr	nown
bit 15	PWCEN: Po	wer Control En	able bit				
		ontrol is enable					
		ontrol is disable					
bit 14		ower Control F	•				
		ontrol output is ontrol output is					
bit 13		-		ity Prescaler bits			
				-by-2 of source R			
	0 = PWC sta	ability window o	clock is divide-	by-1 of source R	TCC clock		
bit 12	PWCSPRE:	Power Control	Sample Prese	caler bits			
				by-2 of source R by-1 of source R			
bit 11-10	RTCCLK<1:	0>: RTCC Cloo	ck Select bits ⁽²	2)			
					s used for all RT	CC timer opera	itions.
		al Secondary O I LPRC Oscillat		C)			
		al power line sc					
		al power line so					
bit 9-8		0>: RTCC Out					
	00 <b>= RTCC</b> a	alarm pulse					
		seconds clock					
	10 = RTCC ( 11 = Power (						
bit 7-0		nted: Read as	'O'				
Note 1:	The RTCPWC			POR			
1. 2:		•	•	r bits. the Secon			

2: When a new value is written to these register bits, the Seconds Value register should also be written to properly reset the clock prescalers in the RTCC.

© 2011-2012 Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTRO			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0			
bit 7							bit			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'				
-n = Value at		'1' = Bit is set		'0' = Bit is clea	-	x = Bit is unkr	nown			
bit 15		arm Enable bit								
			red automatica	lly after an ala	rm event whe	never ARPT<7	:0> = 00h an			
	CHIME = 0 = Alarm is	,								
bit 14	CHIME: Chim									
			T<7:0> bits are	allowed to roll	over from 00h	to FFh				
		•	T<7:0> bits sto							
bit 13-10			Configuration b							
	0000 = Ever	ry half second								
	0001 = Every second									
	0010 = Every 10 seconds									
	0011 = Every minute									
	0100 = Every 10 minutes 0101 = Every hour									
	0101 = Once a day									
	0111 = Onc	e a week								
	1000 = Onc				e e th					
			ot when configu	red for Februa	ry 29 th , once e	every 4 years)				
		erved – do not erved – do not								
bit 9-8			use ue Register Wi	ndow Pointer b	its					
			-			ALH and ALRM	/ALL registers			
						LH until it reache				
	ALRMVAL<1									
	00 <b>= ALRMM</b>									
	01 = ALRMW									
	10 = ALRMMNTH									
	11 = Unimplemented									
	ALRMVAL<7:0>: 00 = ALRMSEC									
	01 = ALRMH	R								
	10 = ALRMD									
	11 = Unimple									
bit 7-0			Counter Value I							
	11111111 =	Alarm will rep	eat 255 more ti	mes						
		Alarm will not		-4. it is f	ad for an ut	over from 00h				

#### 19.2.5 RTCVAL REGISTER MAPPINGS

#### **REGISTER 19-4:** YEAR: YEAR VALUE REGISTER⁽¹⁾

| U-0    |
|--------|--------|--------|--------|--------|--------|--------|--------|
| —      | —      | —      | —      | —      | —      | —      | —      |
| bit 15 |        |        |        |        |        |        | bit 8  |
|        |        |        |        |        |        |        |        |
| R/W-x  |
| YRTEN3 | YRTEN2 | YRTEN2 | YRTEN1 | YRONE3 | YRONE2 | YRONE1 | YRONE0 |
| bit 7  |        | •      |        |        |        | •      | bit 0  |

#### Legend:

Logona.				
R = Readable bit	able bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8 Unimplemented: Read as '0'

- bit 7-4 **YRTEN<3:0>:** Binary Coded Decimal Value of Year's Tens Digit bits Contains a value from 0 to 9.
- bit 3-0 **YRONE<3:0>:** Binary Coded Decimal Value of Year's Ones Digit bits Contains a value from 0 to 9.

**Note 1:** A write to the YEAR register is only allowed when RTCWREN = 1.

### REGISTER 19-5: MTHDY: MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	<b>MTHTEN0:</b> Binary Coded Decimal Value of Month's Tens Digit bit Contains a value of '0' or '1'.
bit 11-8	<b>MTHONE&lt;3:0&gt;:</b> Binary Coded Decimal Value of Month's Ones Digit bits Contains a value from 0 to 9.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	<b>DAYTEN&lt;1:0&gt;:</b> Binary Coded Decimal Value of Day's Tens Digit bits Contains a value from 0 to 3.
bit 3-0	<b>DAYONE&lt;3:0&gt;:</b> Binary Coded Decimal Value of Day's Ones Digit bits Contains a value from 0 to 9.

**Note 1:** A write to this register is only allowed when RTCWREN = 1.

© 2011-2012 Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
	_		_	_	WDAY2	WDAY1	WDAY0
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15 11	Unimplement	had. Dood oo '	<b>,</b>				
bit 15-11	-	ted: Read as '(		···· · · -·			
bit 10-8		•		of Weekday Di	git bits		
	Contains a va	lue from 0 to 6.					
bit 7-6	Unimplement	ted: Read as 'o	)'				
bit 5-4	HRTEN<1:0>	Binary Coded	Decimal Value	e of Hour's Ten	s Digit bits		
	Contains a va	lue from 0 to 2.					
bit 3-0	HRONE<3:0>	Binary Codec	d Decimal Valu	e of Hour's One	es Digit bits		
	Contains a va	lue from 0 to 9.					

## REGISTER 19-6: WKDYHR: WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

**Note 1:** A write to this register is only allowed when RTCWREN = 1.

### REGISTER 19-7: MINSEC: MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0	
bit 15							bit 8	
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0	
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value a	t POR	'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
644F	Unimentence	tad: Daad as (	<b>.</b> '					
bit 15	-	ted: Read as '						
bit 14-12				ue of Minute's T	ens Digit bits			
	Contains a va	lue from 0 to 5						
bit 11-8		•		ue of Minute's (	Ones Digit bits			
	Contains a va	lue from 0 to 9						
bit 7	Unimplement	ted: Read as '0						
bit 6-4	SECTEN<2:0	>: Binary Code	ed Decimal Val	ue of Second's	Tens Digit bits			
	Contains a va	lue from 0 to 5						
bit 3-0	SECONE<3:0	<b>D&gt;:</b> Binary Code	ed Decimal Val	ue of Second's	Ones Digit bits	6		

Contains a value from 0 to 9.

#### 19.2.6 ALRMVAL REGISTER MAPPINGS

## REGISTER 19-8: ALMTHDY: ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7	•		•	•	•	•	bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit
	Contains a value of '0' or '1'.
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits
	Contains a value from 0 to 9.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits
	Contains a value from 0 to 3.
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits
	Contains a value from 0 to 9.

**Note 1:** A write to this register is only allowed when RTCWREN = 1.

## REGISTER 19-9: ALWDHR: ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—		WDAY2	WDAY1	WDAY0
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
	Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits
	Contains a value from 0 to 9.

**Note 1:** A write to this register is only allowed when RTCWREN = 1.

© 2011-2012 Microchip Technology Inc.

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as		l as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	0' = Bit is cleared		iown
bit 15	Unimplement	ted: Read as '0	,				
bit 14-12	MINTEN<2:0	Sinary Code	d Decimal Valu	ue of Minute's T	ens Digit bits		
	Contains a va	lue from 0 to 5					
bit 11-8	MINONE<3:0	>: Binary Code	ed Decimal Val	ue of Minute's (	Ones Digit bits		
	Contains a va	lue from 0 to 9					
bit 7	Unimplemen	ted: Read as '	כ'				
bit 6-4	SECTEN<2:0	>: Binary Code	ed Decimal Val	ue of Second's	Tens Digit bits		
	Contains a va	lue from 0 to 5					
bit 3-0	SECONE<3:0	>: Binary Code	ed Decimal Val	ue of Second's	Ones Digit bits	6	
	Contains a va	lue from 0 to 9					

## REGISTER 19-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER

## REGISTER 19-11: RTCCSWT: CONTROL/SAMPLE WINDOW TIMER REGISTER⁽¹⁾

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
PWCSTAB7	PWCSTAB6	PWCSTAB5	PWCSTAB4	PWCSTAB3	PWCSTAB2	PWCSTAB1	PWCSTAB0
bit 15	-						bit 8
D //	D 44/	D/A/					
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
PWCSAMP7	PWCSAMP6	PWCSAMP5	PWCSAMP4	PWCSAMP3	PWCSAMP2	PWCSAMP1	PWCSAMPO
bit 7							bit C
Legend:							
R = Readable bit		W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
	00000000 = The sample w from every ala	Stability windo vindow starts w arm event wher	w is 0 TPwcc∟ /hen the alarm ⊇PWCEN = 1.		1	window timer s	starts counting
bit 7-0	from every alarm event when PWCEN = 1. <b>PWCSAMP&lt;7:0&gt;:</b> PWM Sample Window Timer bits 1111111 = Sample window is always enabled, even when PWCEN = 0 11111110 = Sample window is 254 TPWCCLK clock periods 00000000 = Sample window is 0 TPWCCLK clock periods The sample window timer starts counting at the end of the stability window when PWCEN = 1 PWCSTAB<7:0> = 00000000, the sample window timer starts counting from every alarm event wh						

**Note 1:** A write to this register is only allowed when RTCWREN = 1.

^{© 2011-2012} Microchip Technology Inc.

## 19.3 Calibration

The real-time crystal input can be calibrated using the periodic auto-adjust feature. When properly calibrated, the RTCC can provide an error of less than 3 seconds per month. This is accomplished by finding the number of error clock pulses and storing the value into the lower half of the RCFGCAL register. The 8-bit signed value, loaded into the lower half of RCFGCAL, is multiplied by four and will be either added or subtracted from the RTCC timer, once every minute. Refer to the steps below for RTCC calibration:

- 1. Using another timer resource on the device, the user must find the error of the 32.768 kHz crystal.
- 2. Once the error is known, it must be converted to the number of error clock pulses per minute.
- a) If the oscillator is faster than ideal (negative result form Step 2), the RCFGCAL register value must be negative. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

b) If the oscillator is slower than ideal (positive result from Step 2), the RCFGCAL register value must be positive. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

#### EQUATION 19-1:

(Ideal Frequency [†] – Measured Frequency) *					
60 = Clocks per Minute					
† Ideal Frequency = 32,768 Hz					

Writes to the lower half of the RCFGCAL register should only occur when the timer is turned off, or immediately after the rising edge of the seconds pulse, except when SECONDS = 00, 15, 30 or 45. This is due to the auto-adjust of the RTCC at 15 second intervals.

**Note:** It is up to the user to include, in the error value, the initial error of the crystal: drift due to temperature and drift due to crystal aging.

## 19.4 Alarm

- Configurable from half second to one year
- Enabled using the ALRMEN bit (ALCFGRPT<15>)
- One-time alarm and repeat alarm options are available

#### 19.4.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to ALRMVAL should only take place when ALRMEN = 0.

As shown in Figure 19-2, the interval selection of the alarm is configured through the AMASKx bits (ALCFGRPT<13:10>). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur.

The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs, once the alarm is enabled, is stored in the ARPT<7:0> bits (ALCFGRPT<7:0>). When the value of the ARPTx bits equals 00h and the CHIME bit (ALCFGRPT<14>) is cleared, the repeat function is disabled, and only a single alarm will occur. The alarm can be repeated up to 255 times by loading ARPT<7:0> with FFh.

After each alarm is issued, the value of the ARPTx bits is decremented by one. Once the value has reached 00h, the alarm will be issued one last time, after which, the ALRMEN bit will be cleared automatically and the alarm will turn off.

Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the value of the ARPTx bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.

### 19.4.2 ALARM INTERRUPT

At every alarm event, an interrupt is generated. In addition, an alarm pulse output is provided that operates at half the frequency of the alarm. This output is completely synchronous to the RTCC clock and can be used as a trigger clock to other peripherals.

Note: Changing any of the registers, other than the RCFGCAL and ALCFGRPT registers, and the CHIME bit while the alarm is enabled (ALRMEN = 1), can result in a false alarm event leading to a false alarm interrupt. To avoid a false alarm event, the timer and alarm values should only be changed while the alarm is disabled (ALRMEN = 0). It is recommended that the ALCFGRPT register and CHIME bit be changed when RTCSYNC = 0.

URE 19-2:	ALARM MASK SE	THNGS					
Alarm Masl (AMASK		Day of the Week	Month D	Day	Hours	Minutes	Seconds
0000 - Every I 0001 - Every :							
0010 - Every	10 seconds						s
0011 - Every (	ninute						ss
0100 - Every	10 minutes					m	ss
0101 - Every I	nour					mm	ss
0110 - Every (	day				h h	mm	s s
0111 - Every	week	d			h h	mm	s s
1000 - Every I	nonth		/ d	d	h h :	mm	ss
1001 - Every	/ear ⁽¹⁾		d	d	h h	mm	S S
Note 1: Ar	nnually, except when cor	nfigured for	r February 29.				

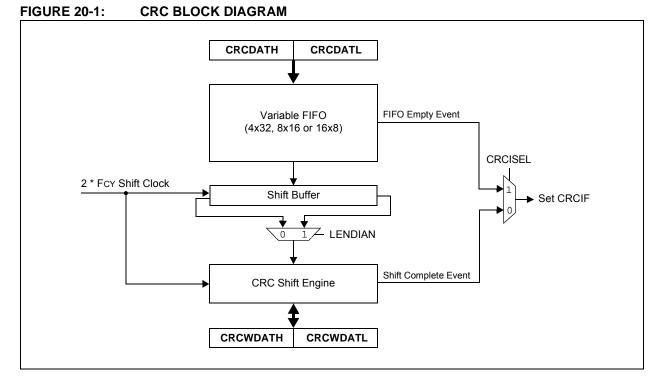
## 19.5 POWER CONTROL

The RTCC includes a power control feature that allows the device to periodically wake-up an external device, wait for the device to be stable before sampling wake-up events from that device and then shut down the external device. This can be done completely autonomously by the RTCC, without the need to wake from the current low-power mode (Sleep, Deep Sleep, etc.).

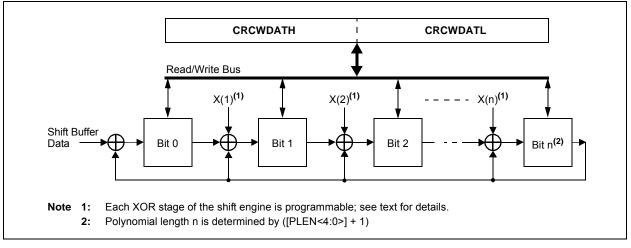
To enable this feature, the RTCC must be enabled (RTCEN = 1), the PWCEN register bit must be set and the RTCC pin must be driving the PWC control signal (RTCOE = 1 and RTCSECSEL<1:0> = 11).

The polarity of the PWC control signal may be chosen using the PWCP register bit. Active-low or active-high may be used with the appropriate external switch to turn on or off the power to one or more external devices. The active-low setting may also be used in conjunction with an open-drain setting on the RTCC pin. This setting is able to drive the GND pin(s) of the external device directly (with the appropriate external VDD pull-up device), without the need for external switches. Finally, the CHIME bit should be set to enable the PWC periodicity.

NOTES:


## 20.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 41. "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS39729).


The programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-programmable CRC polynomial equation, up to 32 bits
- Programmable shift direction (little or big-endian)
- Independent data and polynomial lengths
- · Configurable interrupt output
- Data FIFO

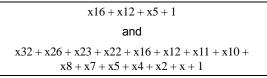
A simplified block diagram of the CRC generator is shown in Figure 20-1. A simple version of the CRC shift engine is shown in Figure 20-2.



## FIGURE 20-2: CRC SHIFT ENGINE DETAIL



© 2011-2012 Microchip Technology Inc.


## 20.1 User Interface

## 20.1.1 POLYNOMIAL INTERFACE

The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to 32 bits. Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN<4:0> bits (CRCCON2<4:0>).

The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation. Functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing this bit disables the XOR.

For example, consider two CRC polynomials, one is a 16-bit equation and the other is a 32-bit equation:



To program these polynomials into the CRC generator, set the register bits, as shown in Table 20-1.

Note that the appropriate positions are set to '1' to indicate that they are used in the equation (for example, X26 and X23). The 0 bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length, N, it is assumed that the Nth bit will always be used, regardless of the bit setting. Therefore, for a polynomial length of 32, there is no 32nd bit in the CRCXOR register.

## 20.1.2 DATA INTERFACE

The module incorporates a FIFO that works with a variable data width. Input data width can be configured to any value, between 1 and 32 bits, using the DWIDTH<4:0> bits (CRCCON2<12:8>). When the data width is greater than 15, the FIFO is 4 words deep. When the DWIDTH value is between 15 and 8, the FIFO is 8 words deep. When the DWIDTH value is less than 8, the FIFO is 16 words deep.

The data for which the CRC is to be calculated must first be written into the FIFO. Even if the data width is less than 8, the smallest data element that can be written into the FIFO is one byte. For example, if the DWIDTH value is 5, then the size of the data is DWIDTH + 1 or 6. The data is written as a whole byte; the two unused upper bits are ignored by the module.

Once data is written into the MSb of the CRCDAT registers (that is, MSb as defined by the data width), the value of the VWORD<4:0> bits (CRCCON1<12:8>) increments by one. For example, if the DWIDTH value is 24, the VWORDx bits will increment when bit 7 of CRCDATH is written. Therefore, CRCDATL must always be written before CRCDATH.

The CRC engine starts shifting data when the CRCGO bit is set and the value of the VWORDx bits is greater than zero. Each word is copied out of the FIFO into a buffer register, which decrements VWORDx. The data is then shifted out of the buffer. The CRC engine continues shifting at a rate of two bits per instruction cycle until the VWORDx value reaches zero. This means that for a given data width, it takes half that number of instructions for each word to complete the calculation. For example, it takes 16 cycles to calculate the CRC for a single word of 32-bit data.

When the VWORDx value reaches the maximum value for the configured value of DWIDTH (4, 8 or 16), the CRCFUL bit becomes set. When the VWORDx value reaches zero, the CRCMPT bit becomes set. The FIFO is emptied and the VWORD<4:0> bits are set to '00000' whenever CRCEN is '0'.

At least one instruction cycle must pass, after a write to CRCDAT, before a read of the VWORDx bits is done.

CRC Control	Bit Values					
Bits	16-Bit Polynomial	32-Bit Polynomial				
PLEN<4:0>	01111	11111				
X<31:16>	0000 0000 0000 000x	0000 0100 1100 0001				
X<15:0>	0001 0000 0010 000x	0001 1101 1011 011x				

## TABLE 20-1: CRC SETUP EXAMPLES FOR 16 AND 32-BIT POLYNOMIAL

## 20.1.3 DATA SHIFT DIRECTION

The LENDIAN bit (CRCCON1<3>) is used to control the shift direction. By default, the CRC will shift data through the engine, MSb first. Setting LENDIAN (= 1) causes the CRC to shift data, LSb first. This setting allows better integration with various communication schemes and removes the overhead of reversing the bit order in software. Note that this only changes the direction of the data that is shifted into the engine. The result of the CRC calculation will still be a normal CRC result, not a reverse CRC result.

#### 20.1.4 INTERRUPT OPERATION

The module generates an interrupt that is configurable by the user for either of two conditions. If CRCISEL is '0', an interrupt is generated when the VWORD<4:0> bits make a transition from a value of '1' to '0'. If CRCISEL is '1', an interrupt will be generated after the CRC operation finishes and the module sets the CRCGO bit to '0'. Manually setting CRCGO to '0' will not generate an interrupt.

#### 20.1.5 TYPICAL OPERATION

To use the module for a typical CRC calculation:

- 1. Set the CRCEN bit to enable the module.
- 2. Configure the module for the desired operation:
  - a) Program the desired polynomial using the CRCXORL and CRCXORH registers, and the PLEN<4:0> bits.
  - b) Configure the data width and shift direction using the DWIDTHx and LENDIAN bits.
  - c) Select the desired interrupt mode using the CRCISEL bit.
- 3. Preload the FIFO by writing to the CRCDATL and CRCDATH registers until the CRCFUL bit is set or no data is left.
- 4. Clear old results by writing 00h to CRCWDATL and CRCWDATH. CRCWDAT can also be left unchanged to resume a previously halted calculation.
- 5. Set the CRCGO bit to start calculation.
- 6. Write the remaining data into the FIFO as space becomes available.
- When the calculation completes, CRCGO is automatically cleared. An interrupt will be generated if CRCISEL = 1.
- 8. Read CRCWDATL and CRCWDATH for the result of the calculation.

### 20.2 Registers

There are eight registers associated with the module:

- CRCCON1
- CRCCON2
- CRCXORL
- CRCXORH
- CRCDATL
- CRCDATH
- CRCWDATL
- CRCWDATH

The CRCCON1 and CRCCON2 registers (Register 20-1 and Register 20-2) control the operation of the module, and configure the various settings. The CRCXOR registers (Register 20-3 and Register 20-4) select the polynomial terms to be used in the CRC equation. The CRCDAT and CRCWDAT registers are each register pairs that serve as buffers for the double-word, input data and CRC processed output, respectively.

R/W-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0			
CRCEN		CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0			
bit 15							bit 8			
R-0, HSC	R-1, HSC	R/W-0	R/W-0, HC	R/W-0	U-0	U-0	U-0			
CRCFUL	CRCMPT	PT CRCISEL CRCGO LENDIAN — — —								
bit 7 bit 0										
Legend:		HC = Hardware	Clearable bit	HSC = Hardw	are Settable/C	Clearable bit				
R = Readable	e bit	W = Writable bit		U = Unimplen	nented bit, rea	ad as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	CRCEN: CR	C Enable bit								
	1 = Module									
	0 = Module					other CEDe er				
		chines, pointers a		CRCDAT regist	ers are reset;	other SFRS ar	e NOT reset.			
bit 14	•	nted: Read as '0'								
bit 13		C Stop in Idle Mod								
		inues module ope es module operat			mode					
bit 12-8		0>: Pointer Value								
	Indicates the 16 when PLE	number of valid w $\equiv N < 4:0 > \leq 7.$	ords in the FIFC	), which has a m	naximum value	e of 8 when PLI	EN<4:0> > 7 or			
bit 7	CRCFUL: FI	IFO Full bit								
	1 = FIFO is									
	0 = FIFO is	not full								
bit 6	CRCMPT: F	IFO Empty Bit								
	1 = FIFO is									
	0 = FIFO is									
bit 5		CRC interrupt Sele								
		t on FIFO is empt								
bit 4	-	t on shift is compl		DATTESULTSTE	auy					
DIL 4	CRCGO: Sta	RC serial shifter								
		rial shifter is turne	ed off							
bit 3		Data Shift Direction								
		ord is shifted into t		g with the LSb	(little endian)					
		ord is shifted into t								
bit 2-0	Unimplemen	nted: Read as '0'								

## REGISTER 20-1: CRCCON1: CRC CONTROL REGISTER 1

## REGISTER 20-2: CRCCON2: CRC CONTROL REGISTER 2

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	DWIDTH<4:0>: Data Width Select bits
	Defines the width of the data word (Data Word Width = (DWIDTH<4:0>) + 1).
bit 7-5	Unimplemented: Read as '0'
bit 4-0	PLEN<4:0>: Polynomial Length Select bits
	Defines the length of the CRC polynomial (Polynomial Length = (PLEN<4:0>) + 1).

### REGISTER 20-3: CRCXORL: CRC XOR POLYNOMIAL REGISTER, LOW BYTE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
X15	X14	X13	X12	X11	X10	X9	X8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
X7	X6	X5	X4	X3	X2	X1	—
bit 7		1					bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-1 X<15:1>: XOR of Polynomial Term Xⁿ Enable bits

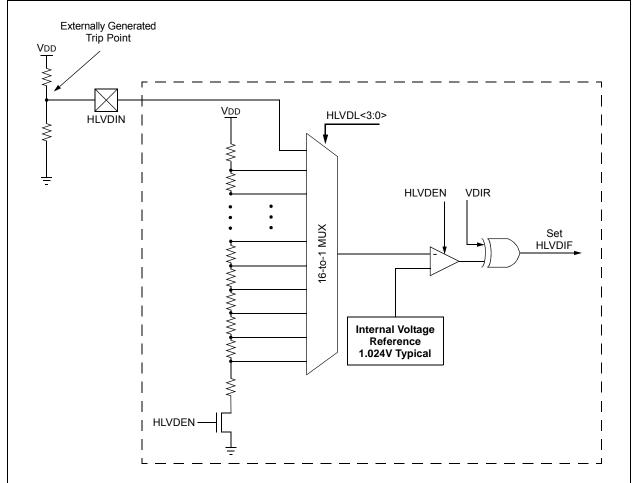
bit 0 Unimplemented: Read as '0'

^{© 2011-2012} Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
X31	X30	X29	X28	X27	X26	X25	X24
bit 15				•		·	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
X23	X22	X21	X20	X19	X18	X17	X16
bit 7					•		bit (
Legend:							
R = Readable	ble bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

#### REGISTER 20-4: CRCXORH: CRC XOR POLYNOMIAL REGISTER, HIGH BYTE

bit 15-0 X<31:16>: XOR of Polynomial Term Xⁿ Enable bits


## 21.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the High/Low-Voltage Detect, refer to the "PIC24F Family Reference Manual", Section 36. "High-Level Integration with Programmable High/Low-Voltage Detect (HLVD)" (DS39725).

The High/Low-Voltage Detect module (HLVD) is a programmable circuit that allows the user to specify both the device voltage trip point and the direction of change.

An interrupt flag is set if the device experiences an excursion past the trip point in the direction of change. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt.

The HLVD Control register (see Register 21-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control, which minimizes the current consumption for the device.



## FIGURE 21-1: HIGH/LOW-VOLTAGE DETECT (HLVD) MODULE BLOCK DIAGRAM

^{© 2011-2012} Microchip Technology Inc.

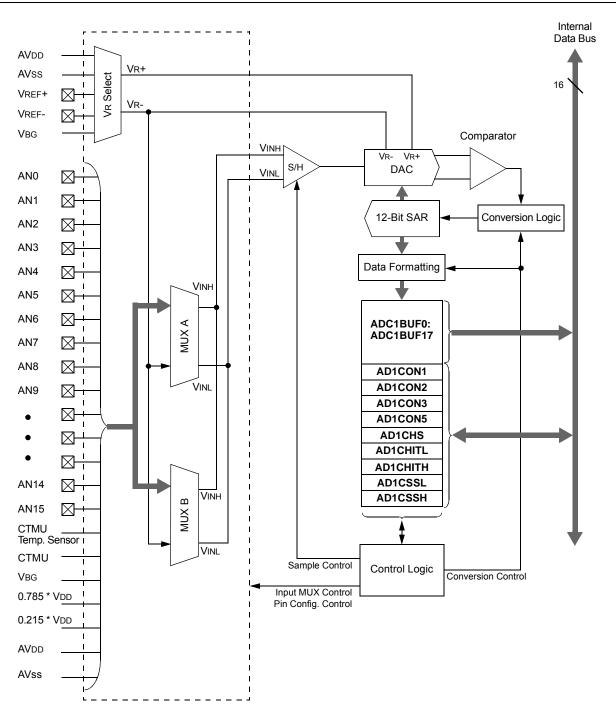
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
HLVDEN	_	HLSIDL	_	_	_	_	—			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
VDIR	BGVST	IRVST	—	HLVDL3	HLVDL2	HLVDL1	HLVDL0			
bit 7							bit C			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown			
bit 15	HLVDEN: Hi	gh/Low-Voltage	Detect Power	Enable bit						
	1 = HLVD is									
	0 = HLVD is									
bit 14	-	nted: Read as '0								
bit 13	HLSIDL: HLVD Stop in Idle Mode bit									
		nues module op			lle mode					
bit 12-8	<ul> <li>0 = Continues module operation in Idle mode</li> <li>Unimplemented: Read as '0'</li> </ul>									
bit 7		je Change Direc								
		curs when volta			nt (HLVDL<3:0	>)				
		curs when volta								
bit 6	BGVST: Ban	d Gap Voltage S	Stable Flag bit							
		s that the band g s that the band g	•							
bit 5		nal Reference V								
		s that the international states and the second			and the high-w	oltage detect lo	ogic generates			
		rupt flag at the s s that the interna			le and the hig	h-voltage detec	t logic will not			
		e the interrupt fl								
	enabled									
bit 4	-	nted: Read as 'o								
bit 3-0		: High/Low-Volt								
	1111 = External analog input is used (input comes from the HLVDIN pin)									
	1110 = Trip Point 1 ⁽¹⁾ 1101 = Trip Point 2 ⁽¹⁾									
	1100 <b>= Trip</b>	Point 3 ⁽¹⁾								
	•									
	0000 = Trip	Point 15 ⁽¹⁾								
Note 1. F	or the actual tri	ip point, see <mark>Se</mark> o	tion 29.0 "E	lectrical Chara	storistics"					

#### REGISTER 21-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER



DS39995C-page 206

## 22.0 12-BIT A/D CONVERTER WITH THRESHOLD DETECT


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the 12-Bit A/D Converter with Threshold Detect, refer to the "PIC24F Family Reference Manual", Section 51. "12-Bit A/D Converter with Threshold Detect" (DS39739).

The PIC24F 12-bit A/D Converter has the following key features:

- Successive Approximation Register (SAR)
   Conversion
- Conversion Speeds of up to 100 ksps
- Up to 32 Analog Input Channels (Internal and External)
- Multiple Internal Reference Input Channels
- External Voltage Reference Input Pins
- Unipolar Differential Sample-and-Hold (S/H)
   Amplifier
- Automated Threshold Scan and Compare
   Operation to Pre-Evaluate Conversion Results
- Selectable Conversion Trigger Source
- Fixed-Length (one word per channel), Configurable Conversion Result Buffer
- Four Options for Results Alignment
- Configurable Interrupt Generation
- Operation During CPU Sleep and Idle modes

The 12-bit A/D Converter module is an enhanced version of the 10-bit module offered in some PIC24 devices. Both modules are Successive Approximation Register (SAR) converters at their cores, surrounded by a range of hardware features for flexible configuration. This version of the module extends functionality by providing 12-bit resolution, a wider range of automatic sampling options and tighter integration with other analog modules, such as the CTMU and a configurable results buffer. This module also includes a unique Threshold Detect feature that allows the module itself to make simple decisions based on the conversion results.

A simplified block diagram for the module is illustrated in Figure 22-1.



### FIGURE 22-1: 12-BIT A/D CONVERTER BLOCK DIAGRAM

To perform an A/D conversion:

- 1. Configure the A/D module:
  - a) Configure the port pins as analog inputs and/or select band gap reference inputs (ANS<12:10>, ANS<5:0>).
  - b) Select voltage reference source to match the expected range on the analog inputs (AD1CON2<15:13>).
  - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
  - d) Select the appropriate sample/conversion sequence (AD1CON1<7:4> and AD1CON3<12:8>).
  - e) Select how conversion results are presented in the buffer (AD1CON1<9:8>).
  - f) Select the interrupt rate (AD1CON2<6:2>).
  - g) Turn on the A/D module (AD1CON1<15>).
- 2. Configure the A/D interrupt (if required):
  - a) Clear the AD1IF bit.
  - b) Select the A/D interrupt priority.

To perform an A/D sample and conversion using Threshold Detect scanning:

- 1. Configure the A/D module:
  - a) Configure the port pins as analog inputs (ANS<12:10>, ANS<5,0>).
  - b) Select the voltage reference source to match the expected range on the analog inputs (AD1CON2<15:13>).
  - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
  - d) Select the appropriate sample/conversion sequence (AD1CON1<7:4>, AD1CON3<12:8>).
  - e) Select how the conversion results are presented in the buffer (AD1CON1<9:8>).
  - f) Select the interrupt rate (AD1CON2<6:2>).

- 2. Configure the threshold compare channels:
  - a) Enable auto-scan ASEN bit (AD1CON5<15>).
  - b) Select the Compare mode "Greater Than, Less Than or Windowed" – CMx bits (AD1CON5<1:0>).
  - c) Select the threshold compare channels to be scanned (ADCSSH, ADCSSL).
  - d) If the CTMU is required as a current source for a threshold compare channel, enable the corresponding CTMU channel (ADCCTMUENH, ADCCTMUENL).
  - e) Write the threshold values into the corresponding ADC1BUFn registers.

f) Turn on the A/D module (AD1CON1<15>).

- **Note:** If performing an A/D sample and conversion using Threshold Detect in Sleep Mode, the RC A/D clock source must be selected before entering into Sleep mode.
- 3. Configure the A/D interrupt (OPTIONAL):
  - a) Clear the AD1IF bit.
  - b) Select the A/D interrupt priority.

## 22.1 A/D Control Registers

The 12-bit A/D Converter module uses up to 43 registers for its operation. All registers are mapped in the data memory space.

#### 22.1.1 CONTROL REGISTERS

Depending on the specific device, the module has up to eleven control and status registers:

- AD1CON1: A/D Control Register 1
- AD1CON2: A/D Control Register 2
- AD1CON3: A/D Control Register 3
- AD1CON5: A/D Control Register 5
- AD1CHS: A/D Sample Select Register
- AD1CHITH and AD1CHITL: A/D Scan Compare Hit Registers
- AD1CSSL and AD1CSSH: A/D Input Scan Select Registers
- AD1CTMENH and AD1CTMENL: CTMU Enable Registers

The AD1CON1, AD1CON2 and AD1CON3 registers (Register 22-1, Register 22-2 and Register 22-3) control the overall operation of the A/D module. This includes enabling the module, configuring the conversion clock and voltage reference sources, selecting the sampling and conversion triggers, and manually controlling the sample/convert sequences. The AD1CON5 register (Register 22-4) specifically controls features of the Threshold Detect operation, including its function in power-saving modes.

The AD1CHS register (Register 22-5) selects the input channels to be connected to the S/H amplifier. It also allows the choice of input multiplexers and the selection of a reference source for differential sampling.

The AD1CHITH and AD1CHITL registers (Register 22-6 and Register 22-7) are semaphore registers used with Threshold Detect operations. The status of individual bits, or bit pairs in some cases,

indicate if a match condition has occurred. AD1CHITL is always implemented, whereas AD1CHITH may not be implemented in devices with 16 or fewer channels.

The AD1CSSH/L registers (Register 22-8 and Register 22-9) select the channels to be included for sequential scanning.

The AD1CTMENH/L registers (Register 22-10 and Register 22-11) select the channel(s) to be used by the CTMU during conversions. Selecting a particular channel allows the A/D Converter to control the CTMU (particularly, its current source) and read its data through that channel. AD1CTMENL is always implemented, whereas AD1CTMENH may not be implemented in devices with 16 or fewer channels.

### 22.1.2 A/D RESULT BUFFERS

The module incorporates a multi-word, dual port RAM, called ADC1BUF. The buffer is composed of at least the same number of word locations as there are external analog channels for a particular device, with a maximum number of 32. The number of buffer addresses is always even. Each of the locations is mapped into the data memory space and is separately addressable. The buffer locations are referred to as ADC1BUF0 through ADC1BUFn (up to 31).

The A/D result buffers are both readable and writable. When the module is active (AD1CON<15> = 1), the buffers are read-only, and store the results of A/D conversions. When the module is inactive (AD1CON<15> = 0), the buffers are both readable and writable. In this state, writing to a buffer location programs a conversion threshold for Threshold Detect operations.

Buffer contents are not cleared when the module is deactivated with the ADON bit (AD1CON1<15>). Conversion results and any programmed threshold values are maintained when ADON is set or cleared.

REGISTER	22-1: AD10	CON1: A/D CO	ONTROL RE	GISTER 1					
R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
ADON		ADSIDL	_		MODE12	FORM1	FORM0		
bit 15	-			-			bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0 HSC	R/C-0 HSC		
SSRC3	SSRC2	SSRC1	SSRC0	_	ASAM	SAMP	DONE		
bit 7							bit 0		
Legend:		C = Clearable	bit	U = Unimple	mented bit, read	d as '0'			
R = Readable	e bit	W = Writable	oit	HSC = Hard	ware Settable/C	learable bit			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own		
bit 15		Operating Mode verter module is verter is off							
bit 14	Unimplemer	nted: Read as 'o	)'						
bit 13		p in Idle Mode b							
		nues module op es module opera			dle mode				
bit 12-11	Unimplemen	nted: Read as '	)'						
bit 10	MODE12: 12-Bit Operation Mode bit								
	1 = 12-bit A/ 0 = 10-bit A/	•							
bit 9-8		: Data Output Fo	ormat bits (see	e the following	formats)				
	10 = Absolut 01 = Decima	nal result, signed e fractional resu l result, signed, e decimal result	Ilt, unsigned, I right-justified	-					
bit 7-4	SSRC<3:0>:	Sample Clock	Source Select	bits					
	1000 = Not a 0111 = Inter 0110 = Not a 0101 = Time 0100 = CTM 0011 = Time 0010 = Time 0010 = INTO	available; do not available; do not nal counter ends available; do not available; do not available; do not rf event ends s r5 event ends s event ends sar ring the SAMP t	t use s sampling and t use ampling and s ampling and s ampling and s ampling and sta	tarts conversio tarts conversio tarts conversio tarts conversio rts conversion	n n n n				
bit 3	Unimplemer	nted: Read as 'd	)'						
bit 2		ASAM: A/D Sample Auto-Start bit							
		g begins immed g begins when t				auto-set			
bit 1		Sample Enable							
		nple-and-Hold a nple-and-Hold a							
bit 0	DONE: A/D	Conversion State	us bit						
		version cycle ha version cycle ha		or is in progres	S				

REGISTER 22-1: AD1CON1: A/D CONTROL REGISTER 1

 $\ensuremath{\textcircled{}^{\odot}}$  2011-2012 Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0				
PVCFG1	PVCFG0	NVCFG0	OFFCAL	BUFREGEN	CSCNA	—	_				
bit 15				1			bit				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
BUFS ⁽¹⁾	SMPI4	SMPI3	SMPI2	SMPI1	SMPI0	BUFM ⁽¹⁾	ALTS				
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpleme	ented bit, rea	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkno	own				
bit 15-14	PVCFG<1:0	Converter Pc	sitive Voltage	Reference Config	guration bits						
	11 = 4 * Inte		Ū	·	-						
	10 = 2 * Inte	rnal VBG ⁽³⁾									
	01 = Externa	al Vref+									
	00 = AVDD										
bit 13		-	/e Voltage Re	ference Configura	ation bits						
	1 = External 0 = AVss	VREF-									
h:+ 40		feet Celibration	Mada Calaat	L:4							
bit 12		<b>OFFCAL:</b> Offset Calibration Mode Select bit 1 = Inverting and non-inverting inputs of channel Sample-and-Hold are connected to AVss									
	<ul> <li>0 = Inverting and non-inverting inputs of channel Sample-and-Hold are connected to Avss</li> </ul>										
bit 11	<b>BUFREGEN:</b> A/D Buffer Register Enable bit										
	1 = Conversion result is loaded into a buffer location determined by the converted channel										
		ult buffer is treat			··· <b>·</b>		-				
bit 10	<b>CSCNA:</b> Scan Input Selections for CH0+ S/H Input for MUX A Setting bit										
	1 = Scans in	1 = Scans inputs									
	0 = Does no	t scan inputs									
bit 9-8	Unimplemer	nted: Read as '	0'								
bit 7	BUFS: Buffe	r Fill Status bit ⁽¹	)								
	1 = A/D is fil	ling the upper h	alf of the buff	er; user should ac	cess data in	the lower half					
	0 = A/D is fil	ling the lower h	alf of the buffe	er; user should ac	cess data in f	the upper half					
bit 6-2	SMPI<4:0>:	Interrupt Sampl	e Rate Select	bits							
				ne conversion for							
	11110 = Inte	errupts at the co	ompletion of the	ne conversion for	each 31st sa	mple					
	•										
	• 00001 = Inte	errupts at the co	ompletion of th	ne conversion for	every other s	ample					
				ne conversion for							
bit 1	BUFM: Buffe	er Fill Mode Sele	ect bit ⁽¹⁾								
	1 = Starts fil	ling the buffer a	it address, AD	01BUF0 on the fir	st interrupt, a	and AD1BUF(n/2	2) on the ne				
		(Split Buffer mo									
		lling the buffer s (FIFO mode)	at address,	ADCBUF0, and	each seque	ntial address o	n successiv				
	his is only appli sed when BUFI		buffer is used	l in FIFO mode (B	UFREGEN =	0). In addition,	BUFS is onl				
			ll not be withir	n the specification	with VDD be	low 4.5V.					
	-	-		the specification							

## REGISTER 22-2: AD1CON2: A/D CONTROL REGISTER 2

3: The voltage reference setting will not be within the specification with VDD below 2.3V.

### REGISTER 22-2: AD1CON2: A/D CONTROL REGISTER 2 (CONTINUED)

- bit 0
- ALTS: Alternate Input Sample Mode Select bit
  - 1 = Uses channel input selects for SAMPLE A on the first sample and SAMPLE B on the next sample
     0 = Always uses channel input selects for SAMPLE A
- **Note 1:** This is only applicable when the buffer is used in FIFO mode (BUFREGEN = 0). In addition, BUFS is only used when BUFM = 1.
  - 2: The voltage reference setting will not be within the specification with VDD below 4.5V.
  - 3: The voltage reference setting will not be within the specification with VDD below 2.3V.

#### REGISTER 22-3: AD1CON3: A/D CONTROL REGISTER 3

R/W-0	R-0	r-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	EXTSAM	r	SAMC4	SAMC3	SAMC2	SAMC1	SAMC0
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADCS7 | ADCS6 | ADCS5 | ADCS4 | ADCS3 | ADCS2 | ADCS1 | ADCS0 |
| bit 7 |       |       |       |       |       |       | bit 0 |

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	ADRC: A/D Conversion Clock Source bit 1 = RC clock 0 = Clock is derived from the system clock
bit 14	EXTSAM: Extended Sampling Time bit
	<ul><li>1 = A/D is still sampling after SAMP = 0</li><li>0 = A/D is finished sampling</li></ul>
bit 13	Reserved: Maintain as '0'
bit 12-8	SAMC<4:0>: Auto-Sample Time Select bits
	11111 = <b>31 T</b> AD
	:
	•
	00001 = 1 TAD
	00000 = 0 TAD
bit 7-0	ADCS<7:0>: A/D Conversion Clock Select bits
	11111111-01000000 = Reserved
	00111111 = 64 · TCY = TAD
	•
	•
	$0000001 = 2 \cdot \text{TCY} = \text{TAD}$
	00000000 = TCY = TAD

^{© 2011-2012} Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	R/W-0	r-0	U-0	R/W-0	R/W-0			
ASEN ⁽¹⁾	LPEN	CTMREQ	BGREQ	r		ASINT1	ASINT0			
bit 15	•						bit 8			
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
_			_	WM1	WM0	CM1	CM0			
bit 7							bit (			
Legend:		r = Reserved	bit							
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	ASEN: Auto-	Scan Enable bi	r(1)							
	1 = Auto-sca		•							
	0 = Auto-sca	in is disabled								
bit 14		Power Enable b								
		to Low-Power n in Full-Power r								
bit 13		TMU Request b								
	1 = CTMU is	enabled when	the A/D is ena	bled and active	•					
		not enabled by								
bit 12		<b>BGREQ:</b> Band Gap Request bit 1 = Band gap is enabled when the A/D is enabled and active								
		p is not enabled			uve					
bit 11	Reserved: M	laintain as '0'								
bit 10	Unimplemen	ted: Read as '	)'							
bit 9-8	ASINT<1:0>:	Auto-Scan (Th	reshold Detec	t) Interrupt Mod	le bits					
					ted and a valic	l compare has o	occurred			
		ot after a valid c ot after a Thresh rrupt			ted					
bit 7-4		ited: Read as '	)'							
bit 3-2	•	rite Mode bits								
	11 = Reserved									
	10 = Auto-compare only (conversion results are not saved, but interrupts are generated when a valid									
	match, as defined by the CMx and ASINTx bits, occurs) 01 = Convert and save (conversion results are saved to locations as determined by the register bits									
	when a	match, as defin	ned by the CM	x bits, occurs)		-	-			
				saved to a loca	ation determin	ed by the buffer	register bits)			
bit 1-0		ompare Mode b		ours if the conv	voraion roquit ia	outside of the v	vindow dofinod			
	11 = Outside Window mode (valid match occurs if the conversion result is outside of the window defined by the corresponding buffer pair)									
	<ul> <li>10 = Inside Window mode (valid match occurs if the conversion result is inside the window defined by the corresponding buffer pair)</li> </ul>									
		Than mode (va		urs if the result is	s greater than	the value in the	corresponding			
		nan mode (valid	match occurs	if the result is le	ess than the va	lue in the corres	ponding buffer			
A	/hen using Auto uto-Convert mo		Any other ava	ailable SSRC se	election is valid					

Sample Clock Source (SSRC = 7), make sure ASEN is cleared.

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB2	CH0NB1	CH0NB0	CH0SB4	CH0SB3	CH0SB2	CH0SB1	CH0SB0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA2	CH0NA1	CH0NA0	CH0SA4	CH0SA3	CH0SA2	CH0SA1	CH0SA0
bit 7		1			1	1	bit (
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 12-8	111 = AN6 ⁽¹⁾ 110 = AN5 ⁽²⁾ 101 = AN4 100 = AN3 011 = AN2 010 = AN1 001 = AN0 000 = AVss	0.4.1.0.1.5		Select for MUX			
	11101 = AVD 11101 = AVs 11100 = Upp 11011 = Low 11010 = Inter 11001-10010 10001 = No c	(1) (1) (1) (1) (1) (1) (2) (3) (3) (3) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (4) (5) (1) (1) (2)	ail (0.785 * VDr ail (0.215 * VDr Reference (VB nted, do not us nnected, all inj	o) G) <b>(3)</b>			e sensor input
	00011 = AN3 00010 = AN2 00001 = AN1 00000 = AN0						
bit 7-5	00011 = AN3 00010 = AN2 00001 = AN1 00000 = AN0 CH0NA<2:0>		•	ve Input Select	bits		
bit 7-5 bit 4-0	00011 = AN3 00010 = AN2 00001 = AN1 00000 = AN0 CH0NA<2:0> The same def	: Sample A Ch initions as for (	CHONB<2:0>.	ve Input Select e Input Select t			

## REGISTER 22-5: AD1CHS: A/D SAMPLE SELECT REGISTER

3: The band gap value used for this input is 2x or 4x the internal VBG, which is selected when PVCFG<1:0> = 1x.

^{© 2011-2012} Microchip Technology Inc.

### REGISTER 22-6: AD1CHITH: A/D SCAN COMPARE HIT REGISTER (HIGH WORD)⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—		—	—
						bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	CHH17	CHH16
		•				bit 0
	_					<u> </u>

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2 Unimplemented: Read as '0'.

bit 1-0 CHH<17:16>: A/D Compare Hit bits

<u>If CM<1:0> = 11:</u>

1 = A/D Result Buffer x has been written with data or a match has occurred

0 = A/D Result Buffer x has not been written with data

For all other values of CM<1:0>:

1 = A match has occurred on A/D Result Channel x

0 = No match has occurred on A/D Result Channel x

Note 1: Unimplemented channels are read as '0'.

### REGISTER 22-7: AD1CHITL: A/D SCAN COMPARE HIT REGISTER (LOW WORD)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHH15	CHH14	CHH13	CHH12	CHH11	CHH10	CHH9	CHH8
bit 15			•	•			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHH7	CHH6	CHH5	CHH4	CHH3	CHH2	CHH1	CHH0
bit 7				•			bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CHH<15:0>: A/D Compare Hit bits

<u>If CM<1:0> = 11:</u>

1 = A/D Result Buffer x has been written with data or a match has occurred

0 = A/D Result Buffer x has not been written with data

For all other values of CM<1:0>:

- 1 = A match has occurred on A/D Result Channel n
- 0 = No match has occurred on A/D Result Channel n

Note 1: Unimplemented channels are read as '0'.

Legend:	L:1		L :4		anted bit read	(0)	
Logondy							
bit 7							bit 0
_	—	—	—	—	_	CSS17	CSS16
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
bit 15							bit 8
—	CSS30	CSS29	CSS28	CSS27	CSS26	—	—
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0

## REGISTER 22-8: AD1CSSH: A/D INPUT SCAN SELECT REGISTER (HIGH WORD)⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	<b>Unimplemented:</b> Read as '0'

- bit 14-10
   CSS<30:26>: A/D Input Scan Selection bits

   1 = Includes corresponding channel for input scan

   0 = Skips channel for input scan

   bit 9-2
   Unimplemented: Read as '0'

   bit 1-0
   CSS<17:16>: A/D Input Scan Selection bits

   1 = Includes corresponding channel for input scan
  - 0 = Skips channel for input scan
- **Note 1:** Unimplemented channels are read as '0'. Do not select unimplemented channels for sampling as indeterminate results may be produced.

## REGISTER 22-9: AD1CSSL: A/D INPUT SCAN SELECT REGISTER (LOW WORD)⁽¹⁾

| R/W-0         |
|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| CSS15         | CSS14         | CSS13         | CSS12         | CSS11         | CSS10         | CSS9          | CSS8          |
| bit 15        |               |               |               |               |               |               | bit 8         |
|               |               |               |               |               |               |               |               |
|               |               |               |               |               |               |               |               |
| R/W-0         |
| R/W-0<br>CSS7 | R/W-0<br>CSS6 | R/W-0<br>CSS5 | R/W-0<br>CSS4 | R/W-0<br>CSS3 | R/W-0<br>CSS2 | R/W-0<br>CSS1 | R/W-0<br>CSS0 |

Legend:			
R = Readable bit	= Readable bit W = Writable bit		, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

Γ.

#### CSS<15:0>: A/D Input Scan Selection bits

- 1 = Includes corresponding ANx input for scan
- 0 = Skips channel for input scan

**Note 1:** Unimplemented channels are read as '0'. Do not select unimplemented channels for sampling as indeterminate results may be produced.

^{© 2011-2012} Microchip Technology Inc.

### REGISTER 22-10: AD1CTMENH: CTMU ENABLE REGISTER (HIGH WORD)⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	—	_		—	—	CTMEN17	CTMEN16
bit 7							bit 0
Legend:							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2 Unimplemented: Read as '0'.

bit 1-0 CTMEN<17:16>: CTMU Enabled During Conversion bits

1 = CTMU is enabled and connected to the selected channel during conversion0 = CTMU is not connected to this channel

Note 1: Unimplemented channels are read as '0'.

### REGISTER 22-11: AD1CTMENL: CTMU ENABLE REGISTER (LOW WORD)⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMEN15	CTMEN14	CTMEN13	CTMEN12	CTMUEN11	CTMEN10	CTMEN9	CTMEN8
bit 15							bit 8

| R/W-0  |
|--------|--------|--------|--------|--------|--------|--------|--------|
| CTMEN7 | CTMEN6 | CTMEN5 | CTMEN4 | CTMEN3 | CTMEN2 | CTMEN1 | CTMEN0 |
| bit 7  |        |        |        |        |        |        | bit 0  |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 CTMEN<15:0>: CTMU Enabled During Conversion bits

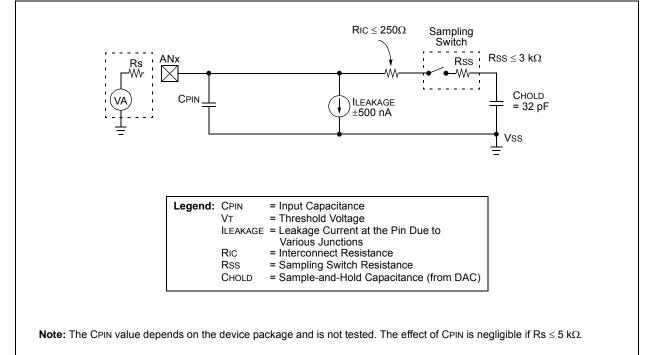
1 = CTMU is enabled and connected to the selected channel during conversion 0 = CTMU is not connected to this channel

Note 1: Unimplemented channels are read as '0'.

### 22.2 A/D Sampling Requirements

The analog input model of the 12-bit A/D Converter is shown in Figure 22-2. The total sampling time for the A/D is a function of the holding capacitor charge time.

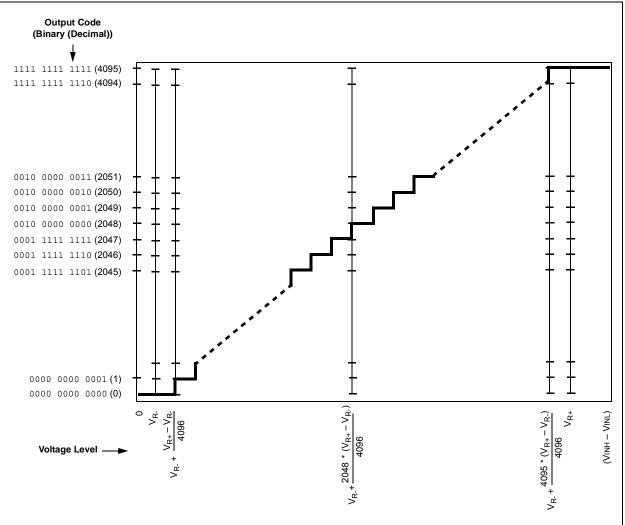
For the A/D Converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the voltage level on the analog input pin. The source impedance (Rs), the interconnect impedance (Ric) and the internal sampling switch (Rss) impedance combine to directly affect the time required to charge CHOLD. The combined impedance of the analog sources must, therefore, be small enough to fully charge the holding capacitor within the chosen sample time. To minimize the effects of pin leakage currents on the accuracy of the A/D Converter, the maximum recommended source impedance, Rs, is  $2.5 \text{ k}\Omega$ . After the analog input channel is selected (changed), this sampling function must be completed


prior to starting the conversion. The internal holding capacitor will be in a discharged state prior to each sample operation.

At least 1 TAD time period should be allowed between conversions for the sample time. For more details, see **Section 29.0 "Electrical Characteristics"**.

### EQUATION 22-1: A/D CONVERSION CLOCK PERIOD

$$T_{AD} = T_{CY}(ADCS + 1)$$
$$ADCS = \frac{T_{AD}}{T_{CY}} - 1$$
Note: Based on T_CY = 2/F_OSC; Doze mode and PLL are disabled.






### 22.3 Transfer Function

The transfer functions of the A/D Converter in 12-bit resolution are shown in Figure 22-3. The difference of the input voltages, (VINH – VINL), is compared to the reference, ((VR+) - (VR-)).

- The first code transition occurs when the input voltage is ((VR+) (VR-))/4096 or 1.0 LSb.
- The 0000 0000 0001 code is centered at VR- + (1.5 * ((VR+) (VR-))/4096).
- The 0010 0000 0000 code is centered at VREFL + (2048.5 * ((VR+) – (VR-))/4096).
- An input voltage less than VR- + (((VR-) (VR-))/4096) converts as 0000 0000 0000.
- An input voltage greater than (VR-) + (4095((VR+) (VR-))/4096) converts as 1111 1111 1111.



### FIGURE 22-3:12-BIT A/D TRANSFER FUNCTION

### 22.4 Buffer Data Formats

The A/D conversions are fully differential 12-bit values when MODE12 = 1 (AD1CON1<10>) and 10-bit values when MODE12 = 0. When absolute fractional or absolute integer formats are used, the results are 12 or 10 bits wide, respectively. When signed decimal formatting is used, the conversion also includes a sign bit, making 12-bit conversions 13 bits wide, and 10-bit conversions 11 bits wide. The signed decimal format yields 12-bit and 10-bit values, respectively. The sign bit (bit 12 or bit 10) is sign-extended to fill the buffer. The FORM<1:0> bits (AD1CON1<9:8>) select the format. Figure 22-4 and Figure 22-5 show the data output formats that can be selected. Table 22-1 through Table 22-4 show the numerical equivalents for the various conversion result codes.

### FIGURE 22-4: A/D OUTPUT DATA FORMATS (12-BIT)

				d11	d10	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
0	0	0	0	d11	d10	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
s0	s0	s0	s0	d11	d10	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
_															
d11	d10	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0	0
s0	d11	d10	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0
	s0 d11	s0 s0	s0     s0     s0       d11     d10     d09	s0         s0         s0         s0           d11         d10         d09         d08	0         0         0         0         d11           s0         s0         s0         s0         d11           d11         d10         d09         d08         d07	0       0       0       0       d11       d10         s0       s0       s0       s0       s0       d11       d10         d11       d10       d09       d08       d07       d06	0       0       0       0       d11       d10       d09         s0       s0       s0       s0       s0       d11       d10       d09         d11       d10       d09       d08       d07       d06       d05	0         0         0         0         d11         d10         d09         d08           s0         s0         s0         s0         s0         d11         d10         d09         d08           d11         d10         d09         d08         d07         d06         d05         d04	0         0         0         0         d11         d10         d09         d08         d07           s0         s0         s0         s0         s0         d11         d10         d09         d08         d07           d11         d10         d09         d08         d07         d06         d05         d04         d03	0       0       0       0       011       d10       d09       d08       d07       d06         s0       s0       s0       s0       s0       s0       d11       d10       d09       d08       d07       d06         d11       d10       d09       d08       d07       d06       d05       d04       d03       d02	0       0       0       d11       d10       d09       d08       d07       d06       d05         s0       s0       s0       s0       s0       d11       d10       d09       d08       d07       d06       d05         d11       d10       d09       d08       d07       d06       d05         d11       d10       d09       d08       d07       d06       d05	0       0       0       d11       d10       d09       d08       d07       d06       d05       d04         s0       s0       s0       s0       s0       d11       d10       d09       d08       d07       d06       d05       d04         d11       d10       d09       d08       d07       d06       d05       d04	0       0       0       d11       d10       d09       d08       d07       d06       d05       d04       d03         s0       s0       s0       s0       s0       d11       d10       d09       d08       d07       d06       d05       d04       d03         d11       d10       d09       d08       d07       d06       d05       d04       d03         d11       d10       d09       d08       d07       d06       d03       d02       d01       d00       0	0       0       0       d11       d10       d09       d08       d07       d06       d05       d04       d03       d02         s0       s0       s0       s0       s0       d11       d10       d09       d08       d07       d06       d05       d04       d03       d02         d11       d10       d09       d08       d07       d06       d05       d04       d03       d02         d11       d10       d09       d08       d07       d06       d03       d02       d01       d00       0       0	0       0       0       d11       d10       d09       d08       d07       d06       d05       d04       d03       d02       d01         s0       s0       s0       s0       s0       d11       d10       d09       d08       d07       d06       d05       d04       d03       d02       d01         d11       d10       d09       d08       d07       d06       d03       d02       d01         d11       d10       d09       d08       d07       d06       d03       d02       d01       d00       0       0

### TABLE 22-1:NUMERICAL EQUIVALENTS OF VARIOUS RESULT CODES:<br/>12-BIT INTEGER FORMATS

VIN/VREF	12-Bit Differential Output Code (13-bit result)	16-Bit Integer Format/ Equivalent Decimal Value	16-Bit Signed Integer Forn Equivalent Decimal Valu								
+4095/4096	0 1111 1111 1111	0000 1111 1111 1111	+4095	0000 1111 1111 1111	+4095						
+4094/4096	0 1111 1111 1110	0000 1111 1111 1110	+4094	0000 1111 1111 1110	+4094						
	•••										
+1/4096	0 1000 0000 0001	0000 0000 0000 0001	+1	0000 0000 0000 0001	+1						
0/4096	0 0000 0000 0000	0000 0000 0000 0000	0	0000 0000 0000 0000	0						
-1/4096	1 0111 1111 1111	0000 0000 0000 0000	0	1111 1111 1111 1111	-1						
		•••									
-4095/4096	1 0000 0000 0001	0000 0000 0000 0000	0	1111 0000 0000 0001	-4095						
-4096/4096	1 0000 0000 0000	0000 0000 0000 0000	0	1111 0000 0000 0000	-4096						

### TABLE 22-2:NUMERICAL EQUIVALENTS OF VARIOUS RESULT CODES:<br/>12-BIT FRACTIONAL FORMATS

VIN/VREF	12-Bit Output Code	16-Bit Fractional Format/ Equivalent Decimal Value		16-Bit Signed Fractional Format/ Equivalent Decimal Value							
+4095/4096	0 1111 1111 1111	1111 1111 1111 0000	0.999	0111 1111 1111 1000	0.999						
+4094/4096	0 1111 1111 1110	1111 1111 1110 0000	0.998	0111 1111 1110 1000	0.998						
•••											
+1/4096	0 0000 0000 0001	0000 0000 0001 0000	0.001	0000 0000 0000 1000	0.001						
0/4096	0 0000 0000 0000	0000 0000 0000 0000	0.000	0000 0000 0000 0000	0.000						
-1/4096	1 0111 1111 1111	0000 0000 0000 0000	0.000	1111 1111 1111 1000	-0.001						
		•••									
-4095/4096	1 0000 0000 0001	0000 0000 0000 0000	0.000	1000 0000 0000 1000	-0.999						
-4096/4096	1 0000 0000 0000	0000 0000 0000 0000	0.000	1000 0000 0000 0000	-1.000						

### FIGURE 22-5: A/D OUTPUT DATA FORMATS (10-BIT)

RAM Contents:							d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
Read to Bus:																. <u> </u>
Integer	0	0	0	0	0	0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
		r	r								r					
Signed Integer	s0	s0	s0	s0	s0	s0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00
Fractional (1.15)	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0	0	0	0
Signed Fractional (1.15)	s0	d09	d08	d07	d06	d05	d04	d03	d02	d01	d00	0	0	0	0	0

### TABLE 22-3:NUMERICAL EQUIVALENTS OF VARIOUS RESULT CODES:<br/>10-BIT INTEGER FORMATS

VIN/VREF	10-Bit Differential Output Code (11-bit result)	16-Bit Integer Format/       16-Bit Signed Integer Format/         Equivalent Decimal Value       Equivalent Decimal Value							
+1023/1024	011 1111 1111	0000 0011 1111 1111	1023	0000 0001 1111 1111	1023				
+1022/1024	011 1111 1110	0000 0011 1111 1110	1022	0000 0001 1111 1110	1022				
•••									
+1/1024	000 0000 0001	0000 0000 0000 0001	1	0000 0000 0000 0001	1				
0/1024	000 0000 0000	0000 0000 0000 0000	0	0000 0000 0000 0000	0				
-1/1024	101 1111 1111	0000 0000 0000 0000	0	1111 1111 1111 1111	-1				
		•••							
-1023/1024	100 0000 0001	0000 0000 0000 0000	0	1111 1110 0000 0001	-1023				
-1024/1024	100 0000 0000	0000 0000 0000 0000	0	1111 1110 0000 0000	-1024				

<b>TABLE 22-4:</b>	NUMERICAL EQUIVALENTS OF VARIOUS RESULT CODES:
	10-BIT FRACTIONAL FORMATS

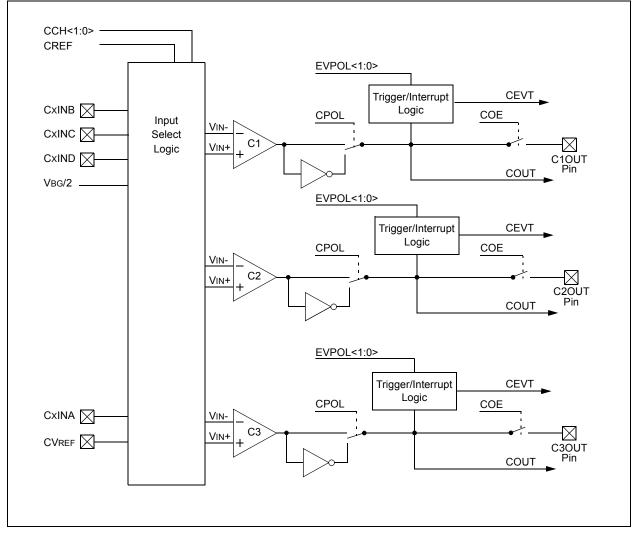
VIN/VREF	10-Bit Differential Output Code (11-bit result)	16-Bit Fractional Format/16-Bit Signed Fractional FEquivalent Decimal ValueEquivalent Decimal Value									
+1023/1024	011 1111 1111	1111 1111 1100 0000	0.999	0111 1111 1110 0000	0.999						
+1022/1024	011 1111 1110	1111 1111 1000 0000	0.998	0111 1111 1000 0000	0.998						
•••											
+1/1024	000 0000 0001	0000 0000 0100 0000	0.001	0000 0000 0010 0000	0.001						
0/1024	000 0000 0000	0000 0000 0000 0000	0.000	0000 0000 0000 0000	0.000						
-1/1024	101 1111 1111	0000 0000 0000 0000	0.000	1111 1111 1110 0000	-0.001						
	•••										
-1023/1024	100 0000 0001	0000 0000 0000 0000	0.000	1000 0000 0010 0000	-0.999						
-1024/1024	100 0000 0000	0000 0000 0000 0000	0.000	1000 0000 0000 0000	-1.000						

^{© 2011-2012} Microchip Technology Inc.

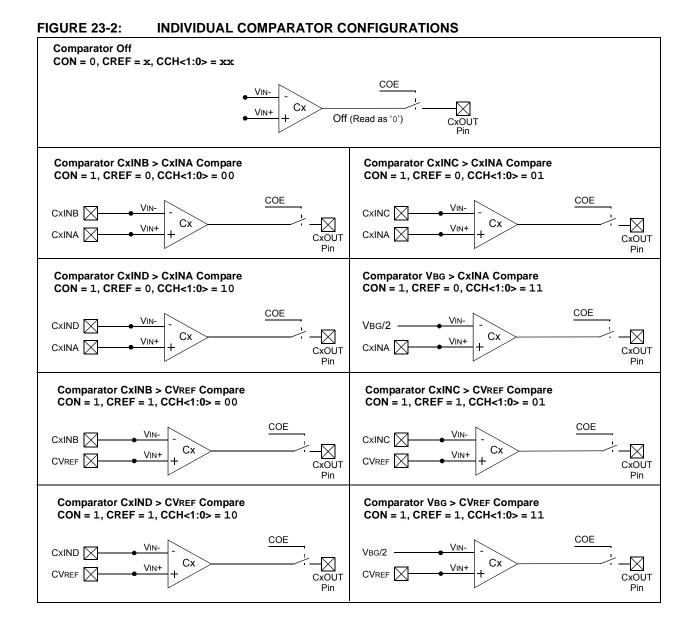
NOTES:

### 23.0 COMPARATOR MODULE

Note:	This data sheet summarizes the features
	of this group of PIC24F devices. It is not
	intended to be a comprehensive refer-
	ence source. For more information on the
	Comparator module, refer to the "PIC24F
	Family Reference Manual", Section 46.
	"Scalable Comparator Module"
	(DS39734).


The comparator module provides three dual input comparators. The inputs to the comparator can be configured to use any one of four external analog inputs, as well as a voltage reference input from either the internal band gap reference, divided by 2 (VBG/2), or the comparator voltage reference generator.

The comparator outputs may be directly connected to the CxOUT pins. When the respective COE equals '1', the I/O pad logic makes the unsynchronized output of the comparator available on the pin.


A simplified block diagram of the module is shown in Figure 23-1. Diagrams of the possible individual comparator configurations are shown in Figure 23-2.

Each comparator has its own control register, CMxCON (Register 23-1), for enabling and configuring its operation. The output and event status of all three comparators is provided in the CMSTAT register (Register 23-2).

### FIGURE 23-1: COMPARATOR MODULE BLOCK DIAGRAM



^{© 2011-2012} Microchip Technology Inc.



### **REGISTER 23-1: CMxCON: COMPARATOR x CONTROL REGISTERS**

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R-0				
CON	COE	CPOL	CLPWR	_	—	CEVT	COUT				
bit 15							bit 8				
							<b>-</b>				
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0				
EVPOL1	EVPOL0	—	CREF	—	—	CCH1	CCH0				
bit 7							bit C				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'					
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	-	arator Enable b	it								
		ator is enabled ator is disabled									
bit 14		arator Output E	nable bit								
	•	ator output is p		CxOUT pin							
	0 = Compara	ator output is in	ternal only								
bit 13		parator Output	,	bit							
		ator output is in									
hit 10		ator output is no		alaat hit							
bit 12		<b>CLPWR:</b> Comparator Low-Power Mode Select bit 1 = Comparator operates in Low-Power mode									
		itor does not op									
bit 11-10	-	ted: Read as									
bit 9	-	arator Event bi									
				<1:0> has occu	irred; subseque	ent triggers and	interrupts are				
		until the bit is o									
bit 8	-	ator event has i parator Output									
DILO	When CPOL	•	JIL								
	1 = VIN+ > V										
	$0 = VIN + \langle VIN - VIN $										
	<u>When CPOL = 1:</u>										
	1 = VIN + < VIN - 0 = VIN + > VIN - 0										
bit 7-6			t/Intorrunt Dolo	rity Soloct bits							
DIL 7-0		<b>EVPOL&lt;1:0&gt;:</b> Trigger/Event/Interrupt Polarity Select bits 11 = Trigger/event/interrupt is generated on any change of the comparator output (while CEVT = 0)									
				on the transition							
		(non-inverted p	-								
	High-to-low transition only.										
		If CPOL = 1 (inverted polarity):									
	•	ransition only.	is generated o	on the transition	of the compar	ator output					
		(non-inverted p									
		ransition only.	<u> </u>								
		(inverted polari	t <u>y):</u>								
		ransition only.		-1:							
hit E		event/interrupt	-	uisadied							
bit 5	Unimplemen	nted: Read as '	U								

^{© 2011-2012} Microchip Technology Inc.

### REGISTER 23-1: CMxCON: COMPARATOR x CONTROL REGISTERS (CONTINUED)

bit 4	CREF: Comparator Reference Select bits (non-inverting input)
	<ul> <li>1 = Non-inverting input connects to the internal CVREF voltage</li> <li>0 = Non-inverting input connects to the CxINA pin</li> </ul>
bit 3-2	Unimplemented: Read as '0'
bit 1-0	CCH<1:0>: Comparator Channel Select bits
	11 = Inverting input of the comparator connects to VBG
	10 = Inverting input of the comparator connects to the CxIND pin
	01 = Inverting input of the comparator connects to the CxINC pin
	00 = Inverting input of the comparator connects to the CxINB pin

#### REGISTER 23-2: CMSTAT: COMPARATOR MODULE STATUS REGISTER

R/W-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
CMIDL	—	—	—	—	C3EVT	C2EVT	C1EVT
bit 15							bit 8

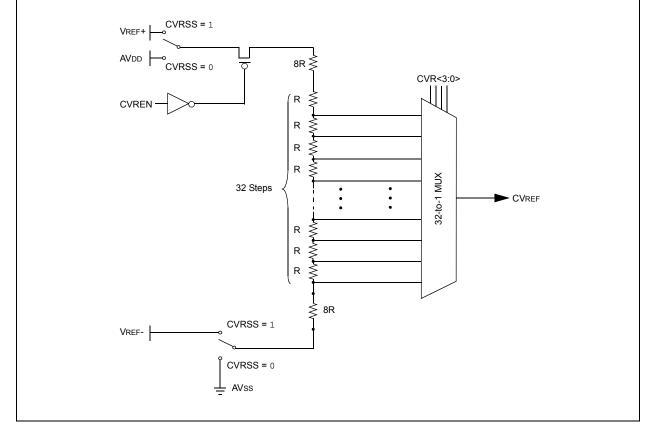
U-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
—	—	—	—	—	C3OUT	C2OUT	C1OUT
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15	<ul> <li>CMIDL: Comparator Stop in Idle Mode bit</li> <li>1 = Comparator interrupts are disabled in Idle mode; enabled comparators remain operational</li> <li>0 = Continue operation of all enabled comparators in Idle mode</li> </ul>
bit 14-11	Unimplemented: Read as '0'
bit 10	C3EVT: Comparator 3 Event Status bit (read-only)
	Shows the current event status of Comparator 2 (CM3CON<9>).
bit 9	C2EVT: Comparator 2 Event Status bit (read-only)
	Shows the current event status of Comparator 2 (CM2CON<9>).
bit 8	C1EVT: Comparator 1 Event Status bit (read-only)
	Shows the current event status of Comparator 1 (CM1CON<9>).
bit 7-3	Unimplemented: Read as '0'
bit 2	C3OUT: Comparator 3 Output Status bit (read-only)
	Shows the current output of Comparator 3 (CM3CON<8>).
bit 1	C2OUT: Comparator 2 Output Status bit (read-only)
	Shows the current output of Comparator 2 (CM2CON<8>).
bit 0	C1OUT: Comparator 1 Output Status bit (read-only)
	Shows the current output of Comparator 1 (CM1CON<8>).

### 24.0 COMPARATOR VOLTAGE REFERENCE

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Comparator Voltage Reference, refer to the "PIC24F Family Reference Manual", Section 20. "Comparator Module Voltage Reference Module" (DS39709).


### 24.1 Configuring the Comparator Voltage Reference

The comparator voltage reference module is controlled through the CVRCON register (Register 24-1). The comparator voltage reference provides a range of output voltages, with 32 distinct levels.

The comparator voltage reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<5>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.





^{© 2011-2012} Microchip Technology Inc.

REGISTER 24-1:	CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER
----------------	-------------------------------------------------------

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
	_	—		_	—	—	_				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CVREN	CVROE	CVRSS	CVR4	CVR3	CVR2	CVR1	CVR0				
bit 7							bit C				
Legend:											
R = Readat	ole bit	W = Writable I	oit	U = Unimplem	ented bit, read	l as '0'					
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unknown					
bit 15-8	Unimplemen	ted: Read as 'o	)'								
bit 7	CVREN: Con	CVREN: Comparator Voltage Reference Enable bit									
		rcuit is powered									
		rcuit is powered									
bit 6		nparator VREF C	•								
	<ul> <li>1 = CVREF voltage level is output on the CVREF pin</li> <li>0 = CVREF voltage level is disconnected from the CVREF pin</li> </ul>										
		•			DIN						
L:1 F	CVRSS: Comparator VREF Source Selection bit										
bit 5		•									
bit 5	1 = Compara	ator reference se	ource, CVRSR	C = VREF+ - VA							
	1 = Compara 0 = Compara	ator reference so ator reference so	ource, CVRSR ource, CVRSR	c = Vref+ - Vf c = AVdd - AV	SS						
bit 5 bit 4-0	1 = Compara 0 = Compara <b>CVR&lt;4:0&gt;:</b> C	ator reference se ator reference se comparator VRE	ource, CVRSR ource, CVRSR	C = VREF+ - VA	SS						
	1 = Compara 0 = Compara <b>CVR&lt;4:0&gt;:</b> C <u>When CVRS</u>	ator reference se ator reference se comparator VRE	ource, CVRSR ource, CVRSR F Value Select	C = VREF+ - Vi C = AVDD - AV tion 0 ≤ CVR<4:	SS						
	1 = Compara 0 = Compara <b>CVR&lt;4:0&gt;:</b> C <u>When CVRS</u>	tor reference set tor reference set comparator VRE S = 1: EF-) + (CVR<4:0	ource, CVRSR ource, CVRSR F Value Select	C = VREF+ - Vi C = AVDD - AV tion 0 ≤ CVR<4:	SS						

### 25.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Charge Measurement Unit, refer to the "PIC24F Family Reference Manual", Section 53. "Charge Time Measurement Unit (CTMU) with Threshold Detect" (DS39743).

The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides charge measurement, accurate differential time measurement between pulse sources and asynchronous pulse generation. Its key features include:

- Thirteen external edge input trigger sources
- · Polarity control for each edge source
- · Control of edge sequence
- Control of response to edge levels or edge transitions
- · Time measurement resolution of one nanosecond
- Accurate current source suitable for capacitive measurement

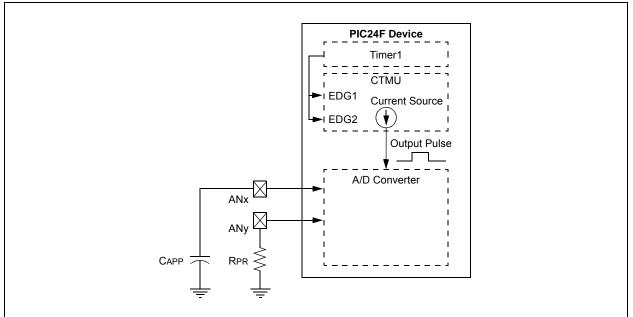
Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance, or generate output pulses that are independent of the system clock. The CTMU module is ideal for interfacing with capacitive-based touch sensors.

The CTMU is controlled through three registers: CTMUCON1, CTMUCON2 and CTMUICON. CTMUCON1 enables the module and controls the mode of operation of the CTMU, as well as controlling edge sequencing. CTMUCON2 controls edge source selection and edge source polarity selection. The CTMUICON register selects the current range of current source and trims the current.

### 25.1 Measuring Capacitance

The CTMU module measures capacitance by generating an output pulse, with a width equal to the time between edge events, on two separate input channels. The pulse edge events to both input channels can be selected from several internal peripheral modules (OC1, Timer1, any input capture or comparator module) and up to 13 external pins (CTED1 through CTED13). This pulse is used with the module's precision current source to calculate capacitance according to the relationship:

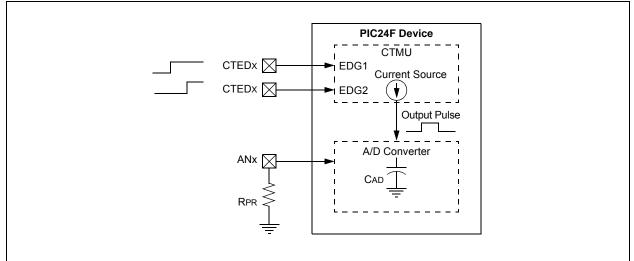
#### EQUATION 25-1:


$$I = C \cdot \frac{dV}{dT}$$

For capacitance measurements, the A/D Converter samples an external capacitor (CAPP) on one of its input channels after the CTMU output's pulse. A precision resistor (RPR) provides current source calibration on a second A/D channel. After the pulse ends, the converter determines the voltage on the capacitor. The actual calculation of capacitance is performed in software by the application.

Figure 25-1 illustrates the external connections used for capacitance measurements, and how the CTMU and A/D modules are related in this application. This example also shows the edge events coming from Timer1, but other configurations using external edge sources are possible. A detailed discussion on measuring capacitance and time with the CTMU module is provided in the "*PIC24F Family Reference Manual*".

^{© 2011-2012} Microchip Technology Inc.


### FIGURE 25-1: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR CAPACITANCE MEASUREMENT



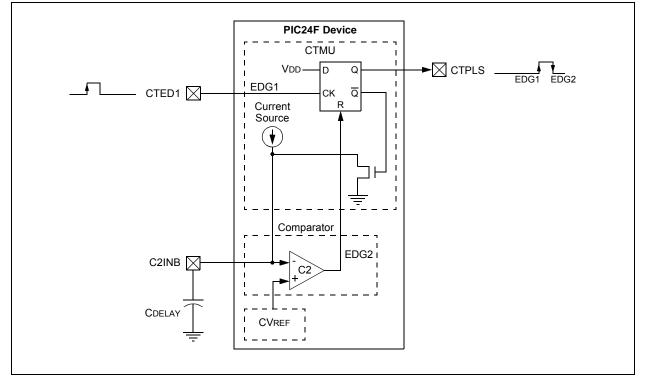
### 25.2 Measuring Time

Time measurements on the pulse width can be similarly performed using the A/D module's internal capacitor (CAD) and a precision resistor for current calibration. Figure 25-2 displays the external connections used for time measurements, and how the CTMU and A/D modules are related in this application. This example also shows both edge events coming from the external CTEDx pins, but other configurations using internal edge sources are possible.

FIGURE 25-2: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME MEASUREMENT



### 25.3 Pulse Generation and Delay


The CTMU module can also generate an output pulse with edges that are not synchronous with the device's system clock. More specifically, it can generate a pulse with a programmable delay from an edge event input to the module.

When the module is configured for pulse generation delay by setting the TGEN bit (CTMUCON<12>), the internal current source is connected to the B input of Comparator 2. A capacitor (CDELAY) is connected to the Comparator 2 pin, C2INB, and the Comparator Voltage Reference, CVREF, is connected to C2INA. CVREF is then configured for a specific trip point. The module begins to charge CDELAY when an edge event is detected. While CVREF is greater than the voltage on CDELAY, CTPLS is high.

When the voltage on CDELAY equals CVREF, CTPLS goes low. With Comparator 2 configured as the second edge, this stops the CTMU from charging. In this state event, the CTMU automatically connects to ground. The IDISSEN bit doesn't need to be set and cleared before the next CTPLS cycle.

Figure 25-3 illustrates the external connections for pulse generation, as well as the relationship of the different analog modules required. While CTED1 is shown as the input pulse source, other options are available. A detailed discussion on pulse generation with the CTMU module is provided in the "*PIC24F Family Reference Manual*".

### FIGURE 25-3: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR PULSE DELAY GENERATION



^{© 2011-2012} Microchip Technology Inc.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG			
bit 15	·	•		·			bit			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
 bit 7	_	_		_	—		bit (			
							DIL			
Legend:										
R = Readable	e bit	W = Writable	oit	U = Unimpler	mented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own			
bit 15	CTMUEN: CT	MU Enable bit								
	1 = Module is									
	0 = Module is		. 1							
bit 14	-	ted: Read as '(								
bit 13		<b>CTMUSIDL:</b> Stop in Idle Mode bit . = Discontinues module operation when device enters Idle mode								
		s module opera			ale mode					
bit 12		Generation Ena								
		<ul> <li>Enables edge delay generation</li> <li>Disables edge delay generation</li> </ul>								
L:1 44			ieration							
bit 11	EDGEN: Edge									
	<ul> <li>1 = Edges are not blocked</li> <li>0 = Edges are blocked</li> </ul>									
bit 10	-	EDGSEQEN: Edge Sequence Enable bit								
	1 = Edge 1 event must occur before Edge 2 event can occur									
	-	sequence is ne								
bit 9		alog Current Sc								
	0	urrent source o urrent source o								
bit 8	-	ger Control bit								
		utput is enabled	t							
		utput is disable								

#### REGISTER 25-1: CTMUCON1: CTMU CONTROL REGISTER 1

#### REGISTER 25-2: CTMUCON2: CTMU CONTROL REGISTER 2

EDG1EDGE	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
EDGIEDGE	EDG1POL	EDG1SEL3	EDG1SEL2	EDG1SEL1	EDG1SEL0	EDG2	EDG1			
bit 15							bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0			
EDG2EDGE	EDG2POL	EDG2SEL3	EDG2SEL2	EDG2SEL1	EDG2SEL0	—	—			
bit 7							bit			
Legend:										
R = Readabl	e bit	W = Writable	oit	U = Unimplemented bit, read as						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
L:1 4 5										
bit 15		Edge 1 Edge-S	sensitive Select	t Dit						
	1 = Input is e 0 = Input is le									
bit 14	•	dge 1 Polarity	Select bit							
		programmed for		ge response						
		programmed for								
bit 13-10	EDG1SEL<3:	:0>: Edge 1 So	urce Select bits	;						
	1111 = Edge 1 source is Comparator 3 output									
	1110 = Edge 1 source is Comparator 2 output									
	1101 = Edge 1 source is Comparator 1 output 1100 = Edge 1 source is IC3									
	1011 = Edge 1 source is IC2									
		1 source is IC1								
	•	1 source is CT								
		1 source is CT 1 source is CT								
		1 source is CT								
	0101 = Edge	1 source is CT	ED4							
		0100 = Edge 1 source is CTED3 ⁽²⁾								
			0011 = Edge 1 source is CTED1							
	0010 = Edge 1 source is CTED2 0001 = Edge 1 source is OC1									
	0001 = Edge		1							
bit 9	0001 = Edge	1 source is OC 1 source is Tim	1							
bit 9	0001 = Edge 0000 = Edge EDG2: Edge	1 source is OC 1 source is Tim	1 ler1	ritten to contro	of the current so	ource.				
bit 9	0001 = Edge 0000 = Edge EDG2: Edge Indicates the 1 = Edge 2 ha	1 source is OC 1 source is Tim 2 Status bit status of Edge as occurred	1 ler1	ritten to contro	ol the current so	ource.				
	0001 = Edge 0000 = Edge EDG2: Edge Indicates the 1 = Edge 2 ha 0 = Edge 2 ha	1 source is OC 1 source is Tim 2 Status bit status of Edge as occurred as not occurred	1 ler1	rritten to contro	ol the current so	ource.				
bit 9 bit 8	0001 = Edge 0000 = Edge EDG2: Edge Indicates the 1 = Edge 2 ha 0 = Edge 2 ha EDG1: Edge	1 source is OC 1 source is Tim 2 Status bit status of Edge as occurred as not occurred 1 Status bit	1 ler1 2 and can be w							
	0001 = Edge 0000 = Edge EDG2: Edge Indicates the 1 = Edge 2 ha 0 = Edge 2 ha EDG1: Edge Indicates the	1 source is OC 1 source is Tim 2 Status bit status of Edge as occurred as not occurred 1 Status bit status of Edge	1 ler1 2 and can be w							
	0001 = Edge 0000 = Edge EDG2: Edge 1 = Edge 2 ha 0 = Edge 2 ha EDG1: Edge Indicates the 1 = Edge 1 ha	1 source is OC 1 source is Tim 2 Status bit status of Edge as occurred as not occurred 1 Status bit status of Edge as occurred	1 ler1 2 and can be w							
bit 8	0001 = Edge 0000 = Edge <b>EDG2:</b> Edge 2 Indicates the 1 = Edge 2 ha 0 = Edge 2 ha <b>EDG1:</b> Edge Indicates the 1 = Edge 1 ha 0 = Edge 1 ha	1 source is OC 1 source is Tim 2 Status bit status of Edge as occurred as not occurred 1 Status bit status of Edge as occurred as not occurred	1 ler1 2 and can be w 1 and can be w	ritten to contro						
	0001 = Edge 0000 = Edge <b>EDG2:</b> Edge 2 Indicates the 1 = Edge 2 ha 0 = Edge 2 ha <b>EDG1:</b> Edge Indicates the 1 = Edge 1 ha 0 = Edge 1 ha	1 source is OC 1 source is Tim 2 Status bit status of Edge as occurred as not occurred 1 Status bit status of Edge as occurred as not occurred Edge 2 Edge-S	1 ler1 2 and can be w 1 and can be w	ritten to contro						

2: Edge sources, CTED3,CTED11, CTED12 and CTED13, are not available on PIC24FV32KA301 devices.

 $[\]ensuremath{\textcircled{}^\circ}$  2011-2012 Microchip Technology Inc.

### REGISTER 25-2: CTMUCON2: CTMU CONTROL REGISTER 2 (CONTINUED)

- bit 6 EDG2POL: Edge 2 Polarity Select bit 1 = Edge 2 is programmed for a positive edge 0 = Edge 2 is programmed for a negative edge bit 5-2 EDG2SEL<3:0>: Edge 2 Source Select bits 1111 = Edge 2 source is Comparator 3 output 1110 = Edge 2 source is Comparator 2 output 1101 = Edge 2 source is Comparator 1 output 1100 = Unimplemented; do not use 1011 = Edge 2 source is IC3 1010 = Edge 2 source is IC2 1001 = Edge 2 source is IC1 1000 = Edge 2 source is CTED13⁽²⁾ 0111 = Edge 2 source is CTED12^(1,2) 0110 = Edge 2 source is CTED11^(1,2) 0101 = Edge 2 source is CTED10 0100 = Edge 2 source is CTED9 0011 = Edge 2 source is CTED1 0010 = Edge 2 source is CTED2 0001 = Edge 2 source is OC1 0000 = Edge 2 source is Timer1
- bit 1-0 Unimplemented: Read as '0'
- Note 1: Edge sources, CTED11 and CTED12, are not available on PIC24FV32KA302 devices.
  - 2: Edge sources, CTED3, CTED11, CTED12 and CTED13, are not available on PIC24FV32KA301 devices.

DAMA			DANA		DAMA		DAMA		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—			_	_	—	_		
bit 7							bit (		
<u> </u>									
Legend:			• •						
R = Readable		W = Writable	bit	U = Unimplem					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
	<ul> <li>011111 = Maximum positive change from nominal current</li> <li>011110</li> <li>000001 = Minimum positive change from nominal current</li> <li>000000 = Nominal current output specified by IRNG&lt;1:0&gt;</li> <li>111111 = Minimum negative change from nominal current</li> </ul>								
bit 9-8 bit 7-0	<ul> <li>100010</li> <li>100001 = Maximum negative change from nominal current</li> <li>IRNG&lt;1:0&gt;: Current Source Range Select bits</li> <li>11 = 100 x Base Current</li> <li>10 = 10 × Base Current</li> <li>10 = 10 × Base Current</li> <li>01 = Base Current Level (0.55 μA nominal)</li> <li>00 = 1000 x Base Current</li> <li>Unimplemented: Read as '0'</li> </ul>								
	ommplemen	ieu. Neau da l	J						

### REGISTER 25-3: CTMUICON: CTMU CURRENT CONTROL REGISTER

NOTES:

### 26.0 SPECIAL FEATURES

- **Note:** This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information on the Watchdog Timer, High-Level Device Integration and Programming Diagnostics, refer to the individual sections of the *"PIC24F Family Reference Manual"* provided below:
  - Section 9. "Watchdog Timer (WDT)" (DS39697)
  - Section 36. "High-Level Integration with Programmable High/Low-Voltage Detect (HLVD)" (DS39725)
  - Section 33. "Programming and Diagnostics" (DS39716)

PIC24FV32KA304 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- · Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

### 26.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped, starting at program memory location, F80000h. A complete list of Configuration register locations is provided in Table 26-1. A detailed explanation of the various bit functions is provided in Register 26-1 through Register 26-8.

The address, F80000h, is beyond the user program memory space. In fact, it belongs to the configuration memory space (800000h-FFFFFFh), which can only be accessed using table reads and table writes.

TABLE 26-1:	<b>CONFIGURATION REGISTERS</b>
	LOCATIONS

Configuration Register	Address
FBS	F80000
FGS	F80004
FOSCSEL	F80006
FOSC	F80008
FWDT	F8000A
FPOR	F8000C
FICD	F8000E
FDS	F80010

#### **REGISTER 26-1: FBS: BOOT SEGMENT CONFIGURATION REGISTER**

U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1
_	—	—	_	BSS2	BSS1	BSS0	BWRP
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4 Unimplemented: Read as '0'

bit 3-1	BSS<2:0>: Boot Segment Program Flash Code Protection bits
	111 = No boot program Flash segment
	011 = Reserved
	110 = Standard security, boot program Flash segment starts at 200h, ends at 000AFEh
	010 = High-security boot program Flash segment starts at 200h, ends at 000AFEh
	101 = Standard security, boot program Flash segment starts at 200h, ends at 0015FEh ⁽¹⁾
	001 = High-security, boot program Flash segment starts at 200h, ends at 0015FEh ⁽¹⁾
	100 = Standard security; boot program Flash segment starts at 200h, ends at 002BFEh ⁽¹⁾ 000 = High-security; boot program Flash segment starts at 200h, ends at 002BFEh ⁽¹⁾
bit 0	<b>BWRP:</b> Boot Segment Program Flash Write Protection bit
	1 = Boot segment may be written
	0 = Boot segment is write-protected

Note 1: This selection should not be used in PIC24FV16KA3XX devices.

© 2011-2012 Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	U-0	R/C-1	R/C-1	
—	—	—	—	—	—	GSS0	GWRP	
bit 7							bit 0	
Legend:								
R = Readable	bit	C = Clearable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at F	POR	'1' = Bit is set		(0) = Bit is cleared x = Bit is unknown				

bit 7-2	Unimplemented: Read as '0'
bit 1	GSS0: General Segment Code Flash Code Protection bit
	<ul><li>1 = No protection</li><li>0 = Standard security is enabled</li></ul>
bit 0	GWRP: General Segment Code Flash Write Protection bit
	<ul><li>1 = General segment may be written</li><li>0 = General segment is write-protected</li></ul>

**REGISTER 26-2: FGS: GENERAL SEGMENT CONFIGURATION REGISTER** 

#### REGISTER 26-3: FOSCSEL: OSCILLATOR SELECTION CONFIGURATION REGISTER

R/P-1	R/P-1	R/P-1	U-0	U-0	R/P-1	R/P-1	R/P-1
IESO	LPRCSEL	SOSCSRC			FNOSC2	FNOSC1	FNOSC0
bit 7							bit 0

Legend:			
R = Readable bit	P = Programmable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

	0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled)
bit 6	LPRCSEL: Internal LPRC Oscillator Power Select bit
	1 = High-Power/High-Accuracy mode
	0 = Low-Power/Low-Accuracy mode
bit 5	SOSCSRC: Secondary Oscillator Clock Source Configuration bit
	<ul> <li>1 = SOSC analog crystal function is available on the SOSCI/SOSCO pins</li> <li>0 = SOSC crystal is disabled; digital SCLKI function is selected on the SOSCO pin</li> </ul>
bit 4-3	Unimplemented: Read as '0'
bit 2-0	FNOSC<2:0>: Oscillator Selection bits
	000 = Fast RC Oscillator (FRC)
	001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL)
	010 = Primary Oscillator (XT, HS, EC)
	011 = Primary Oscillator with PLL module (HS+PLL, EC+PLL)
	100 = Secondary Oscillator (SOSC)
	101 = Low-Power RC Oscillator (LPRC)
	110 = 500 kHz Low-Power FRC Oscillator with divide-by-N (LPFRCDIV)
	111 = 8 MHz FRC Oscillator with divide-by-N (FRCDIV)

#### DS39995C-page 240

<b>REGISTER 2</b>	e-4: FOSC:	OSCILLAT	OR CONFIGU	JRATION REG	SISTER		
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
FCKSM1	FCKSM0	SOSCSEL	POSCFREQ1	POSCFREQ0	OSCIOFNC	POSCMD1	POSCMD0
bit 7							bit 0

Legend:			
R = Readable bit	P = Programmable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	FCKSM<1:0>: Clock Switching and Fail-Safe Clock Monitor Selection Configuration bits
	<ul> <li>1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled</li> <li>01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled</li> <li>00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled</li> </ul>
bit 5	SOSCSEL: Secondary Oscillator Power Selection Configuration bit
	<ul> <li>1 = Secondary oscillator is configured for high-power operation</li> <li>0 = Secondary oscillator is configured for low-power operation</li> </ul>
bit 4-3	POSCFREQ<1:0>: Primary Oscillator Frequency Range Configuration bits
	<ul> <li>11 = Primary oscillator/external clock input frequency is greater than 8 MHz</li> <li>10 = Primary oscillator/external clock input frequency is between 100 kHz and 8 MHz</li> <li>01 = Primary oscillator/external clock input frequency is less than 100 kHz</li> <li>00 = Reserved; do not use</li> </ul>
bit 2	OSCIOFNC: CLKO Enable Configuration bit
	<ul> <li>1 = CLKO output signal is active on the OSCO pin; primary oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMD&lt;1:0&gt; = 11 or 00)</li> <li>0 = CLKO output is disabled</li> </ul>
bit 1-0	POSCMD<1:0>: Primary Oscillator Configuration bits
	<ul> <li>11 = Primary Oscillator mode is disabled</li> <li>10 = HS Oscillator mode is selected</li> <li>01 = XT Oscillator mode is selected</li> <li>00 = External Clock mode is selected</li> </ul>

 $[\]ensuremath{\textcircled{}^\circ}$  2011-2012 Microchip Technology Inc.

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1			
FWDTEN1	WINDIS	FWDTEN0	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0			
bit 7							bit			
Legend:										
R = Readab	ole bit	P = Programn	nable bit	U = Unimplen	nented bit, rea	d as '0'				
-n = Value at POR		'1' = Bit is set	s set '0' = Bit is cleared		ared	x = Bit is unknown				
bit 7,5	FWDTEN<1:0	)>: Watchdog Ti	mer Enable bi	ts						
		enabled in hardv								
		controlled with the		U U	achied in Clas		tia diaablad			
		enabled only wh				p; SWDTEN D	is disabled			
bit 6	00 = WDT is disabled in hardware; SWDTEN bit is disabled									
	<b>WINDIS:</b> Windowed Watchdog Timer Disable bit 1 = Standard WDT is selected; windowed WDT is disabled									
	0 = Windowed WDT is enabled; note that executing a CLRWDT instruction while the WDT is disabled in									
	hardware Reset	and software (F	WDTEN<1:0>	> = 00 and RCC	N bit, SWDTE	N = 0 will not o	cause a devid			
bit 4	FWPSA: WDT Prescaler bit									
	•	scaler ratio of 1: scaler ratio of 1:3								
bit 3-0	WDTPS<3:0>: Watchdog Timer Postscale Select bits									
	1111 = 1:32,768									
	1110 <b>= 1</b> :16,384									
	1101 = 1:8,19									
	1100 = 1:4,09									
	1011 = 1:2,048 1010 = 1:1,024									
	1001 = 1.1,024 1001 = 1.512									
	1000 = 1:256									
	0111 <b>= 1:128</b>									
	0110 <b>= 1:64</b>									
	0101 = 1:32									
	0100 = 1:16									
	0011 = 1:8 0010 = 1:4									
	0001 <b>= 1:2</b>									

#### 

R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1				
MCLRE ⁽	²⁾ BORV1 ⁽³⁾	BORV0 ⁽³⁾	I2C1SEL ⁽¹⁾	PWRTEN	LVRCFG ⁽¹⁾	BOREN1	BOREN0				
bit 7						I	bit (				
Legend:											
R = Read	able bit	P = Programn	nable bit	U = Unimplem	nented bit, read a	as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
		_	(2)								
bit 7	MCLRE: MCLF										
	1 = MCLR pin i 0 = RA5 input p										
bit 6-5											
		BORV<1:0>: Brown-out Reset Enable bits ⁽³⁾ 11 = Brown-out Reset is set to the lowest voltage									
		10 = Brown-out Reset									
		01 = Brown-out Reset set to the highest voltage 00 = Downside protection on POR is enabled – "zero-power" is selected									
L:1 A		•		a – zero-powe	r is selected						
bit 4	<b>I2C1SEL:</b> Alternate I2C1 Pin Mapping bit ⁽¹⁾ 1 = Default location for SCL1/SDA1 pins										
	1 = Default local0 = Alternate lo										
bit 3	PWRTEN: Power-up Timer Enable bit										
	1 = PWRT is enabled										
	0 = PWRT is di										
bit 2	LVRCFG: Low-			tion bit ⁽¹⁾							
	1 = Low-voltage			ontrolled by the	LVREN bit (RC	NI<12>) during	a Sloop				
bit 1-0	BOREN<1:0>:	•		•			y Sleep				
	11 = Brown-out				is disabled						
					and disabled in S	leep; SBOREN	l bit is disable				
	01 = Brown-out										
	00 = Brown-out	t Reset is disal	oled in hardwa	re; SBOREN bi	t is disabled						
Note 1:	This setting only a	applies to the "I	V" devices. T	nis bit is reserve	ed and should be	e maintained as	s '1' on "F"				
	devices.										
2:	The MCLRE fuse					e entry. This pr	revents a use				
2.	from accidentally I Refer to <b>Section</b> 2	•		•	•						
3:	Relei to Section 2		ai Gharacteris	ILS IN BUR	onages.						

REGISTER 26-7: FICD: IN-CIRCUIT DEBUGGER CONFIGURATION REGISTER									
R/P-1	U-0	U-0	U-0	U-0	U-0	R/P-1	R/P-1		
DEBUG	_	—	_	—	—	FICD1	FICD0		
bit 7							bit 0		
Legend:									
R = Readab	ole bit	P = Programn	nable bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			
bit 7 bit 6-2 bit 1-0	DEBUG: Background Debugger Enable bit         1 = Background debugger is disabled         0 = Background debugger functions are enabled         Unimplemented: Read as '0'         FICD<1:0:>: ICD Pin Select bits         11 = PGEC1/PGED1 are used for programming and debugging the device         10 = PGEC2/PGED2 are used for programming and debugging the device         01 = PGEC3/PGED3 are used for programming and debugging the device         02 = Reserved; do not use								

R/P-1	R/P-1	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1			
DSWDTEN	DSBOREN	_	DSWDTOSC	DSWDTPS3	DSWDTPS2	DSWDTPS1	DSWDTPS0			
bit 7	•						bit C			
Legend:										
R = Readabl	e bit	P = Program	mable bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	nown			
L:1 7			tab da a Tira an Fr							
bit 7	1 = DSWDTEN: De	• •	tchdog Timer Er	hable bit						
	0 = DSWDT is									
bit 6	DSBOREN: De	ep Sleep/Low	-Power BOR En	able bit						
	(does not affect operation in non Deep Sleep modes)									
	1 = Deep Sleep BOR is enabled in Deep Sleep 0 = Deep Sleep BOR is disabled in Deep Sleep									
oit 5			•	eep						
oit 4	Unimplemented: Read as '0' DSWDTOSC: DSWDT Reference Clock Select bit									
	1 = DSWDT uses LPRC as the reference clock									
	0 = DSWDT us	ses SOSC as i	the reference clo	ock						
oit 3-0	DSWDTPS<3:0>: Deep Sleep Watchdog Timer Postscale Select bits									
	The DSWDT prescaler is 32; this creates an approximate base time unit of 1 ms.									
	1111 = 1:2,147,483,648 (25.7 days) nominal 1110 = 1:536,870,912 (6.4 days) nominal									
	1110 = 1.536,870,912 (6.4 days) nominal 1101 = 1:134,217,728 (38.5 hours) nominal									
	1100 = 1:33,554,432 (9.6 hours) nominal									
	1011 = 1:8,388,608 (2.4 hours) nominal									
	1010 = 1:2,097,152 (36 minutes) nominal 1001 = 1:524,288 (9 minutes) nominal									
	1000 = 1:131,072 (135 seconds) nominal									
	0111 = 1:32,768 (34 seconds) nominal									
	0110 = 1:8,192 (8.5 seconds) nominal 0101 = 1:2,048 (2.1 seconds) nominal									
	0100 = 1:512 (	•	·							
	0011 = 1:128 (									
	0010 = 1:32 (3 0001 = 1:8 (8.3	,								
	0001 - 1.8(8.3) 0000 = 1.2(2.3)	,								

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—		—	—	_		_	
bit 23							bit 16	
R	R	R	R	R	R	R	R	
FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2	FAMID1	FAMID0	
bit 15							bit 8	
R	R	R	R	R	R	R	R	
DEV7	DEV6	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0	
bit 7			I				bit C	
Legend:								
R = Readab		W = Writable bit		U = Unimplemented bit, rea				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
hit 00 40	Unimalanaa	tad. Dood oo W	<u>,</u> ,					
bit 23-16	•	ted: Read as '						
bit 23-16 bit 15-8	FAMID<7:0>:	Device Family	Identifier bits					
bit 15-8	<b>FAMID&lt;7:0&gt;:</b> 01000101 =	Device Family PIC24FV32KA	Identifier bits 304 family					
	FAMID<7:0>: 01000101 = DEV<7:0>: In	Device Family PIC24FV32KA dividual Device	Identifier bits 304 family Identifier bits					
bit 15-8	FAMID<7:0>: 01000101 = DEV<7:0>: In 00010111 =	Device Family PIC24FV32KA dividual Device PIC24FV32KA	dentifier bits 304 family Identifier bits 304					
bit 15-8	FAMID<7:0>: 01000101 = DEV<7:0>: In 00010111 = 00000111 =	Device Family PIC24FV32KA dividual Device	Identifier bits 304 family Identifier bits 304 304					
bit 15-8	FAMID<7:0>: 01000101 = DEV<7:0>: In 00010111 = 00000111 = 00010011 =	Device Family PIC24FV32KA dividual Device PIC24FV32KA PIC24FV16KA	Identifier bits 304 family Identifier bits 304 304 302					
bit 15-8	FAMID<7:0>: 01000101 = DEV<7:0>: In 00010111 = 000100111 = 00010011 = 00010011 =	Device Family PIC24FV32KA dividual Device PIC24FV32KA PIC24FV16KA PIC24FV32KA PIC24FV16KA PIC24FV16KA	Identifier bits 304 family Identifier bits 304 304 302 302 301					
bit 15-8	FAMID<7:0>: 01000101 = DEV<7:0>: In 00010111 = 000100111 = 00010011 = 00010011 =	Device Family PIC24FV32KA dividual Device PIC24FV32KA PIC24FV16KA PIC24FV32KA PIC24FV32KA	Identifier bits 304 family Identifier bits 304 304 302 302 301					
bit 15-8	FAMID<7:0>: 01000101 = DEV<7:0>: In 00010111 = 00010011 = 00010011 = 00010011 = 00011001 =	Device Family PIC24FV32KA dividual Device PIC24FV32KA PIC24FV16KA PIC24FV32KA PIC24FV16KA PIC24FV16KA	Identifier bits 304 family Identifier bits 304 304 302 302 301 301					
bit 15-8	FAMID<7:0>: 01000101 = DEV<7:0>: In 00010111 = 00010011 = 00010011 = 00010011 = 00011001 = 00001001 = 00001010 =	Device Family PIC24FV32KA dividual Device PIC24FV32KA PIC24FV16KA PIC24FV32KA PIC24FV32KA PIC24FV32KA PIC24FV16KA PIC24F32KA3 PIC24F16KA3	Identifier bits 304 family Identifier bits 304 304 302 302 301 301 301					
bit 15-8	FAMID<7:0>: 01000101 = DEV<7:0>: In 00010111 = 000000111 = 00010011 = 00011001 = 00001001 = 00001001 = 00001010 = 00010110 =	Device Family PIC24FV32KA dividual Device PIC24FV32KA PIC24FV16KA PIC24FV16KA PIC24FV16KA PIC24FV16KA PIC24F32KA3 PIC24F16KA3 PIC24F32KA3	Identifier bits 304 family Identifier bits 304 304 302 302 301 301 301 04 04 02					
bit 15-8	FAMID<7:0>: 01000101 = DEV<7:0>: In 00010111 = 000000111 = 00010011 = 00010011 = 00011001 = 00001001 = 00000100 = 00010010 = 00000010 =	Device Family PIC24FV32KA dividual Device PIC24FV32KA PIC24FV16KA PIC24FV32KA PIC24FV32KA PIC24FV32KA PIC24FV16KA PIC24F32KA3 PIC24F16KA3	Identifier bits 304 family Identifier bits 304 304 302 302 301 301 301 04 04 02 02					

### REGISTER 26-9: DEVID: DEVICE ID REGISTER

### REGISTER 26-10: DEVREV: DEVICE REVISION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—		—	—	
bit 23							bit 16	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	-	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R	R	R	R	
—	—	—	—	REV3	REV2	REV1	REV0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 23-4 Unimplemented: Read as '0'

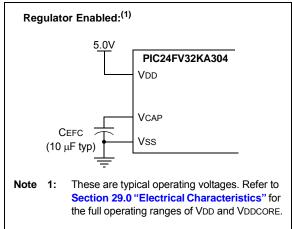
bit 3-0 REV<3:0>: Minor Revision Identifier bits

^{© 2011-2012} Microchip Technology Inc.

### 26.2 On-Chip Voltage Regulator

All of the PIC24FV32KA304 family devices power their core digital logic at a nominal 3.0V. This may create an issue for designs that are required to operate at a higher typical voltage, as high as 5.0V. To simplify system design, all devices in the "FV" family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator is always enabled and provides power to the core from the other VDD pins. A low-ESR capacitor (such as ceramic) must be connected to the VCAP pin (Figure 26-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in **Section 29.1 "DC Characteristics"**. In all of the PIC24FV32KA304 family of devices, the regulator is disabled.


For the "F" devices, the VDDCORE and VDD pins are internally tied together to operate at an overall lower allowable voltage range (1.8V-3.6V). Refer to Figure 26-1 for possible configurations.

#### 26.2.1 VOLTAGE REGULATOR TRACKING MODE AND LOW-VOLTAGE DETECTION

For all PIC24FV32KA304 devices, the on-chip regulator provides a constant voltage of 3.0V nominal to the digital core logic. The regulator can provide this level from a VDD of about 3.0V, all the way up to the device's VDDMAX. It does not have the capability to boost VDD levels below 3.0V. In order to prevent "brown out" conditions when the voltage drops too low for the regulator, the regulator enters Tracking mode. In Tracking mode, the regulator output follows VDD with a typical voltage drop of 100 mV.

When the device enters Tracking mode, it is no longer possible to operate at full speed. To provide information about when the device enters Tracking mode, the on-chip regulator includes a simple, High/Low-Voltage Detect (HLVD) circuit. When VDD drops below full-speed operating voltage, the circuit sets the High/Low-Voltage Detect Interrupt Flag, HLVDIF (IFS4<8>). This can be used to generate an interrupt and put the application into a low-power operational mode or trigger an orderly shutdown. High/Low-Voltage Detection is only available for "FV" parts.

### FIGURE 26-1: CONNECTIONS FOR THE ON-CHIP REGULATOR



### 26.2.2 ON-CHIP REGULATOR AND POR

For PIC24FV32KA304 devices, it takes approximately 1  $\mu$ s for it to generate output. During this time, designated as TPM, code execution is disabled. TPM is applied every time the device resumes operation after any power-down, including Sleep mode.

### 26.3 Watchdog Timer (WDT)

For the PIC24FV32KA304 family of devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

The nominal WDT clock source from LPRC is 31 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the FWPSA Configuration bit. With a 31 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the Configuration bits, WDTPS<3:0> (FWDT<3:0>), which allow the selection of a total of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler time-out periods, ranging from 1 ms to 131 seconds, can be achieved. The WDT, prescaler and postscaler are reset:

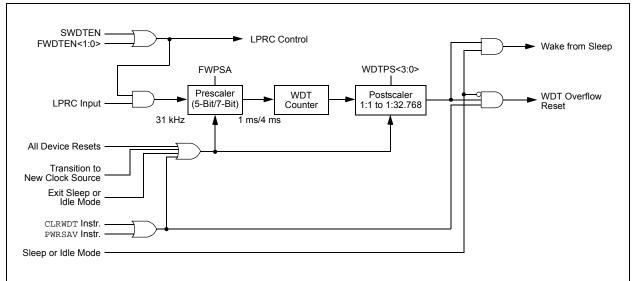
- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

If the WDT is enabled in hardware (FWDTEN<1:0> = 11), it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bit (RCON<3:2>) will need to be cleared in software after the device wakes up.

The WDT Flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

### 26.3.1 WINDOWED OPERATION


The Watchdog Timer has an optional Fixed Window mode of operation. In this Windowed mode, CLRWDT instructions can only reset the WDT during the last 1/4 of the programmed WDT period. A CLRWDT instruction executed before that window causes a WDT Reset, similar to a WDT time-out.

Windowed WDT mode is enabled by programming the Configuration bit, WINDIS (FWDT<6>), to '0'.

### 26.3.2 CONTROL REGISTER

The WDT is enabled or disabled by the FWDTEN<1:0> Configuration bits. When both the FWDTEN<1:0> Configuration bits are set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN<1:0> Configuration bits have been programmed to '10'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user to enable the WDT for critical code segments, and disable the WDT during non-critical segments, for maximum power savings. When the FWTEN<1:0> bits are set to '01', the WDT is only enabled in Run and Idle modes, and is disabled in Sleep. Software control of the SWDTEN bit (RCON<5>) is disabled with this setting.



### FIGURE 26-2: WDT BLOCK DIAGRAM

^{© 2011-2012} Microchip Technology Inc.

### 26.4 Deep Sleep Watchdog Timer (DSWDT)

In PIC24FV32KA304 family devices, in addition to the WDT module, a DSWDT module is present which runs while the device is in Deep Sleep, if enabled. It is driven by either the SOSC or LPRC oscillator. The clock source is selected by the Configuration bit, DSWDTOSC (FDS<4>).

The DSWDT can be configured to generate a time-out, at 2.1 ms to 25.7 days, by selecting the respective postscaler. The postscaler can be selected by the Configuration bits, DSWDTPS<3:0> (FDS<3:0>). When the DSWDT is enabled, the clock source is also enabled.

DSWDT is one of the sources that can wake-up the device from Deep Sleep mode.

### 26.5 Program Verification and Code Protection

For all devices in the PIC24FV32KA304 family, code protection for the boot segment is controlled by the Configuration bit, BSS0, and the general segment by the Configuration bit, GSS0. These bits inhibit external reads and writes to the program memory space This has no direct effect in normal execution mode.

Write protection is controlled by bit, BWRP, for the boot segment and bit, GWRP, for the general segment in the Configuration Word. When these bits are programmed to '0', internal write and erase operations to program memory are blocked.

### 26.6 In-Circuit Serial Programming

PIC24FV32KA304 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGECx) and data (PGEDx), and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

### 26.7 In-Circuit Debugger

When MPLAB[®] ICD 3, MPLAB REAL ICE[™] or PICkit[™] 3 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx and PGEDx pins.

To use the in-circuit debugger function of the device, the design must implement ICSP connections to  $\overline{MCLR}$ , VDD, VSS, PGECx, PGEDx and the pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

### 27.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
  - MPLAB C Compiler for Various Device Families
  - HI-TECH C[®] for Various Device Families
  - MPASM[™] Assembler
  - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
  - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
  - MPLAB SIM Software Simulator
- Emulators
  - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
  - MPLAB ICD 3
  - PICkit™ 3 Debug Express
- Device Programmers
  - PICkit[™] 2 Programmer
  - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

### 27.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
  - Simulator
  - Programmer (sold separately)
  - In-Circuit Emulator (sold separately)
  - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
  - Source files (C or assembly)
  - Mixed C and assembly
  - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

### 27.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

### 27.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

### 27.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

### 27.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

### 27.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

### 27.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

### 27.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

### 27.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

### 27.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

### 27.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

### 27.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

### 27.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta A/D, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

### 28.0 INSTRUCTION SET SUMMARY

Note:	This chapter is a brief summary of the									
	PIC24F instruction set architecture and is									
	not intended to be a comprehensive									
	reference source.									

The PIC24F instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from previous PIC MCU instruction sets. Most instructions are a single program memory word. Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into four basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- · Literal operations
- Control operations

Table 28-1 lists the general symbols used in describing the instructions. The PIC24F instruction set summary in Table 28-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value, 'f'
- The destination, which could either be the file register, 'f', or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The control instructions may use some of the following operands:

- · A program memory address
- The mode of the table read and table write instructions

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all of the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the Program Counter (PC) is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes, and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles.

Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

### TABLE 28-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description							
#text	Means literal defined by "text"							
(text)	Means "content of text"							
[text]	Means "the location addressed by text"							
{ }	Optional field or operation							
<n:m></n:m>	Register bit field							
.b	Byte mode selection							
.d	Double-Word mode selection							
.S	Shadow register select							
.W	Word mode selection (default)							
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$							
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero							
Expr	Absolute address, label or expression (resolved by the linker)							
f	File register address ∈ {0000h1FFFh}							
lit1	1-bit unsigned literal ∈ {0,1}							
lit4	4-bit unsigned literal ∈ {015}							
lit5	5-bit unsigned literal ∈ {031}							
lit8	8-bit unsigned literal ∈ {0255}							
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode							
lit14	14-bit unsigned literal ∈ {016384}							
lit16	16-bit unsigned literal ∈ {065535}							
lit23	23-bit unsigned literal ∈ {08388608}; LSB must be '0'							
None	Field does not require an entry, may be blank							
PC	Program Counter							
Slit10	10-bit signed literal ∈ {-512511}							
Slit16	16-bit signed literal ∈ {-3276832767}							
Slit6	6-bit signed literal ∈ {-1616}							
Wb	Base W register ∈ {W0W15}							
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }							
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }							
Wm,Wn	Dividend, Divisor working register pair (direct addressing)							
Wn	One of 16 working registers ∈ {W0W15}							
Wnd	One of 16 destination working registers ∈ {W0W15}							
Wns	One of 16 source working registers ∈ {W0W15}							
WREG	W0 (working register used in File register instructions)							
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }							
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }							

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
ADD	ADD	f	f = f + WREG	1	1	C, DC, N, OV, Z
	ADD	f,WREG	WREG = f + WREG	1	1	C, DC, N, OV, Z
	ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C, DC, N, OV, Z
	ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C, DC, N, OV, Z
	ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C, DC, N, OV, Z
ADDC	ADDC	f	f = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C, DC, N, OV, Z
AND	AND	f	f = f .AND. WREG	1	1	N, Z
	AND	f,WREG	WREG = f .AND. WREG	1	1	N, Z
	AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N, Z
	AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N, Z
	AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N, Z
ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C, N, OV, Z
	ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N, Z
	ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N, Z
BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
	BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
	BRA	GE, Expr	Branch if Greater than or Equal	1	1 (2)	None
	BRA	GEU, Expr	Branch if Unsigned Greater than or Equal	1	1 (2)	None
	BRA	GT, Expr	Branch if Greater than	1	1 (2)	None
	BRA	GTU, Expr	Branch if Unsigned Greater than	1	1 (2)	None
	BRA	LE, Expr	Branch if Less than or Equal	1	1 (2)	None
	BRA	LEU, Expr	Branch if Unsigned Less than or Equal	1	1 (2)	None
	BRA	LT, Expr	Branch if Less than	1	1 (2)	None
	BRA	LTU, Expr	Branch if Unsigned Less than	1	1 (2)	None
	BRA	N,Expr	Branch if Negative	1	1 (2)	None
	BRA	NC,Expr	Branch if Not Carry	1	1 (2)	None
	BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
	BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
	BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
	BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
	BRA	Expr	Branch Unconditionally	1	2	None
	BRA	Z,Expr	Branch if Zero	1	1 (2)	None
	BRA	Wn	Computed Branch	1	2	None
BSET	BSET	f,#bit4	Bit Set f	1	1	None
	BSET	Ws,#bit4	Bit Set Ws	1	1	None
BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
	BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
	BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
	BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	(2 or 3)	None

#### TABLE 28-2: INSTRUCTION SET OVERVIEW

© 2011-2012 Microchip Technology Inc.

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
	BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
BTST	BTST	f,#bit4	Bit Test f	1	1	Z
	BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
	BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
	BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
	BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
	BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
	BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
CALL	CALL	lit23	Call Subroutine	2	2	None
	CALL	Wn	Call Indirect Subroutine	1	2	None
CLR	CLR	f	f = 0x0000	1	1	None
	CLR	WREG	WREG = 0x0000	1	1	None
	CLR	Ws	Ws = 0x0000	1	1	None
CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, Sleep
COM	COM	f	$f = \overline{f}$	1	1	N, Z
	COM	f,WREG	WREG = $\overline{f}$	1	1	N, Z
	COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N, Z
CP	CP	f	Compare f with WREG	1	1	C, DC, N, OV, Z
01	CP	Wb,#lit5	Compare Wb with lit5	1	1	C, DC, N, OV, Z
	CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C, DC, N, OV, Z
CP0	CPO	f	Compare f with 0x0000	1	1	C, DC, N, OV, Z
010	CPO	Ws	Compare Ws with 0x0000	1	1	C, DC, N, OV, Z
CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C, DC, N, OV, Z
012	CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C, DC, N, OV, Z
	CPB	Wb,Ws	Compare Wb with Ws, with Borrow	1	1	C, DC, N, OV, Z
			$(Wb - Ws - \overline{C})$			
CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, Skip if =	1	1 (2 or 3)	None
CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, Skip if >	1	1 (2 or 3)	None
CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, Skip if <	1	1 (2 or 3)	None
CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, Skip if ≠	1	1 (2 or 3)	None
DAW	DAW	Wn	Wn = Decimal Adjust Wn	1	1	С
DEC	DEC	f	f = f -1	1	1	C, DC, N, OV, Z
	DEC	f,WREG	WREG = f –1	1	1	C, DC, N, OV, Z
	DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, Z
DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, Z
	DEC2	f,WREG	WREG = f – 2	1	1	C, DC, N, OV, Z
	DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, Z
DISI	DISI	#lit14	Disable Interrupts for k Instruction Cycles	1	1	None
DIV	DIV.SW	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UW	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV
	DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N, Z, C, OV
EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С

### TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
GOTO	GOTO Expr		Go to Address	2	2	None
	GOTO	Wn	Go to Indirect	1	2	None
INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z
	INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z
INCZ	INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
IOR	IOR	f	f = f .IOR. WREG	1	1	N, Z
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
	IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N, Z
	LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N, Z
MOV	MOV	f,Wn	Move f to Wn	1	1	None
	MOV	[Wns+Slit10],Wnd	Move [Wns+Slit10] to Wnd	1	1	None
	MOV	f	Move f to f	1	1	N, Z
	MOV	f,WREG	Move f to WREG	1	1	N, Z
	MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
	MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns,[Wns+Slit10]	Move Wns to [Wns+Slit10]	1	1	None
	MOV	Wso,Wdo	Move Ws to Wd	1	1	None
	MOV	WREG, f	Move WREG to f	1	1	N, Z
	MOV.D	Wns,Wd	Move Double from W(ns):W(ns+1) to Wd	1	2	None
	MOV.D	Ws,Wnd	Move Double from Ws to W(nd+1):W(nd)	1	2	None
MUL	MUL.SS	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
	MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
	MUL.US	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
	MUL.UU	Wb,Ws,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
	MUL.SU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
	MUL.UU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
	MUL	f	W3:W2 = f * WREG	1	1	None
NEG	NEG	f	$f = \overline{f} + 1$	1	1	C, DC, N, OV, Z
INEG			WREG = $\overline{f}$ + 1			i
	NEG	f,WREG		1	1	C, DC, N, OV, Z
	NEG	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
NOP	NOP		No Operation	1	1	None
	NOPR		No Operation	1	1	None
POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
	POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd+1)	1	2	None
	POP.S		Pop Shadow Registers	1	1	All
PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
	PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
	PUSH.D	Wns	Push W(ns):W(ns+1) to Top-of-Stack (TOS)	1	2	None
	PUSH.S		Push Shadow Registers	1	1	None

### TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

 $\ensuremath{\textcircled{}^{\odot}}$  2011-2012 Microchip Technology Inc.

#### TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO, Sleep
RCALL	RCALL	Expr	Relative Call	1	2	None
	RCALL	Wn	Computed Call	1	2	None
REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
	REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
RESET	RESET		Software Device Reset	1	1	None
RETFIE	RETFIE		Return from Interrupt	1	3 (2)	None
RETLW	RETLW	#lit10,Wn	Return with Literal in Wn	1	3 (2)	None
RETURN	RETURN		Return from Subroutine	1	3 (2)	None
RLC	RLC	f	f = Rotate Left through Carry f	1	1	C, N, Z
	RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C, N, Z
	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C, N, Z
RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N, Z
	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N, Z
RRC	RRC	f	f = Rotate Right through Carry f	1	1	C, N, Z
	RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C, N, Z
	RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C, N, Z
RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N, Z
	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N, Z
SE	SE	Ws,Wnd	Wnd = Sign-Extended Ws	1	1	C, N, Z
SETM	SETM	f	f = FFFFh	1	1	None
	SETM	WREG	WREG = FFFFh	1	1	None
	SETM	Ws	Ws = FFFFh	1	1	None
SL	SL	f	f = Left Shift f	1	1	C, N, OV, Z
	SL	f,WREG	WREG = Left Shift f	1	1	C, N, OV, Z
	SL	Ws,Wd	Wd = Left Shift Ws	1	1	C, N, OV, Z
	SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N, Z
	SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N, Z
SUB	SUB	f	f = f – WREG	1	1	C, DC, N, OV, Z
	SUB	f,WREG	WREG = f – WREG	1	1	C, DC, N, OV, Z
	SUB	#lit10,Wn	Wn = Wn – lit10	1	1	C, DC, N, OV, Z
	SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C, DC, N, OV, Z
	SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C, DC, N, OV, Z
SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	f,WREG	WREG = f – WREG – $(\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C, DC, N, OV, Z
			$Wd = Wb - Ws - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBB	Wb,Ws,Wd				
	SUBB	Wb,#lit5,Wd	Wd = Wb - lit5 - (C)	1	1	C, DC, N, OV, Z
SUBR	SUBR	f	f = WREG – f	1	1	C, DC, N, OV, Z
	SUBR	f,WREG	WREG = WREG – f	1	1	C, DC, N, OV, Z
	SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C, DC, N, OV, Z
	SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C, DC, N, OV, Z
SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBBR	f,WREG	WREG = WREG – f – $(\overline{C})$	1	1	C, DC, N, OV, Z
	SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C, DC, N, OV, Z
	SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C, DC, N, OV, Z
SWAP	SWAP.b	Wn	Wn = Nibble Swap Wn	1	1	None
	SWAP	Wn	Wn = Byte Swap Wn	1	1	None
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None

DS39995C-page 260

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N

#### TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

^{© 2011-2012} Microchip Technology Inc.

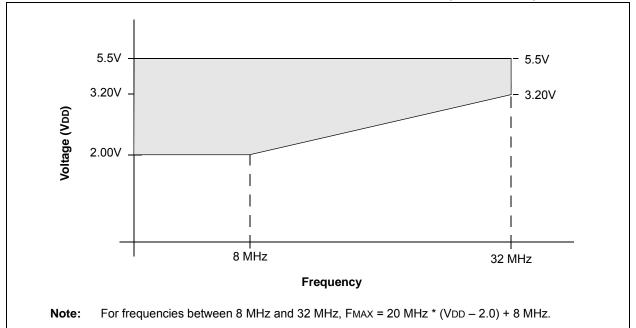
NOTES:

## 29.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC24FV32KA304 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

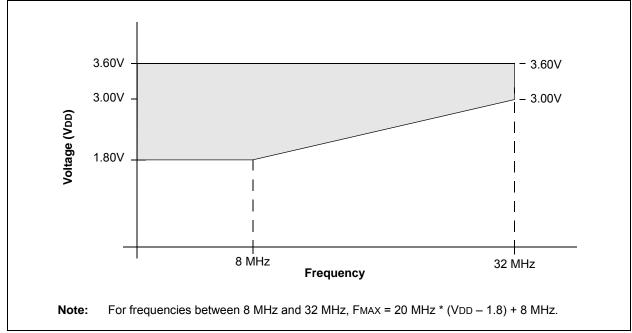
Absolute maximum ratings for the PIC24FV32KA304 family devices are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

### Absolute Maximum Ratings^(†)


Ambient temperature under bias	
Voltage on VDD with respect to Vss (PIC24FVXXKA30X)	
Voltage on VDD with respect to Vss (PIC24FXXKA30X)	
Voltage on any combined analog and digital pin with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on any digital only pin with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on MCLR/VPP pin with respect to Vss	0.3V to +9.0V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽¹⁾	250 mA
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽¹⁾	200 mA

Note 1: Maximum allowable current is a function of the device maximum power dissipation (see Table 29-1).

**† NOTICE:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.


^{© 2011-2012} Microchip Technology Inc.

#### **29.1 DC Characteristics**





### FIGURE 29-2: PIC24F32KA304 FAMILY VOLTAGE-FREQUENCY GRAPH (INDUSTRIAL)



#### TABLE 29-1:THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Operating Junction Temperature Range	TJ	-40		+125	°C
Operating Ambient Temperature Range	TA	-40	_	+85	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $PI/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD	-40 — +85 PINT + PI/O		W	
Maximum Allowed Power Dissipation	PDMAX	(	TJ — TA)/θJ	IA	W

### TABLE 29-2: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 20-Pin SPDIP	θJA	62.4	_	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θJA	60	_	°C/W	1
Package Thermal Resistance, 20-Pin SSOP	θJA	108	-	°C/W	1
Package Thermal Resistance, 28-Pin SSOP	θJA	71		°C/W	1
Package Thermal Resistance, 20-Pin SOIC	θJA	75		°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θJA	80.2	_	°C/W	1
Package Thermal Resistance, 28-Pin QFN	θJA	32	_	°C/W	1
Package Thermal Resistance, 44-Pin QFN	θJA	29	_	°C/W	1
Package Thermal Resistance, 48-Pin UQFN	θJA	_	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA ( $\theta$ JA) numbers are achieved by package simulations.

#### TABLE 29-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions:1.8V to 3.6V PIC24F32KA3XX2.0V to 5.5V PIC24FV32KA3XXOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
DC10	Vdd	Supply Voltage	1.8	_	3.6	V	For F devices	
			2.0	_	5.5	V	For FV devices	
DC12	Vdr	RAM Data Retention	1.5	_	_	V	For F devices	
		Voltage ⁽²⁾	1.7	—	_	V	For FV devices	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	—	0.7	V		
DC17	SVDD	<b>VDD Rise Rate</b> to Ensure Internal Power-on Reset Signal	0.05	—	_	V/ms	0-3.3V in 0.1s 0-2.5V in 60 ms	

**Note 1:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This is the limit to which VDD can be lowered without losing RAM data.

### TABLE 29-4: HIGH/LOW–VOLTAGE DETECT CHARACTERISTICS

Standar	Standard Operating Conditions: 1.8V to 3.6V PIC24F32KA3XX 2.0V to 5.5V PIC24FV32KA3XX												
Operatir	Dperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial												
Param No.	Symbol	Cha	racteristic	Min	Тур	Max	Units	Conditions					
DC18	Vhlvd	HLVD Voltage on	HLVDL<3:0> = 0000 ⁽²⁾		—	1.90	V						
		VDD Transition	HLVDL<3:0> = 0001	1.88	—	2.13	V						
			HLVDL<3:0> = 0010	2.09	—	2.35	V						
			HLVDL<3:0> = 0011	2.25	—	2.53	V						
			HLVDL<3:0> = 0100	2.35	—	2.62	V						
			HLVDL<3:0> = 0101	2.55	_	2.84	V						
			HLVDL<3:0> = 0110	2.80	—	3.10	V						
			HLVDL<3:0> = 0111	2.95	—	3.25	V						
			HLVDL<3:0> = 1000	3.09	_	3.41	V						
			HLVDL<3:0> = 1001	3.27	—	3.59	V						
			HLVDL<3:0> = 1010 ⁽¹⁾	3.46	—	3.79	V						
			HLVDL<3:0> = 1011 ⁽¹⁾	3.62		4.01	V						
			HLVDL<3:0> = 1100 ⁽¹⁾	3.91		4.26	V						
			HLVDL<3:0> = 1101 ⁽¹⁾	4.18	—	4.55	V						
			HLVDL<3:0> = 1110 ⁽¹⁾	4.49	—	4.87	V						

**Note 1:** These trip points should not be used on PIC24FXXKA30X devices.

2: This trip point should not be used on PIC24FVXXKA30X devices.

### TABLE 29-5: BOR TRIP POINTS

	Standard Operating Conditions:1.8V to 3.6V PIC24F32KA3XX 2.0V to 5.5V PIC24FV32KA3XXOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial									
Param No.SymCharacteristicMinTypMaxUnitsConditions										
DC15		BOR Hysteresis		_	5	_	mV			
DC19		BOR Voltage on VDD Transition	BORV<1:0> = 00	—	_	—	—	Valid for LPBOR and DSBOR (Note 1)		
			BORV<1:0> = 01	2.90	3	3.38	V			
			BORV<1:0> = 10	2.53	2.7	3.07	V			
		BORV<1:0> = 11 1.75 1.85 2.05 V (Note 2)								
			BORV<1:0> = 11	1.95	2.05	2.16	V	(Note 3)		

**Note 1:** LPBOR re-arms the POR circuit but does not cause a BOR.

2: This is valid for PIC24F (3.3V) devices.

3: This is valid for PIC24FV (5V) devices.

DC CHARACTE	RISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Parameter No.	Device	Typical				Conditions				
IDD Current	ł			1						
D20	PIC24FV32KA3XX	269	450	μA	2.0V					
		465	830	μA	5.0V	0.5 MIPS,				
	PIC24F32KA3XX	200	330	μA	1.8V	Fosc = 1 MHz ⁽¹⁾				
		410	750	μA	3.3V					
DC22	PIC24FV32KA3XX	490	_	μA	2.0V					
		880	_	μA	5.0V	1 MIPS,				
	PIC24F32KA3XX	407	_	μA	1.8V	Fosc = 2 MHz ⁽¹⁾				
		800	_	μA	3.3V					
DC24	PIC24FV32KA3XX	13.0	20.0	mA	5.0V	16 MIPS,				
	PIC24F32KA3XX	12.0	18.0	mA	3.3V	Fosc = 32 MHz ⁽¹⁾				
DC26	PIC24FV32KA3XX	2.0		mA	2.0V					
		3.5	_	mA	5.0V	FRC (4 MIPS),				
	PIC24F32KA3XX	1.80	_	mA	1.8V	Fosc = 8 MHz				
		3.40	_	mA	3.3V					
DC30	PIC24FV32KA3XX	48.0	250	μA	2.0V					
		75.0	275	μA	5.0V	LPRC (15.5 KIPS),				
	PIC24F32KA3XX	8.1	28.0	μA	1.8V	Fosc = 31 kHz				
		13.50	55.00	μA	3.3V					

#### TABLE 29-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

**Legend:** Unshaded rows represent PIC24F32KA3XX devices and shaded rows represent PIC24FV32KA3XX devices. **Note 1:** Oscillator is in External Clock mode (FOSCSEL<2:0> = 010, FOSC<1:0> = 00).

DC CHARACTE	Standard C		onditions: -40°C ≤ Ta ≤	2.0V to \$	3.6V PIC24F32KA3XX 5.5V PIC24FV32KA3XX Industrial		
Parameter No.	Device	Typical	Max		Conditions		
Idle Current (IID	LE)						
DC40	PIC24FV32KA3XX	120	200	μA	2.0V		
		160	430	μA	5.0V	0.5 MIPS,	
	PIC24F32KA3XX	50	100	μA	1.8V	Fosc = 1 MHz ⁽¹⁾	
		90	370	μA	3.3V		
DC42	PIC24FV32KA3XX	165		μA	2.0V		
		260	_	μA	5.0V	1 MIPS,	
	PIC24F32KA3XX	95	_	μA	1.8V	Fosc = 2 MHz ⁽¹⁾	
		180	-	μA	3.3V		
DC44	PIC24FV32KA3XX	3.1	6.5	mA	5.0V	16 MIPS,	
	PIC24F32KA3XX	2.9	6.0	mA	3.3V	Fosc = 32 MHz ⁽¹⁾	
DC46	PIC24FV32KA3XX	0.65		mA	2.0V		
		1.0	_	mA	5.0V	FRC (4 MIPS),	
	PIC24F32KA3XX	0.55		mA	1.8V	Fosc = 8 MHz	
		1.0		mA	3.3V		
DC50	PIC24FV32KA3XX	60	200	μA	2.0V		
		70	225	μA	5.0V	LPRC (15.5 KIPS),	
	PIC24F32KA3XX	2.2	18	μA	1.8V	Fosc = 31 kHz	
		4.0	40	μA	3.3V		

### TABLE 29-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Legend: Unshaded rows represent PIC24F32KA3XX devices and shaded rows represent PIC24FV32KA3XX devices.

**Note 1:** Oscillator is in External Clock mode (FOSCSEL<2:0> = 010, FOSC<1:0> = 00).

DC CHARA	CTERISTICS	Standard Operating Conditions:1.8V to 3.6V PIC24F32KA3XX2.0V to 5.5V PIC24FV32KA3XXOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial									
Parameter No.	Device	Typical ⁽¹⁾	Max	Units	Conditions						
Power-Dow	n Current (IPD)										
DC60	PIC24FV32KA3XX		_		-40°C						
		6.0	8.0		+25°C	2.0V					
		6.0	8.5	μA	+60°C	2.00					
			9.0		+85°C						
			_		-40°C						
		6.0	8.0		+25°C	5.0V	Sleep Mode ⁽²⁾				
		0.0	9.0	μA	+60°C	5.00					
			10.0		+85°C						
	PIC24F32KA3XX		—		-40°C		Sleep Mode.				
		0.025	0.80	μA	+25°C	1.8V					
		0.025	1.5	μΑ	+60°C	1.0 V					
			2.0		+85°C						
			_		-40°C						
		0.040	1.0		+25°C	3.3V					
		0.040	2.0	μA	+60°C	3.3V					
			3.0		+85°C						
DC61	PIC24FV32KA3XX	0.25	_	μA	-40°C	2.0V	Low-Voltage				
		0.35	3.0	μA	+85°C	5.0V	Sleep Mode ⁽²⁾				
DC70	PIC24FV32KA3XX	0.03		μA	-40°C	2.0V					
		0.10	1.2	μA	+85°C	5.0V	Deep Sleep Mode				
	PIC24F32KA3XX	0.02	_	μA	-40°C	1.8V	Deep Sleep wode				
		0.08	1.2	μA	+85°C	3.3V					

DC CHARACTERISTICS, ROWER DOWN CURRENT (IPP)

Legend: Unshaded rows represent PIC24F32KA3XX devices and shaded rows represent PIC24FV32KA3XX devices.

**Note 1:** Data in the Typical column is at 3.3V, +25°C (PIC24F32KA3XX) or 5.0V, +25°C (PIC24FV32KA3XX) unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as outputs and set low, PMSLP is set to '0' and WDT, etc., are all switched off.

**3:** The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

4: This current applies to Sleep only.

TADLE 20 0.

5: This current applies to Sleep and Deep Sleep.

6: This current applies to Deep Sleep only.

DC CHARACTERISTICS			Standard Operating Conditions:1.8V to 3.6V PIC24F32KA3XX 2.0V to 5.5V PIC24FV32KA3XXOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial									
Parameter No.	Device	Typical ⁽¹⁾	Max	Units	Conditions							
Module Differential Current (△IPD) ⁽³⁾												
DC71	PIC24FV32KA3XX	0.50		μA	-40°C	2.0V						
		0.70	1.5	μA	+85°C	5.0V	Watchdog Timer Current:					
	PIC24F32KA3XX	0.50	—	μA	-40°C	1.8V	∆WDT ⁽⁴⁾					
	0.70 1.5 μA +85°C 3.3V											
DC72	PIC24FV32KA3XX	0.80	—	μA	-40°C	2.0V	32 kHz Crystal with RTCC,					
		1.50	2.0	μA	+85°C	5.0V	DSWDT or Timer1:					
	PIC24F32KA3XX	0.70	—	μA	-40°C	1.8V	∆SOSC					
		1.0	1.5	μA	+85°C	3.3V	(SOSCSEL = 0) ⁽⁵⁾					
DC75	PIC24FV32KA3XX	5.4	—	μA	-40°C	2.0V						
		8.1	14.0	μA	+85°C	5.0V	AHLVD ⁽⁴⁾					
	PIC24F32KA3XX	4.9	_	μA	-40°C	1.8V						
		7.5	14.0	μA	+85°C	3.3V						
DC76	PIC24FV32KA3XX	5.6	—	μA	-40°C	2.0V						
		6.5	11.2	μA	-40°C	5.0V	∆BOR ⁽⁴⁾					
	PIC24F32KA3XX	5.6	—	μA	-40°C	1.8V						
		6.0	11.2	μA	+85°C	3.3V						
DC78	PIC24FV32KA3XX	0.03	—	μA	-40°C	2.0V						
		0.05	0.20	μA	+85°C	5.0V	Deep Sleep BOR:					
	PIC24F32KA3XX	0.03		μA	-40°C	1.8V	ALPBOR ⁽⁵⁾					
		0.05	0.20	μA	+85°C	3.3V						
DC80	PIC24FV32KA3XX	0.20		μA	-40°C	2.0V						
		0.70	1.5	μA	+85°C	5.0V	Deep Sleep WDT:					
	PIC24F32KA3XX	0.20	_	μA	-40°C	1.8V	∆DSWDT (LPRC) ⁽⁶⁾					
		0.35	0.8	μA	+85°C	3.3V						

## TABLE 29-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD) (CONTINUED)

Legend: Unshaded rows represent PIC24F32KA3XX devices and shaded rows represent PIC24FV32KA3XX devices.

**Note 1:** Data in the Typical column is at 3.3V, +25°C (PIC24F32KA3XX) or 5.0V, +25°C (PIC24FV32KA3XX) unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as outputs and set low, PMSLP is set to '0' and WDT, etc., are all switched off.

**3:** The △ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

4: This current applies to Sleep only.

5: This current applies to Sleep and Deep Sleep.

6: This current applies to Deep Sleep only.

DC CHA	ARACTI	ERISTICS	Standard Operating te	Ū		2.0V to	5 3.6V PIC24F32KA3XX 5.5V PIC24FV32KA3XX 5°C for Industrial
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
	VIL	Input Low Voltage ⁽⁴⁾			_		
DI10		I/O Pins	Vss	—	0.2 Vdd	V	
DI15		MCLR	Vss	_	0.2 Vdd	V	
DI16		OSCI (XT mode)	Vss	—	0.2 Vdd	V	
DI17		OSCI (HS mode)	Vss	—	0.2 Vdd	V	
DI18		I/O Pins with I ² C™ Buffer	Vss	—	0.3 Vdd	V	SMBus is disabled
DI19		I/O Pins with SMBus Buffer	Vss	_	0.8	V	SMBus is enabled
	Vih	Input High Voltage ⁽⁴⁾	_				
DI20		I/O Pins: with Analog Functions Digital Only	0.8 Vdd 0.8 Vdd		Vdd Vdd	V V	
DI25		MCLR	0.8 Vdd	_	Vdd	V	
DI26		OSCI (XT mode)	0.7 Vdd	_	Vdd	V	
DI27		OSCI (HS mode)	0.7 Vdd	—	Vdd	V	
DI28		I/O Pins with I ² C Buffer: with Analog Functions Digital Only	0.7 Vdd 0.7 Vdd		Vdd Vdd	V V	
DI29		I/O Pins with SMBus	2.1	—	Vdd	V	$2.5V \le V\text{PIN} \le V\text{DD}$
DI30	ICNPU	CNx Pull-up Current	50	250	500	μA	VDD = 3.3V, VPIN = VSS
	lı∟	Input Leakage Current ^(2,3)					
DI50		I/O Ports	_	0.05	0.1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\rm in \ at \ high-impedance} \end{split}$
DI55		MCLR	—	—	0.1	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSCI	_	_	5	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &X{\sf T} \text{ and } H{\sf S} \text{ modes} \end{split}$

#### TABLE 29-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

**Note 1:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: Refer to Table 1-3 for I/O pin buffer types.

DC CH	ARACTE	RISTICS		<b>rd Opera</b> ng tempe	•		<b>1.8V to 3.6V PIC24F32KA3XX</b> <b>2.0V to 5.5V PIC24FV32KA3XX</b> $TA \le +85^{\circ}C$ for Industrial		
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
	Vol	Output Low Voltage	—	_					
DO10		All I/O Pins	—	_	0.4	V	IOL = 8.0 mA	VDD = 4.5V	
			—	—	0.4	V	IOL = 4.0 mA	VDD = 3.6V	
			—	—	0.4	V	lo∟ = 3.5 mA	VDD = 2.0V	
DO16		OSC2/CLKO	—	_	0.4	V	IOL = 2.0 mA	VDD = 4.5V	
			—	—	0.4	V	IoL = 1.2 mA	VDD = 3.6V	
			—	—	0.4	V	IOL = 0.4 mA	VDD = 2.0V	
	Vон	Output High Voltage							
DO20		All I/O Pins	3.8	—	—	V	IOH = -3.5 mA	VDD = 4.5V	
			3	—	—	V	Iон = -3.0 mA	VDD = 3.6V	
			1.6	—	—	V	Iон = -1.0 mA	VDD = 2.0V	
DO26		OSC2/CLKO	3.8	—	—	V	Іон = -2.0 mA	VDD = 4.5V	
			3	—	—	V	Iон = -1.0 mA	VDD = 3.6V	
			1.6	—	—	V	Iон = -0.5 mA	VDD = 2.0V	

#### TABLE 29-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

**Note 1:** Data in "Typ" column is at +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

#### TABLE 29-11: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHA	DC CHARACTERISTICS			Standard Operating Conditions:1.8V to 3.6V PIC24F32KA3XX2.0V to 5.5V PIC24FV32KA3XXOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions				
		Program Flash Memory									
D130	Eр	Cell Endurance	10,000 ⁽²⁾	—	—	E/W					
D131	Vpr	VDD for Read	VMIN	—	3.6	V	VMIN = Minimum operating voltage				
D133A	Tiw	Self-Timed Write Cycle Time	—	2	—	ms					
D134	TRETD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated				
D135	IDDP	Supply Current During Programming	—	10		mA					

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: Self-write and block erase.

DC CHARACTERISTICS				$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Sym	Characteristic	stic Min Typ ⁽¹⁾ Max Units		Conditions						
		Data EEPROM Memory									
D140	Epd	Cell Endurance	100,000	_	—	E/W					
D141	Vprd	VDD for Read	VMIN	_	3.6	V	VMIN = Minimum operating voltage				
D143A	Tiwd	Self-Timed Write Cycle Time	—	4	—	ms					
D143B	TREF	Number of Total Write/Erase Cycles Before Refresh	_	10M	_	E/W					
D144	TRETDD	Characteristic Retention	40	—	—	Year	Provided no other specifications are violated				
D145	Iddpd	Supply Current During Programming	—	7	—	mA					

#### TABLE 29-12: DC CHARACTERISTICS: DATA EEPROM MEMORY

**Note 1:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

#### TABLE 29-13: DC CHARACTERISTICS: COMPARATOR SPECIFICATIONS

Operati	Dperating Conditions: 2.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)									
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments			
D300	VIOFF	Input Offset Voltage		20	40	mV				
D301	VICM	Input Common-Mode Voltage	0	_	Vdd	V				
D302	CMRR	Common-Mode Rejection Ratio	55	—	—	dB				

#### TABLE 29-14: DC CHARACTERISTICS: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

Operating	<b>Operating Conditions:</b> 2.0V < VDD < 3.6V, -40°C < TA < +85°C (unless otherwise stated)									
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments			
VRD310	CVRES	Resolution			Vdd/32	LSb				
VRD311	CVRAA	Absolute Accuracy	—	—	AVDD – 1.5	LSb				
VRD312	CVRur	Unit Resistor Value (R)		2k	_	Ω				

### TABLE 29-15: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

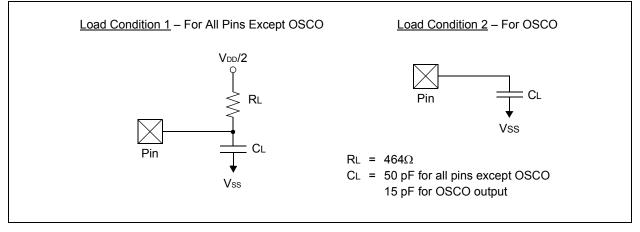
Operati	Operating Conditions: -40°C < TA < +85°C (unless otherwise stated)										
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments				
	Vbg	Band Gap Reference Voltage	0.973	1.024	1.075	V					
	Tbg	Band Gap Reference Start-up Time	—	1	—	ms					
	Vrgout	Regulator Output Voltage	3.1	3.3	3.6	V					
	Cefc	External Filter Capacitor Value	4.7	10	—	μF	Series resistance < 3 Ohm recommended; < 5 Ohm is required.				
	Vlvr	Low-Voltage Regulator Output Voltage	_	2.6	—	V					

#### TABLE 29-16: CTMU CURRENT SOURCE SPECIFICATIONS

DC CH	ARACT	ERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Conditions				
	IOUT1	CTMU Current Source, Base Range	—	550	—	nA	CTMUICON<9:8> = 01			
	Ιουτ2	CTMU Current Source, 10x Range	_	5.5	_	μΑ	CTMUICON<9:8> = 10			
	Ιουτ3	CTMU Current Source, 100x Range	—	55	_	μA	CTMUICON<9:8> = 11	2.5V < VDD < VDDMAX		
	IOUT4	CTMU Current Source, 1000x Range	_	550	_	μΑ	CTMUICON<9:8> = 00 (Note 2)			
	VF	Temperature Diode Forward Voltage	—	.76	—	V				
	VΔ	Voltage Change per Degree Celsius	—	1.6	_	mV/°C				

**Note 1:** Nominal value at the center point of the current trim range (CTMUICON<7:2> = 000000). On PIC24F32KA parts, the current output is limited to the typical current value when IOUT4 is chosen.

**2:** Do not use this current range with a temperature sensing diode.

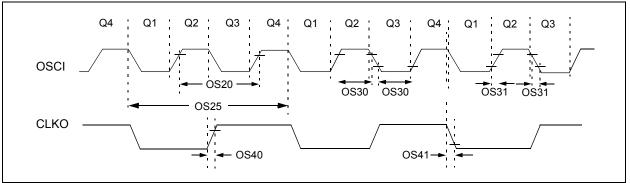

### 29.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FV32KA304 family AC characteristics and timing parameters.

#### TABLE 29-17: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 1.8V to 3.6V PIC24F32KA3XX						
AC CHARACTERISTICS	2.0V to 5.5V PIC24FV32KA3XX						
AC CHARACTERISTICS	Operating temperature -40°C ≤ TA ≤ +85°C for Industrial						
	Operating voltage VDD range as described in Section 29.1 "DC Characteristics".						

#### FIGURE 29-3: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS




#### TABLE 29-18: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosc2	OSCO/CLKO pin	_	—	15	pF	In XT and HS modes when the external clock is used to drive OSCI
DO56	Cio	All I/O Pins and OSCO	—		50	pF	EC mode
DO58	Св	SCLx, SDAx	_	—	400	pF	In I ² C™ mode

**Note 1:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

#### FIGURE 29-4: EXTERNAL CLOCK TIMING



#### TABLE 29-19: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC mode)	DC 4		32 8	MHz MHz	EC ECPLL		
		Oscillator Frequency	0.2 4 4 31		4 25 8 33	MHz MHz MHz kHz	XT HS XTPLL SOSC		
OS20	Tosc	Tosc = 1/Fosc	_	_	_	—	See Parameter OS10 for Fosc value		
OS25	TCY	Instruction Cycle Time ⁽²⁾	62.5	_	DC	ns			
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc		_	ns	EC		
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	_	_	20	ns	EC		
OS40	TckR	CLKO Rise Time ⁽³⁾	—	6	10	ns			
OS41	TckF	CLKO Fall Time ⁽³⁾	_	6	10	ns			

**Note 1:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type, under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

**3:** Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TCY) and high for the Q3-Q4 period (1/2 TCY).

#### TABLE 29-20: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Sym	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions		
OS50	Fplli	PLL Input Frequency Range	4	_	8	MHz	ECPLL, HSPLL modes, -40°C $\leq$ TA $\leq$ +85°C		
OS51	Fsys	PLL Output Frequency Range	16	_	32	MHz	$-40^{\circ}C \leq TA \leq +85^{\circ}C$		
OS52	TLOCK	PLL Start-up Time (Lock Time)	—	1	2	ms			
OS53	DCLK	CLKO Stability (Jitter)	-2	1	2	%	Measured over a 100 ms period		

**Note 1:** These parameters are characterized but not tested in manufacturing.

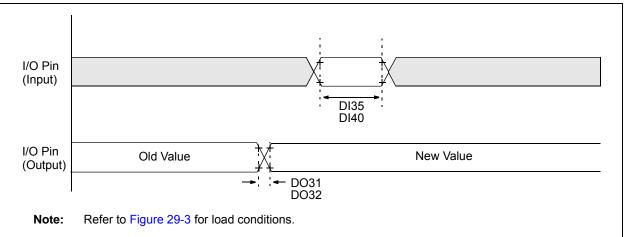
2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

#### TABLE 29-21: AC CHARACTERISTICS: INTERNAL RC ACCURACY

АС СНА	RACTERISTICS	Standard Operating Conditions:1.8V to 3.6V PIC24F32KA3XX 2.0V to 5.5V PIC24FV32KA3XXOperating temperature $-40^{\circ}C \le Ta \le +85^{\circ}C$ for Industrial								
Param No.	Characteristic	Min	Тур	Max	Units	Conditions				
F20	Internal FRC Accuracy @ 8 MHz ⁽¹⁾									
	FRC	-2	_	+2	%	+25°C	$\begin{array}{l} 3.0V \leq V\text{DD} \leq 3.6\text{V}, \mbox{ F device} \\ 3.2V \leq V\text{DD} \leq 5.5\text{V}, \mbox{ FV device} \end{array}$			
		-5	—	+5	%	$-40^\circ C \le T \texttt{A} \le +85^\circ C$	$\begin{array}{l} 1.8V \leq V\text{DD} \leq 3.6\text{V}, \ \text{F} \ \text{device} \\ 2.0V \leq V\text{DD} \leq 5.5\text{V}, \ \text{FV} \ \text{device} \end{array}$			
	LPRC @ 31 kHz ⁽²⁾	•			•					
F21		-15		15	%					

**Note 1:** Frequency is calibrated at +25°C and 3.3V. The OSCTUN bits can be used to compensate for temperature drift.

2: The change of LPRC frequency as VDD changes.


#### TABLE 29-22: INTERNAL RC OSCILLATOR SPECIFICATIONS

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Sym	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions		
	TFRC	FRC Start-up Time	_	5	_	μS			
	TLPRC	LPRC Start-up Time	—	70	_	μS			

**Note 1:** These parameters are characterized but not tested in manufacturing.

^{© 2011-2012} Microchip Technology Inc.

### FIGURE 29-5: CLKO AND I/O TIMING CHARACTERISTICS



TABLE 29-23:	CLKO AND I/O TIMING REQUIREMENTS
--------------	----------------------------------

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$							
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions			
DO31	TIOR	Port Output Rise Time	—	10	25	ns				
DO32	TIOF	Port Output Fall Time	_	10	25	ns				
DI35	Tinp	INTx pin High or Low Time (output)	20	—	—	ns				
DI40	Trbp	CNx High or Low Time (input)	2	—	_	Тсү				

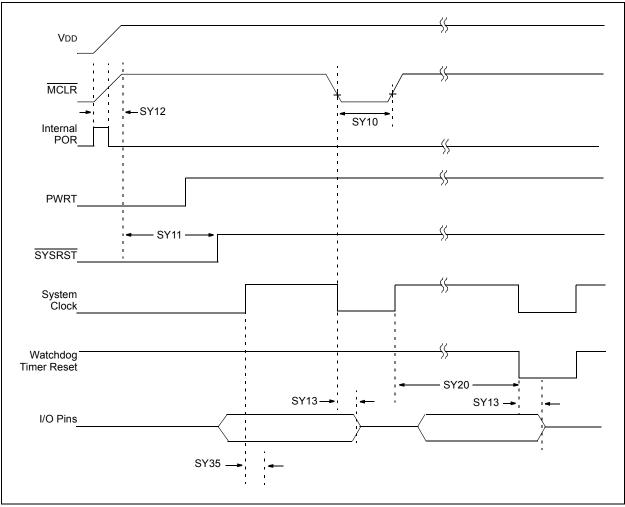
Note 1: Data in "Typ" column is at 3.3V, +25°C (PIC24F32KA3XX); 5.0V, +25°C (PIC24FV32KA3XX), unless otherwise stated.

Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Comments
300	TRESP	Response Time ^{*(1)}	_	150	400	ns	
301	Тмс2о∨	Comparator Mode Change to Output Valid [*]	—	—	10	μS	

#### TABLE 29-24: COMPARATOR TIMINGS

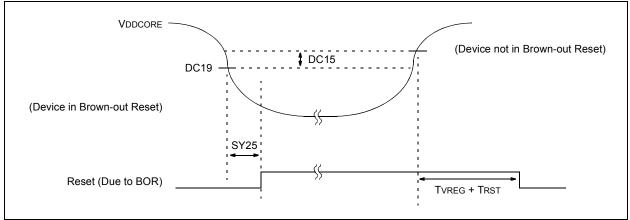
*

Parameters are characterized but not tested.


**Note 1:** Response time is measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

#### TABLE 29-25: COMPARATOR VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Comments
VR310	TSET	Settling Time ⁽¹⁾			10	μS	


Note 1: Settling time is measured while CVRSS = 1 and the CVR<3:0> bits transition from '0000' to '1111'.

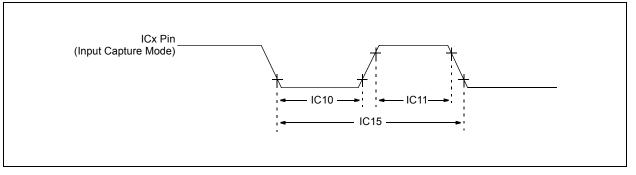
## FIGURE 29-6: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS



^{© 2011-2012} Microchip Technology Inc.

### FIGURE 29-7: BROWN-OUT RESET CHARACTERISTICS

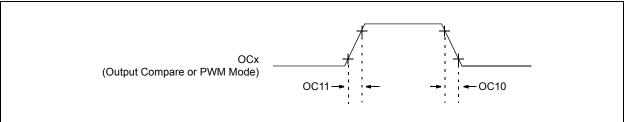



## TABLE 29-26:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,<br/>AND BROWN-OUT RESET TIMING REQUIREMENTS

AC CH	AC CHARACTERISTICS			ard Oper	ating Con erature		1.8V to 3.6V PIC24F32KA3XX 2.0V to 5.5V PIC24FV32KA3XX TA $\leq$ +85°C for Industrial
Param No.	Symbol	Characteristic	Min.	Typ ⁽¹⁾	Max.	Units	Conditions
SY10	TmcL	MCLR Pulse Width (low)	2	—	_	μS	
SY11	TPWRT	Power-up Timer Period	50	64	90	ms	
SY12	TPOR	Power-on Reset Delay	1	5	10	μS	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	—	—	100	ns	
SY20	Twdt	Watchdog Timer Time-out	0.85	1.0	1.15	ms	1.32 prescaler
		Period	3.4	4.0	4.6	ms	1:128 prescaler
SY25	TBOR	Brown-out Reset Pulse Width	1	—	—	μs	
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	2.0	2.3	μS	
SY45	TRST	Internal State Reset Time	_	5		μS	
SY50	TVREG	On-Chip Voltage Regulator Output Delay	—	10	—	μS	(Note 2)
SY55	TLOCK	PLL Start-up Time	—	100		μS	
SY65	Tost	Oscillator Start-up Time	_	1024	_	Tosc	
SY70	Toswu	Wake-up from Deep Sleep Time	—	100	_	μs	Based on full discharge of 10 μF capacitor on VCAP; includes TPOR and TRST
SY71	Трм	Program Memory Wake-up Time	—	1	—	μs	Sleep wake-up with PMSLP = 0
SY72	Tlvr	Low-Voltage Regulator Wake-up Time	_	250		μs	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

2: This applies to PIC24FV32KA3XX devices only.

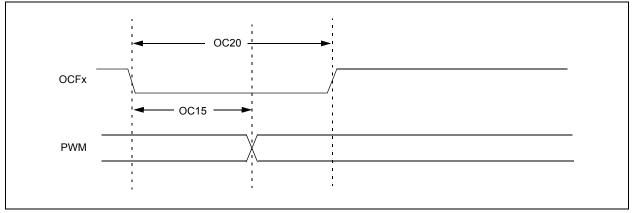

FIGURE 29-8: INPUT CAPTURE TIMINGS



#### TABLE 29-27: INPUT CAPTURE REQUIREMENTS

Param. No.	Symbol	Character	Characteristic		Max	Units	Conditions
IC10	TccL	ICx Input Low Time –	No Prescaler	Tcy + 20		ns	Must also meet
		Synchronous Timer	With Prescaler	20		ns	Parameter IC15
IC11	TccH	ICx Input Low Time –	No Prescaler	Tcy + 20	_	ns	Must also meet
		Synchronous Timer With F	With Prescaler	20	_	ns	Parameter IC15
IC15	TccP	ICx Input Period – Syne	chronous Timer	<u>2 * Tcy + 40</u> N	—	ns	N = prescale value (1, 4, 16)

### FIGURE 29-9: OUTPUT COMPARE TIMINGS




#### TABLE 29-28: OUTPUT CAPTURE REQUIREMENTS

Param. No.	Symbol	Characteristic	Min	Мах	Units	Conditions
OC11	TCCR	OC1 Output Rise Time	—	10	ns	
			—	—	ns	
OC10	TCCF	OC1 Output Fall Time	—	10	ns	
			_	_	ns	

^{© 2011-2012} Microchip Technology Inc.

#### FIGURE 29-10: PWM MODULE TIMING REQUIREMENTS

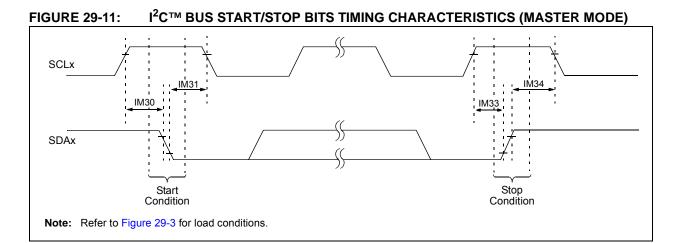
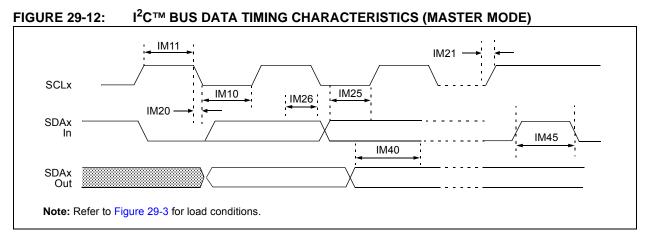



TABLE 29-29: PWM TIMING REQUIREMENTS								
Param.	Symbol	Characteristic	Min	Typ [†]	Мах	Un		

Param. No.	Symbol	Characteristic	Min	Тур [†]	Мах	Units	Conditions
OC15		Fault Input to PWM I/O Change			25	ns	VDD = 3.0V, -40°C to +125°C
OC20	Tfh	Fault Input Pulse Width	50			ns	VDD = 3.0V, -40°C to +125°C

† Data in "Typ" column is at 5V, +25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Т



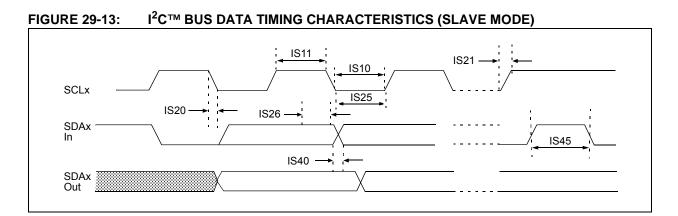

## TABLE 29-30: I²C[™] BUS START/STOP BIT TIMING REQUIREMENTS (MASTER MODE)

AC CHA	RACTER	ISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial}) \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Charac	teristic	Min ⁽¹⁾ Max Units Conditions				
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)		μs	Only relevant for	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μS	Repeated Start	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_		condition	
IM31	THD:STA	D:STA Start Condition Hold Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μS	After this period, the	
			400 kHz mode	Tcy/2 (BRG + 1)	_	μS	first clock pulse is	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS	generated	
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μS		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)		μS		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS		
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	ns		
		Hold Time 400 kHz mode Tcy/2 (BRG + 1) —		ns				
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	ns		

Note 1: BRG is the value of the l²C[™] Baud Rate Generator. Refer to Section 17.3 "Setting Baud Rate When Operating as a Bus Master" for details.

2: Maximum pin capacitance = 10 pF for all I²C pins (for 1 MHz mode only).




#### TABLE 29-31: I²C[™] BUS DATA TIMING REQUIREMENTS (MASTER MODE)

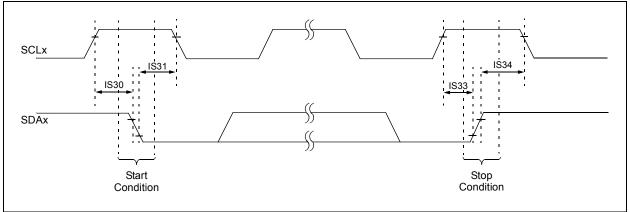
AC CHA		STICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Charac	teristic Min ⁽¹⁾		Max	Units	Conditions		
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs			
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS			
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μS			
			400 kHz mode	Tcy/2 (BRG + 1)	_	μS			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μS			
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be		
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾		100	ns			
IM21	TR:SCL	SDAx and SCLx	100 kHz mode		1000	ns	CB is specified to be		
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	_	300	ns			
IM25	TSU:DAT	Data Input	100 kHz mode	250		ns			
		Setup Time	400 kHz mode	100		ns			
			1 MHz mode ⁽²⁾	TBD		ns			
IM26	THD:DAT	Data Input	100 kHz mode	0		ns			
		Hold Time	400 kHz mode	0	0.9	μS			
			1 MHz mode ⁽²⁾	TBD	_	ns			
IM40	TAA:SCL	Output Valid	100 kHz mode		3500	ns			
		From Clock	400 kHz mode		1000	ns			
			1 MHz mode ⁽²⁾	_		ns			
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be		
			400 kHz mode	1.3	—	μs	free before a new		
			1 MHz mode ⁽²⁾	TBD	_	μs	transmission can start		
IM50	Св	Bus Capacitive Lo		_	400	pF			
Logond		Be Determined	0	1			L		

**Legend:** TBD = To Be Determined

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 17.3 "Setting Baud Rate When Operating as a Bus Master" for details.

**2:** Maximum pin capacitance = 10 pF for all  $I^2C$  pins (for 1 MHz mode only).



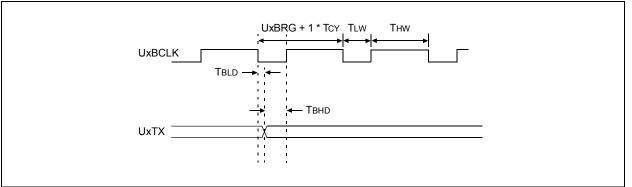

## TABLE 29-32: I²C[™] BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

AC CHAI	RACTERIST	ics		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Charact	eristic	Min	Max	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	_	μS	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5	—	μs		
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μS	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	_	μS	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5	—	μS		
IS20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns	CB is specified to be from	
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	100	ns		
IS21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	CB is specified to be from	
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	300	ns		
IS25	TSU:DAT	Data Input	100 kHz mode	250	—	ns		
		Setup Time	400 kHz mode	100	—	ns		
			1 MHz mode ⁽¹⁾	100	—	ns		
IS26	THD:DAT	Data Input	100 kHz mode	0	—	ns		
		Hold Time	400 kHz mode	0	0.9	μS		
			1 MHz mode ⁽¹⁾	0	0.3	μS		
IS40	TAA:SCL	Output Valid From	100 kHz mode	0	3500	ns		
		Clock	400 kHz mode	0	1000	ns		
			1 MHz mode ⁽¹⁾	0	350	ns		
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free	
			400 kHz mode	1.3	—	μS	before a new transmission can start	
			1 MHz mode ⁽¹⁾	0.5	—	μS		
IS50	Св	Bus Capacitive Loa	ding	<u> </u>	400	pF		

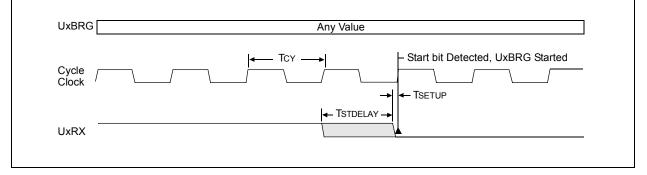
**Note 1:** Maximum pin capacitance = 10 pF for all  $I^2C^{TM}$  pins (for 1 MHz mode only).

^{© 2011-2012} Microchip Technology Inc.

#### FIGURE 29-14: I²C[™] BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)

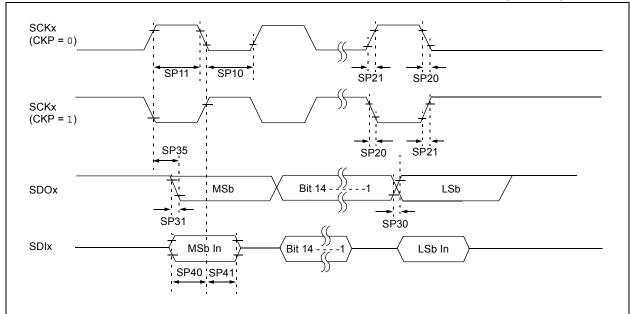



## TABLE 29-33: I²C[™] BUS START/STOP BIT TIMING REQUIREMENTS (SLAVE MODE)


AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Charao	cteristic	Min	Max	Units	Conditions	
IS30	TSU:STA	Start Condition	100 kHz mode	4.7	—	μS	Only relevant for Repeated	
		Setup Time	400 kHz mode	0.6	_	μs	Start condition	
			1 MHz mode ⁽¹⁾	0.25	—	μs		
IS31	THD:STA	Start Condition Hold Time	100 kHz mode	4.0	—	μs	After this period, the first	
			400 kHz mode	0.6	—	μs	clock pulse is generated	
			1 MHz mode ⁽¹⁾	0.25	—	μs		
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	—	μS		
		Setup Time	400 kHz mode	0.6	—	μs		
			1 MHz mode ⁽¹⁾	0.6	—	μs		
IS34	THD:STO	Stop Condition	100 kHz mode	4000	_	ns		
		Hold Time	400 kHz mode	600	_	ns		
			1 MHz mode ⁽¹⁾	250	—	ns		

**Note 1:** Maximum pin capacitance = 10 pF for all  $I^2C^{TM}$  pins (for 1 MHz mode only).






### FIGURE 29-16: UARTX START BIT EDGE DETECTION

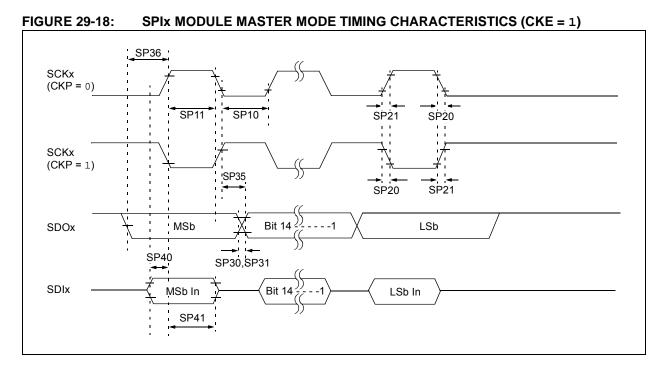


#### TABLE 29-34: UARTx TIMING REQUIREMENTS

Symbol	Characteristics	Min	Тур	Max	Units
TLW	UxBCLK High Time	20	Tcy/2		ns
THW	UxBCLK Low Time	20	(TCY * UXBRG) + TCY/2	—	ns
TBLD	UxBCLK Falling Edge Delay from UxTX	-50	—	50	ns
Твно	UxBCLK Rising Edge Delay from UxTX	Tcy/2 - 50	—	Tcy/2 + 50	ns
Twak	Minimum Low on UxRX Line to Cause Wake-up	—	1	—	μS
Тстѕ	Minimum Low on UxCTS Line to Start Transmission	Тсу	_	—	ns
TSETUP	Start bit Falling Edge to System Clock Rising Edge Setup Time	3	—	—	ns
TSTDELAY	Maximum Delay in the Detection of the Start bit Falling Edge	—	_	TCY + TSETUP	ns



#### FIGURE 29-17: SPIX MODULE MASTER MODE TIMING CHARACTERISTICS (CKE = 0)


#### TABLE 29-35:SPIX MASTER MODE TIMING REQUIREMENTS (CKE = 0)

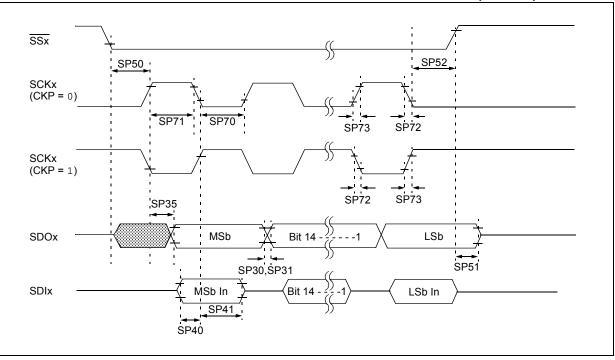
AC CHARACTERISTICS			Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max Units Condition					
SP10	TscL	SCKx Output Low Time ⁽²⁾	Tcy/2	_	_	ns		
SP11	TscH	SCKx Output High Time ⁽²⁾	TCY/2			ns		
SP20	TscF	SCKx Output Fall Time ⁽³⁾	_	10	25	ns		
SP21	TscR	SCKx Output Rise Time ⁽³⁾	_	10	25	ns		
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	_	10	25	ns		
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	_	10	25	ns		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	_	30	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—	—	ns		

**Note 1:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

**2:** The minimum clock period for SCKx is 100 ns; therefore, the clock generated in Master mode must not violate this specification.

3: This assumes a 50 pF load on all SPIx pins.




#### TABLE 29-36: SPIX MODULE MASTER MODE TIMING REQUIREMENTS (CKE = 1)

АС СНА	AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
SP10	TscL	SCKx Output Low Time ⁽²⁾	Tcy/2	—	_	ns			
SP11	TscH	SCKx Output High Time ⁽²⁾	Tcy/2	—	_	ns			
SP20	TscF	SCKx Output Fall Time ⁽³⁾	—	10	25	ns			
SP21	TscR	SCKx Output Rise Time ⁽³⁾	—	10	25	ns			
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	—	10	25	ns			
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	—	10	25	ns			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	—	30	ns			
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	—	ns			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	_	ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—	—	ns			

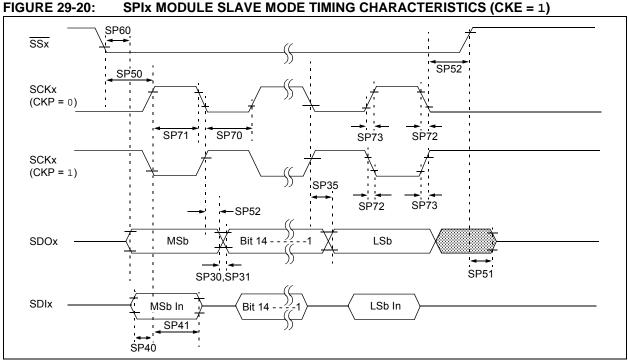
**Note 1:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

**2:** The minimum clock period for SCKx is 100 ns; therefore, the clock generated in Master mode must not violate this specification.

3: This assumes a 50 pF load on all SPIx pins.



#### FIGURE 29-19: SPIX MODULE SLAVE MODE TIMING CHARACTERISTICS (CKE = 0)


### TABLE 29-37: SPIX MODULE SLAVE MODE TIMING REQUIREMENTS (CKE = 0)

AC CHARACTERISTICS		$\label{eq:conditions: 2.0V to 3.6V} \begin{array}{l} \mbox{Standard Operating Conditions: 2.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
SP70	TscL	SCKx Input Low Time	30	_	_	ns	
SP71	TscH	SCKx Input High Time	30	_		ns	
SP72	TscF	SCKx Input Fall Time ⁽²⁾		10	25	ns	
SP73	TscR	SCKx Input Rise Time ⁽²⁾		10	25	ns	
SP30	TdoF	SDOx Data Output Fall Time ⁽²⁾		10	25	ns	
SP31	TdoR	SDOx Data Output Rise Time ⁽²⁾		10	25	ns	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	_	30	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	_	_	ns	
SP50	TssL2scH, TssL2scL	SSx to SCKx ↑ or SCKx Input	120	_	_	ns	
SP51	TssH2doZ	$\overline{\text{SSx}}$ $\uparrow$ to SDOx Output High-Impedance ⁽³⁾	10	_	50	ns	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	_	—	ns	

**Note 1:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns; therefore, the clock generated in Master mode must not violate this specification.

**3:** This assumes a 50 pF load on all SPIx pins.



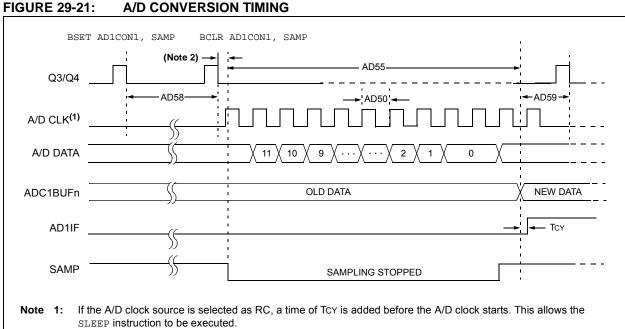
### TABLE 29-38: SPIX MODULE SLAVE MODE TIMING REQUIREMENTS (CKE = 1)

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
SP70	TscL	SCKx Input Low Time	30	_	—	ns	
SP71	TscH	SCKx Input High Time	30		_	ns	
SP72	TscF	SCKx Input Fall Time ⁽²⁾	_	10	25	ns	
SP73	TscR	SCKx Input Rise Time ⁽²⁾	—	10	25	ns	
SP30	TdoF	SDOx Data Output Fall Time ⁽²⁾	_	10	25	ns	
SP31	TdoR	SDOx Data Output Rise Time ⁽²⁾	—	10	25	ns	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	_	30	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	_	_	ns	
SP50	TssL2scH, TssL2scL	$\overline{\mathrm{SSx}}\downarrow$ to SCKx $\downarrow$ or SCKx $\uparrow$ Input	120	_		ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	10	_	50	ns	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40		_	ns	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_	_	50	ns	

**Note 1:** Data in "Typ" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The minimum clock period for SCKx is 100 ns; therefore, the clock generated in Master mode must not violate this specification.

3: This assumes a 50 pF load on all SPIx pins.


© 2011-2012 Microchip Technology Inc.

AC CH	ARACTER	ISTICS	Standard Operating Conditions:1.8V to 3.6V PIC24F32KA3XX2.0V to 5.5V PIC24FV32KA3XXOperating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
			Device S	upply				
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 1.8	_	Lesser of: VDD + 0.3 or 3.6	V	PIC24FXXKA30X devices	
			Greater of: VDD – 0.3 or 2.0	_	Lesser of: VDD + 0.3 or 5.5	V	PIC24FVXXKA30X devices	
AD02	AVss	Module Vss Supply	Vss – 0.3	_	Vss + 0.3	V		
			Reference	Inputs	5			
AD05	VREFH	Reference Voltage High	AVss + 1.7		AVDD	V		
AD06	VREFL	Reference Voltage Low	AVss		AVDD – 1.7	V		
AD07	Vref	Absolute Reference Voltage	AVss – 0.3		AVDD + 0.3	V		
AD08	IVREF	Reference Voltage Input Current	—	1.25	—	mA		
AD09	Zvref	Reference Input Impedance	—	10k	—	Ω		
			Analog	Input	•		·	
AD10	VINH-VINL	Full-Scale Input Span	VREFL	_	VREFH	V	(Note 2)	
AD11	VIN	Absolute Input Voltage	AVss – 0.3		AVDD + 0.3	V		
AD12	VINL	Absolute VINL Input Voltage	AVss – 0.3		AVDD/2	V		
AD17	RIN	Recommended Impedance of Analog Voltage Source	_		1k	Ω	12-bit	
			A/D Acc	uracy				
AD20b	NR	Resolution	—	12	—	bits		
AD21b	INL	Integral Nonlinearity		±1	±9	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD22b	DNL	Differential Nonlinearity	—	±1	±5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD23b	Gerr	Gain Error	—	±1	±9	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD24b	EOFF	Offset Error	—	±1	±5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V	
AD25b		Monotonicity ⁽¹⁾		_	_	_	Guaranteed	

#### TABLE 29-39: A/D MODULE SPECIFICATIONS

Note 1: The A/D conversion result never decreases with an increase in the input voltage.

2: Measurements are taken with external VREF+ and VREF- used as the A/D voltage reference.



2: This is a minimal RC delay (typically 100 ns) which also disconnects the holding capacitor from the analog input.

AC CHARACTERISTICS			Standard Operating Conditions: 1.8V to 3.6V PIC24F32KA3XX 2.0V to 5.5V PIC24FV32KA3XX						
				Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions		
		(	Clock Pa	rameter	s				
AD50	Tad	A/D Clock Period	600	_	—	ns	Tcy = 75 ns, AD1CON3 in default state		
AD51	TRC	A/D Internal RC Oscillator Period	_	1.67	—	μs			
			Convers	ion Rate	9				
AD55	Тсолу	Conversion Time	_	12 14	_	Tad Tad	10-bit results 12-bit results		
AD56	FCNV	Throughput Rate	_	_	100	ksps			
AD57	TSAMP	Sample Time	_	1	—	TAD			
AD58	TACQ	Acquisition Time	750		_	ns	(Note 2)		
AD59	Tswc	Switching Time from Convert to Sample	-	—	(Note 3)				
AD60	TDIS	Discharge Time	12	—	—	TAD			
		(	Clock Pa	rameter	S				
AD61	TPSS	Sample Start Delay from Setting Sample bit (SAMP)	2	_	3	Tad			

#### TABLE 29-40: A/D CONVERSION TIMING REQUIREMENTS⁽¹⁾

**Note 1:** Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

2: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (VDD to VSS or VSS to VDD).

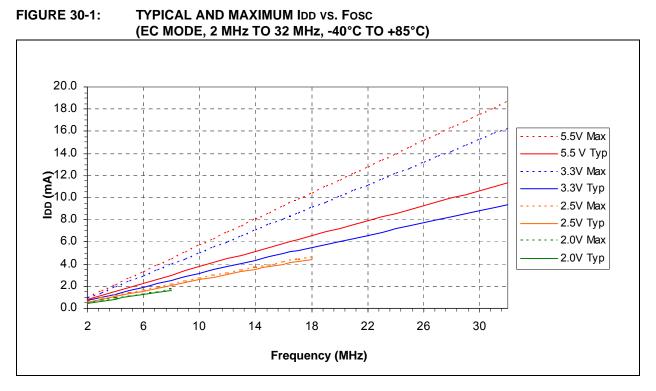
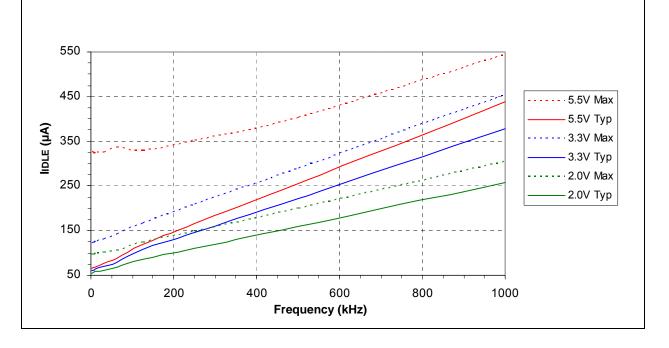
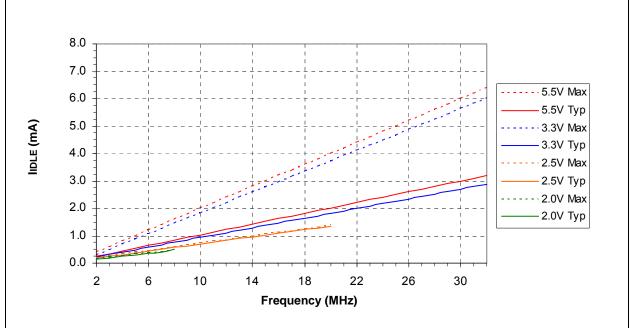
3: On the following cycle of the device clock.

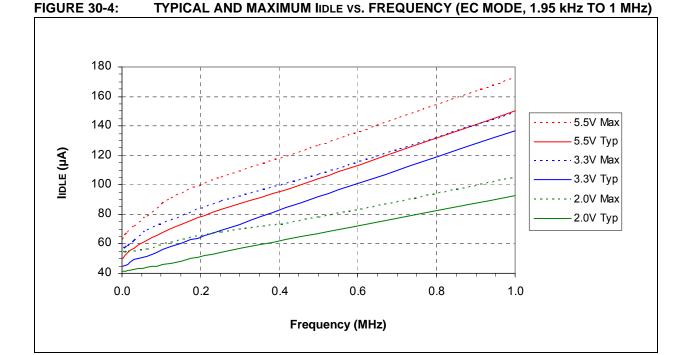
NOTES:

### 30.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

**Note:** The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

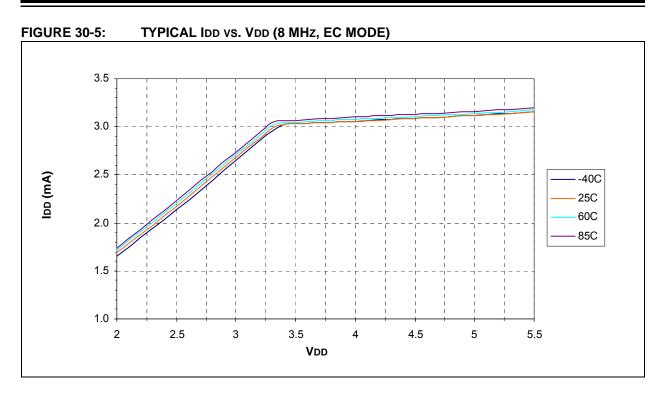
Data for VDD levels greater than 3.3V are applicable to PIC24FV32KA304 family devices only.

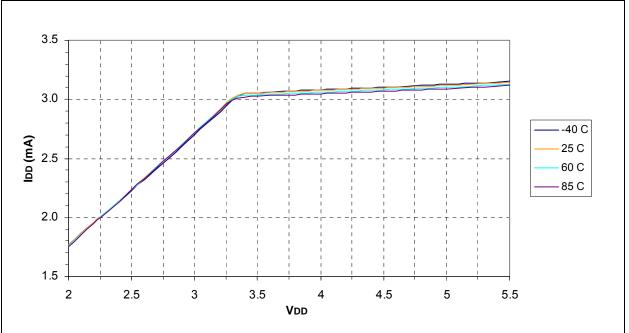


FIGURE 30-2: TYPICAL AND MAXIMUM IDD vs. Fosc (EC MODE, 1.95 kHz TO 1 MHz, +25°C)



© 2011-2012 Microchip Technology Inc.






DS39995C-page 296

Downloaded from Arrow.com.







^{© 2011-2012} Microchip Technology Inc.

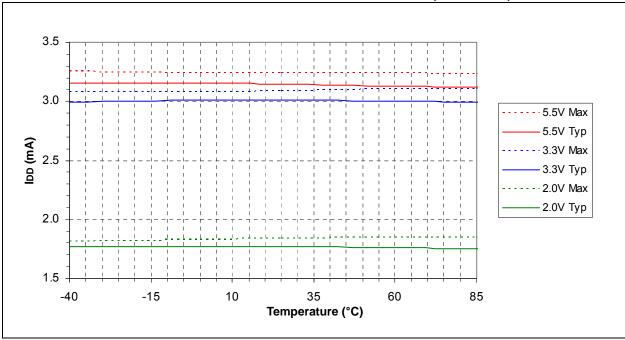
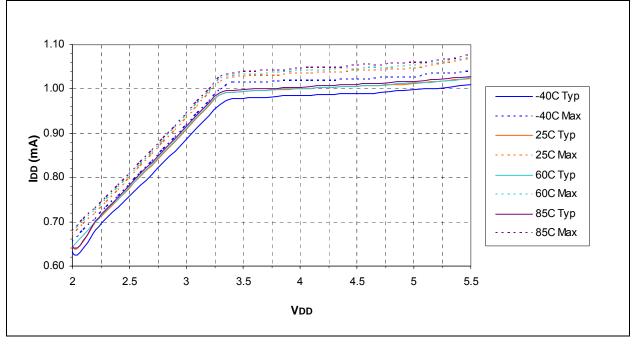
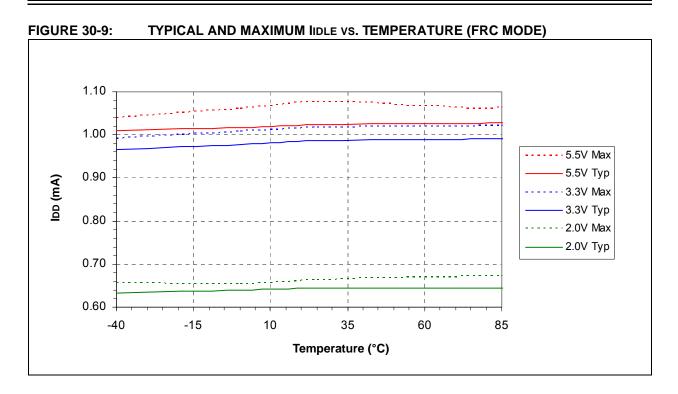





FIGURE 30-7: TYPICAL AND MAXIMUM IDD vs. TEMPERATURE (FRC MODE)







^{© 2011-2012} Microchip Technology Inc.

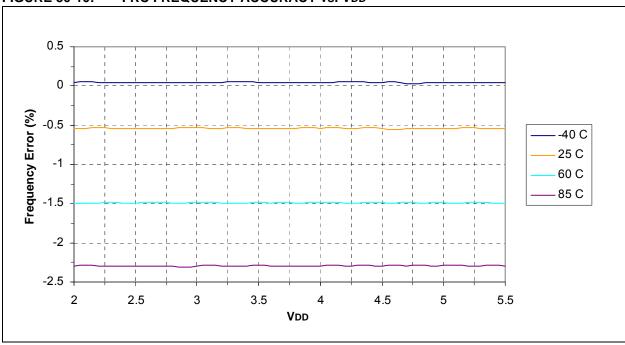
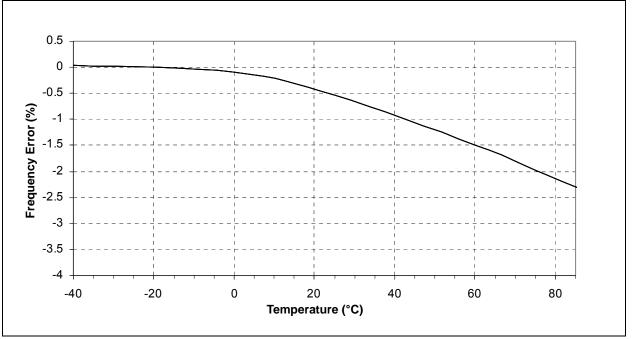




FIGURE 30-10: FRC FREQUENCY ACCURACY vs. VDD





DS39995C-page 300

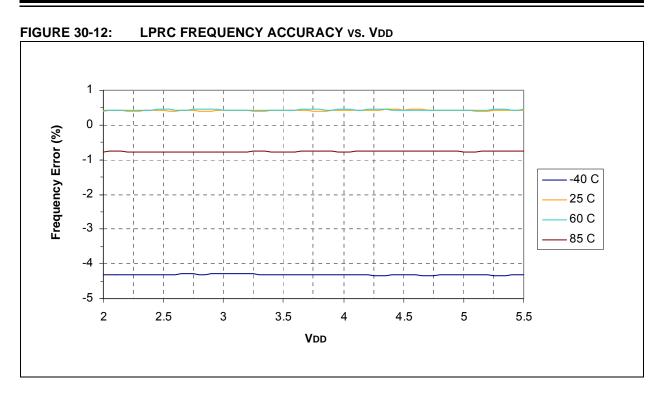
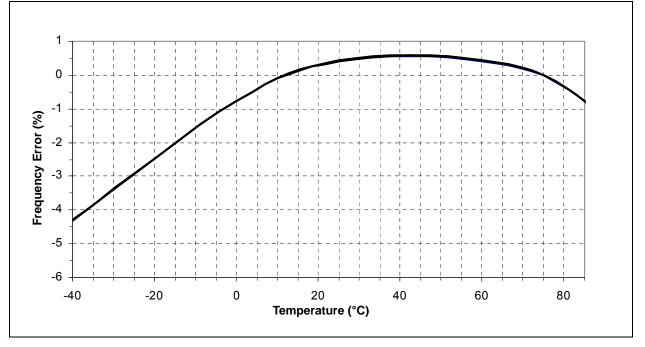
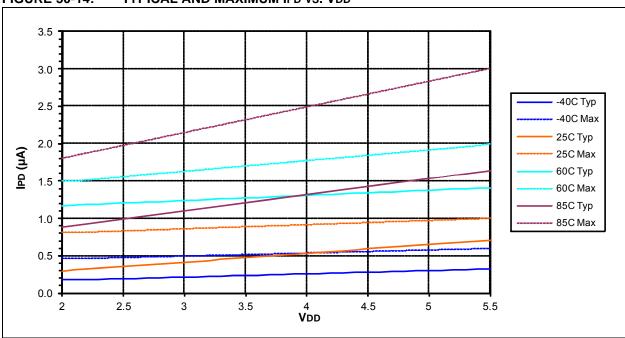
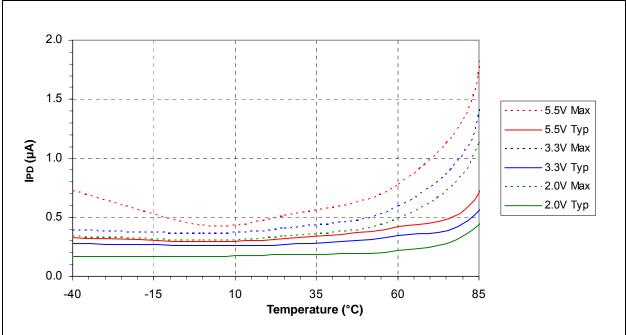





FIGURE 30-13: LPRC FREQUENCY ACCURACY vs. TEMPERATURE ( $2.0V \le VDD \le 5.5V$ )




^{© 2011-2012} Microchip Technology Inc.



#### FIGURE 30-14: TYPICAL AND MAXIMUM IPD vs. VDD





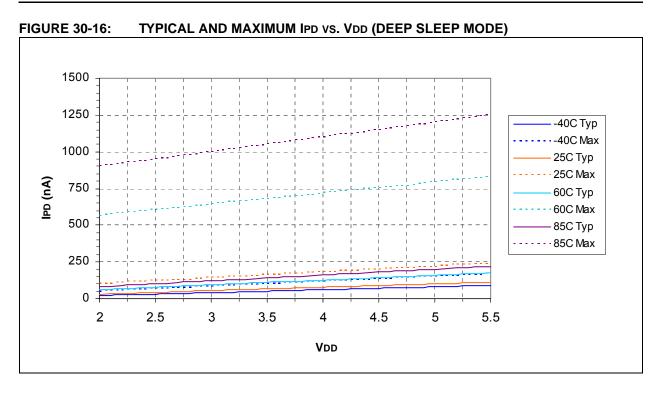
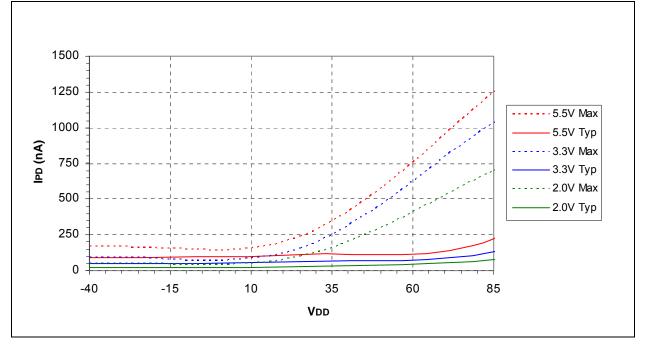




FIGURE 30-17: TYPICAL AND MAXIMUM IPD vs. TEMPERATURE (DEEP SLEEP MODE)



^{© 2011-2012} Microchip Technology Inc.

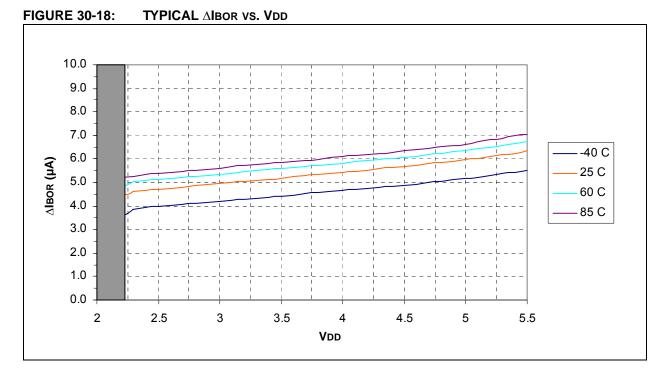
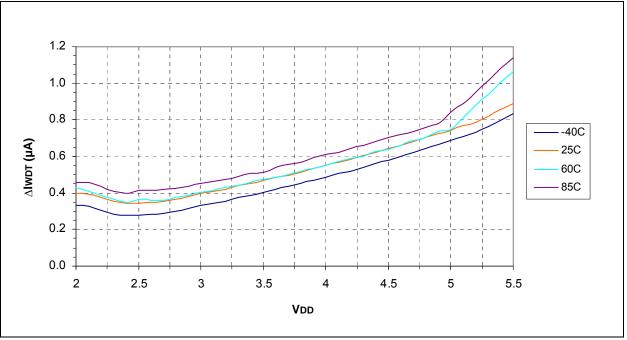
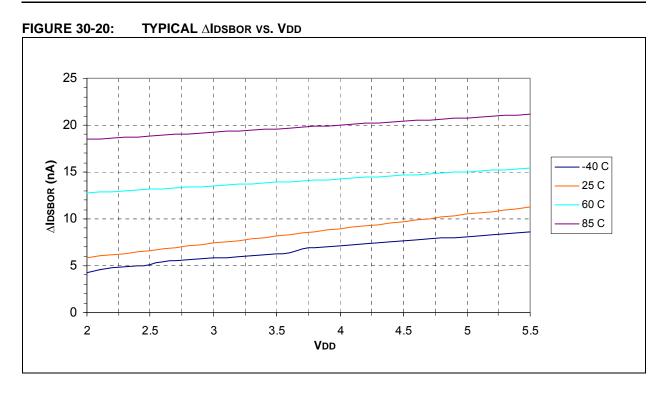
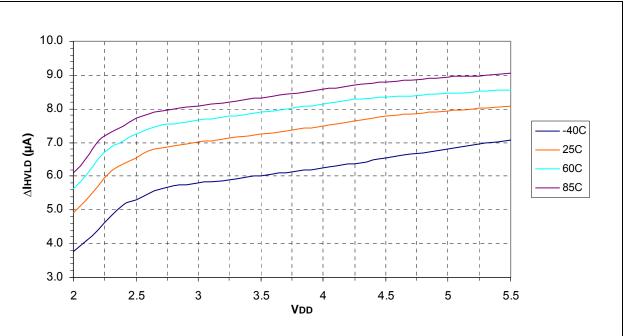






FIGURE 30-19: TYPICAL AlwDT vs. VDD









^{© 2011-2012} Microchip Technology Inc.

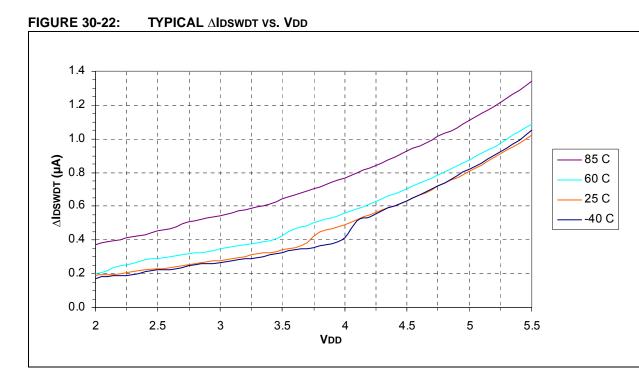
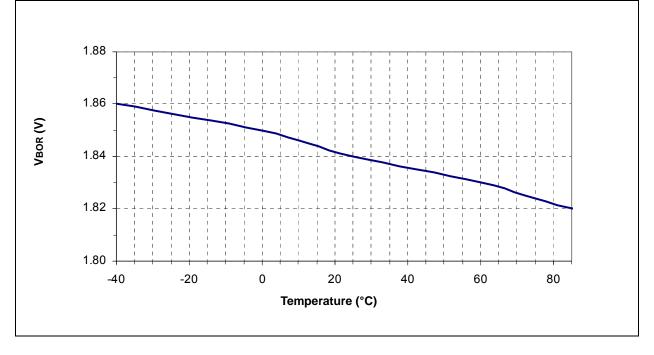




FIGURE 30-23: TYPICAL VBOR VS. TEMPERATURE (BOR TRIP POINT 3)



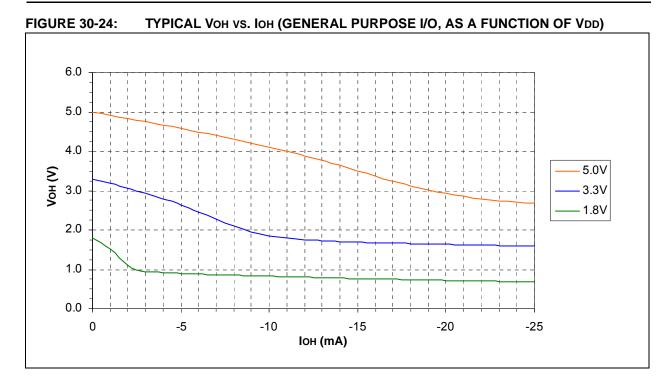
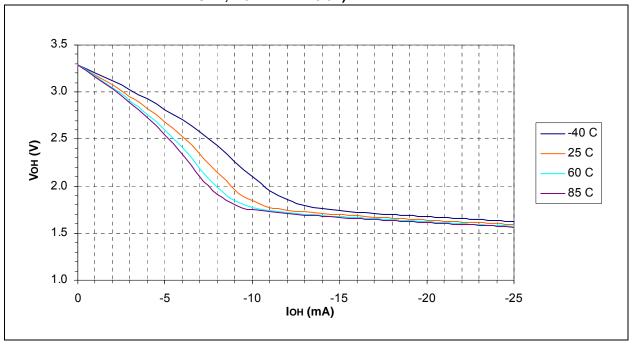




FIGURE 30-25: TYPICAL VOH VS. IOH (GENERAL PURPOSE I/O, AS A FUNCTION OF TEMPERATURE,  $2.0V \le VDD \le 5.5V$ )



^{© 2011-2012} Microchip Technology Inc.

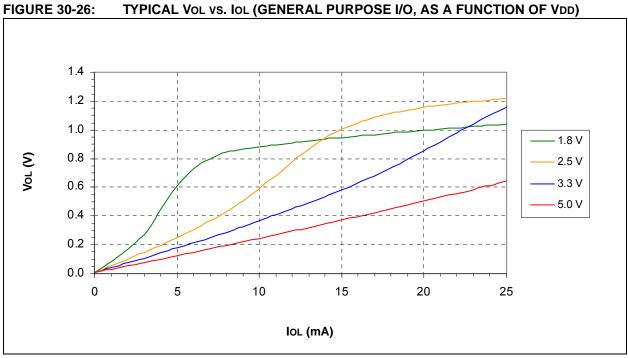
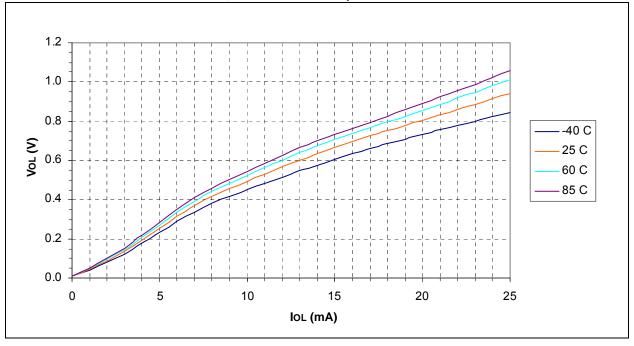




FIGURE 30-27: TYPICAL VOL VS. IOL (GENERAL PURPOSE I/O, AS A FUNCTION OF **TEMPERATURE**,  $2.0V \le VDD \le 5.5V$ )



DS39995C-page 308

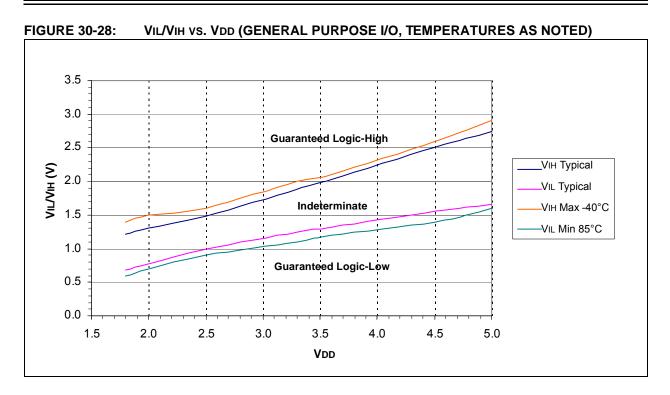
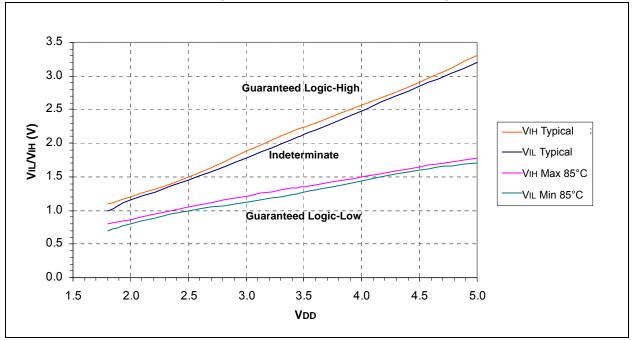




FIGURE 30-29: VIL/VIH vs. VDD (I²C[™], TEMPERATURES AS NOTED)



^{© 2011-2012} Microchip Technology Inc.

#### FIGURE 30-30: VIL/VIH vs. VDD (OSCO, TEMPERATURES AS NOTED)

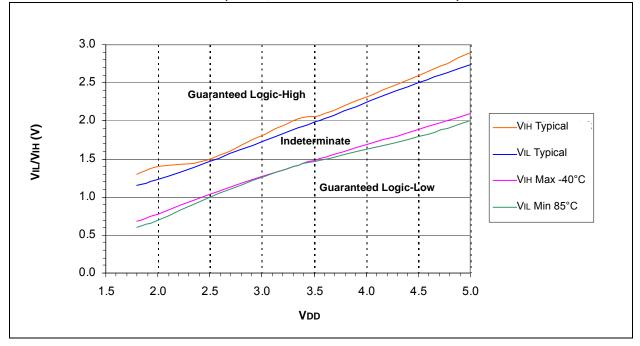
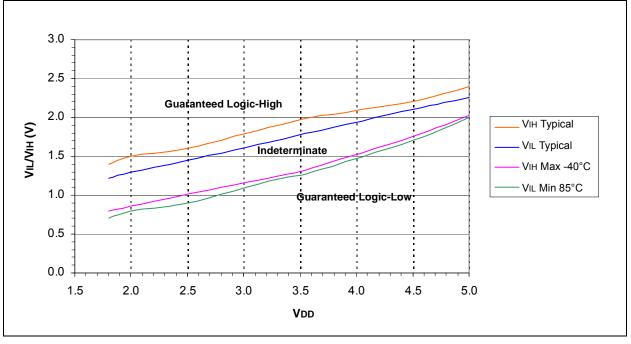




FIGURE 30-31: VIL/VIH VS. VDD (MCLR, TEMPERATURES AS NOTED)



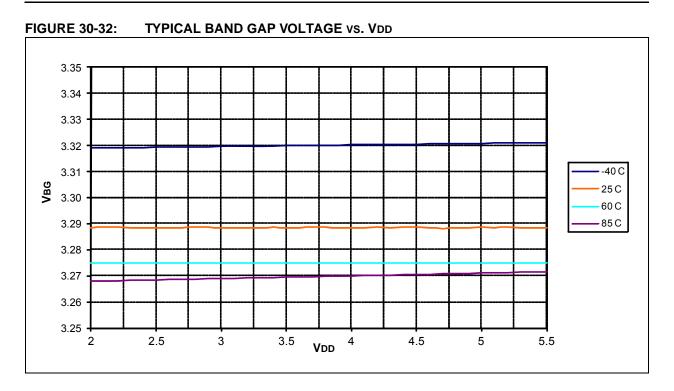
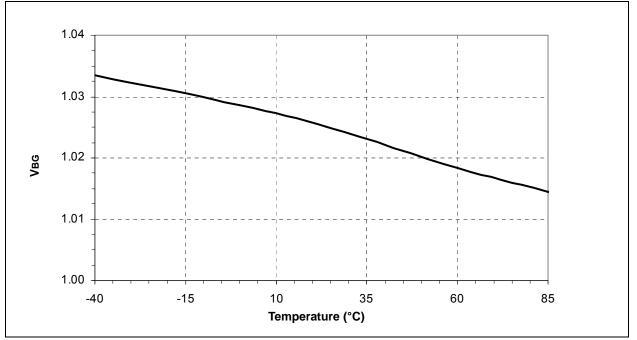




FIGURE 30-33: TYPICAL BAND GAP VOLTAGE vs. TEMPERATURE ( $2.0V \le VDD \le 5.5V$ )



^{© 2011-2012} Microchip Technology Inc.

#### FIGURE 30-34: TYPICAL VOLTAGE REGULATOR OUTPUT vs. VDD

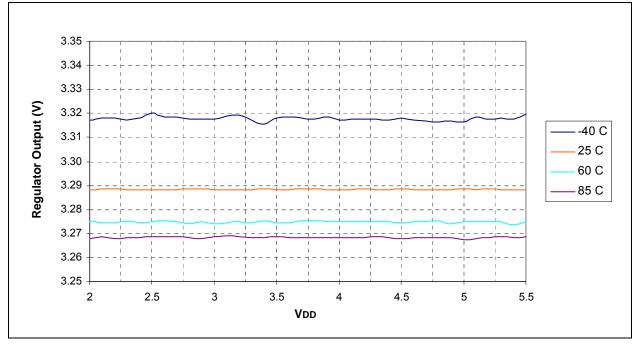
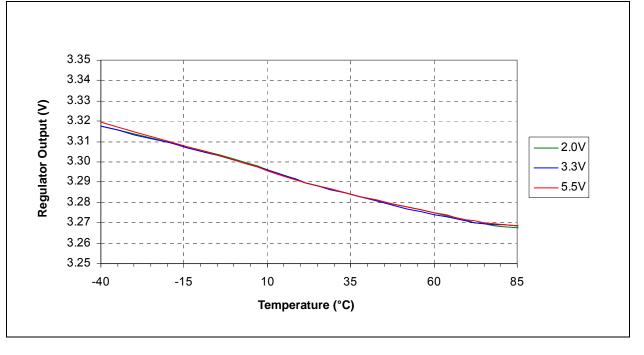




FIGURE 30-35: TYPICAL VOLTAGE REGULATOR OUTPUT vs. TEMPERATURE



DS39995C-page 312



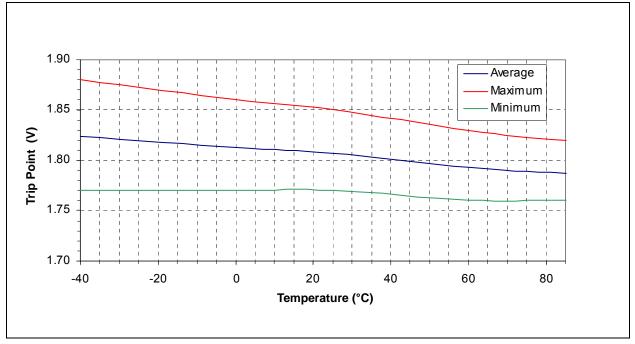
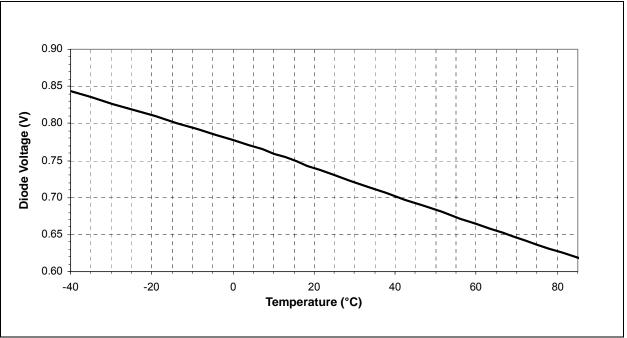
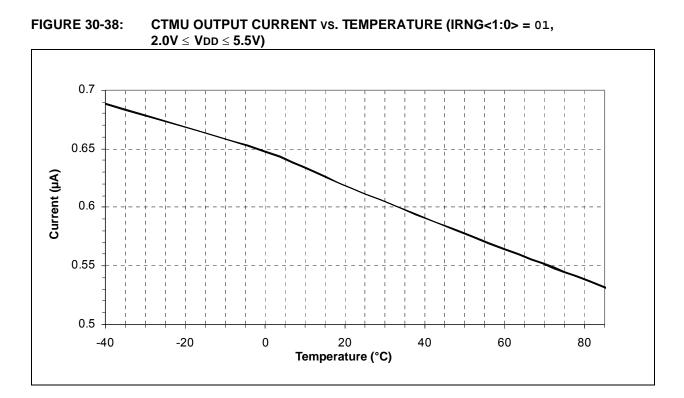





FIGURE 30-37: TEMPERATURE SENSOR DIODE VOLTAGE vs. TEMPERATURE (2.0V  $\leq$  VDD  $\leq$  5.5V)



^{© 2011-2012} Microchip Technology Inc.



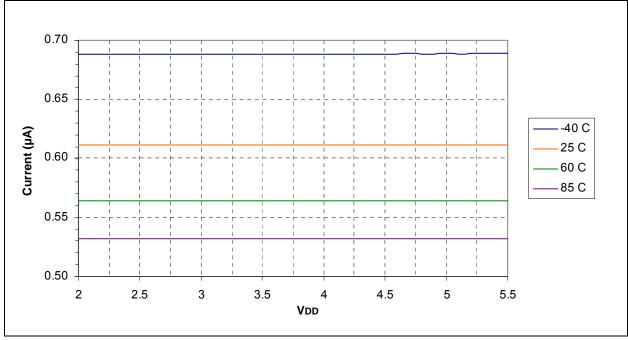



FIGURE 30-39: CTMU OUTPUT CURRENT vs. VDD (IRNG<1:0> = 01)

### **31.0 PACKAGING INFORMATION**

### 31.1 Package Marking Information

#### 20-Lead PDIP (300 mil)



#### 28-Lead SPDIP (.300")





#### Example



20-Lead SSOP (5.30 mm)



28-Lead SSOP (5.30 mm)



Example



#### Example

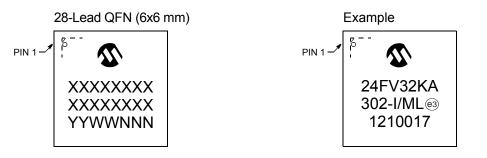


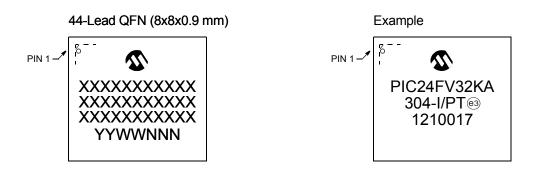
Legend:	XXX Y YY WW NNN @3	Product-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator () can be found on the outer packaging for this package.				
Note:	In the event the full Microchip part number cannot be marked on one line, i will be carried over to the next line, thus limiting the number of available characters for customer-specific information.					

20-Lead SOIC (7.50 mm)

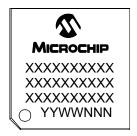


Example


Example



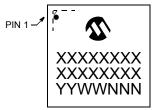

#### 28-Lead SOIC (7.50 mm)











44-Lead TQFP (10x10x1 mm)



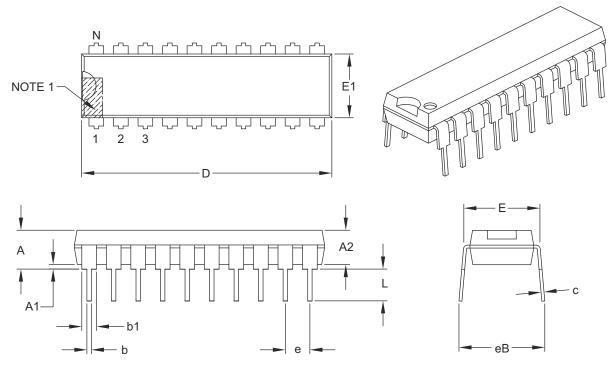
Example



48-Lead UQFN (6x6x0.5 mm)



Example




#### 31.2 Package Details

The following sections give the technical details of the packages.

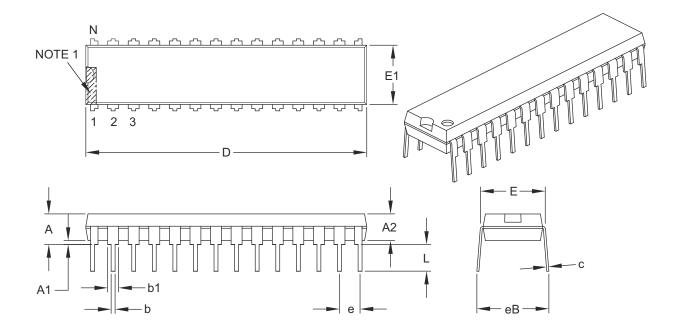
#### 20-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



	Units		INCHES		
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N				
Pitch	e		.100 BSC		
Top to Seating Plane	A	_	-	.210	
Molded Package Thickness	A2	.115	.130	.195	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.300	.310	.325	
Molded Package Width	E1	.240	.250	.280	
Overall Length	D	.980	1.030	1.060	
Tip to Seating Plane	L	.115	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.045	.060	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	_	-	.430	

#### Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-019B

#### 28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

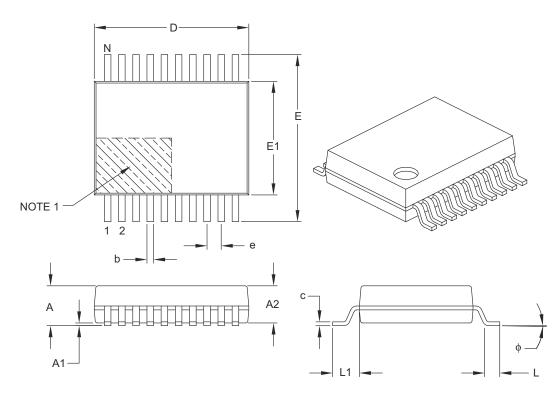
**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



	Units			
Dimensio	on Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е		.100 BSC	
Top to Seating Plane	А	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

#### 20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

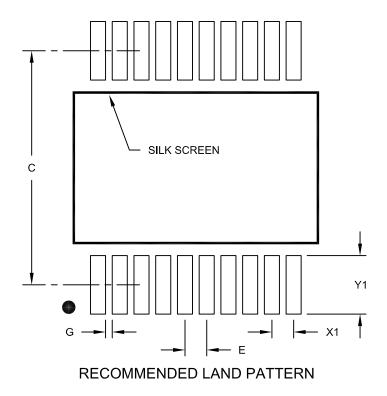


	Units	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N	20			
Pitch	е		0.65 BSC		
Overall Height	А	-	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	_	
Overall Width	E	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	6.90	7.20	7.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1		1.25 REF		
Lead Thickness	С	0.09	-	0.25	
Foot Angle	ф	0°	4°	8°	
Lead Width	b	0.22	-	0.38	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

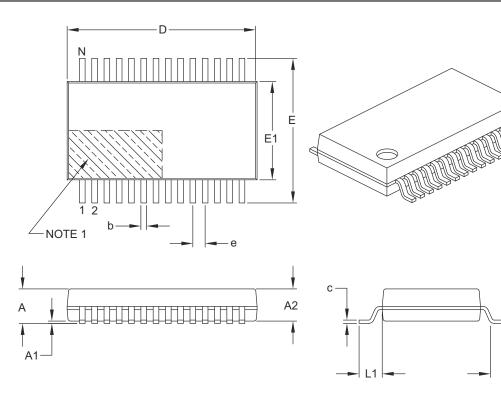
**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



	MILLIMETERS			
Dimensior	Dimension Limits		NOM	MAX
Contact Pitch	E		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072A

^{© 2011-2012} Microchip Technology Inc.

#### 28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

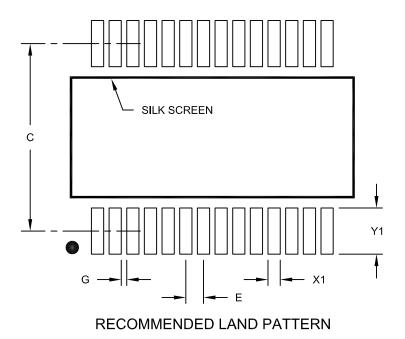


	Units			MILLIMETERS			
Dimensio	on Limits	MIN	NOM	MAX			
Number of Pins	Ν		28				
Pitch	е		0.65 BSC				
Overall Height	А	-	-	2.00			
Molded Package Thickness	A2	1.65	1.75	1.85			
Standoff	A1	0.05	-	-			
Overall Width	E	7.40	7.80	8.20			
Molded Package Width	E1	5.00	5.30	5.60			
Overall Length	D	9.90	10.20	10.50			
Foot Length	L	0.55	0.75	0.95			
Footprint	L1	1.25 REF					
Lead Thickness	С	0.09	-	0.25			
Foot Angle	ф	0°	4°	8°			
Lead Width	b	0.22	-	0.38			

#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
 Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-073B

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

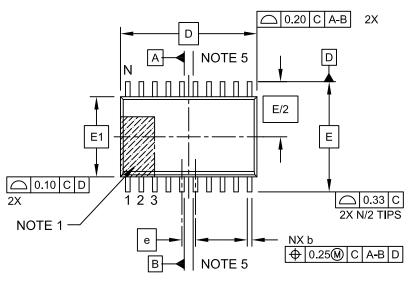
**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



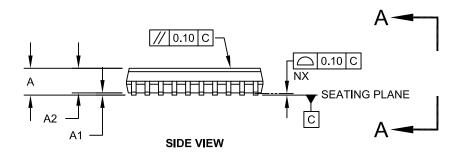
	Units	Ν	MILLIMETERS			
Dimension	Dimension Limits		NOM	MAX		
Contact Pitch	E	0.65 BSC				
Contact Pad Spacing	С		7.20			
Contact Pad Width (X28)	X1			0.45		
Contact Pad Length (X28)	Y1			1.75		
Distance Between Pads	G	0.20				

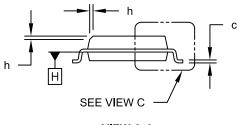
Notes:

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A


^{© 2011-2012} Microchip Technology Inc.

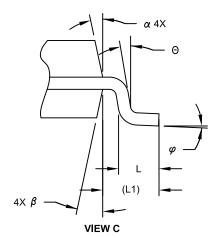

#### 20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

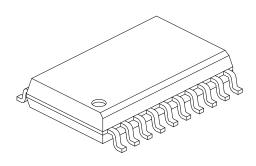
**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging











VIEW A-A

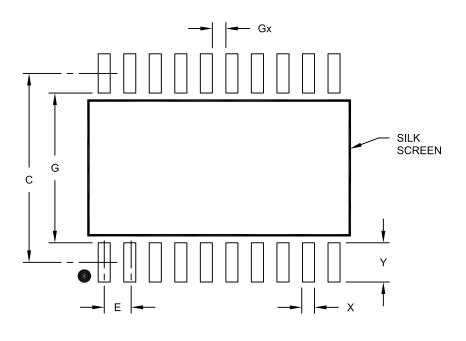
Microchip Technology Drawing C04-094C Sheet 1 of 2

#### 20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging






	MILLIMETERS			
Dimension Lim	nits	MIN	NOM	MAX
Number of Pins	N		20	
Pitch	е		1.27 BSC	
Overall Height	Α	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	12.80 BSC		
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1		1.40 REF	
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.20	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

#### Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

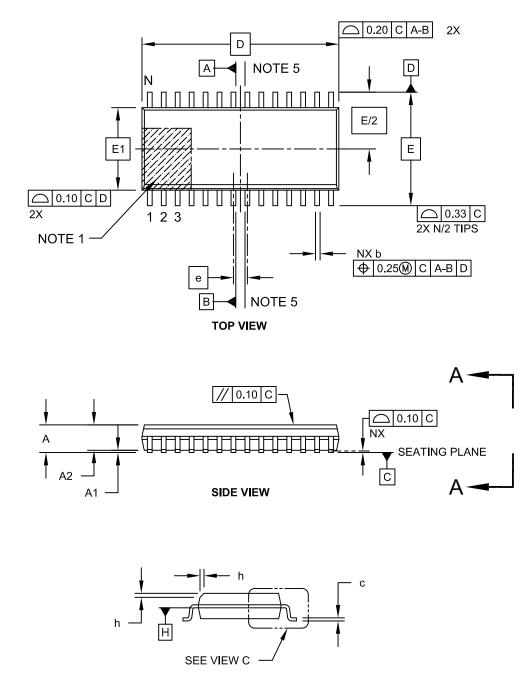
Microchip Technology Drawing No. C04-094C Sheet 2 of 2

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



### RECOMMENDED LAND PATTERN

	Units	Inits MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X20)	X			0.60
Contact Pad Length (X20)	Y			1.95
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.45		

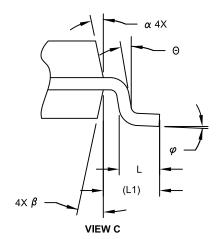

#### Notes:

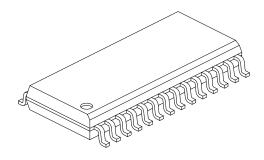
1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2094A

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



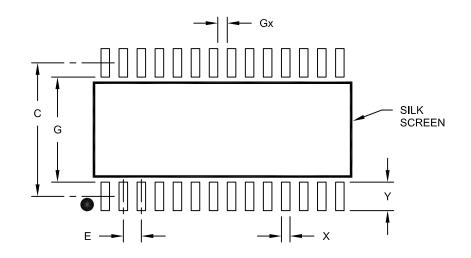

Microchip Technology Drawing C04-052C Sheet 1 of 2

^{© 2011-2012} Microchip Technology Inc.

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging






	Units	N	ILLIMETER	S
Dimension Limits		MIN	NOM	MAX
Number of Pins	N		28	
Pitch	е		1.27 BSC	
Overall Height	Α	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	17.90 BSC		
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1		1.40 REF	
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.18	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

#### Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

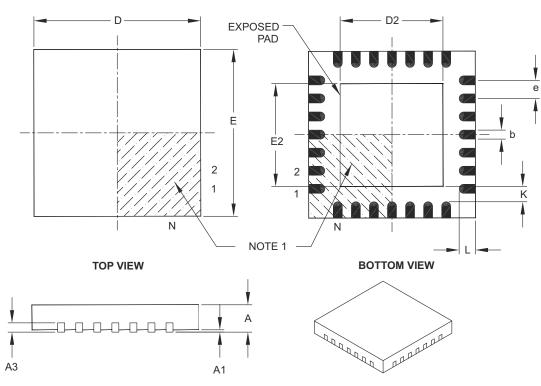


#### RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		
Dimension	Dimension Limits		NOM	MAX
Contact Pitch	E	1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	Х			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

^{© 2011-2012} Microchip Technology Inc.

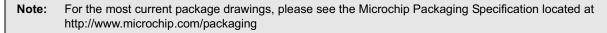
# 28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

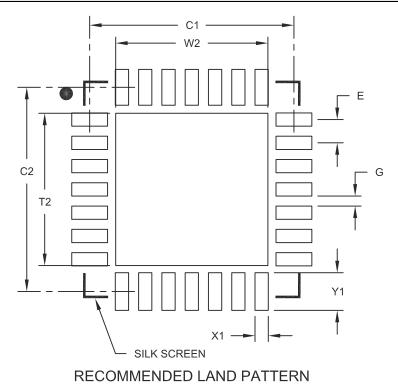
**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



	Units	MILLIMETERS		
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	e		0.65 BSC	
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E		6.00 BSC	
Exposed Pad Width	E2	3.65	3.70	4.20
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	3.65	3.70	4.20
Contact Width	b	0.23	0.30	0.35
Contact Length	L	0.50	0.55	0.70
Contact-to-Exposed Pad	К	0.20	-	-

Notes:


1. Pin 1 visual index feature may vary, but must be located within the hatched area.


- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

# 28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length





Units			MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC		
Optional Center Pad Width	W2			4.25	
Optional Center Pad Length	T2			4.25	
Contact Pad Spacing	C1		5.70		
Contact Pad Spacing	C2		5.70		
Contact Pad Width (X28)	X1			0.37	
Contact Pad Length (X28)	Y1			1.00	
Distance Between Pads	G	0.20			

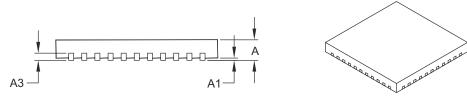
Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

© 2011-2012 Microchip Technology Inc.


#### 44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

For the most current package drawings, please see the Microchip Packaging Specification located at Note: http://www.microchip.com/packaging



**TOP VIEW** 

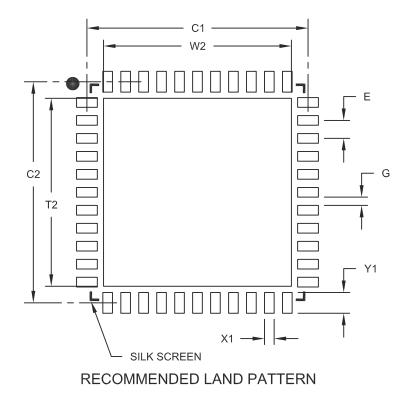
**BOTTOM VIEW** 



	Units		MILLIMETERS	6
Dimensio	n Limits	MIN	NOM	MAX
Number of Pins	Ν		44	
Pitch	е		0.65 BSC	
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Width	E		8.00 BSC	
Exposed Pad Width	E2	6.30	6.45	6.80
Overall Length	D		8.00 BSC	
Exposed Pad Length	D2	6.30	6.45	6.80
Contact Width	b	0.25	0.30	0.38
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	_

#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

#### 44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

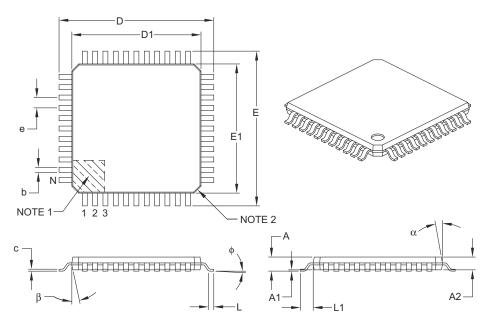
**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



	Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC		
Optional Center Pad Width	W2			6.80	
Optional Center Pad Length	T2			6.80	
Contact Pad Spacing	C1		8.00		
Contact Pad Spacing	C2		8.00		
Contact Pad Width (X44)	X1			0.35	
Contact Pad Length (X44)	Y1			0.80	
Distance Between Pads	G	0.25			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A

© 2011-2012 Microchip Technology Inc.

#### 44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



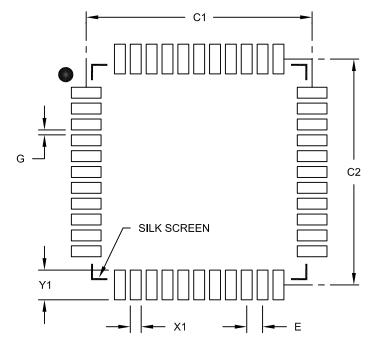
	Units	Units MILLIMETERS		
	Dimension Limits	MIN	NOM	MAX
Number of Leads	N		44	
Lead Pitch	е		0.80 BSC	
Overall Height	А	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1	1.00 REF		
Foot Angle	ф	0°	3.5°	7°
Overall Width	E		12.00 BSC	
Overall Length	D		12.00 BSC	
Molded Package Width	E1		10.00 BSC	
Molded Package Length	D1	10.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.


- 4. Dimensioning and tolerancing per ASME Y14.5M.
  - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

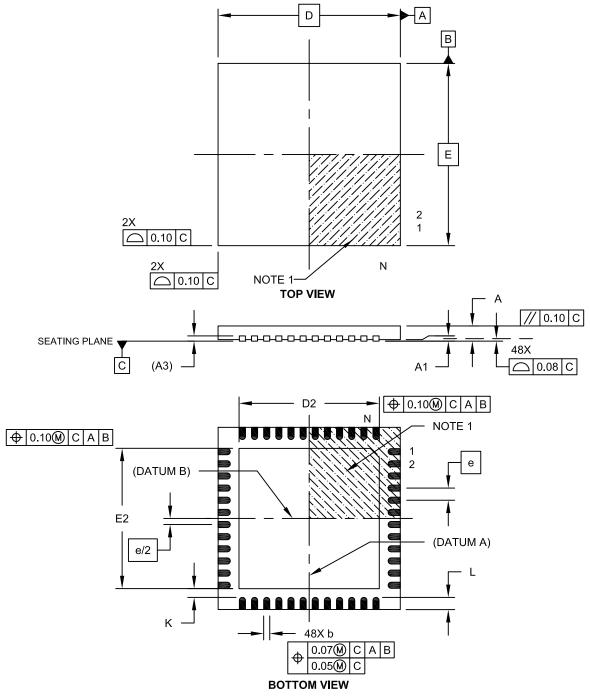


### RECOMMENDED LAND PATTERN

	Units	MILLIMETERS		S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E	0.80 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

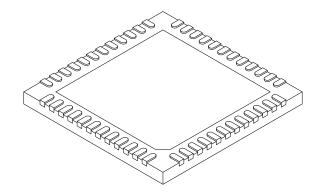
1. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

^{© 2011-2012} Microchip Technology Inc.

#### 48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]


**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-153A Sheet 1 of 2

#### 48-Lead Plastic Ultra Thin Quad Flat, No Lead Package (MV) – 6x6x0.5 mm Body [UQFN]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



	Units	MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Pins	Ν		48	
Pitch	е		0.40 BSC	
Overall Height	Α	0.45	0.50	0.55
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.127 REF		
Overall Width	Е	6.00 BSC		
Exposed Pad Width	E2	4.45	4.60	4.75
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	4.45	4.60	4.75
Contact Width	b	0.15	0.20	0.25
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	К	0.20	-	-

#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-153A Sheet 2 of 2

NOTES:

### APPENDIX A: REVISION HISTORY

#### Revision A (March 2011)

Original data sheet for the PIC24FV32KA304 family of devices.

#### Revision B (April 2011)

Section 25.0 "Charge Time Measurement Unit (CTMU)" was revised to change the description of the IRNGx bits in CTMUICON (Register 25-3). Setting '01' is the base current level (0.55  $\mu$ A nominal) and setting '00' is 1000x base current.

**Section 29.0 "Electrical Characteristics**" was revised to change the following typical IPD specifications:

- DC20h/i/j/k from 204 μA to 200 μA
- DC60h/i/j/k from 0.15 μA to 0.025 μA
- DC60I/m/n/o from 0.25 μA to 0.040 μA
- DC72h/i/j/k from 0.80 μA to 0.70 μA

#### **Revision C (April 2012)**

Updated the Pin Diagrams on Pages 3 through 7, to change "LVDIN" to "HLVDIN" in all occurrences, and correct the placement of certain functions.

Updated Table 1-3 to remove references to unimplemented package types, corrected several erroneous pin assignments and removed other alternate but unimplemented assignments.

For **Section 5.0 "Flash Program Memory"**, updated Example 5-2, Example 5-3 and Example 5-4 with new table offset functions.

Updated Figure 12-1 to correctly show the implemented Timer1 input options.

For Section 22.0 "12-Bit A/D Converter with Threshold Detect":

- Updated Register 22-1 to add the MODE12 bit
- Updated the descriptions of the PVCFGx and CSCNA bits in Register 22-2
- Updated Register 22-4 to change the VRSREQ bit to a reserved bit position
- Modified footnote text in Register 22-5
- Corrected CHOLD in Figure 22-2

### For Section 25.0 "Charge Time Measurement Unit (CTMU)":

- Updated the text in Section 25.1 "Measuring Capacitance" and Section 25.3 "Pulse Generation and Delay" to better reflect the module's implementation
- Updated Figure 25-3 to show additional detail in pulse generation

Added the following timing diagrams and timing requirement tables to **Section 29.0** "**Electrical Characteristics**":

- Figure 29-6 (Reset, Watchdog Timer, Oscillator Start-up Timer and Power-up Timer Timing Characteristics)
- Figure 29-7 (Brown-out Reset Characteristics)
- Figure 29-8 (Input Capture Timings) through Figure 29-20 (SPIx Module Slave Mode Timing Characteristics (CKE = 1))
- Table 29-27 (Input Capture Requirements) through Table 29-38 (SPIx Module Slave Mode Timing Requirements (CKE = 1))
- Figure 29-21 (A/D Conversion Timing)

Updated Table 29-5 to add specification, DC15.

Replaced Table 29-6, Table 29-7 and Table 29-8 with new, shorter versions that remove unimplemented temperature options. (No existing specification values have been changed in this process.)

Updated Table 29-16 with correct values for CTMUICON bit settings.

Combined previous Table 29-21 and Table 29-22 to create a new Table 29-21 (AC Characteristics: Internal RC Accuracy). All existing subsequent tables are renumbered accordingly.

Updated Table 29-26 to add specifications, SY35 and SY55.

Updated Table 29-39:

- Split AD01 into separate entries for "F" and "FV" device families
- Added specifications, AD08 (IVREF) and AD09 (ZVREF)
- Changed AD17 (2.5 k $\Omega$  max. to 1 k $\Omega$  max.)

Updated Table 29-40:

- Changed AD50 (75 ns min. to 600 ns min.)
- Changed AD51 (250 ns typ. to 1.67 µs typ.)
- Changed AD60 (0.5 TAD min. to 2 TAD min.)
- Split AD55 into separate entries for 10-bit and 12-bit conversions

Added Section 30.0 "DC and AC Characteristics Graphs and Tables", with Figure 30-1 through Figure 30-39.

Replaced some of the packaging diagrams in **Section 31.0** "**Packaging Information**" with the newly revised diagrams.

Other minor typographic corrections throughout.

© 2011-2012 Microchip Technology Inc.

NOTES:

### INDEX

Α	
A/D	
Buffer Data Formats	
Control Registers	
AD1CHITH/L	
AD1CHS	
AD1CON1	210
AD1CON2	210
AD1CON3	210
AD1CON5	210
AD1CSSL/H	210
AD1CTMENH/L	
Module Specifications	
Result Buffers	
Sampling Requirements	219
Transfer Function	
AC Characteristics	
Capacitive Loading Requirements on	
Output Pins	
Comparator	
Comparator Voltage Reference Settling Time	e 279
Input Capture	
Internal RC Accuracy	
Internal RC Oscillator Specifications	
Load Conditions and Requirements	
Output Capture	
Reset, Watchdog Timer. Oscillator Start-up	
Timer, Power-up Timer, Brown-out Rese	
Requirements	
Temperature and Voltage Specifications	
Assembler	
MPASM Assembler	
В	
Baud Rate Generator	

Baud Rate Generator	
Setting as a Bus Master	171
Block Diagrams	
12-Bit A/D Converter	
12-Bit A/D Converter Analog Input Model	
16-Bit Asynchronous Timer3 and Timer5	
16-Bit Synchronous Timer2 and Timer4	
16-Bit Timer1	139
Accessing Program Memory with Table	
Instructions	
CALL Stack Frame	
Comparator Module	
Comparator Voltage Reference	
CPU Programmer's Model	
CRC Module	
CRC Shift Engine	199
CTMU Connections and Internal Configuration	000
for Capacitance Measurement	232
CTMU Typical Connections and Internal Configuration for Pulse Delay Generation .	222
CTMU Typical Connections and Internal	200
Configuration for Time Measurement	222
Data Access from Program Space Address	202
Generation	52
Data EEPROM Addressing with TBLPAG and	
NVM Registers	65
High/Low-Voltage Detect (HLVD)	
I ² C Module	
Individual Comparator Configurations	

Input Capture x	147
On-Chip Regulator Connections	248
Output Compare x (16-Bit Mode)	152
Output Compare x (Double-Buffered,	
16-Bit PWM Mode)	154
PIC24F CPU Core	30
PIC24FV32KA304 Family (General)	15
PSV Operation	55
Reset System	69
RTCC	185
Serial Resistor	129
Shared I/O Port Structure	135
Simplified UARTx	177
SPI1 Module (Enhanced Buffer Mode)	163
SPI1 Module (Standard Buffer Mode)	162
System Clock	113
Table Register Addressing	57
Timer2/3, Timer4/5 (32-Bit)	142
Watchdog Timer (WDT)	249
Brown-out Reset	
Trip Points	

#### С

C Compilers MPLAB C18	250
Charge Time Measurement Unit. See CTMU.	. 252
Code Examples	
Basic Sequence for Clock Switching	. 120
Data EEPROM Bulk Erase	67
Data EEPROM Unlock Sequence	63
Erasing a Program Memory Row, 'C' Language	61
Erasing a Program Memory Row,	
Assembly Language	60
I/O Port Write/Read	
Initiating a Programming Sequence, 'C' Language	62
Initiating a Programming Sequence,	
Assembly Language	62
Loading the Write Buffers, 'C' Language	62
Loading the Write Buffers, Assembly Language	61
PWRSAV Instruction Syntax	. 123
Reading the Data EEPROM Using the	
Command	68
Setting the RTCWREN Bit	. 186
Single-Word Erase	
Single-Word Write to Data EEPROM	67
Ultra Low-Power Wake-up Initialization	. 129
Unlock Sequence	. 124
Code Protection	. 250
Comparator	. 225
Comparator Voltage Reference	. 229
Configuring	. 229
Configuration Bits	. 239
Core Features	11
CPU	
ALU	33
Control Registers	32
Core Registers	30
Programmer's Model	29

© 2011-2012 Microchip Technology Inc.

#### CRC

Registers	201
Typical Operation	
User Interface	
Data	200
Data Shift Direction	201
Interrupt Operation	
Polynomial	200
CTMU	
Measuring Capacitance	
Measuring Time	
Pulse Generation and Delay	
Customer Change Notification Service	
Customer Notification Service	
Customer Support	

### D

Data EEPROM Memory	63
Erasing	
Operations	
Programming	
Bulk Erase	67
Reading Data EEPROM	
Single-Word Write	
Programming Control Registers	
NVMADR(U)	65
NVMCON	
NVMKEY	
Data Memory	
Address Space	37
Memory Map	
Near Data Space	
Organization	
SFR Space	
Software Stack	
Space Width	
DC and AC Characteristics	
Graphs and Tables	205
DC Characteristics	
BOR Trip Points	266
Comparator Specifications	
Comparator Voltage Reference	
CTMU Current Source	
Data EEPROM Memory	
High/Low-Voltage Detect	
I/O Pin Input Specifications	
I/O Pin Output Specifications	
Idle Current (IDLE)	
Internal Voltage Regulator	
Operating Current (IDD)	
Power-Down Current (IPD)	
· ,	
Program Memory Temperature and Voltage Specifications	
Development Support	
Development Support	

### Е

263
265
265
264

Equ	ations	
	A/D Conversion Clock Period	219
	Baud Rate Reload Calculation	
	Calculating the PWM Period	
	Calculation for Maximum PWM Resolution	
	Device and SPIx Clock Speed Relationship	
	PWM Period and Duty Cycle Calculations	
	UARTx Baud Rate with BRGH = 0	
<b>—</b>	UARTx Baud Rate with BRGH = 1	
	ata Imples	9
схd	Baud Rate Error Calculation (BRGH = 0)	178
F		
Flas	sh Program Memory	
	Control Registers	58
	Enhanced ICSP Operation	58
	Programming Algorithm	60
	Programming Operations	58
	RTSP Operation	58
	Table Instructions	57
н		
	h/Low Maltage Detect (LILMD)	205
Higi	h/Low-Voltage Detect (HLVD)	
L		
I/O	Ports	
	Analog Port Configuration	136
	Analog Selection Registers	
	Input Change Notification	138
	Open-Drain Configuration	136
	Parallel (PIO)	135
I ² C		
	Clock Rates	171
	Communicating as Master in Single Master	
	Environment	
	Pin Remapping Options	
	Reserved Addresses	
10 0	Slave Address Masking	
	Circuit Debugger Circuit Serial Programming (ICSP)	
	ut Capture	250
mpt	Cascaded (32-Bit) Mode	148
	Operations	
	Synchronous, Trigger Modes	
Inpu	ut Capture with Dedicated Timers	
	ruction Set	
	Opcode Symbols	256
	Overview	257
	Summary	255
Inte	rnet Address	346
Inte	rrupts	
	Alternate Interrupt Vector Table (AIVT)	
	Control and Status Registers	
	Implemented Vectors	
	Interrupt Vector Table (IVT)	
	Reset Sequence	
	Setup Procedures	
	Trap Vectors	
	Vector Table	

#### Μ

Microchip Internet Web Site	52
Software	54 53
Ν	
Near Data Space	38
0	
On-Chip Voltage Regulator	48
Clock Switching	
Configuration Values for Clock Selection11	14
CPU Clocking Scheme	
Initial Configuration on POR17 Reference Clock Output	
Output Compare	20
Cascaded (32-Bit) Mode15	51
Operations15	53
Subcycle Resolution15	
Synchronous, Trigger Modes15	51

#### Ρ

Packaging	
Details	318
Marking	315
PIC24F32KA304 Family Device Features (Summary)	14
PIC24FV32KA304 Family Device Features (Summary)	13
Pinout Descriptions	16
Power-Saving	133
Power-Saving Features	
Clock Frequency, Clock Switching	123
Coincident Interrupts	
Instruction-Based Modes	123
Deep Sleep	124
Idle	124
Sleep	123
Selective Peripheral Control	133
Ultra Low-Power Wake-up	129
Voltage Regulator-Based	131
Deep Sleep Mode	131
Fast Wake-up Sleep Mode	131
Low-Voltage Sleep Mode	131
Run Mode	131
Sleep (Standby) Mode	131
Product Identification System	348
Program and Data Memory	
Access Using Table Instructions	53
Addressing Space	51
Program Space Visibility	55
Program and Data Memory Interfacing Spaces	51
Program Memory	
Address Space	35
Device Configuration Words	36
Hard Memory Vectors	
Memory Map	35
Organization	36
-	

1 105	gram Verification	200
Puls	e-Width Modulation (PWM) Mode	154
	e-Width Modulation. See PWM.	
PWN		
	Duty Cycle and Period	155
		100
R		
Rea	der Response	347
	ister Maps	
ixey	A/D Converter	47
	Analog Select	
	Clock Control	
	CPU Core	
	CRC	
	CTMU	
	Deep Sleep	
	I2Cx (I ² C)	
	ICN	
	Input Capture	42
	Interrupt Controller	41
	NVM	50
	Output Compare	43
	Pad Configuration	46
	PMD	50
	PORTA	
	PORTB	
	PORTC	
	Real-Time Clock and Calendar (RTCC)	
	SPIx	
	Timer	
	Triple Comparator	
	UARTx	
	Ultra Low-Power Wake-up	
Regi	isters	50
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word)	50 216
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) .	50 216 216
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHS (A/D Sample Select)	50 216 216 215
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHS (A/D Sample Select) AD1CON1 (A/D Control 1)	50 216 216 215 211
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHS (A/D Sample Select) AD1CON1 (A/D Control 1) AD1CON2 (A/D Control 2)	50 216 216 215 211 212
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHS (A/D Sample Select) AD1CON1 (A/D Control 1) AD1CON2 (A/D Control 2) AD1CON3 (A/D Control 3)	50 216 216 215 211 212 213
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHS (A/D Sample Select) AD1CON1 (A/D Control 1) AD1CON2 (A/D Control 2)	50 216 216 215 211 212 213
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHS (A/D Sample Select) AD1CON1 (A/D Control 1) AD1CON2 (A/D Control 2) AD1CON3 (A/D Control 3)	50 216 215 211 212 213 214
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHS (A/D Sample Select) AD1CON1 (A/D Control 1) AD1CON2 (A/D Control 2) AD1CON3 (A/D Control 3) AD1CON5 (A/D Control 5)	50 216 215 211 212 212 213 214 217
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHS (A/D Sample Select) AD1CON1 (A/D Control 1) AD1CON2 (A/D Control 2) AD1CON3 (A/D Control 3) AD1CON5 (A/D Control 5) AD1CSSH (A/D Input Scan Select, High Word) AD1CSSL (A/D Input Scan Select, Low Word)	50 216 215 211 212 213 213 214 217 217
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHS (A/D Sample Select) AD1CON1 (A/D Control 1) AD1CON2 (A/D Control 2) AD1CON3 (A/D Control 3) AD1CON5 (A/D Control 5) AD1CON5 (A/D Input Scan Select, High Word)	50 216 215 211 212 212 213 214 217 217 218
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHS (A/D Sample Select) AD1CON1 (A/D Control 1) AD1CON2 (A/D Control 2) AD1CON3 (A/D Control 3) AD1CON5 (A/D Control 5) AD1CON5 (A/D Control 5) AD1CSSH (A/D Input Scan Select, High Word) AD1CSSL (A/D Input Scan Select, Low Word) AD1CTMENH (CTMU Enable, High Word)	50 216 215 211 212 213 214 217 217 218 218
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHS (A/D Sample Select) AD1CON1 (A/D Control 1) AD1CON2 (A/D Control 2) AD1CON3 (A/D Control 3) AD1CON5 (A/D Control 5) AD1COS5 (A/D Control 5) AD1CSSH (A/D Input Scan Select, High Word) AD1CSSL (A/D Input Scan Select, Low Word) AD1CTMENH (CTMU Enable, High Word) AD1CTMENL (CTMU Enable, Low Word) ALCFGRPT (Alarm Configuration)	50 216 215 211 212 213 214 217 217 217 218 218 218 190
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHS (A/D Sample Select) AD1CON1 (A/D Control 1) AD1CON2 (A/D Control 2) AD1CON3 (A/D Control 3) AD1CON5 (A/D Control 5) AD1COS5 (A/D Control 5) AD1CSSH (A/D Input Scan Select, High Word) AD1CSSL (A/D Input Scan Select, Low Word) AD1CTMENH (CTMU Enable, High Word) AD1CTMENL (CTMU Enable, Low Word) ALCFGRPT (Alarm Configuration) ALMINSEC (Alarm Minutes and Seconds Value)	50 216 215 211 212 213 214 217 217 217 217 218 218 218 190 194
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CON1 (A/D Sample Select) AD1CON1 (A/D Control 1) AD1CON2 (A/D Control 2) AD1CON3 (A/D Control 3) AD1CON5 (A/D Control 5) AD1CON5 (A/D Control 5) AD1CSSH (A/D Input Scan Select, High Word) AD1CSSL (A/D Input Scan Select, Low Word) AD1CTMENH (CTMU Enable, High Word) AD1CTMENL (CTMU Enable, Low Word) ALCFGRPT (Alarm Configuration) ALMINSEC (Alarm Minutes and Seconds Value) ALMTHDY (Alarm Month and Day Value)	50 216 215 211 212 213 214 217 217 217 217 218 218 218 190 194 193
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CON1 (A/D Sample Select) AD1CON1 (A/D Control 1) AD1CON2 (A/D Control 2) AD1CON3 (A/D Control 3) AD1CON5 (A/D Control 5) AD1CON5 (A/D Control 5) AD1CSSH (A/D Input Scan Select, High Word) AD1CSSL (A/D Input Scan Select, Low Word) AD1CTMENH (CTMU Enable, High Word) AD1CTMENL (CTMU Enable, Low Word) ALCFGRPT (Alarm Configuration) ALMINSEC (Alarm Minutes and Seconds Value) ALWDHR (Alarm Weekday and Hours Value)	50 216 215 211 212 213 214 217 217 217 217 218 218 190 194 193 193
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CON1 (A/D Sample Select) AD1CON1 (A/D Control 1) AD1CON2 (A/D Control 2) AD1CON3 (A/D Control 3) AD1CON5 (A/D Control 5) AD1CSSH (A/D Input Scan Select, High Word) AD1CSSL (A/D Input Scan Select, Low Word) AD1CTMENH (CTMU Enable, High Word) AD1CTMENL (CTMU Enable, Low Word) ALCFGRPT (Alarm Configuration) ALMINSEC (Alarm Minutes and Seconds Value) ALMTHDY (Alarm Weekday and Hours Value) ANSA (Analog Selection, PORTA)	50 216 215 211 212 213 214 217 217 217 217 218 218 190 194 193 136
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CON1 (A/D Sample Select) AD1CON1 (A/D Control 1) AD1CON2 (A/D Control 2) AD1CON3 (A/D Control 3) AD1CON5 (A/D Control 5) AD1CSSH (A/D Input Scan Select, High Word) AD1CSSL (A/D Input Scan Select, Low Word) AD1CTMENH (CTMU Enable, High Word) AD1CTMENL (CTMU Enable, High Word) ALCFGRPT (Alarm Configuration) ALMINSEC (Alarm Minutes and Seconds Value) ALMTHDY (Alarm Weekday and Hours Value) ANSA (Analog Selection, PORTA) ANSB (Analog Selection, PORTB)	50 216 215 211 212 213 214 217 217 217 217 217 218 218 190 193 136 137
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CON1 (A/D Sample Select) AD1CON1 (A/D Control 1) AD1CON2 (A/D Control 2) AD1CON3 (A/D Control 3) AD1CON5 (A/D Control 5) AD1CSSH (A/D Input Scan Select, High Word) AD1CSSL (A/D Input Scan Select, Low Word) AD1CTMENH (CTMU Enable, High Word) AD1CTMENL (CTMU Enable, High Word) ALCFGRPT (Alarm Configuration) ALMINSEC (Alarm Minutes and Seconds Value) ALMTHDY (Alarm Weekday and Hours Value) ANSA (Analog Selection, PORTA) ANSB (Analog Selection, PORTB) ANSC (Analog Selection, PORTC)	50 216 215 211 212 213 214 217 217 217 217 217 218 218 190 193 193 137 137
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CON1 (A/D Sample Select) AD1CON1 (A/D Control 1) AD1CON2 (A/D Control 2) AD1CON3 (A/D Control 3) AD1CON5 (A/D Control 5) AD1CSSH (A/D Input Scan Select, High Word) AD1CSSL (A/D Input Scan Select, Low Word) AD1CTMENH (CTMU Enable, High Word) AD1CTMENL (CTMU Enable, High Word) ALCFGRPT (Alarm Configuration) ALMINSEC (Alarm Minutes and Seconds Value) ALMTHDY (Alarm Month and Day Value) ANSA (Analog Selection, PORTA) ANSB (Analog Selection, PORTB) ANSC (Analog Selection, PORTC) CLKDIV (Clock Divider)	50 216 216 215 211 212 213 214 217 217 217 217 217 217 217 218 190 193 193 137 137 117
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CON1 (A/D Sample Select) AD1CON1 (A/D Control 1) AD1CON2 (A/D Control 2) AD1CON3 (A/D Control 3) AD1CON5 (A/D Control 5) AD1CSSH (A/D Input Scan Select, High Word) AD1CSSL (A/D Input Scan Select, Low Word) AD1CTMENH (CTMU Enable, High Word) AD1CTMENL (CTMU Enable, High Word) ALCFGRPT (Alarm Configuration) ALMINSEC (Alarm Minutes and Seconds Value) ALMTHDY (Alarm Month and Day Value) ALWDHR (Alarm Weekday and Hours Value) ANSB (Analog Selection, PORTA) ANSB (Analog Selection, PORTB) ANSC (Analog Selection, PORTC) CLKDIV (Clock Divider) CMSTAT (Comparator Status)	50 216 215 211 212 213 214 217 217 217 217 218 218 190 193 193 137 137 117 228
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CON1 (A/D Sample Select) AD1CON1 (A/D Control 1) AD1CON2 (A/D Control 2) AD1CON3 (A/D Control 3) AD1CON5 (A/D Control 5) AD1CSSH (A/D Input Scan Select, High Word) AD1CSSL (A/D Input Scan Select, Low Word) AD1CTMENH (CTMU Enable, High Word) AD1CTMENL (CTMU Enable, High Word) ALCFGRPT (Alarm Configuration) ALMINSEC (Alarm Minutes and Seconds Value) ALMTHDY (Alarm Month and Day Value) ANSA (Analog Selection, PORTA) ANSB (Analog Selection, PORTB) ANSC (Analog Selection, PORTC) CLKDIV (Clock Divider) CMXCON (Comparator X Control)	50 216 216 215 211 212 213 214 217 217 217 217 217 217 217 218 190 193 193 136 137 137 117 228 227
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CNS (A/D Sample Select) AD1CON1 (A/D Control 1) AD1CON2 (A/D Control 2) AD1CON3 (A/D Control 3) AD1CON5 (A/D Control 5) AD1CSSH (A/D Input Scan Select, High Word) AD1CSSL (A/D Input Scan Select, Low Word) AD1CSSL (A/D Input Scan Select, Low Word) AD1CTMENH (CTMU Enable, High Word) AD1CTMENL (CTMU Enable, Low Word) ALCFGRPT (Alarm Configuration) ALMINSEC (Alarm Minutes and Seconds Value) ALMTHDY (Alarm Month and Day Value) ALWDHR (Alarm Weekday and Hours Value) ANSB (Analog Selection, PORTA) ANSB (Analog Selection, PORTB) ANSC (Analog Selection, PORTC) CLKDIV (Clock Divider) CMSTAT (Comparator Status) CMXCON (Comparator x Control) CORCON (CPU Control)	
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) . AD1CHITH (A/D Scan Compare Hit, Low Word) . AD1CNS (A/D Sample Select) AD1CON1 (A/D Control 1) AD1CON2 (A/D Control 2) AD1CON3 (A/D Control 3) AD1CON5 (A/D Control 5) AD1CSSH (A/D Input Scan Select, High Word) AD1CSSL (A/D Input Scan Select, Low Word) AD1CSSL (A/D Input Scan Select, Low Word) AD1CTMENH (CTMU Enable, High Word) AD1CTMENL (CTMU Enable, Low Word) ALCFGRPT (Alarm Configuration) ALMINSEC (Alarm Minutes and Seconds Value) ALMTHDY (Alarm Month and Day Value) ALWDHR (Alarm Weekday and Hours Value) ANSB (Analog Selection, PORTA) ANSB (Analog Selection, PORTB) ANSC (Analog Selection, PORTB) CMSTAT (Comparator Status) CMXCON (CPU Control) CORCON (CPU Core Control)	
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CON1 (A/D Control 1) AD1CON2 (A/D Control 2) AD1CON3 (A/D Control 3) AD1CON5 (A/D Control 5) AD1CSSH (A/D Input Scan Select, High Word) AD1CSSL (A/D Input Scan Select, Low Word) AD1CSSL (A/D Input Scan Select, Low Word) AD1CTMENH (CTMU Enable, High Word) AD1CTMENL (CTMU Enable, Low Word) ALCFGRPT (Alarm Configuration) ALMINSEC (Alarm Minutes and Seconds Value) ALMTHDY (Alarm Month and Day Value) ANSB (Analog Selection, PORTA) ANSB (Analog Selection, PORTB) ANSC (Analog Selection, PORTB) CMSTAT (Comparator X Control) CORCON (CPU Cortrol) CORCON (CPU Cortrol) CRCCON1 (CRC Control 1)	50 216 215 211 212 213 212 213 213 214 217 217 217 217 218 217 218 217 218 217 218 
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CNS (A/D Sample Select) AD1CON1 (A/D Control 1) AD1CON2 (A/D Control 2) AD1CON3 (A/D Control 3) AD1CON5 (A/D Control 5) AD1CSSH (A/D Input Scan Select, High Word) AD1CSSL (A/D Input Scan Select, Low Word) AD1CSSL (A/D Input Scan Select, Low Word) AD1CTMENH (CTMU Enable, High Word) AD1CTMENL (CTMU Enable, Low Word) AD1CTMENL (CTMU Enable, Low Word) ALCFGRPT (Alarm Configuration) ALMINSEC (Alarm Minutes and Seconds Value) ALMTHDY (Alarm Month and Day Value) ANSA (Analog Selection, PORTA) ANSB (Analog Selection, PORTB) ANSC (Analog Selection, PORTB) ANSC (Analog Selection, PORTC) CLKDIV (Clock Divider) CMSTAT (Comparator X Control) CORCON (CPU Core Control) CORCON (CPU Core Control) CRCCON1 (CRC Control 1) CRCCON2 (CRC Control 2)	50 216 215 211 212 213 214 217 217 217 218 217 218 217 218 217 218 217 
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CON1 (A/D Control 1) AD1CON2 (A/D Control 2) AD1CON3 (A/D Control 3) AD1CON5 (A/D Control 5) AD1CSSH (A/D Input Scan Select, High Word) AD1CSSL (A/D Input Scan Select, Low Word) AD1CSSL (A/D Input Scan Select, Low Word) AD1CTMENH (CTMU Enable, High Word) AD1CTMENL (CTMU Enable, Low Word) AD1CTMENL (CTMU Enable, Low Word) ALCFGRPT (Alarm Configuration) ALMINSEC (Alarm Minutes and Seconds Value) ALMTHDY (Alarm Month and Day Value) ANSA (Analog Selection, PORTA) ANSB (Analog Selection, PORTB) ANSC (Analog Selection, PORTB) ANSC (Analog Selection, PORTC) CLKDIV (Clock Divider) CMSTAT (Comparator X Control) CORCON (CPU Control) CORCON (CPU Cortrol 1) CRCCON2 (CRC Control 2) CRCXORH (CRC XOR Polynomial, High Byte)	50 216 215 211 212 213 214 217 217 217 218 217 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHITH (A/D Sample Select) AD1CON1 (A/D Control 1) AD1CON2 (A/D Control 2) AD1CON3 (A/D Control 3) AD1CON5 (A/D Control 5) AD1CSSH (A/D Input Scan Select, High Word) AD1CSSL (A/D Input Scan Select, Low Word) AD1CSSL (A/D Input Scan Select, Low Word) AD1CTMENH (CTMU Enable, High Word) AD1CTMENH (CTMU Enable, Low Word) AD1CTMENL (CTMU Enable, Low Word) AD1CTMENL (CTMU Enable, Low Word) ALCFGRPT (Alarm Configuration) ALMINSEC (Alarm Minutes and Seconds Value) ALMTHDY (Alarm Month and Day Value) ANSA (Analog Selection, PORTA) ANSB (Analog Selection, PORTA) ANSB (Analog Selection, PORTB) ANSC (Analog Selection, PORTC) CLKDIV (Clock Divider) CMSTAT (Comparator Status) CMCCON (CPU Control) CORCON (CPU Control) CORCON (CPU Control 1) CRCCON2 (CRC Control 1) CRCCON2 (CRC Control 2) CRCXORH (CRC XOR Polynomial, High Byte) CRXORL (CRC XOR Polynomial, Low Byte)	50 216 215 211 212 213 214 217 217 217 218 217 217 217 218 217 217 218 217 217 218 217 217 218 217 217 217 218 217 217 217 218 217 217 218 217 217 217 218 217 217 218 217 218 217 218 217 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 218 217 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 217 218 218 218 218 218 218 218 218 218 218 217 218 218 218 218 218 217 218 218 217 218 217 218 217 218 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217 217
Regi	isters AD1CHITH (A/D Scan Compare Hit, High Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CHITH (A/D Scan Compare Hit, Low Word) AD1CON1 (A/D Control 1) AD1CON2 (A/D Control 2) AD1CON3 (A/D Control 3) AD1CON5 (A/D Control 5) AD1CSSH (A/D Input Scan Select, High Word) AD1CSSL (A/D Input Scan Select, Low Word) AD1CSSL (A/D Input Scan Select, Low Word) AD1CTMENH (CTMU Enable, High Word) AD1CTMENL (CTMU Enable, Low Word) AD1CTMENL (CTMU Enable, Low Word) ALCFGRPT (Alarm Configuration) ALMINSEC (Alarm Minutes and Seconds Value) ALMTHDY (Alarm Month and Day Value) ANSA (Analog Selection, PORTA) ANSB (Analog Selection, PORTB) ANSC (Analog Selection, PORTB) ANSC (Analog Selection, PORTC) CLKDIV (Clock Divider) CMSTAT (Comparator X Control) CORCON (CPU Control) CORCON (CPU Cortrol 1) CRCCON2 (CRC Control 2) CRCXORH (CRC XOR Polynomial, High Byte)	50 216 215 211 212 213 214 217 217 217 217 218 217 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 217 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 218 217 228 221 228 202 202 203 202 203 203 204 203 203 203 203 203 203 203 203 203 203 203 203 203 203 203 204

CTMUICON (CTMU Current Control)237
CVRCON (Comparator Voltage Reference
Control)
DEVID (Device ID)
DEVREV (Device Revision)
DSCON (Deep Sleep Control)
DSWAKE (Deep Sleep Wake-up Source)
FBS (Boot Segment Configuration)
FDS (Deep Sleep Configuration)
FGS (General Segment Configuration)
FICD (In-Circuit Debugger Configuration)244
FOSC (Oscillator Configuration)241
FOSCSEL (Oscillator Selection Configuration)240
FPOR (Reset Configuration)243
FWDT (Watchdog Timer Configuration)242
HLVDCON (High/Low-Voltage Detect Control) 206
I2CxMSK (I2Cx Slave Mode Address Mask)
I2CxSTAT (I2Cx Status)
I2CxxCON (I2Cx Control)
ICxCON1 (Input Capture x Control 1)
ICxCON2 (Input Capture x Control 2)
IEC0 (Interrupt Enable Control 0)
IEC1 (Interrupt Enable Control 1)
IEC2 (Interrupt Enable Control 2)
IEC3 (Interrupt Enable Control 3)93
IEC4 (Interrupt Enable Control 4)94
IEC5 (Interrupt Enable Control 5)95
IFS0 (Interrupt Flag Status 0)83
IFS1 (Interrupt Flag Status 1)85
IFS2 (Interrupt Flag Status 2)86
IFS3 (Interrupt Flag Status 3)87
IFS4 (Interrupt Flag Status 4)
IFS5 (Interrupt Flag Status 5)
INTCON1 (Interrupt Control 1)
INTCON2 (Interrupt Control 2)
INTTREG (Interrupt Control and Status)
IPC0 (Interrupt Priority Control 0)
IPC1 (Interrupt Priority Control 1)
IPC12 (Interrupt Priority Control 12)
IPC15 (Interrupt Priority Control 15)
IPC16 (Interrupt Priority Control 16)
IPC18 (Interrupt Priority Control 18)109
IPC19 (Interrupt Priority Control 19)109
IPC2 (Interrupt Priority Control 2)
IPC20 (Interrupt Priority Control 20)110
IPC3 (Interrupt Priority Control 3)
IPC4 (Interrupt Priority Control 4)100
IPC5 (Interrupt Priority Control 5)101
IPC6 (Interrupt Priority Control 6)
IPC7 (Interrupt Priority Control 7)103
IPC8 (Interrupt Priority Control 8)104
IPC9 (Interrupt Priority Control 9)
MINSEC (RTCC Minutes and Seconds Value) 192
MTHDY (RTCC Month and Day Value)
NVMCON (Flash Memory Control)
NVMCON (Nonvolatile Memory Control)
OCxCON1 (Output Compare x Control 1)157
OCxCON2 (Output Compare x Control 2) 159
OSCCON (Oscillator Control)115
OSCTUN (FRC Oscillator Tune)118
PADCFG1 (Pad Configuration Control)176
RCFGCAL (RTCC Calibration and
Configuration)187
RCON (Reset Control)
REFOCON (Reference Oscillator Control)121

RTCCSWT (Control/Sample Window Timer)	195
RTCPWC (RTCC Configuration 2)	189
SPIxCON1 (SPIx Control 1)	166
SPIxCON2 (SPIx Control 2)	167
SPIxSTAT (SPIx Status and Control)	164
SR (ALU STATUS)	
T1CON (Timer1 Control)	140
TxCON (Timer2/4 Control)	
TyCON (Timer3/5 Control)	
ULPWCON (ULPWU Control)	130
UxMODE (UARTx Mode)	180
UxRXREG (UARTx Receive)	
UxSTA (UARTx Status and Control)	182
UxTXREG (UARTx Transmit)	184
WKDYHR (RTCC Weekday and Hours Value) .	192
YEAR (RTCC Year Value)	
Resets	
Brown-out Reset (BOR)	73
Clock Source Selection	72
Deep Sleep BOR (DSBOR)	73
Delay Times	72
Device Times	72
RCON Flag Operation	71
SFR States	73
Revision History	339
RTCC	185
Alarm Configuration	196
Alarm Mask Settings (figure)	197
Calibration	196
Module Registers	186
Mapping	
Clock Source Selection	186
Write Lock	186
Source Clock	185

### S

Serial Peripheral Interface. See SPI.	
SFR Space	38
Software Simulator (MPLAB SIM)	253
Software Stack	51

т	
Timer1	139
Timer2/3	141
Timer2/3 and Timer4/5	141
Timing Diagrams	
A/D Conversion	293
Brown-out Reset Characteristics	280
CLKO and I/O Timing	278
External Clock	
I ² C Bus Data (Master Mode)	
I ² C Bus Data (Slave Mode)	285
I ² C Bus Start/Stop Bits (Master Mode)	
I ² C Bus Start/Stop Bits (Slave Mode)	286
Input Capture	
Output Compare	
PWM Requirements	282
Reset, Watchdog Timer. Oscillator Start-up	
Timer, Power-up Timer Characteristics	279
SPIx Master Mode (CKE = 0)	
SPIx Master Mode (CKE = 1)	
SPIx Slave Mode (CKE = 0)	
SPIx Slave Mode (CKE = 1)	
UARTx Baud Rate Generator Output	
UARTx Start Bit Edge Detection	287

Timing Requirements	
A/D Conversion	
CLKO and I/O	
External Clock	
I ² C Bus Data (Master Mode)	283, 284
I ² C Bus Data (Slave Mode)	
I ² C Bus Start/Stop Bit (Slave Mode)	
PLL Clock Specifications	
PWM	
SPIx Master Mode (CKE = 0)	
SPIx Master Mode (CKE = 1)	
SPIx Slave Mode (CKE = 0)	
SPIx Slave Mode (CKE = 1)	
UARTx	

#### U

### W

Watchdog Timer	
Deep Sleep (DSWDT)	250
Watchdog Timer (WDT)	248
Windowed Operation	249
WWW Address	346
WWW, On-Line Support	9

^{© 2011-2012} Microchip Technology Inc.

NOTES:

### THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

# CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

### **CUSTOMER SUPPORT**

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

#### READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent			
FION	n: Name				
	Company Address				
	City / State / ZIP / Country				
	Telephone: ()	FAX: ()			
Application (optional):					
Would you like a reply? Y N					
	ce: PIC24FV32KA304 Family	Literature Number: DS39995C			
Que	stions:				
1. What are the best features of this document?					
-					
2.	2. How does this document meet your hardware and software development needs?				
-					
3. I	. Do you find the organization of this document easy to follow? If not, why?				
-					
4. \	. What additions to the document do you think would enhance the structure and subject?				
-					
5.	What deletions from the document could be made without affecting the overall usefulness?				
-					
6. I	Is there any incorrect or misleading information (what and where)?				
-					
7.	7. How would you improve this document?				
-					

DS39995C-page 348

### **PRODUCT IDENTIFICATION SYSTEM**

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Pin Count	amily y Size (KB) ag (if applicable)	<ul> <li>Examples:</li> <li>a) PIC24FV32KA304-I/ML: Wide voltage range, General Purpose, 32-Kbyte program memory, 44-pin, Industrial temp., QFN package</li> <li>b) PIC24F16KA302-I/SS: Standard voltage range, General Purpose, 16-Kbyte program memory, 28-pin, Industrial temp., SSOP package</li> </ul>
Architecture	24 = 16-bit modified Harvard without DSP	
Flash Memory Family	<ul><li>F = Standard voltage range Flash program memory</li><li>FV = Wide voltage range Flash program memory</li></ul>	
Product Group	KA3 = General purpose microcontrollers	
Pin Count	01 = 20-pin 02 = 28-pin 04 = 44-pin	
Temperature Range	I = $-40^{\circ}$ C to $+85^{\circ}$ C (Industrial)	
Package	$\begin{array}{rcl} SP &=& SPDIP\\ SO &=& SOIC\\ SS &=& SSOP\\ ML &=& QFN\\ P &=& PDIP\\ PT &=& TQFP \end{array}$	
Pattern	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample	

^{© 2011-2012} Microchip Technology Inc.

NOTES:

#### Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

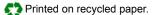
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

### QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

#### Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2012, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.



ISBN: 978-1-62076-197-7

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

© 2011-2012 Microchip Technology Inc.



### **Worldwide Sales and Service**

#### AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

**Cleveland** Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

**Dallas** Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

#### ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

**China - Beijing** Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

**China - Chengdu** Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

**China - Chongqing** Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

**China - Hangzhou** Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

**China - Hong Kong SAR** Tel: 852-2401-1200

Fax: 852-2401-3431

**China - Nanjing** Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

**China - Qingdao** Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

**China - Shanghai** Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

**China - Shenzhen** Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

**China - Wuhan** Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

**China - Xian** Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

**China - Xiamen** Tel: 86-592-2388138 Fax: 86-592-2388130

**China - Zhuhai** Tel: 86-756-3210040 Fax: 86-756-3210049

#### ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

**India - New Delhi** Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

**Japan - Osaka** Tel: 81-66-152-7160 Fax: 81-66-152-9310

**Japan - Yokohama** Tel: 81-45-471- 6166 Fax: 81-45-471-6122

**Korea - Daegu** Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

**Malaysia - Penang** Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

**Singapore** Tel: 65-6334-8870 Fax: 65-6334-8850

**Taiwan - Hsin Chu** Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

**Thailand - Bangkok** Tel: 66-2-694-1351 Fax: 66-2-694-1350

#### EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

**Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

**Spain - Madrid** Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

**UK - Wokingham** Tel: 44-118-921-5869 Fax: 44-118-921-5820